1
|
Hama S, Watanabe-Takahashi M, Nishimura H, Omi J, Tamada M, Saitoh T, Maenaka K, Okuda Y, Ikegami A, Kitagawa A, Furuta K, Izumi K, Shimizu E, Nishizono T, Fujiwara M, Miyasaka T, Takamori S, Takayanagi H, Nishikawa K, Kobayashi T, Toyama-Sorimachi N, Yamashita M, Senda T, Hirokawa T, Bito H, Nishikawa K. CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection. mBio 2025; 16:e0008724. [PMID: 39601535 PMCID: PMC11708044 DOI: 10.1128/mbio.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is one of hundreds of host-cell factors involved in the propagation of type A influenza virus (IAV), although its mechanism of action is unknown. Here, we identified CaMKII inhibitory peptide M3 by targeting its kinase domain using affinity-based screening of a tailored random peptide library. M3 inhibited IAV cytopathicity and propagation in cells by specifically inhibiting the acute-phase activation of retinoic acid-inducible gene I (RIG-I), which is uniquely regulated by CaMKII. Downstream of the RIG-I pathway activated TBK1 and then IRF3, which induced small but sufficient amounts of transcripts of the genes for IFN α/β to provide the capped 5'-ends that were used preferentially as primers to synthesize viral mRNAs by the cap-snatching mechanism. Importantly, knockout of RIG-I in cells almost completely inhibited the expression of IFN mRNAs and subsequent viral NP mRNA early in infection (up to 6 h after infection), which then protected cells from cytopathicity 24 h after infection. Thus, CaMKII-dependent acute-phase activation of RIG-I promoted IAV propagation, whereas the canonical RIG-I pathway stimulated antiviral activity by inducing large amounts of mRNA for IFNs and then for antiviral proteins later in infection. Co-administration of M3 with IAV infection rescued mice from the lethality and greatly reduced proinflammatory cytokine mRNA expression in the lung, indicating that M3 is highly effective against IAV in vivo. Thus, regulation of the CaMKII-dependent non-canonical RIG-I pathway may provide a novel host-factor-directed antiviral therapy.IMPORTANCEThe recent emergence of IAV strains resistant to commonly used therapeutic agents that target viral proteins has exacerbated the need for innovative strategies. Here, we originally identified CaMKII-inhibitory peptide M3, which efficiently inhibits IAV-lethality in vitro and in vivo. M3 specifically inhibited the acute-phase activation of RIG-I, which is a novel pathway to promote IAV propagation. Thus, this pathway acts in an opposite manner compared with the canonical RIG-I pathway, which plays essential roles in antiviral innate immune response later in infection. The CaMKII-dependent non-canonical RIG-I pathway can be a promising and novel drug target for the treatment of infections.
Collapse
Affiliation(s)
- Shinichiro Hama
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hiroki Nishimura
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Tamada
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Saitoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuta Okuda
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Aoi Ikegami
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asami Kitagawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Koudai Furuta
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kana Izumi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Nishizono
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makoto Fujiwara
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Faculty of Pharmacy, Nihon University, Funabashi, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Nishikawa
- Department of Cell Biology and Metabolic Biochemistry, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Toshihiko Kobayashi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
2
|
Martinez-Canton M, Gallego-Selles A, Galvan-Alvarez V, Garcia-Gonzalez E, Garcia-Perez G, Santana A, Martin-Rincon M, Calbet JAL. CaMKII protein expression and phosphorylation in human skeletal muscle by immunoblotting: Isoform specificity. Free Radic Biol Med 2024; 224:182-189. [PMID: 39187050 DOI: 10.1016/j.freeradbiomed.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) is activated during exercise by reactive oxygen species (ROS) and Ca2+ transients initiating muscle contraction. CaMKII modulates antioxidant, inflammatory, metabolic and autophagy signalling pathways. CaMKII is coded by four homologous genes (α, β, γ, and δ). In rat skeletal muscle, δD, δA, γD, γB and βM have been described while different characterisations of human skeletal muscle CaMKII isoforms have been documented. Precisely discerning between the various isoforms is pivotal for understanding their distinctive functions and regulatory mechanisms in response to exercise and other stimuli. This study aimed to optimize the detection of the different CaMKII isoforms by western blotting using eight different CaMKII commercial antibodies in human skeletal muscle. Exercise-induced posttranslational modifications, i.e. phosphorylation and oxidations, allowed the identification of specific bands by multitargeting them with different antibodies after stripping and reprobing. The methodology proposed has confirmed the molecular weight of βM CaMKII and allows distinguishing between γ/δ and δD CaMKII isoforms. The corresponding molecular weight for the CaMKII isoforms resolved were: δD, at 54.2 ± 2.1 kDa; γ/δ, at 59.0 ± 1.2 kDa and 61.6 ± 1.3 kDa; and βM isoform, at 76.0 ± 1.8 kDa. Some tested antibodies showed high specificity for the δD, the most responsive isoform to ROS and intracellular Ca2+ transients in human skeletal muscle, while others, despite the commercial claims, failed to show such specificity.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Giovanni Garcia-Perez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
3
|
Sun XM, Wu X, Wei MG, Zhu LZ, Wu WH, Zhou XY, Qi LW, Liu Q. CPS1 augments hepatic glucagon response through CaMKII/FOXO1 pathway. Front Pharmacol 2024; 15:1437738. [PMID: 39193349 PMCID: PMC11347310 DOI: 10.3389/fphar.2024.1437738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng-Guang Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Li-Zeng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin-Yue Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Saito T, Suzuki M, Ohba A, Hamaguchi S, Namekata I, Tanaka H. Enhanced Late I Na Induces Intracellular Ion Disturbances and Automatic Activity in the Guinea Pig Pulmonary Vein Cardiomyocytes. Int J Mol Sci 2024; 25:8688. [PMID: 39201376 PMCID: PMC11354854 DOI: 10.3390/ijms25168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The effects of enhanced late INa, a persistent component of the Na+ channel current, on the intracellular ion dynamics and the automaticity of the pulmonary vein cardiomyocytes were studied with fluorescent microscopy. Anemonia viridis toxin II (ATX- II), an enhancer of late INa, caused increases in the basal Na+ and Ca2+ concentrations, increases in the number of Ca2+ sparks and Ca2+ waves, and the generation of repetitive Ca2+ transients. These phenomena were inhibited by eleclazine, a blocker of the late INa; SEA0400, an inhibitor of the Na+/Ca2+ exchanger (NCX); H89, a protein kinase A (PKA) inhibitor; and KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results suggest that enhancement of late INa in the pulmonary vein cardiomyocytes causes disturbance of the intracellular ion environment through activation of the NCX and Ca2+-dependent enzymes. Such mechanisms are probably involved in the ectopic electrical activity of the pulmonary vein myocardium.
Collapse
Affiliation(s)
| | | | | | | | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (T.S.); (M.S.); (A.O.); (S.H.); (H.T.)
| | | |
Collapse
|
5
|
Borodzicz-Jażdżyk S, Kołodzińska A, Czarzasta K, Wojciechowska M, Główczyńska R, Szczepankiewicz B, Puchalska L, Opolski G, Cudnoch-Jędrzejewska A. Inflammatory Forms of Cardiomyocyte Cell Death in the Rat Model of Isoprenaline-Induced Takotsubo Syndrome. Biomedicines 2023; 11:2060. [PMID: 37509699 PMCID: PMC10377582 DOI: 10.3390/biomedicines11072060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Takotsubo syndrome (TTS) is associated with inflammatory response, therefore the aim of the study was to evaluate the presence and dynamics of inflammatory-associated forms of cell death, necroptosis, and pyroptosis in the female rat model of isoprenaline (ISO)-induced TTS. TTS was induced in female Sprague Dawley rats (n = 36) by ISO 150 mg/kg intraperitoneally. Animals were divided into four groups: TTSO (TTS+ovariectomy; n = 10), TTSP (TTS+sham operation; n = 10), CO (0.9% NaCl+ovariectomy; n = 8), CP (0.9% NaCl+sham operation; n = 8). Histopathological analysis, evaluation of plasma concentration, and myocardial expression of pyroptosis- and necroptosis-associated proteins were performed. TTSO and TTSP groups had higher plasma concentrations of interleukin-1β in comparison with the controls. Low myocardial protein expression of mixed lineage kinase domain-like pseudokinase (MLKL), caspase-1 (Casp-1), and calcium/calmodulin-dependent kinase type II isoform delta (CAMKIIδ) was visible 6 and/or 12 h post-ISO. Twenty-four hours post-ISO, high myocardial and vascular protein expression of CAMKIIδ was visible in TTSO but not TTSP rats, while high myocardial expression of MLKL and Casp-1 was visible both in TTSO and TTSP rats. The course of TTS is associated with activation of inflammatory-associated programmed cell death, necroptosis, and pyroptosis, therefore inflammation may be a primary response occurring simultaneously with cardiomyocyte death in TTS.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Agnieszka Kołodzińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Renata Główczyńska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Benedykt Szczepankiewicz
- Department of Pathology, Medical University of Warsaw, 7 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Liana Puchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Wang S, Chen J, Jiang Y, Lei Z, Ruan YC, Pan Y, Yam JWP, Wong MP, Xiao Z. Targeting GSTP1 as Therapeutic Strategy against Lung Adenocarcinoma Stemness and Resistance to Tyrosine Kinase Inhibitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205262. [PMID: 36709476 PMCID: PMC9982593 DOI: 10.1002/advs.202205262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Glutathione S-transferase pi (GSTP1), a phase II detoxification enzyme, is known to be overexpressed and mediates chemotherapeutic resistance in lung cancer. However, whether GSTP1 supports cancer stem cells (CSCs) and the underlying mechanisms in lung adenocarcinoma (LUAD) remain largely unknown. This study unveiled that GSTP1 is upregulated in lung CSCs and supports tumor self-renewal, metastasis, and resistance to targeted tyrosine kinase inhibitors of LUAD both in vitro and in vivo. Mechanistically, CaMK2A (calcium/calmodulin-dependent protein kinase 2 isoform A)/NRF2 (nuclear factor erythroid 2-related factor 2)/GSTP1 is uncovered as a regulatory axis under hypoxia. CaMK2A increased GSTP1 expression through phosphorylating the Sersine558 residue of NRF2 and promoting its nuclear translocation, a novel mechanism for NRF2 activation apart from conventional oxidization-dependent activation. Upregulation of GSTP1 in turn suppressed reactive oxygen species levels and supported CSC phenotypes. Clinically, GSTP1 analyzed by immunohistochemistry is upregulated in a proportion of LUAD and serves as a prognostic marker for survival. Using patient-derived organoids from an ALK-translocated LUAD, the therapeutic potential of a specific GSTP1 inhibitor ezatiostat in combination treatment with the ALK inhibitor crizotinib is demonstrated. This study demonstrates GSTP1 to be a promising therapeutic target for long-term control of LUAD through targeting CSCs.
Collapse
Affiliation(s)
- Si‐Qi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijing100101China
- Bejing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
- Department of Biomedical EngineeringFaculty of EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Zi‐Ning Lei
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Ye Chun Ruan
- Department of Biomedical EngineeringFaculty of EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
| | - Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| |
Collapse
|
7
|
Son J, Jung O, Kim JH, Park KS, Kweon HS, Nguyen NT, Lee YJ, Cha H, Lee Y, Tran Q, Seo Y, Park J, Choi J, Cheong H, Lee SY. MARS2 drives metabolic switch of non-small-cell lung cancer cells via interaction with MCU. Redox Biol 2023; 60:102628. [PMID: 36774778 PMCID: PMC9947422 DOI: 10.1016/j.redox.2023.102628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNAifMet for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca2+ flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca2+ influx. Methionine binding to MARS2 would act as a molecular switch that regulates MARS2-MCU interaction. Endogenous knockdown of MARS2 attenuates mitochondrial Ca2+ influx and induces p53 upregulation through the Ca2+-dependent CaMKII/CREB signaling. Subsequently, metabolic rewiring from glycolysis into pentose phosphate pathway is triggered and cellular reactive oxygen species level decreases. This metabolic switch induces inhibition of epithelial-mesenchymal transition (EMT) via cellular redox regulation. Expression of MARS2 is regulated by ZEB1 transcription factor in response to Wnt signaling. Our results suggest the mechanisms of mitochondrial Ca2+ uptake and metabolic control of cancer that are exerted by the key factors of the mitochondrial translational machinery and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Okkeun Jung
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea,Department of Cancer Biomedical Science, Graduate School of Cancer Sciences and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, 26424, South Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, South Korea
| | - Nhung Thi Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, 26424, South Korea
| | - Yu Jin Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Hansol Cha
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Yejin Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Quangdon Tran
- Department of Pharmacology and Medical Sciences, Metabolic Syndrom and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea,Department of Cancer Biomedical Science, Graduate School of Cancer Sciences and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Sciences, Metabolic Syndrom and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Jungwon Choi
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Heesun Cheong
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea.
| |
Collapse
|
8
|
Navakkode S, Zhai J, Wong YP, Li G, Soong TW. Enhanced long-term potentiation and impaired learning in mice lacking alternative exon 33 of Ca V1.2 calcium channel. Transl Psychiatry 2022; 12:1. [PMID: 35013113 PMCID: PMC8748671 DOI: 10.1038/s41398-021-01683-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
The CACNA1C (calcium voltage-gated channel subunit alpha 1 C) gene that encodes the CaV1.2 channel is a prominent risk gene for neuropsychiatric and neurodegenerative disorders with cognitive and social impairments like schizophrenia, bipolar disorders, depression and autistic spectrum disorders (ASD). We have shown previously that mice with exon 33 deleted from CaV1.2 channel (CaV1.2-exon 33-/-) displayed increased CaV1.2 current density and single channel open probability in cardiomyocytes, and were prone to develop arrhythmia. As Ca2+ entry through CaV1.2 channels activates gene transcription in response to synaptic activity, we were intrigued to explore the possible role of Cav1.2Δ33 channels in synaptic plasticity and behaviour. Homozygous deletion of alternative exon 33 resulted in enhanced long-term potentiation (LTP), and lack of long- term depression (LTD), which did not correlate with enhanced learning. Exon 33 deletion also led to a decrease in social dominance, sociability and social novelty. Our findings shed light on the effect of gain-of-function of CaV1.2Δ33 signalling on synaptic plasticity and behaviour and provides evidence for a link between CaV1.2 and distinct cognitive and social behaviours associated with phenotypic features of psychiatric disorders like schizophrenia, bipolar disorder and ASD.
Collapse
Affiliation(s)
- Sheeja Navakkode
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jing Zhai
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yuk Peng Wong
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Guang Li
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.410578.f0000 0001 1114 4286Present Address: Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Kani K, Fujiu K. Electrical Storm. Int Heart J 2021; 62:1195-1198. [PMID: 34853216 DOI: 10.1536/ihj.21-662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kunihiro Kani
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
10
|
Gaitán-González P, Sánchez-Hernández R, Arias-Montaño JA, Rueda A. Tale of two kinases: Protein kinase A and Ca 2+/calmodulin-dependent protein kinase II in pre-diabetic cardiomyopathy. World J Diabetes 2021; 12:1704-1718. [PMID: 34754372 PMCID: PMC8554373 DOI: 10.4239/wjd.v12.i10.1704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations, including insulin resistance, visceral fat accumulation, and dyslipidemias, which increase the risk for developing cardiovascular disease. Metabolic syndrome is associated with augmented sympathetic tone, which could account for the etiology of pre-diabetic cardiomyopathy. This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustained β-adrenergic response in pre-diabetes, focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy. The research reviewed indicates that both protein kinase A and Ca2+/calmodulin-dependent protein kinase II play important roles in functional responses mediated by β1-adrenoceptors; therefore, alterations in the expression or function of these kinases can be deleterious. This review also outlines recent information on the role of protein kinase A and Ca2+/calmodulin-dependent protein kinase II in abnormal Ca2+ handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pamela Gaitán-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Rommel Sánchez-Hernández
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - José-Antonio Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Angélica Rueda
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| |
Collapse
|
11
|
Li X, Tian G, Xu L, Sun L, Tao R, Zhang S, Cong Z, Deng F, Chen J, Yu Y, Du W, Zhao H. Wenxin Keli for the Treatment of Arrhythmia-Systems Pharmacology and In Vivo Pharmacological Assessment. Front Pharmacol 2021; 12:704622. [PMID: 34512338 PMCID: PMC8426352 DOI: 10.3389/fphar.2021.704622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
This study employed a systems pharmacology approach to identify the active compounds and action mechanisms of Wenxin Keli for arrhythmia treatment. Sixty-eight components identified in vivo and in vitro by UPLC/Q-TOF-MS were considered the potential active components of Wenxin Keli. Network pharmacology further revealed 33 key targets and 75 KEGG pathways as possible pathways and targets involved in WK-mediated treatment, with the CaMKII/CNCA1C/Ca2+ pathway being the most significantly affected. This finding was validated using an AC-induced rat arrhythmias model. Pretreatment with Wenxin Keli reduced the malignant arrhythmias and shortened RR, PR, and the QT interval. Wenxin Keli exerted some antiarrhythmic effects by inhibiting p-CaMKII and intracellular Ca2+ transients and overexpressing CNCA1C. Thus, suppressing SR Ca2+ release and maintaining intracellular Ca2+ balance may be the primary mechanism of Wenxin Keli against arrhythmia. In view of the significance of CaMKII and NCX identified in this experiment, we suggest that CaMKII and NCX are essential targets for treating arrhythmias.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Gang Tian
- Department of Cardiology, Teda International Cardiovascular Hospital, Tianjin, China
| | - Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.,Tianjin Medical College, Tianjin, China
| | - Lili Sun
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Rui Tao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shaoqiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Zidong Cong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Fangjun Deng
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Yang Yu
- Department of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Wuxun Du
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Hucheng Zhao
- Department of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Cai K, Chen H. MiR-625-5p Inhibits Cardiac Hypertrophy Through Targeting STAT3 and CaMKII. HUM GENE THER CL DEV 2020; 30:182-191. [PMID: 31617427 DOI: 10.1089/humc.2019.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is an adaptive cardiac response to heart stress. Sustained cardiac hypertrophy indicates higher risk of heart failure. Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been proved to be a key regulator of cardiac hypertrophy, but its mechanism remains largely unknown. Our study proposed to explore the regulatory mechanism of CaMKII in cardiac hypertrophy. We validated that CaMKII was upregulated in cardiac hypertrophy models in vivo and in vitro and that knockdown of CaMKII attenuated Ang II-induced cardiac hypertrophy in vitro. Furthermore, we demonstrated that signal transducer and activator of transcription 3 (STAT3) was highly expressed in cardiac hypertrophy and could stimulate the transactivation of CaMKII. Moreover, we predicted through TargetScan and confirmed that miR-625-5p targeted and inhibited STAT3 so as to reduce the expression of CaMKII. Interestingly, we also found that miR-625-5p directly targeted CaMKII and inhibited its expression. Rescue assays suggested that miR-625-5p attenuated Ang II-induced cardiac hypertrophy through CaMKII/STAT3. Consequently, this study elucidated that miR-625-5p inhibited cardiac hypertrophy through targeting STAT3 and CaMKII, suggesting miR-625-5p as a novel negative regulator of cardiac hypertrophy. Graphical abstract [Figure: see text].
Collapse
Affiliation(s)
- Kefeng Cai
- Cardiovascular Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Huiqin Chen
- Department of Basic Medical, Quanzhou Medical College, Quanzhou City, China
| |
Collapse
|
14
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada .,Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Oniki T, Teshima Y, Nishio S, Ishii Y, Kira S, Abe I, Yufu K, Takahashi N. Hyponatraemia aggravates cardiac susceptibility to ischaemia/reperfusion injury. Int J Exp Pathol 2020; 100:350-358. [PMID: 31994291 DOI: 10.1111/iep.12338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/16/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hyponatraemia is defined as a serum sodium concentration of <135 mEql/L and is the most common electrolyte disturbance in patients with chronic heart failure. We hypothesize that hyponatraemia may induce Ca2+ overload and enhance reactive oxygen species (ROS) production, which will exacerbate myocardial injury more than normonatraemia. We investigated the effect of hyponatraemia on the ability of the heart to recover from ischaemia/reperfusion episodes. Cardiomyocytes were obtained from 1- to 3-day-old Sprague Dawley rats. After isolation, cardiomyocytes were placed in Dulbecco's modified Eagle's medium (DMEM) containing low sodium concentration (110, 120, or 130 mEq/L) or normal sodium concentration (140 mEq/L) for 72 hours. Exposure of cardiomyocytes to each of the low-sodium medium significantly increased both ROS and intracellular Ca2+ levels compared with the exposure to the normal-sodium medium. In vivo, 8-week-old male Sprague Dawley rats were divided into four groups: control group (Con), furosemide group (Fur), low-sodium diet group (Lsd) and both furosemide and low-sodium diet group (Fur + Lsd). The hearts subjected to global ischaemia exhibited considerable decrease in left ventricular developed pressure during reperfusion, and the size of infarcts induced by ischaemia/reperfusion significantly increased in the Fur, Lsd and Fur + Lsd compared with that in the Con. Hyponatraemia aggravates cardiac susceptibility to ischaemia/reperfusion injury by Ca2+ overload and increasing in ROS levels.
Collapse
Affiliation(s)
- Takahiro Oniki
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Satoru Nishio
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Shintaro Kira
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu city, Japan
| |
Collapse
|
16
|
Jesus ICG, Mesquita TRR, Monteiro ALL, Parreira AB, Santos AK, Coelho ELX, Silva MM, Souza LAC, Campagnole-Santos MJ, Santos RS, Guatimosim S. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. Am J Physiol Cell Physiol 2020; 318:C740-C750. [PMID: 31913703 DOI: 10.1152/ajpcell.00153.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Overstimulation of the renin-angiotensin system (RAS) has been implicated in the pathogenesis of various cardiovascular diseases. Alamandine is a peptide newly identified as a protective component of the RAS; however, the mechanisms involved in its beneficial effects remain elusive. By using a well-characterized rat model of hypertension, the TGR (mREN2)27, we show that mREN ventricular myocytes are prone to contractile enhancement mediated by short-term alamandine (100 nmol/L) stimulation of Mas-related G protein-coupled receptor member D (MrgD) receptors, while Sprague-Dawley control cells showed no effect. Additionally, alamandine prevents the Ca2+ dysregulation classically exhibited by freshly isolated mREN myocytes. Accordingly, alamandine treatment of mREN myocytes attenuated Ca2+ spark rate and enhanced Ca2+ reuptake to the sarcoplasmic reticulum. Along with these findings, KN-93 fully inhibited the alamandine-induced increase in Ca2+ transient magnitude and phospholamban (PLN) phosphorylation at Thr17, indicating CaMKII as a downstream effector of the MrgD signaling pathway. In mREN ventricular myocytes, alamandine treatment induced significant nitric oxide (NO) production. Importantly, NO synthase inhibition prevented the contractile actions of alamandine, including PLN-Thr17 phosphorylation at the CaMKII site, thereby indicating that NO acts upstream of CaMKII in the alamandine downstream signaling. Altogether, our results show that enhanced contractile responses mediated by alamandine in cardiomyocytes from hypertensive rats occur through a NO-dependent activation of CaMKII.
Collapse
Affiliation(s)
- Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | | | - André Luís Lima Monteiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Borges Parreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Kenedy Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elizeu Lucas Xavier Coelho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Morais Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas A C Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Robson Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Li K, Lin Y, Li C. MiR-338-5p ameliorates pathological cardiac hypertrophy by targeting CAMKIIδ. Arch Pharm Res 2019; 42:1071-1080. [PMID: 31820396 DOI: 10.1007/s12272-019-01199-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022]
Abstract
Pathological cardiac hypertrophy (PCH) is characterized by an increase in cardiomyocyte size and thickening of the ventricular walls during the adaptive response to maintain cardiac function, which often progresses to a maladaptive response and, ultimately, to heart failure. Previous studies have demonstrated that miRNAs play roles in the pathogenesis of PCH. In this study, we first found that the regulation of miR-338-5p was aberrant in cardiac tissues of heart failure patients and transverse aortic constriction (TAC)-induced PCH mice. Overexpression of miR-338-5p in the heart using recombinant adeno-associated virus serotype 9 (rAAV9) ameliorated TAC-induced PCH, as indicated by a decreased heart weight/body weight (HW/BW) ratio. Furthermore, miR-338-5p mitigated the TAC-induced damage in heart contraction and relaxation function, as measured by echocardiography and a cardio hemodynamic measurement, respectively. We also identified CAMKIIδ as a direct target of miR-338-5p using bioinformatics tools and the luciferase reporter assay. Finally, we observed that the miR-338-5p-mediated downregulation of CAMKIIδ reversed the cell surface area enlargement induced by the Ang-II treatment in H9c2 cells. Therefore, we highlight a novel molecular mechanism of the miR-338-5p/CAMKIIδ axis that contributes to the pathogenesis of PCH.
Collapse
Affiliation(s)
- Kailong Li
- Department of Ultrasound, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, PR China
| | - Yuedong Lin
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China
| | - Cong Li
- Department of Ultrasound, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, PR China.
| |
Collapse
|
18
|
Tardiff JC. The Role of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Hypertrophic Cardiomyopathy. Circulation 2019; 134:1749-1751. [PMID: 27895024 DOI: 10.1161/circulationaha.116.025455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jil C Tardiff
- From Departments of Internal Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson.
| |
Collapse
|
19
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
20
|
He Q, Cheng J, Wang Y. Chronic CaMKII inhibition reverses cardiac function and cardiac reserve in HF mice. Life Sci 2019; 219:122-128. [PMID: 30639281 DOI: 10.1016/j.lfs.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS The present study was to explore the impact of KN93 - a specific inhibitor of CaMKII - on cardiac function and cardiac reserve in HF mice. MAIN METHODS We have generated pressure-overload HF mice using modified transverse aortic constriction (TAC) method. For acute inhibition (AI) experiment, HF mice were randomly divided into HF group, HF + KN93 AI group and HF + KN92 AI group, using sham mice as control. Mice in HF + KN93 AI group and HF + KN92 AI group were injected with CaMKII inhibitor KN93 or its inactive analogue KN92 on post-TAC day 15, while mice in HF group and Sham group were treated with saline. For chronic inhibition (CI) experiment, mice were injected daily with KN93, KN92 or saline for one week. At baseline and after isoproterenol (Iso) injection, in vivo cardiac function was assessed by echocardiography and left ventricular pressure-volume catheter. KEY FINDINGS Acute inhibition of CaMKII leads to decreased -dP/dtmin, increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV, PRSW, Tau and EDPVR, and unaltered reactivity to Iso in HF mice. Chronic inhibition results in increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV and PRSW, without alteration in -dP/dtmin, Tau and EDPVR. In addition, chronic inhibition reverses the effect of Iso on HF mice. SIGNIFICANCE Although acute CaMKII inhibition can repair systolic function in HF mice, it also exacerbates the diastolic function, whereas chronic inhibition improves both systolic function and cardiac reserve to β-adrenergic stimulation without impairing diastolic function.
Collapse
Affiliation(s)
- Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
21
|
Mugabo Y, Lim GE. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation. Endocrinology 2018; 159:3615-3630. [PMID: 30204866 PMCID: PMC6180900 DOI: 10.1210/en.2018-00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Among their pleiotropic functions, scaffold proteins are required for the accurate coordination of signaling pathways. It has only been within the past 10 years that their roles in glucose homeostasis and metabolism have emerged. It is well appreciated that changes in the expression or function of signaling effectors, such as receptors or kinases, can influence the development of chronic diseases such as diabetes and obesity. However, little is known regarding whether scaffolds have similar roles in the pathogenesis of metabolic diseases. In general, scaffolds are often underappreciated in the context of metabolism or metabolic diseases. In the present review, we discuss various scaffold proteins and their involvement in signaling pathways related to metabolism and metabolic diseases. The aims of the present review were to highlight the importance of scaffold proteins and to raise awareness of their physiological contributions. A thorough understanding of how scaffolds influence metabolism could aid in the discovery of novel therapeutic approaches to treat chronic conditions, such as diabetes, obesity, and cardiovascular disease, for which the incidence of all continue to increase at alarming rates.
Collapse
Affiliation(s)
- Yves Mugabo
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
23
|
Cai B, Kasikara C, Doran AC, Ramakrishnan R, Birge RB, Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal 2018; 11:eaar3721. [PMID: 30254055 PMCID: PMC6171110 DOI: 10.1126/scisignal.aar3721] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation resolution counterbalances excessive inflammation and restores tissue homeostasis after injury. Failure of resolution contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated by endogenous specialized proresolving mediators (SPMs), which are derived from long-chain fatty acids by lipoxygenase (LOX) enzymes. 5-LOX plays a critical role in the biosynthesis of two classes of SPMs: lipoxins and resolvins. Cytoplasmic localization of the nonphosphorylated form of 5-LOX is essential for SPM biosynthesis, whereas nuclear localization of phosphorylated 5-LOX promotes proinflammatory leukotriene production. We previously showed that MerTK, an efferocytosis receptor on macrophages, promotes SPM biosynthesis by increasing the abundance of nonphosphorylated, cytoplasmic 5-LOX. We now show that activation of MerTK in human macrophages led to ERK-mediated expression of the gene encoding sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), which decreased the cytosolic Ca2+ concentration and suppressed the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). This, in turn, reduced the activities of the mitogen-activated protein kinase (MAPK) p38 and the kinase MK2, resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX and enhanced SPM biosynthesis. In a zymosan-induced peritonitis model, an inflammatory setting in which macrophage MerTK activation promotes resolution, inhibition of ERK activation delayed resolution, which was characterized by an increased number of neutrophils and decreased amounts of SPMs in tissue exudates. These findings contribute to our understanding of how MerTK signaling induces 5-LOX-derived SPM biosynthesis and suggest a therapeutic strategy to boost inflammation resolution in settings where defective resolution promotes disease progression.
Collapse
Affiliation(s)
- Bishuang Cai
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| | - Canan Kasikara
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Amanda C Doran
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | | | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Ira Tabas
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Wang MY, Liang JW, Olounfeh KM, Sun Q, Zhao N, Meng FH. A Comprehensive In Silico Method to Study the QSTR of the Aconitine Alkaloids for Designing Novel Drugs. Molecules 2018; 23:E2385. [PMID: 30231506 PMCID: PMC6225272 DOI: 10.3390/molecules23092385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
A combined in silico method was developed to predict potential protein targets that are involved in cardiotoxicity induced by aconitine alkaloids and to study the quantitative structure⁻toxicity relationship (QSTR) of these compounds. For the prediction research, a Protein-Protein Interaction (PPI) network was built from the extraction of useful information about protein interactions connected with aconitine cardiotoxicity, based on nearly a decade of literature and the STRING database. The software Cytoscape and the PharmMapper server were utilized to screen for essential proteins in the constructed network. The Calcium-Calmodulin-Dependent Protein Kinase II alpha (CAMK2A) and gamma (CAMK2G) were identified as potential targets. To obtain a deeper insight on the relationship between the toxicity and the structure of aconitine alkaloids, the present study utilized QSAR models built in Sybyl software that possess internal robustness and external high predictions. The molecular dynamics simulation carried out here have demonstrated that aconitine alkaloids possess binding stability for the receptor CAMK2G. In conclusion, this comprehensive method will serve as a tool for following a structural modification of the aconitine alkaloids and lead to a better insight into the cardiotoxicity induced by the compounds that have similar structures to its derivatives.
Collapse
Affiliation(s)
- Ming-Yang Wang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | | | - Qi Sun
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Nan Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
25
|
Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:89. [PMID: 29903013 PMCID: PMC6001139 DOI: 10.1186/s12933-018-0732-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.
Collapse
Affiliation(s)
- Lorna J Daniels
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Rachel S Wallace
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Olivia M Nicholson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Genevieve A Wilson
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Peter P Jones
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - J Chris Baldi
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Jeffrey R Erickson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
26
|
Zhao Z, Kudej RK, Wen H, Fefelova N, Yan L, Vatner DE, Vatner SF, Xie LH. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB J 2018; 32:4229-4240. [PMID: 29490168 DOI: 10.1096/fj.201701516r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond K Kudej
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,Department of Clinical Sciences, Tufts University, North Grafton, Massachusetts, USA
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lin Yan
- Department of Biochemistry and Molecular Biology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
27
|
Vacante F, Senesi P, Montesano A, Frigerio A, Luzi L, Terruzzi I. L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition. J Diabetes Res 2018; 2018:4028297. [PMID: 30622968 PMCID: PMC6304876 DOI: 10.1155/2018/4028297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. OBJECTIVE The aim of this work was to investigate LC's role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. METHODS H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. RESULTS Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. CONCLUSIONS Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.
Collapse
Affiliation(s)
- Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Alice Frigerio
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Cardiac Protection of Valsartan on Juvenile Rats with Heart Failure by Inhibiting Activity of CaMKII via Attenuating Phosphorylation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4150158. [PMID: 28536695 PMCID: PMC5425837 DOI: 10.1155/2017/4150158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/09/2017] [Indexed: 11/18/2022]
Abstract
Background. This study was undertaken to determine relative contributions of phosphorylation and oxidation to the increased activity of calcium/calmodulin-stimulated protein kinase II (CaMKII) in juveniles with cardiac myocyte dysfunction due to increased pressure overload. Methods. Juvenile rats underwent abdominal aortic constriction to induce heart failure. Four weeks after surgery, rats were then randomly divided into two groups: one group given valsartan (HF + Val) and the other group given placebo (HF + PBO). Simultaneously, the sham-operated rats were randomly given valsartan (Sham + Val) or placebo (Sham + PBO). After 4 weeks of treatment, Western blot analysis was employed to quantify CaMKII and relative calcium handling proteins (RyR2 and PLN) in all groups. Results. The deteriorated cardiac function was reversed by valsartan treatment. In ventricular muscle cells of group HF + PBO, Thr287 phosphorylation of CaMKII and S2808 phosphorylation of RyR2 and PLN were increased and S16 phosphorylation of PLN was decreased compared to the other groups, while Met281 oxidation was not significantly elevated. In addition, these changes in the expression of calcium handling proteins were ameliorated by valsartan administration. Conclusions. The phosphorylation of Thr286 is associated with the early activation of CaMKII rather than the oxidation of Met281.
Collapse
|
29
|
De Pauw M, Mubagwa K, Hodeige D, Borgers M, Flameng W, Van de Voorde J, Heyndrickx GR. Response to exercise and mechanical efficiency in non-ischaemic stunning, induced by short-term rapid pacing in dogs: a role for calcium? Acta Physiol (Oxf) 2017; 219:768-780. [PMID: 26560191 DOI: 10.1111/apha.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/02/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
Abstract
AIM Rapid pacing (RP) is a regularly used model to induce heart failure in dogs. The aim of the study was to evaluate Ca2+ handling, left ventricular (LV) contractile response during Ca2+ administration compared to exercise, as well as oxygen consumption and mechanical efficiency after 48 h of RP. METHODS Fifty-three mongrel dogs were instrumented to measure LV pressure, LV fractional shortening, regional wall thickening and coronary blood flow. Contractile reserve was measured with isoproterenol and intravenous (IV) Ca2+ administration. To assess the function of the sarcoplasmic reticulum (SR), post-extrasystolic potentiation (PESP) and SR Ca2+ uptake were measured. A graded treadmill test was performed in baseline and after RP (n = 14). In a separate group of animals (n = 5), myocardial performance and oxygen consumption were measured using a wide range of loading conditions. RESULTS Left ventricular contractility was significantly decreased upon cessation of pacing. The contractile response to isoproterenol was blunted compared to a preserved response to IV Ca2+ . Post-extrasystolic potentiation was slightly increased after RP. Maximal velocity (Vmax ) of SR Ca2+ uptake was unchanged. Contractile response during exercise is attenuated after RP. External work is reduced, whereas oxygen consumption is preserved, provoking a reduced mechanical efficiency. CONCLUSION Forty-eight-hours RP provokes a reversible LV dysfunction, while the SR function and response to exogenous Ca2+ are preserved. This is compatible with an intracellular functional remodelling to counteract Ca2+ overload provoked by RP. Left ventricular dysfunction is accompanied by a reduced contractile reserve, but an unchanged oxygen consumption, illustrating an alteration in oxygen utilization.
Collapse
Affiliation(s)
- M. De Pauw
- The Department of Cardiology; Ghent University Hospital; Ghent Belgium
| | - K. Mubagwa
- Unit of Experimental Cardiac Surgery; Department of Cardiovascular Sciences; University of Leuven; Leuven Belgium
| | - D. Hodeige
- University of Louvain Medical School Brussels; Brussels Belgium
| | - M. Borgers
- The Janssen Research Foundation; Beerse Belgium
| | - W. Flameng
- Unit of Experimental Cardiac Surgery; Department of Cardiovascular Sciences; University of Leuven; Leuven Belgium
| | | | - G. R. Heyndrickx
- University of Louvain Medical School Brussels; Brussels Belgium
- Cardiovascular Center Aalst; Aalst Belgium
| |
Collapse
|
30
|
Federico M, Portiansky EL, Sommese L, Alvarado FJ, Blanco PG, Zanuzzi CN, Dedman J, Kaetzel M, Wehrens XHT, Mattiazzi A, Palomeque J. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. J Physiol 2017; 595:4089-4108. [PMID: 28105734 DOI: 10.1113/jp273714] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Spontaneous sarcoplasmic reticulum (SR) Ca2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. ABSTRACT The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca2+ spontaneous events in the absence of SR Ca2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca2+ transit between the two organelles.
Collapse
Affiliation(s)
- Marilen Federico
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Leandro Sommese
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Francisco J Alvarado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Paula G Blanco
- Servicio de Ecocardiografía, Facultad de Veterinaria, UNLP, La Plata, Argentina
| | - Carolina N Zanuzzi
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - John Dedman
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marcia Kaetzel
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Pediatrics; and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
31
|
Zhang P. CaMKII: The molecular villain that aggravates cardiovascular disease. Exp Ther Med 2017; 13:815-820. [PMID: 28450904 PMCID: PMC5403363 DOI: 10.3892/etm.2017.4034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Pathological remodeling of the myocardium is an integral part of the events that lead to heart failure (HF), which involves altered gene expression, disturbed signaling pathways and altered Ca2+ homeostasis and the players involved in this process. Of particular interest is the chronic activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in heart, which further aggravate the injury to myocardium. Expression and activity of CaMKII have been found to be elevated in various conditions of stressed myocardium and in different heart diseases in both animal models as well as heart patients. CaMKII is a signaling molecule that regulates many cellular pathways by phosphorylating several proteins involved in excitation-contraction coupling and relaxation events in heart, cardiomyocyte apoptosis, transcriptional activation of genes related to cardiac hypertrophy, inflammation, and arrhythmias. CaMKII is activated by reactive oxygen species (ROS), which are elevated under conditions of ischemia-reperfusion injury and in a cyclical manner, CaMKII in turn elevates ROS production. Both ROS and activated CaMKII increase Ca-induced Ca release from sarcoplasmic reticulum, which leads to cardiomyocyte membrane depolarization and arrhythmias. These CaMKII-mediated changes in heart ultimately culminate in dysfunctional myocardium and HF. Genetic studies in animal models clearly demonstrated that inactivation of CaMKII is protective against a variety of stress induced cardiac dysfunctions. Despite significant leaps in understanding the structural details of CaMKII, which is a very complicated and multimeric modular protein, currently there is no specific and potent inhibitor of this enzyme, that can be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Peiying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
32
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
33
|
Phosphorylating Titin's Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force. Biophys J 2016; 109:2592-2601. [PMID: 26682816 DOI: 10.1016/j.bpj.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022] Open
Abstract
Titin is a large filamentous protein that is responsible for the passive force of the cardiac sarcomere. Titin's force is generated by its I-band region, which includes the cardiac-specific N2B element. The N2B element consists of three immunoglobulin domains, two small unique sequence insertions, and a large 575-residue unique sequence, the N2B-Us. Posttranslational modifications of the N2B element are thought to regulate passive force, but the underlying mechanisms are unknown. Increased passive-force levels characterize diastolic stiffening in heart-failure patients, and it is critical to understand the underlying molecular mechanisms and identify therapeutic targets. Here, we used single-molecule force spectroscopy to study the mechanical effects of the kinases calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) and extracellular signal-regulated kinase 2 (ERK2) on the single-molecule mechanics of the N2B element. Both CaMKIIδ and ERK2 were found to phosphorylate the N2B element, and single-molecule force spectroscopy revealed an increase in the persistence length (Lp) of the molecule, indicating that the bending rigidity of the molecule was increased. Experiments performed under oxidizing conditions and with a recombinant N2B element that had a simplified domain composition provided evidence that the Lp increase requires the N2B-Us of the N2B element. Mechanical experiments were also performed on skinned myocardium before and after phosphorylation. The results revealed a large (∼30%) passive force reduction caused by CaMKIIδ and a much smaller (∼6%) reduction caused by ERK2. These findings support the notion that the important kinases ERK2 and CaMKIIδ can alter the passive force of myocytes in the heart (although CaMKIIδ appears to be more potent) during physiological and pathophysiological states.
Collapse
|
34
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|
35
|
Daniels L, Bell JR, Delbridge LMD, McDonald FJ, Lamberts RR, Erickson JR. The role of CaMKII in diabetic heart dysfunction. Heart Fail Rev 2016. [PMID: 26198034 DOI: 10.1007/s10741-015-9498-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is an increasing epidemic that places a significant burden on health services worldwide. The incidence of heart failure (HF) is significantly higher in diabetic patients compared to non-diabetic patients. One underlying mechanism proposed for the link between DM and HF is activation of calmodulin-dependent protein kinase (CaMKIIδ). CaMKIIδ mediates ion channel function and Ca(2+) handling during excitation-contraction and excitation-transcription coupling in the myocardium. CaMKIIδ activity is up-regulated in the myocardium of diabetic patients and mouse models of diabetes, where it promotes pathological signaling that includes hypertrophy, fibrosis and apoptosis. Pharmacological inhibition and knockout models of CaMKIIδ have shown some promise of a potential therapeutic benefit of CaMKIIδ inhibition, with protection against cardiac hypertrophy and apoptosis reported. This review will highlight the pathological role of CaMKIIδ in diabetes and discuss CaMKIIδ as a therapeutic target in DM, and also the effects of exercise on CaMKIIδ.
Collapse
Affiliation(s)
- Lorna Daniels
- Department of Physiology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
36
|
Liang F, Fan P, Jia J, Yang S, Jiang Z, Karpinski S, Kornyeyev D, Pagratis N, Belardinelli L, Yao L. Inhibitions of late INa and CaMKII act synergistically to prevent ATX-II-induced atrial fibrillation in isolated rat right atria. J Mol Cell Cardiol 2016; 94:122-130. [PMID: 27066997 DOI: 10.1016/j.yjmcc.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 12/19/2022]
Abstract
AIMS Increases in late Na(+) current (late INa) and activation of Ca(2+)/calmodulin-dependent protein kinase (CaMKII) are associated with atrial arrhythmias. CaMKII also phosphorylates Nav1.5, further increasing late INa. The combination of a CaMKII inhibitor with a late INa inhibitor may be superior to each compound alone to suppress atrial arrhythmias. Therefore, we investigated the effect of a CaMKII inhibitor in combination with a late INa inhibitor on anemone toxin II (ATX-II, a late INa enhancer)-induced atrial arrhythmias. METHODS AND RESULTS Rat right atrial tissue was isolated and preincubated with either the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), the late INa inhibitor GS458967, or both, and then exposed to ATX-II. ATX-II increased diastolic tension and caused fibrillation of isolated right atrial tissue. AIP (0.3μmol/L) and 0.1μmol/L GS458967 alone inhibited ATX-II-induced arrhythmias by 20±3% (mean±SEM, n=14) and 34±5% (n=13), respectively, whereas the two compounds in combination inhibited arrhythmias by 81±4% (n=10, p<0.05, vs either AIP or GS458967 alone or the calculated sum of individual effects of both compounds). AIP and GS458967 also attenuated the ATX-induced increase of diastolic tension. Consistent with the mechanical and electrical data, 0.3μmol/L AIP and 0.1μmol/L GS458967 each inhibited ATX-II-induced CaMKII phosphorylation by 23±3% and 32±4%, whereas the combination of both compounds inhibited CaMKII phosphorylation completely. CONCLUSION The effects of an enhanced late INa to induce arrhythmic activity and activation of CaMKII in atria are attenuated synergistically by inhibitors of late INa and CaMKII.
Collapse
Affiliation(s)
- Faquan Liang
- Gilead Sciences, Inc., Fremont, CA 94555, United States.
| | - Peidong Fan
- Gilead Sciences, Inc., Fremont, CA 94555, United States
| | - Jessie Jia
- Gilead Sciences, Inc., Fremont, CA 94555, United States
| | - Suya Yang
- Gilead Sciences, Inc., Fremont, CA 94555, United States
| | - Zhan Jiang
- Gilead Sciences, Inc., Fremont, CA 94555, United States
| | | | | | | | | | - Lina Yao
- Gilead Sciences, Inc., Fremont, CA 94555, United States
| |
Collapse
|
37
|
Rajtik T, Carnicka S, Szobi A, Giricz Z, O-Uchi J, Hassova V, Svec P, Ferdinandy P, Ravingerova T, Adameova A. Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: A role of angiotensin AT1 receptor-NOX2 signaling axis. Eur J Pharmacol 2015; 771:114-22. [PMID: 26694801 DOI: 10.1016/j.ejphar.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022]
Abstract
During ischemia/reperfusion (IR), increased activation of angiotensin AT1 receptors recruits NADPH oxidase 2 (NOX2) which contributes to oxidative stress. It is unknown whether this stimulus can induce oxidative activation of Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ) leading into the aggravation of cardiac function and whether these effects can be prevented by angiotensin AT1 receptors blockade. Losartan, a selective AT1 blocker, was used. Its effects were compared with effects of KN-93, an inhibitor of CaMKIIδ. Global IR was induced in Langendorff-perfused rat hearts. Protein expression was evaluated by immunoblotting and lipoperoxidation was measured by TBARS assay. Losartan improved LVDP recovery by 25%; however, it did not reduce reperfusion arrhythmias. Oxidized CaMKIIδ (oxCaMKIIδ) was downregulated at the end of reperfusion compared to before ischemia and losartan did not change these levels. Phosphorylation of CaMKIIδ mirrored the pattern of changes in oxCaMKIIδ levels. Losartan did not prevent the higher lipoperoxidation due to IR and did not influence NOX2 expression. Inhibition of CaMKII ameliorated cardiac IR injury; however, this was not accompanied with changes in the levels of either active form of CaMKIIδ in comparison to the angiotensin AT1 receptor blockade. In spite of no changes of oxCaMKIIδ, increased cardiac recovery of either therapy was abolished when combined together. This study showed that oxidative activation of CaMKIIδ is not elevated at the end of R phase. NOX2-oxCAMKIIδ signaling is unlikely to be involved in cardioprotective action of angiotensin AT1 receptor blockade which is partially abolished by concomitant CaMKII inhibition.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Slavka Carnicka
- Institute for Heart Research, Slovak Academy of Sciences & Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Zoltan Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Jin O-Uchi
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Veronika Hassova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Pavel Svec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; PharmaHungary Group, Szeged, Hungary
| | - Tanya Ravingerova
- Institute for Heart Research, Slovak Academy of Sciences & Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
38
|
Mollova MY, Katus HA, Backs J. Regulation of CaMKII signaling in cardiovascular disease. Front Pharmacol 2015; 6:178. [PMID: 26379551 PMCID: PMC4548452 DOI: 10.3389/fphar.2015.00178] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a major cause of death in the developed countries (Murray and Lopez, 1996; Koitabashi and Kass, 2012). Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins) is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium. In this review, we focus on several mechanisms of upstream regulation of Ca2+-calmodulin-dependent protein kinase II that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.
Collapse
Affiliation(s)
- Mariya Y Mollova
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| |
Collapse
|
39
|
Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS One 2015; 10:e0130477. [PMID: 26110816 PMCID: PMC4481531 DOI: 10.1371/journal.pone.0130477] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/20/2015] [Indexed: 11/25/2022] Open
Abstract
Aims Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. Methods and Results In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. Conclusion These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.
Collapse
|
40
|
Duan DD. Calm down when the heart is stressed: Inhibiting calmodulin-dependent protein kinase II for antiarrhythmias. Trends Cardiovasc Med 2015; 25:398-400. [PMID: 25910598 DOI: 10.1016/j.tcm.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 01/31/2015] [Indexed: 12/27/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in many regulatory processes of cellular functions ranging from membrane potentials and electric-contraction (E-C) coupling to mitochondrial integrity and survival of cardiomyocytes. The review article by Hund and Mohler in this issue of Trends in Cardiovascular Medicine highlights the importance of the elevated CaMKII signaling pathways under stressed conditions such as myocardial hypertrophy and ischemia in the detrimental remodeling of ion channels and in the genesis of cardiac arrhythmias. Down-regulation of the elevated CaMKII is now emerging as a powerful therapeutic strategy for the treatment of cardiac arrhythmias and other forms of heart disease such as hypertrophic and ischemic heart failure. The development of new specific and effective CaMKII inhibitors as therapeutic agents for cardiac arrhythmias is challenged by the tremendous complexity of CaMKII expression and distribution of multi isoforms, as well as the multitude of downstream targets in the CaMKII signaling pathways and regulatory processes. A systematic understanding of the structure and regulation of the CaMKII signaling and functional network under the scope of genome and phenome may improve and extend our knowledge about the role of CaMKII in cardiac health and disease and accelerate the discovery of new CaMKII inhibitors that target not only the ATP-binding site but also the regulation sites in the CaMKII signaling and functional network.
Collapse
Affiliation(s)
- Dayue Darrel Duan
- The Laboratory of Cardiovascular Phenomics, Center for Molecular Medicine, School of Medicine University of Nevada, Reno, NV; Department of Pharmacology, School of Medicine University of Nevada, Reno, NV.
| |
Collapse
|
41
|
Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, Wang Q, Farman GP, Yang F, Yang W, Dorian D, Simpson JA, Tuomi JM, Jones DL, Nanthakumar K, Cox B, Wehrens XHT, Dorian P, Backx PH. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun 2015; 6:6018. [PMID: 25598495 DOI: 10.1038/ncomms7018] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF.
Collapse
Affiliation(s)
- Roozbeh Aschar-Sobbi
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - Farzad Izaddoustdar
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - Adam S Korogyi
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - Qiongling Wang
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Gerrie P Farman
- Department of Physiology and Biophysics, Boston University, 700 Albany St, Boston, Massachusetts 02118-2526, USA
| | - FengHua Yang
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - Wallace Yang
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - David Dorian
- Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G2W1
| | - Jari M Tuomi
- Department of Physiology and Pharmacology, Western University, Medical Science Building, London, Ontario, Canada N6A5C1
| | - Douglas L Jones
- Department of Physiology and Pharmacology, Western University, Medical Science Building, London, Ontario, Canada N6A5C1
| | - Kumaraswamy Nanthakumar
- 1] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, 200 Elizabeth St, Toronto, Ontario, Canada M5G2C4
| | - Brian Cox
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario, Canada M5G 1X9
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Paul Dorian
- 1] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Division of Cardiology, St Michael's Hospital, 2300 Yonge St, Toronto, Ontario, Canada M4P1E4
| | - Peter H Backx
- 1] Department of Physiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [2] Department of Medicine, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8 [3] Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, 200 Elizabeth St, Toronto, Ontario, Canada M5G2C4 [4] Heart &Stroke Richard Lewar Centre of Excellence, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada M5S1A8
| |
Collapse
|
42
|
Abstract
The giant sarcomeric protein titin is a key determinant of myocardial passive stiffness and stress-sensitive signaling. Titin stiffness is modulated by isoform variation, phosphorylation by protein kinases, and, possibly, oxidative stress through disulfide bond formation. Titin has also emerged as an important human disease gene. Early studies in patients with dilated cardiomyopathy (DCM) revealed shifts toward more compliant isoforms, an adaptation that offsets increases in passive stiffness based on the extracellular matrix. Similar shifts are observed in heart failure with preserved ejection fraction. In contrast, hypophosphorylation of PKA/G sites contributes to a net increase in cardiomyocyte resting tension in heart failure with preserved ejection fraction. More recently, titin mutations have been recognized as the most common etiology of inherited DCM. In addition, some DCM-causing mutations affect RBM20, a titin splice factor. Titin mutations are a rare cause of hypertrophic cardiomyopathy and also underlie some cases of arrhythmogenic right ventricular dysplasia. Finally, mutations of genes encoding proteins that interact with and/or bind to titin are responsible for both DCM and hypertrophic cardiomyopathy. Targeting titin as a therapeutic strategy is in its infancy, but it could potentially involve manipulation of isoforms, posttranslational modifications, and upregulation of normal protein in patients with disease-causing mutations.
Collapse
|
43
|
Viatchenko-Karpinski S, Kornyeyev D, El-Bizri N, Budas G, Fan P, Jiang Z, Yang J, Anderson ME, Shryock JC, Chang CP, Belardinelli L, Yao L. Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol 2014; 76:247-56. [PMID: 25252177 PMCID: PMC4250389 DOI: 10.1016/j.yjmcc.2014.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/07/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
An increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes.
Collapse
Affiliation(s)
| | | | | | - Grant Budas
- Department of Biology, Gilead Sciences, Fremont, CA 94555, USA
| | - Peidong Fan
- Department of Biology, Gilead Sciences, Fremont, CA 94555, USA
| | - Zhan Jiang
- Department of Biology, Gilead Sciences, Fremont, CA 94555, USA
| | - Jin Yang
- Krannert Institute of Cardiology and Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark E Anderson
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, IA 52242, USA
| | - John C Shryock
- Department of Biology, Gilead Sciences, Fremont, CA 94555, USA
| | - Ching-Pin Chang
- Krannert Institute of Cardiology and Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Lina Yao
- Department of Biology, Gilead Sciences, Fremont, CA 94555, USA.
| |
Collapse
|
44
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
45
|
Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 2013; 388:269-76. [DOI: 10.1007/s11010-013-1918-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022]
|
46
|
Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 2013; 78:300-6. [PMID: 24334638 DOI: 10.1253/circj.cj-13-1187] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are the main facilitators of cardiovascular complications in diabetes mellitus (DM), and the ROS level is increased in cultured cells exposed to high glucose concentrations or in diabetic animal models. Emerging evidence shows that mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are dominant mechanisms of ROS production in the diabetic heart. Hyperpolarization of the mitochondrial inner membrane potentials and impaired mitochondrial function promote ROS production in the mitochondria of the diabetic heart. Uncoupling proteins are upregulated and may reduce the ROS level by depolarizing the mitochondrial inner membrane potential. NADPH oxidase is another major site of ROS production and its contribution to DM-induced ROS increase has been elucidated not only in vascular smooth muscle cells and endothelial cells, but also in cardiomyocytes. Protein kinase C, angiotensin II, and advanced glycation endproducts (AGEs)/receptor for AGEs can activate NADPH oxidase. Increased intracellular calcium level mediated via the Na(+)-H(+) exchanger and subsequent activation of Ca(2+)/calmodulin-dependent protein kinase II may also activate NADPH oxidase. This review presents the current understanding of the mechanisms of ROS production, focusing especially on the roles of mitochondria and NADPH oxidase.
Collapse
Affiliation(s)
- Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li J, Zhang DS, Ye JC, Li CM, Qi M, Liang DD, Xu XR, Xu L, Liu Y, Zhang H, Zhang YY, Deng FF, Feng J, Shi D, Chen JJ, Li L, Chen G, Sun YF, Peng LY, Chen YH. Dynamin-2 mediates heart failure by modulating Ca2+-dependent cardiomyocyte apoptosis. Int J Cardiol 2013; 168:2109-19. [DOI: 10.1016/j.ijcard.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/26/2012] [Accepted: 01/13/2013] [Indexed: 12/26/2022]
|
48
|
Role of CaMKII and ROS in rapid pacing-induced apoptosis. J Mol Cell Cardiol 2013; 63:135-45. [PMID: 23911439 DOI: 10.1016/j.yjmcc.2013.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
Tachycardia promotes cell death and cardiac remodeling, leading to congestive heart failure. However, the underlying mechanism of tachycardia- or rapid pacing (RP)-induced cell death remains unknown. Myocyte loss by apoptosis is recognized as a critical factor in the progression to heart failure and simulation of tachycardia by RP has been shown to increase the intracellular levels of at least two potentially proapoptotic molecules, Ca(2+) and reactive oxygen species (ROS). However, whether these molecules mediate tachycardia- or RP-induced cell death has yet to be determined. The aim of this study was to examine the subcellular mechanisms underlying RP-induced apoptosis. For this purpose rat ventricular myocytes were maintained quiescent or paced at 0.5, 5 and 8Hz for 1hr. RP at 5 and 8Hz decreased myocyte viability by 58±3% and 75±6% (n=24), respectively, compared to cells maintained at 0.5Hz, and increased caspase-3 activity and Bax/Bcl-2 ratio, indicative of apoptosis. RP-induced cell death and apoptosis were prevented when pacing protocols were conducted in the presence of either the ROS scavenger, MPG, or nifedipine to reduce Ca(2+) entry or the CaMKII inhibitors, KN93 and AIP. Consistently, myocytes from transgenic mice expressing a CaMKII inhibitory peptide (AC3-I) were protected against RP-induced cell death. Interestingly, tetracaine and carvedilol used to reduce ryanodine receptor (RyR) diastolic Ca(2+) release, and ruthenium red used to prevent Ca(2+) entry into the mitochondria prevented RP-induced cell death, whereas PI3K inhibition with Wortmannin exacerbated pacing-induced cell mortality. We conclude that CaMKII activation and ROS production are involved in RP-induced apoptosis. Particularly, our results suggest that CaMKII-dependent posttranslational modifications of the cardiac ryanodine receptor (RyR) leading to enhanced diastolic Ca(2+) release and mitochondrial Ca(2+) overload could be the underlying mechanism involved. We further show that RP simultaneously activates a protective cascade involving PI3K/AKT signaling which is however, insufficient to completely suppress apoptosis.
Collapse
|
49
|
Westenbrink BD, Edwards AG, McCulloch AD, Brown JH. The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets 2013; 17:889-903. [PMID: 23789646 DOI: 10.1517/14728222.2013.809064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Calcium-calmodulin-dependent protein kinase II (CaMKII) has emerged as a central mediator of cardiac stress responses which may serve several critical roles in the regulation of cardiac rhythm, cardiac contractility and growth. Sustained and excessive activation of CaMKII during cardiac disease has, however, been linked to arrhythmias, and maladaptive cardiac remodeling, eventually leading to heart failure (HF) and sudden cardiac death. AREAS COVERED In the current review, the authors describe the unique structural and biochemical properties of CaMKII and focus on its physiological effects in cardiomyocytes. Furthermore, they provide evidence for a role of CaMKII in cardiac pathologies, including arrhythmogenesis, myocardial ischemia and HF development. The authors conclude by discussing the potential for CaMKII as a target for inhibition in heart disease. EXPERT OPINION CaMKII provides a promising nodal point for intervention that may allow simultaneous prevention of HF progression and development of arrhythmias. For future studies and drug development there is a strong rationale for the development of more specific CaMKII inhibitors. In addition, an improved understanding of the differential roles of CaMKII subtypes is required.
Collapse
Affiliation(s)
- B Daan Westenbrink
- University of California, Department of Pharmacology, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
50
|
Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:464508. [PMID: 23781262 PMCID: PMC3679760 DOI: 10.1155/2013/464508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α- and β-adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca2+ content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone.
Collapse
|