1
|
Ntambi JN, Kalyesubula M, Cootway D, Lewis SA, Phang YX, Liu Z, O'Neill LM, Lefers L, Huff H, Miller JR, Pegkou Christofi V, Anderson E, Aljohani A, Mutebi F, Dutta M, Patterson A, Ntambi JM. Hepatic stearoyl-CoA desaturase-1 deficiency induces fibrosis and hepatocellular carcinoma-related gene activation under a high carbohydrate low fat diet. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159538. [PMID: 39067685 PMCID: PMC11323073 DOI: 10.1016/j.bbalip.2024.159538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a pivotal enzyme in lipogenesis, which catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated fatty acids, whose ablation downregulates lipid synthesis, preventing steatosis and obesity. Yet deletion of SCD1 promotes hepatic inflammation and endoplasmic reticulum stress, raising the question of whether hepatic SCD1 deficiency promotes further liver damage, including fibrosis. To delineate whether SCD1 deficiency predisposes the liver to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), we employed in vivo SCD1 deficient global and liver-specific mouse models fed a high carbohydrate low-fat diet and in vitro established AML12 mouse cells. The absence of liver SCD1 remarkably increased the saturation of liver lipid species, as indicated by lipidomic analysis, and led to hepatic fibrosis. Consistently, SCD1 deficiency promoted hepatic gene expression related to fibrosis, cirrhosis, and HCC. Deletion of SCD1 increased the circulating levels of Osteopontin, known to be increased in fibrosis, and alpha-fetoprotein, often used as an early marker and a prognostic marker for patients with HCC. De novo lipogenesis or dietary supplementation of oleate, an SCD1-generated MUFA, restored the gene expression related to fibrosis, cirrhosis, and HCC. Although SCD1 deficient mice are protected against obesity and fatty liver, our results show that MUFA deprivation results in liver injury, including fibrosis, thus providing novel insights between MUFA insufficiency and pathways leading to fibrosis, cirrhosis, and HCC under lean non-steatotic conditions.
Collapse
Affiliation(s)
- Jayne-Norah Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Tufts Medical Center, Radiation Oncology, 800 Washington St., Box 359, Boston, MA 02111, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Dylan Cootway
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Lucas M O'Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Lucas Lefers
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Hailey Huff
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jacqueline Rose Miller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Veronica Pegkou Christofi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ethan Anderson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Francis Mutebi
- School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mainak Dutta
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, University Park, PA 16802, United States; Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai 345055, United Arab Emirates
| | - Andrew Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, University Park, PA 16802, United States; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
3
|
Gu W, Wang R, Chai Y, Zhang L, Chen R, Li R, Pan J, Zhu J, Sun Q, Liu C. β3 adrenergic receptor activation alleviated PM 2.5-induced hepatic lipid deposition in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168167. [PMID: 39491202 DOI: 10.1016/j.scitotenv.2023.168167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy expenditure through activation of hepatocytes is a potential approach to treat fine particulate matter (PM2.5) induced metabolic-associated fatty liver disease (MAFLD). Beta-3 adrenergic receptor (β3-AR) agonists could stimulate brown adipose tissue (BAT) energy expenditure, but it has never been investigated in MAFLD. The objective of this study is to explore the therapeutic effects of administering CL-316,243, a selective agonist of β3-AR, on hepatic lipid metabolism disturbances induced by PM2.5. Firstly, C57BL/6 N mice were intraperitoneally injected with CL-316,243 for one week. CL-316,243 significantly upregulated expression of β3-AR in the liver, accompanied with reduced serum triglyceride (TG) and free fatty acids (FFA). Next, mice were subjected to PM2.5 exposure for 4 weeks, and CL-316,243 was daily intraperitoneally injected in the fourth week of PM2.5 exposure. Exposure to PM2.5 led to a significant increase in hepatic TG and monounsaturated fatty acids (MUFAs), accompanied with elevated activity of SCD1, increased levels of TG synthesis enzymes and inhibited COX4 activity. Furthermore, the administration of CL-316,243 alleviated PM2.5-induced hepatic lipid deposition by enhancing SCD1 activity, TG lipolysis, fatty acid oxidation and TG synthesis via β3-AR/PKA/CREB/PPAR signaling pathway. Therefore, β3-AR activation may serve as a potential therapeutic approach for PM2.5 exposure-induced MAFLD.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Jing Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
4
|
Ntambi JM. The role of Stearoyl-CoA desaturase in hepatic de novo lipogenesis. Biochem Biophys Res Commun 2022; 633:81-83. [DOI: 10.1016/j.bbrc.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
|
5
|
O’Neill LM, Phang YX, Liu Z, Lewis SA, Aljohani A, McGahee A, Wade G, Kalyesubula M, Simcox J, Ntambi JM. Hepatic Oleate Regulates Insulin-like Growth Factor-Binding Protein 1 Partially through the mTORC1-FGF21 Axis during High-Carbohydrate Feeding. Int J Mol Sci 2022; 23:14671. [PMID: 36498997 PMCID: PMC9737156 DOI: 10.3390/ijms232314671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Ayren McGahee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
6
|
Wang Q, Cao H, Su X, Liu W. Identification of key miRNAs regulating fat metabolism based on RNA-seq from fat-tailed sheep and F2 of wild Argali. Gene X 2022; 834:146660. [PMID: 35680029 DOI: 10.1016/j.gene.2022.146660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022] Open
Abstract
The evolution mechanism of sheep tail fat has not yet been clear, many researches focus on this issue, yet there still many gaps to be filled in the targets and non-coding RNA regulation. In our study, the differential expression mRNAs and miRNAs were detected by RNA-seq and constructed a mRNA-miRNA network related to the lipid deposition in tail of fat-tailed sheep and F2 of Argali with domestic sheep (thin-tailed). Then 6 kinds of tissues from thin-tailed and control group were extracted for function validation of candidate genes and its regulator miRNAs. 125 differentially expressed miRNAs were identified by RNA-seq, and enrichment analysis of their target genes revealed 10 significantly enriched pathways related to lipid metabolism. In these pathways, 126 DE-miRNA target genes were also differentially expression in the same tissues in our previous transcriptomic data. In PPI network, 6 hubgenes (SCD, ACACA, GPD2, ELOVL6, ELOVL5, GPAM) were extracted using the cytoHubba application, and they may be target genes for 3 candidate DE-miRNAs (miR-320d, miR-151b, miR-6715). The validation results of RT-qPCR show: the expression trend of miR-320d is opposite to the target gene SCD, and that of miR-151b and the target gene ACACA are also opposite in 6 tissues, implying that they may have direct targeting relationships. Moreover, the expression of miR-320d in F2 tail fat was significantly higher than that in fat-tailed sheep (P < 0.05), and the expression of SCD in F2 tail fat was extremely significantly lower than that in fat-tailed sheep (P < 0.01). The expression of miR-151b in F2 tail fat and subcutaneous fat was significantly higher than that in fat-tailed sheep (P < 0.05), and the expression of ACACA in F2 subcutaneous fat was significantly lower than that in fat-tailed sheep. miR-320d may directly and negatively regulate tail fat deposition by targeting SCD, while miR-151b may indirectly and negatively regulate tail fat deposition by targeting ACACA.
Collapse
Affiliation(s)
- Qiong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiaohui Su
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
7
|
Ducheix S, Piccinin E, Peres C, Garcia-Irigoyen O, Bertrand-Michel J, Fouache A, Cariello M, Lobaccaro JM, Guillou H, Sabbà C, Ntambi JM, Moschetta A. Reduction in gut-derived MUFAs via intestinal stearoyl-CoA desaturase 1 deletion drives susceptibility to NAFLD and hepatocarcinoma. Hepatol Commun 2022; 6:2937-2949. [PMID: 35903850 PMCID: PMC9512486 DOI: 10.1002/hep4.2053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by a set of hepatic conditions ranging from steatosis to steatohepatitis (NASH), characterized by inflammation and fibrosis, eventually predisposing to hepatocellular carcinoma (HCC). Together with fatty acids (FAs) originated from adipose lipolysis and hepatic lipogenesis, intestinal‐derived FAs are major contributors of steatosis. However, the role of mono‐unsaturated FAs (MUFAs) in NAFLD development is still debated. We previously established the intestinal capacity to produce MUFAs, but its consequences in hepatic functions are still unknown. Here, we aimed to determine the role of the intestinal MUFA‐synthetizing enzyme stearoyl‐CoA desaturase 1 (SCD1) in NAFLD. We used intestinal‐specific Scd1‐KO (iScd1−/−) mice and studied hepatic dysfunction in different models of steatosis, NASH, and HCC. Intestinal‐specific Scd1 deletion decreased hepatic MUFA proportion. Compared with controls, iScd1−/− mice displayed increased hepatic triglyceride accumulation and derangement in cholesterol homeostasis when fed a MUFA‐deprived diet. Then, on Western diet feeding, iScd1−/− mice triggered inflammation and fibrosis compared with their wild‐type littermates. Finally, intestinal‐Scd1 deletion predisposed mice to liver cancer. Conclusions: Collectively, these results highlight the major importance of intestinal MUFA metabolism in maintaining hepatic functions and show that gut‐derived MUFAs are protective from NASH and HCC.
Collapse
Affiliation(s)
- Simon Ducheix
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Basic Medical Science, Neurosciences, and Sense organs, University of Bari "Aldo Moro", Bari, Italy
| | - Claudia Peres
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | | | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France.,I2MC, Université de Toulouse, Inserm, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Allan Fouache
- INSERM U 1103, CNRS, UMR 6293, Université Clermont Auvergne, GReD, Aubière, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Marc Lobaccaro
- INSERM U 1103, CNRS, UMR 6293, Université Clermont Auvergne, GReD, Aubière, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Hervé Guillou
- Integrative Toxicology and Metabolism Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.,INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
8
|
Elshareif N, Gavini CK, Mansuy-Aubert V. LXR agonist modifies neuronal lipid homeostasis and decreases PGD2 in the dorsal root ganglia in western diet-fed mice. Sci Rep 2022; 12:10754. [PMID: 35750708 PMCID: PMC9232502 DOI: 10.1038/s41598-022-14604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.
Collapse
Affiliation(s)
- Nadia Elshareif
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
9
|
Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z, Tian X, Zhao X, Shi H, Li C, Hua J. Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4030-4043. [PMID: 35343224 DOI: 10.1021/acs.jafc.2c00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Goat milk contains a rich source of nutrients, especially unsaturated fatty acids. However, the regulatory mechanism of milk fat and fatty acid synthesis remains unclear. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme catalyzing monounsaturated fatty acid synthesis and is essential for milk lipid metabolism. To explore milk lipid synthesis mechanism in vivo, SCD1-knockout goats were generated through CRISPR/Cas9 technology for the first time. SCD1 deficiency did not influence goat growth or serum biochemistry. Plasma phosphatidylcholines increased by lipidomics after SCD1 knockout in goats. Whole-blood RNA-seq indicated alterations in biosynthesis of unsaturated fatty acid synthesis, cAMP, ATPase activity, and Wnt signaling pathways. In SCD1-knockout goats, milk fat percentage and unsaturated fatty acid levels were reduced but other milk components were unchanged. Milk lipidomics revealed decreased triacylglycerols and diacylglycerols levels, and the differential abundance of lipids were enriched in glycerolipid, glycerophospholipids, and thermogenesis metabolism pathways. In milk fat globules, the expression levels of genes related to fatty acid and TAG synthesis including SREBP1 were reduced. ATP content and AMPK activity were promoted, and p-p70S6K protein level was suppressed in SCD1-knockout goat mammary epithelial cells, suggesting that SCD1 affected milk lipid metabolism by influencing AMPK-mTORC1/p70S6K-SREBP1 pathway. The integrative analysis of gene expression levels and lipidomics of milk revealed a crucial role of SCD1 in glycerolipids and glycerophospholipids metabolism pathways. Our observations indicated that SCD1 regulated the synthesis of milk fat and unsaturated fatty acid in goat by affecting lipid metabolism gene expression and lipid metabolic pathways. These findings would be essential for improving goat milk nutritional value which is beneficial to human health.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Geng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhimin Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiue Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Varela-López A, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Forbes-Hernández TY, Battino M, Quiles JL. The central role of mitochondria in the relationship between dietary lipids and cancer progression. Semin Cancer Biol 2021; 73:86-100. [DOI: 10.1016/j.semcancer.2021.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
|
11
|
Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab 2021; 48:101210. [PMID: 33722690 PMCID: PMC8094910 DOI: 10.1016/j.molmet.2021.101210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking. Methods and results Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling. The modulation of these metabolic programmes was achieved by activating sterol regulatory element-binding protein (SREBP) transcriptional networks; however, it is still debated whether, in the context of NASH, activation of SREBPs acts as a pathogenic driver of lipotoxicity, or rather promotes the biosynthesis of protective lipids that buffer excessive lipid accumulation, preventing inflammation and fibrosis. To elucidate the pathophysiological role of SCAP/SREBP in NASH and wound-healing response, we used an Insig1 deficient (with hyper-efficient SREBPs) murine model challenged with a NASH-inducing diet. Despite enhanced lipid and cholesterol biosynthesis, Insig1 KO mice had similar systemic metabolism and insulin sensitivity to Het/WT littermates. Moreover, activating SREBPs resulted in remodelling the lipidome, decreased hepatocellular damage, and improved wound-healing responses. Conclusions Our study provides actionable knowledge about the pathways and mechanisms involved in NAFLD pathogenesis, which may prove useful for developing new therapeutic strategies. Our results also suggest that the SCAP/SREBP/INSIG1 trio governs transcriptional programmes aimed at protecting the liver from lipotoxic insults in NASH. Human NASH biopsies’ transcriptomics analysis features metabolic pathway rewiring. SCAP/SREBP/INSIG1 modulation promotes lipid/cholesterol synthesis/remodelling in NASH. Loss of Insig1 promotes lipid remodelling, preventing hepatic lipotoxicity in NASH. Loss of Insig1 improves liver damage and wound healing and restrains NASH progression.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Gastroenterology and Hepatology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Michele Vacca
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ioannis Kamzolas
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Stefania Carobbio
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan E Davies
- Department of Pathology, Cambridge University Hospitals, Cambridge, UK
| | - Agnes Lukasik
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Dale
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Animesh Acharjee
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, UK
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Guillaume Bidault
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Michael E D Allison
- Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Antonio Vidal-Puig
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK; Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei, Nanjing, China.
| |
Collapse
|
12
|
Oatman N, Dasgupta N, Arora P, Choi K, Gawali MV, Gupta N, Parameswaran S, Salomone J, Reisz JA, Lawler S, Furnari F, Brennan C, Wu J, Sallans L, Gudelsky G, Desai P, Gebelein B, Weirauch MT, D'Alessandro A, Komurov K, Dasgupta B. Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. SCIENCE ADVANCES 2021; 7:eabd7459. [PMID: 33568479 PMCID: PMC7875532 DOI: 10.1126/sciadv.abd7459] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nupur Dasgupta
- Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mruniya V Gawali
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean Lawler
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Furnari
- Ludwig Institute of Cancer Research, University of California, San Diego, CA, USA
| | | | - Jianqiang Wu
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Gary Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020; 11:802. [PMID: 32978374 PMCID: PMC7519685 DOI: 10.1038/s41419-020-03003-w] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD stages range from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which can progress to cirrhosis and hepatocellular carcinoma. One of the crucial events clearly involved in NAFLD progression is the lipotoxicity resulting from an excessive fatty acid (FFA) influx to hepatocytes. Hepatic lipotoxicity occurs when the capacity of the hepatocyte to manage and export FFAs as triglycerides (TGs) is overwhelmed. This review provides succinct insights into the molecular mechanisms responsible for lipotoxicity in NAFLD, including ER and oxidative stress, autophagy, lipoapotosis and inflammation. In addition, we highlight the role of CD36/FAT fatty acid translocase in NAFLD pathogenesis. Up-to-date, it is well known that CD36 increases FFA uptake and, in the liver, it drives hepatosteatosis onset and might contribute to its progression to NASH. Clinical studies have reinforced the significance of CD36 by showing increased content in the liver of NAFLD patients. Interestingly, circulating levels of a soluble form of CD36 (sCD36) are abnormally elevated in NAFLD patients and positively correlate with the histological grade of hepatic steatosis. In fact, the induction of CD36 translocation to the plasma membrane of the hepatocytes may be a determining factor in the physiopathology of hepatic steatosis in NAFLD patients. Given all these data, targeting the fatty acid translocase CD36 or some of its functional regulators may be a promising therapeutic approach for the prevention and treatment of NAFLD.
Collapse
|
14
|
Farias-Pereira R, Zhang Z, Park CS, Kim D, Kim KH, Park Y. Butein inhibits lipogenesis in Caenorhabditis elegans. Biofactors 2020; 46:777-787. [PMID: 32663368 DOI: 10.1002/biof.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Butein, a flavonoid found in annatto seeds and lacquer trees, may be used for many health benefits, including the prevention of obesity. However, its anti-obesity effects are not completely understood; in particular, the effects of butein on the regulation of lipid metabolism have not been explained. Thus, the goal of the current study was to determine the effects of butein on lipid metabolism in Caenorhabditis elegans, which is a multi-organ nematode used as an animal model in obesity research. Butein at 70 μM reduced triglyceride content by 27% compared to the control without altering food intake and energy expenditure. The reduced triglyceride content by butein was associated with the downregulation of sbp-1, fasn-1, and fat-7, the lipogenesis-related homologs of sterol regulatory element-binding proteins, fatty acid synthase and stearoyl-CoA desaturase, respectively. Furthermore, fat-7 and skn-1, a homolog of nuclear respiratory factors, were identified as genetic requirements for butein's effects on triglyceride content in C. elegans. The effects of butein on sbp-1 and fasn-1 were dependent on skn-1, but the downregulation of fat-7 was independent of skn-1. These results suggest that the inhibitory effects of butein on lipogenesis are via SKN-1- and FAT-7-dependent pathways in C. elegans.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
15
|
Wang L, Li M, Bu Q, Li H, Xu W, Liu C, Gu H, Zhang J, Wan X, Zhao Y, Cen X. Chronic alcohol causes alteration of lipidome profiling in brain. Toxicol Lett 2019; 313:19-29. [DOI: 10.1016/j.toxlet.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
|
16
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
17
|
Piccolis M, Bond LM, Kampmann M, Pulimeno P, Chitraju C, Jayson CBK, Vaites LP, Boland S, Lai ZW, Gabriel KR, Elliott SD, Paulo JA, Harper JW, Weissman JS, Walther TC, Farese RV. Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Mol Cell 2019; 74:32-44.e8. [PMID: 30846318 PMCID: PMC7696670 DOI: 10.1016/j.molcel.2019.01.036] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
Excessive levels of saturated fatty acids are toxic to cells, although the basis for this lipotoxicity remains incompletely understood. Here, we analyzed the transcriptome, lipidome, and genetic interactions of human leukemia cells exposed to palmitate. Palmitate treatment increased saturated glycerolipids, accompanied by a transcriptional stress response, including upregulation of the endoplasmic reticulum (ER) stress response. A comprehensive genome-wide short hairpin RNA (shRNA) screen identified >350 genes modulating lipotoxicity. Among previously unknown genetic modifiers of lipotoxicity, depletion of RNF213, a putative ubiquitin ligase mutated in Moyamoya vascular disease, protected cells from lipotoxicity. On a broader level, integration of our comprehensive datasets revealed that changes in di-saturated glycerolipids, but not other lipid classes, are central to lipotoxicity in this model. Consistent with this, inhibition of ER-localized glycerol-3-phosphate acyltransferase activity protected from all aspects of lipotoxicity. Identification of genes modulating the response to saturated fatty acids may reveal novel therapeutic strategies for treating metabolic diseases linked to lipotoxicity.
Collapse
Affiliation(s)
- Manuele Piccolis
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Bond
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Pamela Pulimeno
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina B K Jayson
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura P Vaites
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Boland
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zon Weng Lai
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Kochan K, Kus E, Szafraniec E, Wislocka A, Chlopicki S, Baranska M. Changes induced by non-alcoholic fatty liver disease in liver sinusoidal endothelial cells and hepatocytes: spectroscopic imaging of single live cells at the subcellular level. Analyst 2018; 142:3948-3958. [PMID: 28944783 DOI: 10.1039/c7an00865a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent liver disorder worldwide, involving pathogenic mechanisms of liver sinusoidal endothelial cells (LSECs), hepatocytes and other liver cells. Here, we used a novel approach of label-free Raman confocal imaging to study primary LSECs and hepatocytes freshly isolated from the livers of mice with NAFLD induced by a high fat diet (HFD), in comparison to healthy controls. Our aim was to characterize changes in the biochemical composition in LSECs and hepatocytes that occur in a single cell at the subcellular level. LSECs from NAFLD livers displayed a significant increase in the intensity of marker bands of nuclear DNA that was not associated with changes in LSEC nucleus size. A number of changes in the cytoplasm of hepatocytes were identified. However, the most prominent change in hepatocytes was a substantial increase in the degree of unsaturation of LBs' (lipid bodies) lipids in NAFLD, suggesting an increase in the de novo lipogenesis of unsaturated lipids. The confocal Raman imaging of single live cells isolated from the liver provided a unique tool to better understand disease-induced cell-specific changes in the biochemical phenotype of primary liver cells.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
20
|
Paton CM, Vaughan RA, Selen Alpergin ES, Assadi-Porter F, Dowd MK. Dihydrosterculic acid from cottonseed oil suppresses desaturase activity and improves liver metabolomic profiles of high-fat-fed mice. Nutr Res 2017; 45:52-62. [PMID: 29037332 DOI: 10.1016/j.nutres.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acid (PUFA)-rich diets are thought to provide beneficial effects toward metabolic health in part through their bioactive properties. We hypothesized that increasing PUFA intake in mice would increase peroxisome proliferator activated receptor delta (PPARδ) expression and activity, and we sought to examine the effect of different PUFA-enriched oils on muscle PPARδ expression. One of the oils we tested was cottonseed oil (CSO) which is primarily linoleic acid (53%) and palmitic acid (24%). Mice fed a CSO-enriched diet (50% energy from fat) displayed no change in muscle PPARδ expression; however, in the liver, it was consistently elevated along with its transcriptional coactivator Pgc-1. Male mice were fed chow or CSO-, saturated fat (SFA)-, or linoleic acid (18:2)-enriched diets that were matched for macronutrient content for 4 weeks. There were no differences in food intake, body weight, fasting glucose, glucose tolerance, or energy expenditure between chow- and CSO-fed mice, whereas SFA-fed mice had increased fat mass and 18:2-fed mice were less glucose tolerant. Metabolomic analyses revealed that the livers of CSO-fed mice closely matched those of chow-fed but significantly differed from SFA- and 18:2-enriched groups. Fatty acid composition of the diets and livers revealed an impairment in desaturase activity and the presence of dihydrosterculic acid (DHSA) in the CSO-fed mice. The effect of DHSA on PPARδ and stearoyl-CoA desaturase-1 expression mimicked that of the CSO-fed mice. Taken together, these data suggest that DHSA from CSO may be an effective means to increase PPARδ expression with concomitant suppression of liver stearoyl-CoA desaturase-1 activity.
Collapse
Affiliation(s)
- Chad M Paton
- Department of Food Science & Technology, University of Georgia, Athens, GA; Foods & Nutrition, University of Georgia, Athens, GA; Texas Tech University.
| | | | | | | | - Michael K Dowd
- Southern Regional Research Center, ARS, USDA, New Orleans, LA
| |
Collapse
|
21
|
Hepatitis B virus surface proteins accelerate cholestatic injury and tumor progression in Abcb4-knockout mice. Oncotarget 2017; 8:52560-52570. [PMID: 28881751 PMCID: PMC5581050 DOI: 10.18632/oncotarget.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding of the pathophysiology of cholestasis associated carcinogenesis could challenge the development of new personalized therapeutic approaches and thus improve prognosis. Simultaneous damage might aggravate hepatic injury, induce chronic liver disease and even promote carcinogenesis. We aimed to study the effect of Hepatitis B virus surface protein (HBsAg) on cholestatic liver disease and associated carcinogenesis in a mouse model combining both impairments. Hybrids of Abcb4−/− and HBsAg transgenic mice were bred on fibrosis susceptible background BALB/c. Liver injury, serum bile acid concentration, hepatic fibrosis, and carcinogenesis were enhanced by the combination of simultaneous damage in line with activation of c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, and Signal transducer and activator of transcription 3 (STAT3). Activation of Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) and Eukaryotic translation initiation factor 2A (eIF2α) indicated unfolded protein response (UPR) in HBsAg-expressing mice and even in Abcb4−/− without HBsAg-expression. CONCLUSION: Cholestasis-induced STAT3- and JNK-pathways may predispose HBsAg-associated tumorigenesis. Since STAT3- and JNK-activation are well characterized critical regulators for tumor promotion, the potentiation of their activation in hybrids suggests an additive mechanism enhancing tumor incidence.
Collapse
|
22
|
Stearoyl-CoA desaturase-1 and adaptive stress signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1719-1726. [DOI: 10.1016/j.bbalip.2016.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
23
|
Nowak C, Salihovic S, Ganna A, Brandmaier S, Tukiainen T, Broeckling CD, Magnusson PK, Prenni JE, Wang-Sattler R, Peters A, Strauch K, Meitinger T, Giedraitis V, Ärnlöv J, Berne C, Gieger C, Ripatti S, Lind L, Pedersen NL, Sundström J, Ingelsson E, Fall T. Effect of Insulin Resistance on Monounsaturated Fatty Acid Levels: A Multi-cohort Non-targeted Metabolomics and Mendelian Randomization Study. PLoS Genet 2016; 12:e1006379. [PMID: 27768686 PMCID: PMC5074591 DOI: 10.1371/journal.pgen.1006379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/21/2016] [Indexed: 01/23/2023] Open
Abstract
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.
Collapse
Affiliation(s)
- Christoph Nowak
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
| | - Andrea Ganna
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA,United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, Stockholm, Sweden
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
| | - Patrik K. Magnusson
- Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, Stockholm, Sweden
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- School of Health and Social Studies, Dalarna University, Falun, Sweden
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Christian Berne
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, Stockholm, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tove Fall
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
- * E-mail: (TF)
| |
Collapse
|
24
|
Yeoh BS, Saha P, Singh V, Xiao X, Ying Y, Vanamala JK, Kennett MJ, Harvatine KJ, Joe B, Vijay-Kumar M. Deficiency of stearoyl-CoA desaturase-1 aggravates colitogenic potential of adoptively transferred effector T cells. Am J Physiol Gastrointest Liver Physiol 2016; 311:G713-G723. [PMID: 27609767 PMCID: PMC5142196 DOI: 10.1152/ajpgi.00174.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/06/2016] [Indexed: 01/31/2023]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a lipogenic enzyme involved in the de novo biosynthesis of oleate (C18:1, n9), a major fatty acid in the phospholipids of lipid bilayers of cell membranes. Accordingly, Scd1KO mice display substantially reduced oleate in cell membranes. An altered SCD1 level was observed during intestinal inflammation; however, its role in modulating inflammatory bowel disease remains elusive. Herein, we investigated the colitogenic capacity of Scd1KO effector T cells by employing the adoptive T-cell transfer colitis model. Splenic effector T cells (CD4+CD25-) from age- and sex-matched wild-type (WT) and Scd1KO mice were isolated by FACS and intraperitoneally administered to Rag1KO mice, which were monitored for the development of colitis. At day 60 postcell transfer, Rag1KO mice that received Scd1KO CD4+CD25- T cells displayed accelerated and exacerbated colitis than mice receiving WT CD4+CD25- T cells. Intriguingly, Scd1KO CD4+CD25- T cells display augmented inflammatory cytokine profile and cellular membrane fluidity with a concomitant increase in proinflammatory saturated fatty acids, which we postulate to potentially underlie their augmented colitogenic potential.
Collapse
Affiliation(s)
- Beng San Yeoh
- 1Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania;
| | - Piu Saha
- 1Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania;
| | - Vishal Singh
- 1Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania;
| | - Xia Xiao
- 1Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania;
| | - Yun Ying
- 2Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania;
| | - Jairam K. Vanamala
- 3Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania;
| | - Mary J. Kennett
- 4Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania;
| | - Kevin J. Harvatine
- 2Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania;
| | - Bina Joe
- 5Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania
| |
Collapse
|
25
|
Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1865-1880. [PMID: 27639967 DOI: 10.1016/j.bbalip.2016.09.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
The processes of cell proliferation, cell death and differentiation involve an intricate array of biochemical and morphological changes that require a finely tuned modulation of metabolic pathways, chiefly among them is fatty acid metabolism. The critical participation of stearoyl CoA desaturase-1 (SCD1), the fatty acyl Δ9-desaturing enzyme that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), in the mechanisms of replication and survival of mammalian cells, as well as their implication in the biological alterations of cancer have been actively investigated in recent years. This review examines the growing body of evidence that argues for a role of SCD1 as a central regulator of the complex synchronization of metabolic and signaling events that control cellular metabolism, cell cycle progression, survival, differentiation and transformation to cancer.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Medical Center, New York City, NY, United States.
| |
Collapse
|
26
|
Liu X, Burhans MS, Flowers MT, Ntambi JM. Hepatic oleate regulates liver stress response partially through PGC-1α during high-carbohydrate feeding. J Hepatol 2016; 65:103-112. [PMID: 26976120 PMCID: PMC4939798 DOI: 10.1016/j.jhep.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS High-carbohydrate diets contribute to the development of liver stress and fatty liver disease. While saturated fatty acids are known to induce liver stress, the role of monounsaturated fatty acids (MUFA), synthesized by the stearoyl-CoA desaturase (SCD) family of enzymes, in regulation of liver function during lipogenic dietary conditions remains largely unknown. The major products of SCD-catalyzed reactions are oleate (18:1n-9) and palmitoleate (16:1n-7). METHODS We generated mouse models with restricted exogenous MUFA supply and reduced endogenous MUFA synthesis, in which SCD1 global knockout (GKO) or liver-specific knockout (LKO) mice were fed a lipogenic high-sucrose very low-fat (HSVLF) or high-carbohydrate (HC) diet. In a gain-of-function context, we introduced liver-specific expression of either human SCD5, which synthesizes 18:1n-9, or mouse Scd3, which synthesizes 16:1n-7, into SCD1 GKO mice and fed the HSVLF diet. RESULTS Lipogenic high-carbohydrate diets induced hepatic endoplasmic reticulum (ER) stress and inflammation in SCD1 GKO and LKO mice. Dietary supplementation with 18:1n-9, but not 18:0, prevented the HSVLF diet-induced hepatic ER stress and inflammation in SCD1 LKO mice, while hepatic SCD5, but not Scd3, expression reduced the ER stress and inflammation in GKO mice. Additional experiments revealed liver-specific deletion of the transcriptional coactivator PGC-1α reduced hepatic inflammatory and ER stress response gene expression in SCD1 LKO mice. CONCLUSIONS Our results demonstrate an indispensable role of hepatic oleate in protection against lipogenic diet-induced hepatic injury, and PGC-1α potentiates the ER stress response under conditions of restricted dietary oleate coupled to reduced capacity of endogenous hepatic oleate synthesis. LAY SUMMARY Susceptibility to metabolic dysfunction is influenced by genetic and environmental factors. In this study we show that modulation of two genes regulates the liver response, including ER stress and inflammation, to a high-carbohydrate low-fat diet. We reveal that hepatic availability of oleate, a monounsaturated fatty acid, is important for maintenance of liver health.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Maggie S. Burhans
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Matthew T. Flowers
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA,Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA,Corresponding author. Address: Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA. Tel.: +1 6082399074. (J.M. Ntambi)
| |
Collapse
|
27
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
28
|
Ochi T, Munekage K, Ono M, Higuchi T, Tsuda M, Hayashi Y, Okamoto N, Toda K, Sakamoto S, Oben JA, Saibara T. Patatin-like phospholipase domain-containing protein 3 is involved in hepatic fatty acid and triglyceride metabolism through X-box binding protein 1 and modulation of endoplasmic reticulum stress in mice. Hepatol Res 2016; 46:584-92. [PMID: 26347999 DOI: 10.1111/hepr.12587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
AIM Non-alcoholic steatohepatitis (NASH) is the major cause of chronic liver disease worldwide. Endoplasmic reticulum (ER) stress is considered to be an important pathological characteristic in NASH. A sequence variation (I148M) in the patatin-like phospholipase domain-containing protein 3/adiponutrin (PNPLA3) gene is known to be associated with the development of NASH. However, PNPLA3 deficiency has been considered to not be associated with fatty liver disease. To clarify, therefore, the role of PNPLA3 in liver, we established PNPLA3 knockout (KO) mice and investigated the phenotypes and involved factors under ER stress. METHODS ER stress was induced by i.p. injection with tunicamycin or with saline at 0 and 24 h in KO and C57BL/6 (wild-type [WT]) mice. At 48 h after the starting of treatment, blood and liver samples were studied. RESULTS Hepatic steatosis and triglyceride content were remarkably increased in WT mice than in KO mice under ER stress. The hepatic palmitate/oleate ratio was significantly higher originally in KO mice than in WT mice. Moreover, the expression of stearoyl-coenzyme A desaturase-1 (SCD1) in KO mice under ER stress was decreased further than that in WT mice. Expression of ER stress markers X-box binding protein 1 (XBP1) and ERdj4 was increased in WT mice but not in KO mice under ER stress. CONCLUSION We first demonstrated the hepatic phenotype of PNPLA3 deficiency under ER stress. Our observations would indicate that PNPLA3 has an important role in hepatic fatty acid metabolism and triglyceride accumulation through XBP1 under ER stress.
Collapse
Affiliation(s)
- Tsunehiro Ochi
- Departments of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Kensuke Munekage
- Departments of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Masafumi Ono
- Departments of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Masayuki Tsuda
- The Division of Laboratory Animal Science, Science Research Center, Kochi Medical School, Kochi, Japan
| | | | - Nobuto Okamoto
- Departments of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Katsumi Toda
- Department of Biochemistry, Kochi Medical School, Kochi, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Jude A Oben
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London.,Department of Gastroenterology & Hepatology, Guy's and St. Thomas' Hospital, London, UK
| | - Toshiji Saibara
- Departments of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| |
Collapse
|
29
|
Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? FEBS J 2016; 283:2767-78. [PMID: 26881388 DOI: 10.1111/febs.13681] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a central feature of transformed cells. Cancer metabolism is now fully back in the focus of cancer research, as the interactions between oncogenic signalling and cellular metabolic processes are uncovered. One aspect of metabolic reprogramming in cancer is alterations in lipid metabolism. In contrast to most untransformed tissues, which satisfy their demand from dietary lipids, cancer cells frequently re-activate de novo lipogenesis. However, compounds targeting fatty acid synthase (FASN), a multiprotein complex integral to lipogenesis, have so far shown limited efficacy in pre-clinical cancer models and to date only one FASN inhibitor has entered clinical trials. Recently, a number of studies have suggested that enhanced production of fatty acids in cancer cells could also increases their dependence on the activity of desaturases, a class of enzymes that insert double bonds into acyl-CoA chains. Targeting desaturase activity could provide a window of opportunity to selectively interfere with the metabolic activity of cancer cells. This review will summarise some key findings that implicate altered lipid metabolism in cancer and investigate the molecular interactions between lipid desaturation and cancer cell survival.
Collapse
Affiliation(s)
- Barrie Peck
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| |
Collapse
|
30
|
JTP-103237, a monoacylglycerol acyltransferase inhibitor, prevents fatty liver and suppresses both triglyceride synthesis and de novo lipogenesis. J Pharmacol Sci 2015. [DOI: 10.1016/j.jphs.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Abstract
Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.
Collapse
Affiliation(s)
- Sarah E Bettigole
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065; ,
| | | |
Collapse
|
32
|
Patra D, DeLassus E, Liang G, Sandell LJ. Cartilage-specific ablation of site-1 protease in mice results in the endoplasmic reticulum entrapment of type IIb procollagen and down-regulation of cholesterol and lipid homeostasis. PLoS One 2014; 9:e105674. [PMID: 25147951 PMCID: PMC4141819 DOI: 10.1371/journal.pone.0105674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase site-1 protease (S1P) converts latent ER-membrane bound transcription factors SREBPs and ATF6 to their active forms. SREBPs are involved in cholesterol and fatty acid homeostasis whereas ATF6 is involved in unfolded protein response pathways (UPR). Cartilage-specific ablation of S1P in mice (S1Pcko) results in abnormal cartilage devoid of type II collagen protein (Col II). S1Pcko mice also lack endochondral bone development. To analyze S1Pcko cartilage we performed double-labeled immunofluorescence studies for matrix proteins that demonstrated that type IIB procollagen is trapped inside the ER in S1Pcko chondrocytes. This retention is specific to type IIB procollagen; other cartilage proteins such as type IIA procollagen, cartilage oligomeric matrix protein (COMP) and aggrecan are not affected. The S1Pcko cartilage thus exhibits COMP-, aggrecan-, and type IIA procollagen-derived matrices but is characterized by the absence of a type IIB procollagen-derived matrix. To understand the molecular reason behind S1Pcko phenotypes we performed genome-wide transcriptional profiling of cartilage isolated from S1Pcko and wild type littermates. While the UPR pathways are unaffected, the SREBPs-directed cholesterol and fatty acid pathways are significantly down-regulated in S1Pcko chondrocytes, with maximal down-regulation of the stearoyl-CoA desaturase-1 (Scd1) gene. However, mouse models that lack Scd1 or exhibit reduction in lipid homeostasis do not suffer from the ER retention of Col II or lack endochondral bone. These studies indicate an indispensable role for S1P in type IIB procollagen trafficking from the ER. This role appears not to be related to lipid pathways or other current known functions of S1P and is likely dependent on additional, yet unknown, S1P substrates in chondrocytes.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elizabeth DeLassus
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
33
|
Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014; 98:75-85. [DOI: 10.1016/j.biochi.2013.10.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022]
|
34
|
Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M. PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification. J Am Heart Assoc 2013; 2:e000238. [PMID: 24008080 PMCID: PMC3835225 DOI: 10.1161/jaha.113.000238] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vascular calcification in CKD is caused by the endoplasmic reticulum response involving protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). METHODS AND RESULTS We examined the effects of TNFα on the endoplasmic reticulum (ER) stress response of vascular smooth muscle cells (VSMCs). TNFα treatment drastically induced the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in VSMCs. PERK, ATF4, and CHOP shRNA-mediated knockdowns drastically inhibited mineralization and osteogenesis of VSMCs induced by TNFα. CKD induced by 5/6 nephrectomies activated the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in the aortas of ApoE-/- mice with increased aortic TNFα expression and vascular calcification. Treatment of 5/6 nephrectomized ApoE-/- mice with the TNFα neutralizing antibody or chemical Chaperones reduced aortic PERK-eIF2α-ATF4-CHOP signaling of the ER stress increased by CKD. This resulted in the inhibition of CKD-dependent vascular calcification. CONCLUSIONS These results suggest that TNFα induces the PERK-eIF2α-ATF4-CHOP axis of the ER stress response, leading to CKD-dependent vascular calcification.
Collapse
Affiliation(s)
- Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO
| | | | | | | | | |
Collapse
|
35
|
Reduction of Cellular Lipid Content by a Knockdown of Drosophila PDP1 γ and Mammalian Hepatic Leukemia Factor. J Lipids 2013; 2013:297932. [PMID: 24062952 PMCID: PMC3766575 DOI: 10.1155/2013/297932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/19/2013] [Indexed: 02/01/2023] Open
Abstract
In exploring the utility of double-stranded RNA (dsRNA) injections for silencing the PAR-domain protein 1 (Pdp1) gene in adult Drosophila, we noticed a dramatic loss of fat tissue lipids. To verify that our RNAi approach produced the expected Pdp1 knockdown, the abdominal fat tissues sections were stained with PDP1 antibodies. PDP1 protein immunostaining was absent in flies injected with dsRNA targeting a sequence common to all known Pdp1 isoforms. Subsequent experiments revealed that lipid staining is reduced in flies injected with dsRNA against Pdp1 γ (fat body specific) and not against Pdp1 ε (predominantly involved in circadian mechanisms). Drosophila PDP1 γ protein shows a high homology to mammalian thyrotroph embryonic factor (TEF), albumin D site-binding protein (DBP), and hepatic leukemia factor (HLF) transcription factors. In an in vitro model of drug- (olanzapine-) induced adiposity in mouse 3T3-L1 cells, the mRNA content of HLF but not TEF and DBP was increased by the drug treatment. A knockdown of the HLF mRNA by transfecting the cultures with HLF dsRNA significantly reduced their lipid content. Furthermore, the HLF RNAi prevented olanzapine from increasing the cell lipid content. These results suggest that the PDP1/HLF system may play a role in physiological and drug-influenced lipid regulation.
Collapse
|
36
|
Rogowski MP, Flowers MT, Stamatikos AD, Ntambi JM, Paton CM. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J Lipid Res 2013; 54:2636-46. [PMID: 23918045 DOI: 10.1194/jlr.m035865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated.
Collapse
Affiliation(s)
- Michael P Rogowski
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; and
| | | | | | | | | |
Collapse
|
37
|
Feitosa MF, Wojczynski MK, North KE, Zhang Q, Province MA, Carr JJ, Borecki IB. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis 2013; 228:175-80. [PMID: 23477746 PMCID: PMC3640729 DOI: 10.1016/j.atherosclerosis.2013.01.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) ranges from simple steatosis to hepatic inflammation to cirrhosis. We sought to identify common genetic variants contributing to NAFLD, using CT measured fatty liver (FL), and alanine aminotransferase levels (ALT), as a biochemical marker of hepatic inflammation. METHODS We employed a correlated meta-analysis (CMA) to test whether combining FL and ALT genomewide association (GWA) results, using ∼2.5 million imputed SNPs, could enhance ability to detect variants influencing both traits. RESULTS Variants of the ERLIN1-CHUK-CWF19L1 gene cluster were associated with concomitant variation of FL and ALT. Nine variants (rs2862954, rs1408579, rs10883451, rs11597086, rs11591741, rs17729876, rs17668255, rs17668357, rs12784396) displayed genomewide significant associations at loci concomitantly influencing FL and ALT (2.47 × 10(-9) ≤ CMA-p ≤ 4.29 × 10(-10)) as compared with the suggestive significance of marginal tests (4.11 × 10(-5) ≤ GWA-p ≤ 2.34 × 10(-6)). For example, the missense variant in ERLIN1-rs2862954 was genomewide significant (CMA-p = 4.88 × 10(-10)) for the combination of FL and ALT, while the respective univariate associations were suggestive (FL:p = 5.74 × 10(-6), ALT:p = 3.71 × 10(-6)). Further we investigated whether the concomitant associations were driven mainly by ALT levels. When we adjusted FL by ALT, the correlated associations diminished but did not vanish (CMA-p ≤ 3.3 × 10(-7)). Our findings suggest ERLIN1-CHUK-CWF19L1 variants are associated with early stage of FL accumulation (measured by CT) to hepatic inflammation (ALT levels), and the association enhances when accounting for the correlations between their scans. CONCLUSIONS CMA approach enhanced the ability to identify novel variants of the ERLIN1-CHUK-CWF19L1 influencing both simple steatosis and hepatic steatosis with inflammation, which suggest that this gene cluster may regulate the susceptibility of NAFLD in a wide spectrum of disease.
Collapse
Affiliation(s)
- Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63108-2212, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism 2013; 62:753-60. [PMID: 23312405 PMCID: PMC3633667 DOI: 10.1016/j.metabol.2012.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND In cell systems, saturated fatty acids, compared to unsaturated fatty acids, induce a greater degree of ER stress and inflammatory signaling in a number of cell types, including hepatocytes and adipocytes. The aim of the present study was to determine the effects of infusions of lard oil (enriched in saturated fatty acids) and soybean oil (enriched in unsaturated fatty acids) on liver and adipose tissue ER stress and inflammatory signaling in vivo. METHODS Lipid emulsions containing glycerol, phosphatidylcholine, antibiotics (Control, n=7) and either soybean oil (Soybean, n=7) or lard oil (Lard, n=7) were infused intravenously into rats over a 4 h period. RESULTS Plasma free fatty acid levels were 0.5±0.1 mmol/L (mean±SD) in Control and were increased to 1.0±0.3 mmol/L and 1.1±0.3 mmol/L in Soybean and Lard, respectively. Glucose and insulin levels were not different among groups. Markers of endoplasmic reticulum (ER) stress and activation of inflammatory pathway signaling were increased in liver and adipose tissue from Soybean and Lard compared to Control, but were increased to a greater extent in Lard compared to Soybean. CONCLUSIONS These data suggest that elevated plasma free fatty acids can induce hepatic and adipose tissue ER stress and inflammation in vivo. In addition, saturated fatty acids appear to be more cytotoxic than unsaturated fatty acids in vivo.
Collapse
Affiliation(s)
- Angela M Nivala
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | | | | | | | | |
Collapse
|
39
|
Ghosh MC, Ray AK. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics. PLoS One 2013; 8:e57919. [PMID: 23469105 PMCID: PMC3585281 DOI: 10.1371/journal.pone.0057919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/27/2013] [Indexed: 12/08/2022] Open
Abstract
Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.
Collapse
Affiliation(s)
- Manik C Ghosh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | |
Collapse
|
40
|
Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 2013; 52:15-42. [DOI: 10.1016/j.plipres.2012.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
|
41
|
Quiroga AD, Li L, Trötzmüller M, Nelson R, Proctor SD, Köfeler H, Lehner R. Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia. Hepatology 2012; 56:2188-98. [PMID: 22806626 DOI: 10.1002/hep.25961] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/08/2012] [Indexed: 02/05/2023]
Abstract
UNLABELLED Increased lipogenesis, together with hyperlipidemia and increased fat deposition, contribute to obesity and associated metabolic disorders including nonalcoholic fatty liver disease. Here we show that carboxylesterase 1/esterase-x (Ces1/Es-x) plays a regulatory role in hepatic fat metabolism in the mouse. We demonstrate that Ces1/Es-x knockout mice present with increased hepatic lipogenesis and with oversecretion of apolipoprotein B (apoB)-containing lipoproteins (hepatic very-low density lipoproteins), which leads to hyperlipidemia and increased fat deposition in peripheral tissues. Consequently, Ces1/Es-x knockout mice develop obesity, fatty liver, hyperinsulinemia, and insulin insensitivity on chow diet without change in food intake and present with decreased energy expenditure. Ces1/Es-x deficiency prevents the release of polyunsaturated fatty acids from triacylglycerol stores, leading to an up-regulation of sterol regulatory element binding protein 1c-mediated lipogenesis, which can be reversed with dietary ω-3 fatty acids. CONCLUSION These studies support a role for Ces1/Es-x in the partitioning of regulatory fatty acids and concomitant control of hepatic lipid biosynthesis, secretion, and deposition.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Fuchs CD, Claudel T, Kumari P, Haemmerle G, Pollheimer MJ, Stojakovic T, Scharnagl H, Halilbasic E, Gumhold J, Silbert D, Koefeler H, Trauner M. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology 2012; 56:270-80. [PMID: 22271167 DOI: 10.1002/hep.25601] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/29/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) is characterized by triglyceride (TG) accumulation and endoplasmic reticulum (ER) stress. Because fatty acids (FAs) may trigger ER stress, we hypothesized that the absence of adipose triglyceride lipase (ATGL/PNPLA2)-the main enzyme for intracellular lipolysis, releasing FAs, and closest homolog to adiponutrin (PNPLA3) recently implicated in the pathogenesis of NAFLD-protects against hepatic ER stress. Wild-type (WT) and ATGL knockout (KO) mice were challenged with tunicamycin (TM) to induce ER stress. Serum biochemistry, hepatic TG and FA profiles, liver histology, and gene expression for markers of hepatic lipid metabolism, ER stress, and inflammation were explored. Moreover, cell-culture experiments were performed in Hepa1.6 cells after the knockdown of ATGL before FA and TM treatment. TM increased hepatic TG accumulation in ATGL KO, but not in WT, mice. Lipogenesis and β-oxidation were repressed at the gene-expression level (sterol regulatory element-binding transcription factor 1c, fatty acid synthase, acetyl coenzyme A carboxylase 2, and carnitine palmitoyltransferase 1 alpha) in both WT and ATGL KO mice. Genes for very-low-density lipoprotein (VLDL) synthesis (microsomal triglyceride transfer protein and apolipoprotein B) were down-regulated by TM in WT and even more in ATGL KO mice, which displayed strongly reduced serum VLDL cholesterol levels. Notably, ER stress markers glucose-regulated protein, C/EBP homolog protein, spliced X-box-binding protein, endoplasmic-reticulum-localized DnaJ homolog 4, and inflammatory markers Tnfα and iNos were induced exclusively in TM-treated WT, but not ATGL KO, mice. Total hepatic FA profiling revealed a higher palmitic acid/oleic acid (PA/OA) ratio in WT mice, compared to ATGL KO mice, at baseline. Phosphoinositide-3-kinase inhibitor-known to be involved in FA-derived ER stress and blocked by OA-was increased in TM-treated WT mice only. In line with this, in vitro OA protected hepatocytes from TM-induced ER stress. CONCLUSIONS Lack of ATGL may protect from hepatic ER stress through alterations in FA composition. ATGL could constitute a new therapeutic strategy to target ER stress in NAFLD.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Masuda M, Ting TC, Levi M, Saunders SJ, Miyazaki-Anzai S, Miyazaki M. Activating transcription factor 4 regulates stearate-induced vascular calcification. J Lipid Res 2012; 53:1543-52. [PMID: 22628618 DOI: 10.1194/jlr.m025981] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.
Collapse
Affiliation(s)
- Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 2012; 15:623-34. [PMID: 22560215 DOI: 10.1016/j.cmet.2012.03.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is a critical site of protein, lipid, and glucose metabolism, lipoprotein secretion, and calcium homeostasis. Many of the sensing, metabolizing, and signaling mechanisms for these pathways exist within or on the ER membrane domain. Here, we review the cellular functions of ER, how perturbation of ER homeostasis contributes to metabolic dysregulation and potential causative mechanisms of ER stress in obesity, with a particular focus on lipids, metabolic adaptations of ER, and the maintenance of its membrane homeostasis. We also suggest a conceptual framework of metabolic roundabout to integrate key mechanisms of insulin resistance and metabolic diseases.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Kovacs WJ, Charles KN, Walter KM, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:895-907. [PMID: 22441164 DOI: 10.1016/j.bbalip.2012.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/20/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022]
Abstract
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Webster×129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zuerich, CH-8093 Zuerich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Muñoz M, Alves E, Corominas J, Folch JM, Casellas J, Noguera JL, Silió L, Fernández AI. Survey of SSC12 Regions Affecting Fatty Acid Composition of Intramuscular Fat Using High-Density SNP Data. Front Genet 2012; 2:101. [PMID: 22303395 PMCID: PMC3262226 DOI: 10.3389/fgene.2011.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/14/2011] [Indexed: 11/13/2022] Open
Abstract
Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of back fat (BF) and intramuscular fat (IMF). In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of IMF in longissimus muscle. The QTL scan showed a region around the 60-cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait). This QTL does not match any of those reported in the previous study on fatty acid composition of BF, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine transfer protein (PCTP) gene and one in the Acetyl-CoA Carboxylase ∝ gene (ACACA). Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for palmitic content.
Collapse
Affiliation(s)
- María Muñoz
- Departament Mejora Genética Animal, Instituto Nacional de Investigaciones Agrarias Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rodvold JJ, Mahadevan NR, Zanetti M. Lipocalin 2 in cancer: when good immunity goes bad. Cancer Lett 2011; 316:132-8. [PMID: 22075378 DOI: 10.1016/j.canlet.2011.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/29/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
The innate immune molecule Lipocalin 2 (LCN2) was initially shown to combat bacterial infection by binding bacterial siderophores, hence impairing microbial iron sequestration. In recent years, it has become apparent that LCN2 is over-expressed in cancers of diverse histological origin and that it facilitates tumorigenesis by promoting survival, growth, and metastasis. Herein, we discuss emerging evidence that substantiates two functional roles for LCN2 in cancer: promotion of the epithelial-to-mesenchymal transition (EMT) that facilitates an invasive phenotype and metastasis, and sequestration of iron that results in cell survival and tumorigenesis. Further, we present evidence that upregulated LCN2 expression in solid tumors is induced by hypoxia and pro-inflammation, microenvironmental noxae that converge to cause an endoplasmic reticulum (ER) stress response. Taken together, it appears that tumor cells exploit the beneficial innate immune function of LCN2 to support uncontrolled growth. This duplicity in function highlights LCN2 and its upstream driver, the ER stress response, as key targets for cancer therapy.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, United States
| | | | | |
Collapse
|
48
|
Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ, Yang WP, Zhu J, Madireddi MT, Lawrence RM, Wong TW, Rupnow BA. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 2011; 9:1551-61. [PMID: 21954435 DOI: 10.1158/1541-7786.mcr-11-0126] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerging literature suggests that metabolic pathways play an important role in the maintenance and progression of human cancers. In particular, recent studies have implicated lipid biosynthesis and desaturation as a requirement for tumor cell survival. In the studies reported here, we aimed to understand whether tumor cells require the activity of either human isoform of stearoyl-CoA-desaturase (SCD1 or SCD5) for survival. Inhibition of SCD1 by siRNA or a small molecule antagonist results in strong induction of apoptosis and growth inhibition, when tumor cells are cultured in reduced (2%) serum conditions, but has little impact on cells cultured in 10% serum. Depletion of SCD5 had minimal effects on cell growth or apoptosis. Consistent with the observed dependence on SCD1, but not SCD5, levels of SCD1 protein increased in response to decreasing serum levels. Both induction of SCD1 protein and sensitivity to growth inhibition by SCD1 inhibition could be reversed by supplementing growth media with unsaturated fatty acids, the product of the enzymatic reaction catalyzed by SCD1. Transcription profiling of cells treated with an SCD inhibitor revealed strong induction of markers of endoplasmic reticulum stress. Underscoring its importance in cancer, SCD1 protein was found to be highly expressed in a large percentage of human cancer specimens. SCD inhibition resulted in tumor growth delay in a human gastric cancer xenograft model. Altogether, these results suggest that desaturated fatty acids are required for tumor cell survival and that SCD may represent a viable target for the development of novel agents for cancer therapy.
Collapse
Affiliation(s)
- Urvashi V Roongta
- Department of Oncology Drug Discovery, Bristol-Myers Squibb R&D, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
With the epidemic of childhood obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in pediatrics. NAFLD is strongly associated with insulin resistance and increased level of serum free fatty acids (FFAs). FFAs have direct hepatotoxicity through the induction of an endoplasmic reticulum stress response and subsequently activation of the mitochondrial pathway of cell death. FFAs may also result in lysosomal dysfunction and alter death receptor gene expression. Lipoapoptosis is a key pathogenic process in NAFLD, and correlates with progressive inflammation, and fibrosis. Accumulation of triglyceride in the liver results from uptake and esterification of FFAs by the hepatocyte, and is less likely to be hepatotoxic per se. To date, there are no proven effective therapies that halt NAFLD progression or unfortunately improve prognosis in children. The cellular mechanisms of lipotoxicity are complex but provide potential therapeutic targets for NAFLD. In this review we discuss several potential therapeutic opportunities in detail including inhibition of apoptosis, c-Jun-N-terminal kinase, and endoplasmic reticulum stress pathways.
Collapse
|
50
|
Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, Sadler KC, Bahary N. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology 2011; 54:452-62. [PMID: 21488074 PMCID: PMC3140628 DOI: 10.1002/hep.24349] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/28/2011] [Indexed: 01/02/2023]
Abstract
UNLABELLED Hepatic steatosis is the initial stage of nonalcoholic fatty liver disease (NAFLD) and may predispose to more severe hepatic disease, including hepatocellular carcinoma. Endoplasmic reticulum (ER) stress has been recently implicated as a novel mechanism that may lead to NAFLD, although the genetic factors invoking ER stress are largely unknown. During a screen for liver defects from a zebrafish insertional mutant library, we isolated the mutant cdipthi559Tg/+ (hi559). CDIPT is known to play an indispensable role in phosphatidylinositol (PtdIns) synthesis. Here we show that cdipt is expressed in the developing liver, and its disruption in hi559 mutants abrogates de novo PtdIns synthesis, resulting in hepatomegaly at 5 days postfertilization. The hi559 hepatocytes display features of NAFLD, including macrovesicular steatosis, ballooning, and necroapoptosis. Gene set enrichment of microarray profiling revealed significant enrichment of endoplasmic reticulum stress response (ERSR) genes in hi559 mutants. ER stress markers, including atf6, hspa5, calr, and xbp1, are selectively up-regulated in the mutant liver. The hi559 expression profile showed significant overlap with that of mammalian hepatic ER stress and NAFLD. Ultrastructurally, the hi559 hepatocytes display marked disruption of ER architecture with hallmarks of chronic unresolved ER stress. Induction of ER stress by tunicamycin in wild-type larvae results in a fatty liver similar to hi559, suggesting that ER stress could be a fundamental mechanism contributing to hepatic steatosis. CONCLUSION cdipt-deficient zebrafish exhibit hepatic ER stress and NAFLD pathologies, implicating a novel link between PtdIns, ER stress, and steatosis. The tractability of hi559 mutant provides a valuable tool to dissect ERSR components, their contribution to molecular pathogenesis, and evaluation of novel therapeutics of NAFLD.
Collapse
Affiliation(s)
- Prakash C Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Marcus R Rivera
- Childrens Hospital, Division of Pediatrics Gastroenterology, University of Pittsburgh, Pittsburgh, PA
| | - Jon M Davison
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Departments of Psychiatry and Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adam Amsterdam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Kirsten C Sadler
- Department of Medicine-Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA
,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
,Corresponding Author: Nathan Bahary, MD, PhD, Department of Medicine, Division of Hematology/Oncology, Department of Microbiology and Molecular Genetics, Biomedical Science Tower 3, Room 5058, 3501 Fifth Avenue, Pittsburgh, PA 15260, Office Phone: (412) 648-6507, Office Fax: (412) 648-9852,
| |
Collapse
|