1
|
Peng L, Luan S, Shen X, Zhan H, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Zhong X, Zhang H, Gao L, Zhao J, He Z. Thyroid hormone deprival and TSH/TSHR signaling deficiency lead to central hypothyroidism-associated intestinal dysplasia. Life Sci 2024; 345:122577. [PMID: 38521387 DOI: 10.1016/j.lfs.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.
Collapse
Affiliation(s)
- Li Peng
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Ramadan R, Wouters VM, van Neerven SM, de Groot NE, Garcia TM, Muncan V, Franklin OD, Battle M, Carlson KS, Leach J, Sansom OJ, Boulard O, Chamaillard M, Vermeulen L, Medema JP, Huels DJ. The extracellular matrix controls stem cell specification and crypt morphology in the developing and adult mouse gut. Biol Open 2022; 11:bio059544. [PMID: 36350252 PMCID: PMC9713296 DOI: 10.1242/bio.059544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2023] Open
Abstract
The rapid renewal of the epithelial gut lining is fuelled by stem cells that reside at the base of intestinal crypts. The signal transduction pathways and morphogens that regulate intestinal stem cell self-renewal and differentiation have been extensively characterised. In contrast, although extracellular matrix (ECM) components form an integral part of the intestinal stem cell niche, their direct influence on the cellular composition is less well understood. We set out to systematically compare the effect of two ECM classes, the interstitial matrix and the basement membrane, on the intestinal epithelium. We found that both collagen I and laminin-containing cultures allow growth of small intestinal epithelial cells with all cell types present in both cultures, albeit at different ratios. The collagen cultures contained a subset of cells enriched in fetal-like markers. In contrast, laminin increased Lgr5+ stem cells and Paneth cells, and induced crypt-like morphology changes. The transition from a collagen culture to a laminin culture resembled gut development in vivo. The dramatic ECM remodelling was accompanied by a local expression of the laminin receptor ITGA6 in the crypt-forming epithelium. Importantly, deletion of laminin in the adult mouse resulted in a marked reduction of adult intestinal stem cells. Overall, our data support the hypothesis that the formation of intestinal crypts is induced by an increased laminin concentration in the ECM.
Collapse
Affiliation(s)
- Rana Ramadan
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Valérie M. Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina E. de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tania Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Vanessa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Olivia D. Franklin
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Michelle Battle
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Karen Sue Carlson
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
- The Blood Research Institute of Wisconsin, part of Versiti, and the Medical College of Wisconsin, Department of Internal Medicine, Milwaukee, WI 53226, USA
| | - Joshua Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Olivier Boulard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Mathias Chamaillard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - David J. Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
FACI Is a Novel CREB-H-Induced Protein That Inhibits Intestinal Lipid Absorption and Reverses Diet-Induced Obesity. Cell Mol Gastroenterol Hepatol 2022; 13:1365-1391. [PMID: 35093589 PMCID: PMC8938335 DOI: 10.1016/j.jcmgh.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.
Collapse
|
4
|
Hu L, Xu J, Wang X, Feng L, Zhang C, Wang J, Wang S. Bone Morphogenetic Protein 4 Alleviates DSS-Induced Ulcerative Colitis Through Activating Intestinal Stem Cell by Target ID3. Front Cell Dev Biol 2021; 9:700864. [PMID: 34692671 PMCID: PMC8528200 DOI: 10.3389/fcell.2021.700864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023] Open
Abstract
Damage to intestinal epithelial cell proliferation or intestinal stem cell (ISC) maintenance may trigger inflammatory bowel disease (IBD), and protecting the ISCs is critical for IBD treatment. Here, we found that in the dextran sulfate sodium (DSS)-induced ulcerative colitis mice model, colon epithelium and Lgr5+ intestinal stem cells (ISCs) renew quickly during the first 3 days. We also found that during this renewing period, SMAD4 and bone morphogenetic protein 4 (BMP4) expression were significantly upregulated. An extra BMP4 treatment could preserve the Lgr5+ ISCs and the colon epithelium turnover, and could significantly decrease colon mucosal damage. Moreover, we found that BMP4 regulated ID3 expression in the colon epithelium. Depletion of ID3 could significantly reduce the epithelium renewal and ratio of Lgr5+ ISCs at the base of crypts. In conclusion, the present study showed that BMP4 could maintain epithelium cellular proliferation and the ISCs function through ID3 in mice with DSS-induced colitis. The administration of exogenous BMP4 supplement could alleviate DSS-induced colitis by restoring epithelium cellular proliferation and ISC function, suggesting the possible therapeutic function of BMP4 for ulcerative colitis.
Collapse
Affiliation(s)
- Lei Hu
- Salivary Gland Disease Center, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Junji Xu
- Salivary Gland Disease Center, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Periodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Xue Wang
- Salivary Gland Disease Center, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
| | - Liang Feng
- Salivary Gland Disease Center, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Renz PF, Spies D, Tsikrika P, Wutz A, Beyer TA, Ciaudo C. Inhibition of FGF and TGF-β Pathways in hESCs Identify STOX2 as a Novel SMAD2/4 Cofactor. BIOLOGY 2020; 9:biology9120470. [PMID: 33339109 PMCID: PMC7765495 DOI: 10.3390/biology9120470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
Simple Summary Signaling pathways are the means by which cells and tissue communicate, orchestrating key events during mammalian development, homeostasis, and disease. During development, signaling determines the identity of cells, and thereby controls morphogenesis and organ specification. Depending on the cellular context, these pathways can exert a broad range of even opposing functions. This is achieved, among other mechanisms, by crosstalk between pathways. Here, we examined how two pathways (the transforming growth factor-β (TGF-β) and the fibroblast growth factor (FGF)) cooperate in the maintenance and cell fate specification of human embryonic stem cells. We used inhibitory molecules for individual pathways on a short time series and analyzed the resulting variation in gene expression. In contrast to our expectations, we did not observe an extended crosstalk between the pathway at the gene regulatory level. However, we discovered STOX2 as a new primary target of the TGF-β signaling pathway. Our results show that STOX2 might act as a novel TGF-β signaling co-factor. Our work will contribute to understand how signaling by the TGF-β is mediated. In the future, these results might help to deepen our understanding of how signaling is propagated. Abstract The fibroblast growth factor (FGF) and the transforming growth factor-β (TGF-β) pathways are both involved in the maintenance of human embryonic stem cells (hESCs) and regulate the onset of their differentiation. Their converging functions have suggested that these pathways might share a wide range of overlapping targets. Published studies have focused on the long-term effects (24–48 h) of FGF and TGF-β inhibition in hESCs, identifying direct and indirect target genes. In this study, we focused on the earliest transcriptome changes occurring between 3 and 9 h after FGF and TGF-β inhibition to identify direct target genes only. Our analysis clearly shows that only a handful of target transcripts are common to both pathways. This is surprising in light of the previous literature, and has implications for models of cell signaling in human pluripotent cells. In addition, we identified STOX2 as a novel primary target of the TGF-β signaling pathway. We show that STOX2 might act as a novel SMAD2/4 cofactor. Taken together, our results provide insights into the effect of cell signaling on the transcription profile of human pluripotent cells
Collapse
Affiliation(s)
- Peter F. Renz
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
- Molecular Life Science Program, Life Science Zurich Graduate School, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Daniel Spies
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
- Molecular Life Science Program, Life Science Zurich Graduate School, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Panagiota Tsikrika
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
- Molecular Life Science Program, Life Science Zurich Graduate School, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anton Wutz
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
| | - Tobias A. Beyer
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
- Correspondence: (T.A.B.); (C.C.); Tel.: +41-44-633-08-58 (C.C.)
| | - Constance Ciaudo
- Department of Biology, Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Otto-Stern Weg 7, CH-8093 Zurich, Switzerland; (P.F.R.); (D.S.); (P.T.); (A.W.)
- Correspondence: (T.A.B.); (C.C.); Tel.: +41-44-633-08-58 (C.C.)
| |
Collapse
|
6
|
The Adult Murine Intestine is Dependent on Constitutive Laminin-γ1 Synthesis. Sci Rep 2019; 9:19303. [PMID: 31848396 PMCID: PMC6917708 DOI: 10.1038/s41598-019-55844-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Laminin-γ1 is required for early embryonic development; however, the need for laminin-γ1 synthesis in adulthood is unknown. A global and inducible mouse model of laminin-γ1 deficiency was generated to address this question. Genetic ablation of the Lamc1 gene in adult mice was rapidly lethal. Despite global Lamc1 gene deletion in tamoxifen-induced mutant mice, there was minimal change in total cardiac, pulmonary, hepatic or renal laminin protein. In contrast, laminin-γ1 was significantly depleted in the small intestines, which showed crypt hyperplasia and dissociation of villous epithelium from adjacent mesenchyme. We conclude that the physiologic requirement for laminin-γ1 synthesis in adult mice is dependent on a tissue-specific basal rate of laminin-γ1 turnover that results in rapid depletion of laminin-γ1 in the intestine.
Collapse
|
7
|
Cho K. Emerging Roles of Complement Protein C1q in Neurodegeneration. Aging Dis 2019; 10:652-663. [PMID: 31165008 PMCID: PMC6538225 DOI: 10.14336/ad.2019.0118] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is an ancient and primary component system that rapidly reacts to defend the body against external pathogens. C1 is the initial responder of classical pathway of the innate immune system. C1 is comprised of C1q, C1r, and C1s. Among them, C1q is known to interact with diverse ligands, which can perform various functions in physiological and pathophysiological conditions. Because C1q participates in the clearance of pathogens, its interaction with novel receptors is expected to facilitate apoptosis induction, which could prevent the onset or progression of neurodegenerative diseases and could delay the aging process. Because senescence-associated secreting phenotype determinants are generally inflammatory cytokines or immune factors to activate immune cells. In the central nervous system, C1q has diverse neuroprotective roles against pathogens and inflammation. Most of neurodegenerative diseases show region specific pathology feature in the brain. It has been suggested the evidences that the active site and amount of C1q may be disease specific. This review considers currently the emerging and under-recognized roles of C1q in neurodegeneration and highlights the need for further research to clarify these roles. Future studies on the roles of C1q in regulating disease progression should consider these aspects, including the age-dependent onset time of each neurodegenerative disease progression.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| |
Collapse
|
8
|
Walton KD, Mishkind D, Riddle MR, Tabin CJ, Gumucio DL. Blueprint for an intestinal villus: Species-specific assembly required. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e317. [PMID: 29513926 PMCID: PMC6002883 DOI: 10.1002/wdev.317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Efficient absorption of nutrients by the intestine is essential for life. In mammals and birds, convolution of the intestinal surface into finger-like projections called villi is an important adaptation that ensures the massive surface area for nutrient contact that is required to meet metabolic demands. Each villus projection serves as a functional absorptive unit: it is covered by a simple columnar epithelium that is derived from endoderm and contains a mesodermally derived core with supporting vasculature, lacteals, enteric nerves, smooth muscle, fibroblasts, myofibroblasts, and immune cells. In cross section, the consistency of structure in the billions of individual villi of the adult intestine is strikingly beautiful. Villi are generated in fetal life, and work over several decades has revealed that villus morphogenesis requires substantial "crosstalk" between the endodermal and mesodermal tissue components, with soluble signals, cell-cell contacts, and mechanical forces providing specific dialects for sequential conversations that orchestrate villus assembly. A key part of this process is the formation of subepithelial mesenchymal cell clusters that act as signaling hubs, directing overlying epithelial cells to cease proliferation, thereby driving villus emergence and simultaneously determining the location of future stem cell compartments. Interestingly, distinct species-specific differences govern how and when tissue-shaping signals and forces generate mesenchymal clusters and control villus emergence. As the details of villus development become increasingly clear, the emerging picture highlights a sophisticated local self-assembled cascade that underlies the reproducible elaboration of a regularly patterned field of absorptive villus units. This article is categorized under: Vertebrate Organogenesis > From a Tubular Primordium: Non-Branched Comparative Development and Evolution > Organ System Comparisons Between Species Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Darcy Mishkind
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Misty R Riddle
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Wang S, Chen YG. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. SCIENCE CHINA-LIFE SCIENCES 2018; 61:800-807. [PMID: 29855793 DOI: 10.1007/s11427-018-9310-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.
Collapse
Affiliation(s)
- Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Means AL, Freeman TJ, Zhu J, Woodbury LG, Marincola-Smith P, Wu C, Meyer AR, Weaver CJ, Padmanabhan C, An H, Zi J, Wessinger BC, Chaturvedi R, Brown TD, Deane NG, Coffey RJ, Wilson KT, Smith JJ, Sawyers CL, Goldenring JR, Novitskiy SV, Washington MK, Shi C, Beauchamp RD. Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 2018; 6:257-276. [PMID: 30109253 PMCID: PMC6083016 DOI: 10.1016/j.jcmgh.2018.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
Abstract
Background & Aims Chronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor β (TGFβ) family signaling through SMAD4 in colonic epithelial cells. Methods The Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFβ1 and bone morphogenetic protein 2. Results Dextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis-associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis-associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFβ signaling inhibited the epithelial inflammatory response to proinflammatory cytokines. Conclusions TGFβ suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.
Collapse
Key Words
- AOM, azoxymethane
- APC, adenomatous polyposis coli
- BMP, bone morphogenetic protein
- CAC, colitis-associated carcinoma
- CCL20, Chemokine (C-C motif) ligand 20
- CRC, colorectal cancer
- CRISPR/Cas9, Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9
- Colitis-Associated Carcinoma
- DMEM, Dulbecco's modified Eagle medium
- DSS, dextran sodium sulfate
- FBS, fetal bovine serum
- FDR, false discovery rate
- GFP, green fluorescent protein
- HBSS, Hank's balanced salt solution
- IBD, inflammatory bowel disease
- IL, interleukin
- IMCS4fl/fl, immortalized mouse colonoctye cell line with loxP-flanked Smad4 alleles
- IMCS4null, immortalized mouse colonocyte cell line with deletion of the Smad4 alleles
- LPS, lipopolysaccharide
- PBS, phosphate-buffered saline
- PE, phycoerythrin
- R-SMAD, Receptor-SMAD
- SFG, retroviral vector
- STAT3, signal transducer and activator of transcription 3
- TGFβ
- TGFβ, transforming growth factor β
- TNF, tumor necrosis factor
- Tumor Necrosis Factor
- UC, ulcerative colitis
- WNT, wingless-type mouse mammary tumor virus integration site
- YAMC, young adult mouse colon epithelial cells
- mRNA, messenger RNA
- sgRNA, single-guide RNA
Collapse
Affiliation(s)
- Anna L. Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tanner J. Freeman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luke G. Woodbury
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Chao Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne R. Meyer
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J. Weaver
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Hanbing An
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bronson C. Wessinger
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tasia D. Brown
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natasha G. Deane
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - J. Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles L. Sawyers
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sergey V. Novitskiy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R. Daniel Beauchamp
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Saqui-Salces M, Huang Z, Vila MF, Li J, Mielke JA, Urriola PE, Shurson GC. Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet. J Anim Sci 2017; 95:1179-1190. [PMID: 28380527 DOI: 10.2527/jas.2016.0947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Feeding high-fiber diets decreases cost, but also caloric and nutritional efficiency by modifying intestinal morphology and function. We analyzed the changes in intestinal cell composition, nutrient transporters and receptors, and cell differentiation induced by fibers from different sources. Forty-six finishing pigs (BW 84 ± 7 kg) were fed 1 of 4 diets: corn-soybean (Control; = 12), 23% wheat straw (WS; = 11), 55% corn distillers dried grains with solubles (DDGS; = 11), and 30% soybean hulls (SBH; = 12). Pigs were fed 2 meals daily to an amount equivalent to 2.5% of initial BW for 14 d in metabolism cages. Ilea were collected for histological and gene expression analysis after euthanasia. Data were analyzed using the Kruskal-Wallis test followed by Dunn's multiple comparisons and differences considered significant when < 0.05. The enterocyte marker was increased ( < 0.03) by feeding SBH compared with Control and WS diets. Goblet cells presence was greater ( < 0.01) in pigs fed WS and DDGS compared with Control, and in pigs fed WS compared with SBH ( = 0.02). expression was greater ( < 0.05) in pigs fed DDGS and SBH compared with Control diet. No changes were observed for endocrine and Paneth cells markers, villus and crypt length, or proliferation index. Compared with the Control, gene expression of receptors for oligopeptides, calcium, glucose, fructose, , and and was increased ( < 0.05) by feeding WS and DDGS diets. Feeding SBH diet repressed ( < 0.005) the compared with WS and DDGS diets, while DDGS repressed ( = 0.02) its expression compared with Control. Pigs fed DDGS had reduced ( < 0.001) , and those fed SBH showed increased ( < 0.05) expression compared with WS and DDGS pigs. Feeding WS and DDGS diets induced ( < 0.01) the expression of stem cell marker r-spondin receptor (, while was reduced ( < 0.02) by feeding DDGS compared with Control. The expression of was induced ( < 0.05) by all fibers compared with Control. Transcription factors and were suppressed ( < 0.001) by WS and DDGS compared with Control. In conclusion, feeding diets containing WS and DDGS modulated intestinal differentiation by promoting goblet cells and altered expression of nutrient receptors and transporters in growing pigs, while feeding SBH had less effect.
Collapse
|
12
|
The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death Differ 2017; 24:855-865. [PMID: 28304405 PMCID: PMC5423110 DOI: 10.1038/cdd.2017.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 12/14/2022] Open
Abstract
Paneth cells (PCs), a secretory population located at the base of the intestinal crypt, support the intestinal stem cells (ISC) with growth factors and participate in innate immunity by releasing antimicrobial peptides, including lysozyme and defensins. PC dysfunction is associated with disorders such as Crohn's disease and necrotizing enterocolitis, but the specific pathways regulating PC development and function are not fully understood. Here we tested the role of the neuregulin receptor ErbB3 in control of PC differentiation and the ISC niche. Intestinal epithelial ErbB3 knockout caused precocious appearance of PCs as early as postnatal day 7, and substantially increased the number of mature PCs in adult mouse ileum. ErbB3 loss had no effect on other secretory lineages, but increased expression of the ISC marker Lgr5. ErbB3-null intestines had elevated levels of the Atoh1 transcription factor, which is required for secretory fate determination, while Atoh1+ cells had reduced ErbB3, suggesting reciprocal negative regulation. ErbB3-null intestinal progenitor cells showed reduced activation of the PI3K-Akt and ERK MAPK pathways. Inhibiting these pathways in HT29 cells increased levels of ATOH1 and the PC marker LYZ. Conversely, ErbB3 activation suppressed LYZ and ATOH1 in a PI3K-dependent manner. Expansion of the PC compartment in ErbB3-null intestines was accompanied with elevated ER stress and inflammation markers, raising the possibility that negative regulation of PCs by ErbB3 is necessary to maintain homeostasis. Taken together, our data suggest that ErbB3 restricts PC numbers through PI3K-mediated suppression of Atoh1 levels leading to inhibition of PC differentiation, with important implications for regulation of the ISC niche.
Collapse
|
13
|
Gays D, Hess C, Camporeale A, Ala U, Provero P, Mosimann C, Santoro MM. An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development 2017; 144:464-478. [PMID: 28049660 DOI: 10.1242/dev.133926] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFβ/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFβ, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFβ induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christopher Hess
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christian Mosimann
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy .,Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium
| |
Collapse
|
14
|
Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol 2016; 241:146-158. [PMID: 27785786 DOI: 10.1002/path.4817] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Recent studies have greatly improved our insight into the genetic background of inflammatory bowel disease (IBD). New high-throughput technologies and large-scale international collaborations have contributed to the identification of 200 independent genetic risk loci for IBD. However, in most of these loci, it is unclear which gene conveys the risk for IBD. More importantly, it is unclear which variant within or near the gene is causal to the disease. Using targeted GWAS, imputation, resequencing of risk loci, and in silico fine-mapping of densely typed loci, several causal variants have been identified in IBD risk genes, and various pathological pathways have been uncovered. Current research in the field of IBD focuses on the effect of these causal variants on gene expression and protein function. However, more elements than only the genome must be taken into account to disentangle the multifactorial pathology of IBD. The genetic risk loci identified to date only explain a small part of genetic variance in disease risk. Currently, large multi-omics studies are incorporating factors ranging from the gut microbiome to the environment. In this review, we present the progress that has been made in IBD genetic research and stress the importance of studying causality to increase our understanding of the pathogenesis of IBD. We highlight important causal genetic variants in the candidate genes NOD2, ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. We describe their downstream effects on protein function and their direct effects on the gut immune system. Furthermore, we discuss the future role of genetics in unravelling disease mechanisms in IBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Werna Tc Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora Am Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Muñoz-Bravo JL, Flores-Martínez A, Herrero-Martin G, Puri S, Taketo MM, Rojas A, Hebrok M, Cano DA. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity. PLoS One 2016; 11:e0164714. [PMID: 27736991 PMCID: PMC5063371 DOI: 10.1371/journal.pone.0164714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.
Collapse
Affiliation(s)
- Jose Luis Muñoz-Bravo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Griselda Herrero-Martin
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - Makoto Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, United States of America
| | - David A. Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
16
|
Dunne PD, McArt DG, Bradley CA, O'Reilly PG, Barrett HL, Cummins R, O'Grady T, Arthur K, Loughrey MB, Allen WL, McDade SS, Waugh DJ, Hamilton PW, Longley DB, Kay EW, Johnston PG, Lawler M, Salto-Tellez M, Van Schaeybroeck S. Challenging the Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal Cancer. Clin Cancer Res 2016; 22:4095-104. [PMID: 27151745 DOI: 10.1158/1078-0432.ccr-16-0032] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. EXPERIMENTAL DESIGN We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. RESULTS We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286-9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial-mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. CONCLUSIONS Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095-104. ©2016 AACRSee related commentary by Morris and Kopetz, p. 3989.
Collapse
Affiliation(s)
- Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Darragh G McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Conor A Bradley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Paul G O'Reilly
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Helen L Barrett
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Cummins
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony O'Grady
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ken Arthur
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom. Department of Histopathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Wendy L Allen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - David J Waugh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Peter W Hamilton
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Elaine W Kay
- Department of Histopathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patrick G Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
17
|
Kim TO, Park SH, Kim HS, Ahuja N, Yi JM. DNA methylation changes in extracellular remodeling pathway genes during the transformation of human mesenchymal stem cells. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0402-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2016; 65:914-24. [PMID: 25800782 PMCID: PMC4922252 DOI: 10.1136/gutjnl-2014-308759] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Ki Taek Nam
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Christine P. Petersen
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Hyuk-Joon Lee
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - James R. Goldenring
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| |
Collapse
|
19
|
Kalyani R, Lee JY, Min H, Yoon H, Kim MH. Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes. Mol Cells 2016; 39:395-402. [PMID: 27025388 PMCID: PMC4870187 DOI: 10.14348/molcells.2016.2311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following TGF-β2 treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.
Collapse
Affiliation(s)
- Ruthala Kalyani
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Hyehyun Min
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Heejei Yoon
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351,
Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
20
|
Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 2016; 92:116-131. [PMID: 27165847 DOI: 10.1016/j.diff.2016.05.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
In this Review we summarize our current understanding of the biology of mesenchymal cells of the intestinal lamina propria focusing mainly on fibroblasts and myofibroblasts. The topics covered include 1) the embryonic origin of mesenchymal cells of the intestinal lamina propria and their heterogeneity in adults, 2) the role of the mesenchyme in intestinal development, 3) the physiological function of fibroblasts and myofibroblasts in adults as part of the intestinal stem cell niche and the mucosal immune system and 4) the involvement of fibroblasts and myofibroblasts in epithelial homeostasis upon injury and in the pathogenesis of diseases such as Inflammatory Bowel Diseases, fibrosis and cancer. We emphasize studies addressing the function of intestinal mesenchymal cells in vivo, and also discuss major open questions and current challenges in this field.
Collapse
Affiliation(s)
- Manolis Roulis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Kang E, Yousefi M, Gruenheid S. R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice. PLoS One 2016; 11:e0152859. [PMID: 27046199 PMCID: PMC4821485 DOI: 10.1371/journal.pone.0152859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn's disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Mitra Yousefi
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Walton KD, Whidden M, Kolterud Å, Shoffner SK, Czerwinski MJ, Kushwaha J, Parmar N, Chandhrasekhar D, Freddo AM, Schnell S, Gumucio DL. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 2016; 143:427-36. [PMID: 26721501 PMCID: PMC4760312 DOI: 10.1242/dev.130112] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023]
Abstract
In the intestine, finger-like villi provide abundant surface area for nutrient absorption. During murine villus development, epithelial Hedgehog (Hh) signals promote aggregation of subepithelial mesenchymal clusters that drive villus emergence. Clusters arise first dorsally and proximally and spread over the entire intestine within 24 h, but the mechanism driving this pattern in the murine intestine is unknown. In chick, the driver of cluster pattern is tensile force from developing smooth muscle, which generates deep longitudinal epithelial folds that locally concentrate the Hh signal, promoting localized expression of cluster genes. By contrast, we show that in mouse, muscle-induced epithelial folding does not occur and artificial deformation of the epithelium does not determine the pattern of clusters or villi. In intestinal explants, modulation of Bmp signaling alters the spatial distribution of clusters and changes the pattern of emerging villi. Increasing Bmp signaling abolishes cluster formation, whereas inhibiting Bmp signaling leads to merged clusters. These dynamic changes in cluster pattern are faithfully simulated by a mathematical model of a Turing field in which an inhibitor of Bmp signaling acts as the Turing activator. In vivo, genetic interruption of Bmp signal reception in either epithelium or mesenchyme reveals that Bmp signaling in Hh-responsive mesenchymal cells controls cluster pattern. Thus, unlike in chick, the murine villus patterning system is independent of muscle-induced epithelial deformation. Rather, a complex cocktail of Bmps and Bmp signal modulators secreted from mesenchymal clusters determines the pattern of villi in a manner that mimics the spread of a self-organizing Turing field.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mark Whidden
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Åsa Kolterud
- Department of Biosciences and Nutrition, Karolinska Instituet, Novum, Huddinge SE-141 83, Sweden
| | - Suzanne K Shoffner
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Michael J Czerwinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Juhi Kushwaha
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nishita Parmar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Deepa Chandhrasekhar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew M Freddo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Santiago Schnell
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Baraille F, Ayari S, Carrière V, Osinski C, Garbin K, Blondeau B, Guillemain G, Serradas P, Rousset M, Lacasa M, Cardot P, Ribeiro A. Glucose Tolerance Is Improved in Mice Invalidated for the Nuclear Receptor HNF-4γ: A Critical Role for Enteroendocrine Cell Lineage. Diabetes 2015; 64:2744-56. [PMID: 25829452 DOI: 10.2337/db14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/21/2015] [Indexed: 11/13/2022]
Abstract
Intestine contributes to energy homeostasis through the absorption, metabolism, and transfer of nutrients to the organism. We demonstrated previously that hepatocyte nuclear receptor-4α (HNF-4α) controls intestinal epithelium homeostasis and intestinal absorption of dietary lipids. HNF-4γ, the other HNF-4 form highly expressed in intestine, is much less studied. In HNF-4γ knockout mice, we detect an exaggerated insulin peak and improvement in glucose tolerance during oral but not intraperitoneal glucose tolerance tests, highlighting the involvement of intestine. Moreover, the enteroendocrine L-type cell lineage is modified, as assessed by the increased expression of transcription factors Isl1, Foxa1/2, and Hnf4a, leading to an increase of both GLP-1-positive cell number and basal and stimulated GLP-1 plasma levels potentiating the glucose-stimulated insulin secretion. Using the GLP-1 antagonist exendin (9-39), we demonstrate a direct effect of GLP-1 on improved glucose tolerance. GLP-1 exerts a trophic effect on pancreatic β-cells, and we report an increase of the β-cell fraction correlated with an augmented number of proliferative islet cells and with resistance to streptozotocin-induced diabetes. In conclusion, the loss of HNF-4γ improves glucose homeostasis through a modulation of the enteroendocrine cell lineage.
Collapse
Affiliation(s)
- Floriane Baraille
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Sami Ayari
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Véronique Carrière
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Céline Osinski
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Bertrand Blondeau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Patricia Serradas
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Agnès Ribeiro
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
24
|
Chen HJ, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, Joe DJ, Choi J, Gadamsetty P, Milsom J, Nandakumar G, Longman R, Zhou XK, Edwards R, Chen J, Chen KY, Bu P, Wang L, Xu Y, Munroe R, Abratte C, Miller AD, Gümüş ZH, Shuler M, Nishimura N, Edelmann W, Shen X, Lipkin SM. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol 2015; 33:656-60. [PMID: 26006007 PMCID: PMC4532544 DOI: 10.1038/nbt.3239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jian Sun
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Zhiliang Huang
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Harry Hou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Myra Arcilla
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Daniel J Joe
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jiahn Choi
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Poornima Gadamsetty
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jeff Milsom
- Department of Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Govind Nandakumar
- Department of Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Randy Longman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xi Kathy Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York, USA
| | - Robert Edwards
- Department of Pathology, University of California, Irvine, Irvine, California, USA
| | - Jonlin Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Kai Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Pengcheng Bu
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yitian Xu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Robert Munroe
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Christian Abratte
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Andrew D Miller
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Zeynep H Gümüş
- 1] Department of Medicine, Weill Cornell Medical College, New York, New York, USA. [2] Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Shuler
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Xiling Shen
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
25
|
Walker EM, Thompson CA, Kohlnhofer BM, Faber ML, Battle MA. Characterization of the developing small intestine in the absence of either GATA4 or GATA6. BMC Res Notes 2014; 7:902. [PMID: 25495347 PMCID: PMC4307969 DOI: 10.1186/1756-0500-7-902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Studies of adult mice lacking either GATA4 or GATA6 in the small intestine demonstrate roles for these factors in small intestinal biology. Deletion of Gata4 in the adult mouse intestine revealed an essential role for GATA4 in jejunal function. Deletion of Gata6 in the adult mouse ileum alters epithelial cell types and ileal enterocyte gene expression. The effect of deletion of Gata4 or Gata6 alone during embryonic small intestinal development, however, has not been examined. We recently demonstrated that loss of both factors in double conditional knockout embryos causes severe defects in jejunal development. Therefore, the goal of this study is to provide phenotypic analysis of the small intestine of single Gata4 and Gata6 conditional knockout embryos. Results Villin-Cre was used to delete Gata4 or Gata6 in the developing intestinal epithelium. Elimination of either GATA4 or GATA6 in the jejunum, where these factors are co-expressed, caused changes in enterocyte and enteroendocrine cell gene expression. Ectopic expression of markers of the ileal-specific bile acid metabolism pathway was induced in GATA4-deficient jejunum but not in GATA6-deficient jejunum. A subtle increase in goblet cells was also identified in jejunum of both mutants. In GATA6-deficient embryonic ileum, villus length was altered, and enterocyte gene expression was perturbed including ectopic expression of the colon marker Car1. Goblet cells were increased, and enteroendocrine cells were decreased. Conclusions Overall, we show that aspects of the phenotypes observed in the small intestine of adult Gata4 and Gata6 conditional knockout mice emerge during development. The effect of eliminating GATA6 from the developing ileum was greater than that of eliminating either GATA4 or GATA6 from the developing jejunum likely reflecting functional redundancy between these factors in the jejunum. Although GATA4 and GATA6 functions overlap, our data also suggest unique functions for GATA4 and GATA6 within the developing intestine. GATA4 likely operates independently of GATA6 within the jejunum to regulate jejunal versus ileal enterocyte identity and consequently jejunal physiology. GATA6 likely regulates enteroendocrine cell differentiation cell autonomously whereas GATA4 affects this population indirectly. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-902) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Walker EM, Thompson CA, Battle MA. GATA4 and GATA6 regulate intestinal epithelial cytodifferentiation during development. Dev Biol 2014; 392:283-94. [PMID: 24929016 PMCID: PMC4149467 DOI: 10.1016/j.ydbio.2014.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/06/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.
Collapse
Affiliation(s)
- Emily M Walker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
27
|
Intestinal mucosal barrier is injured by BMP2/4 via activation of NF-κB signals after ischemic reperfusion. Mediators Inflamm 2014; 2014:901530. [PMID: 25132736 PMCID: PMC4124715 DOI: 10.1155/2014/901530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022] Open
Abstract
Intestinal ischemic reperfusion (I/R) can cause dysfunction of the intestinal mucosal barrier; however, the mechanism of the intestinal mucosal barrier dysfunction caused by I/R remains unclear. In this study, using intestinal epithelial cells under anaerobic cultivation and an in vivo rat intestinal I/R model, we found that hypoxia and I/R increased the expression of BMP2/4 and upregulated BMP type Ia receptor and BMP type II receptor expression. We also found that exogenous BMP2/4 can activate the ERK and AKT signaling pathways in rat small intestine (IEC-6) cells, thereby activating NF-κB signaling, which leads to increased levels of inflammatory factors, such as TNF-α and IL-6. Furthermore, recombinant BMP2/4 decreased the expression of the tight junction protein occludin via the activation of the NF-κB pathway; these effects were abolished by treatment with the BMP-specific antagonist noggin or the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). All these factors can destroy the intestinal mucosal barrier, thereby leading to weaker barrier function. On the basis of these data, we conclude that BMP2/4 may act as the pathogenic basis for intestinal mucosal barrier dysfunction when the intestines suffer an I/R injury. Our results provide background for the development pharmacologic interventions in the management of I/R injury.
Collapse
|
28
|
Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, Alikashani A, Ladouceur M, Ellinghaus D, Törkvist L, Goel G, Lagacé C, Annese V, Bitton A, Begun J, Brant SR, Bresso F, Cho JH, Duerr RH, Halfvarson J, McGovern DPB, Radford-Smith G, Schreiber S, Schumm PL, Sharma Y, Silverberg MS, Weersma RK, D'Amato M, Vermeire S, Franke A, Lettre G, Xavier RJ, Daly MJ, Rioux JD. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet 2013; 9:e1003723. [PMID: 24068945 PMCID: PMC3772057 DOI: 10.1371/journal.pgen.1003723] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (~14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
Collapse
Affiliation(s)
- Mélissa Beaudoin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Ken Sin Lo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Manuel A. Rivas
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Martin Ladouceur
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Leif Törkvist
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gautam Goel
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Lagacé
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Vito Annese
- Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Royal Victoria Hospital, Montréal, Québec, Canada
| | - Jakob Begun
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Steve R. Brant
- Meyerhoff Inflammatory Bowel Diseases Center, Department of Medicine, Johns Hopkins University School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Francesca Bresso
- Department of Medicine of the Karolinska University Hospital, Solna, Sweden
| | - Judy H. Cho
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, and Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Jonas Halfvarson
- Department of Internal Medicine, Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Dermot P. B. McGovern
- Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute, and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases, Genetic and Computational Biology, Queensland Institute of Medical Research, and Department of Gastroenterology, Royal Brisbane and Womens Hospital, and School of Medicine, University of Queensland, Brisbane, Australia
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip L. Schumm
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Yashoda Sharma
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Severine Vermeire
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Andre Franke
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Guillaume Lettre
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Rioux
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
29
|
Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N, Li J, Yang H, Milsom J, Lee S, Zipfel W, Jin MM, Gümüşcedil ZH, Lipkin SM, Shen X. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 2013; 12:602-15. [PMID: 23642368 PMCID: PMC3646336 DOI: 10.1016/j.stem.2013.03.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 11/25/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
microRNAs regulate developmental cell-fate decisions, tissue homeostasis, and oncogenesis in distinct ways relative to proteins. Here, we show that the tumor suppressor microRNA miR-34a is a cell-fate determinant in early-stage dividing colon cancer stem cells (CCSCs). In pair-cell assays, miR-34a distributes at high levels in differentiating progeny, whereas low levels of miR-34a demarcate self-renewing CCSCs. Moreover, miR-34a loss of function and gain of function alter the balance between self-renewal versus differentiation both in vitro and in vivo. Mechanistically, miR-34a sequesters Notch1 mRNA to generate a sharp threshold response where a bimodal Notch signal specifies the choice between self-renewal and differentiation. In contrast, the canonical cell-fate determinant Numb regulates Notch levels in a continuously graded manner. Altogether, our findings highlight a unique microRNA-regulated mechanism that converts noisy input into a toggle switch for robust cell-fate decisions in CCSCs.
Collapse
Affiliation(s)
- Pengcheng Bu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joyce Huan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lihua Wang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jewell Walters
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Yong Jun Shin
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Julian P. Goerger
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jian Sun
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mavee Witherspoon
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Nikolai Rakhilin
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jiahe Li
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Herman Yang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeff Milsom
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Sang Lee
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Warren Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Moonsoo M. Jin
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zeynep H. Gümüşcedil
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Steven M. Lipkin
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Xiling Shen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Sheaffer KL, Kaestner KH. Transcriptional networks in liver and intestinal development. Cold Spring Harb Perspect Biol 2012; 4:a008284. [PMID: 22952394 DOI: 10.1101/cshperspect.a008284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of the gastrointestinal tract is a complex process that integrates signaling processes with downstream transcriptional responses. Here, we discuss the regionalization of the primitive gut and formation of the intestine and liver. Anterior-posterior position in the primitive gut is important for establishing regions that will become functional organs. Coordination of signaling between the epithelium and mesenchyme and downstream transcriptional responses is required for intestinal development and homeostasis. Liver development uses a complex transcriptional network that controls the establishment of organ domains, cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives us insight into how the primitive gut, composed of simple endodermal cells, develops into multiple diverse cell types that are organized into complex mature organs.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
31
|
The mesenchyme in malignancy: a partner in the initiation, progression and dissemination of cancer. Pharmacol Ther 2012; 136:131-41. [PMID: 22921882 DOI: 10.1016/j.pharmthera.2012.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/13/2023]
Abstract
The tumor microenvironment presents an exciting opportunity for innovative prognostic and therapeutic approaches to human cancer. The diverse cellular and extracellular contribution to tumor growth argues that prevention and cure of human cancers will result only from a multifaceted approach to cancer therapy. In this review we provide a foundation for considering the mesenchymal contribution to the tumor microenvironment. We address normal mesenchymal development, physiological interactions between the epithelium and stroma and the cellular hierarchy within these compartments. We focus on cancer-associated fibroblasts in gastrointestinal malignancy but our models have also been informed by other tumor systems. The review provides a framework for characterizing the overall biological contribution of the mesenchyme to human disease. Understanding the biological heterogeneity of specific mesenchymal cells in cancer will provide new opportunities for targeted cancer prevention and therapy.
Collapse
|
32
|
Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2410-26. [PMID: 22922290 DOI: 10.1016/j.bbagen.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology. SCOPE OF REVIEW In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases. MAJOR CONCLUSIONS We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis. GENERAL SIGNIFICANCE Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
33
|
Chen HJ, Edwards R, Tucci S, Bu P, Milsom J, Lee S, Edelmann W, Gümüs ZH, Shen X, Lipkin S. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J Clin Invest 2012; 122:3184-96. [PMID: 22863617 DOI: 10.1172/jci62110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/14/2012] [Indexed: 02/06/2023] Open
Abstract
Chemotactic cytokines (chemokines) can help regulate tumor cell invasion and metastasis. Here, we show that chemokine 25 (CCL25) and its cognate receptor chemokine receptor 9 (CCR9) inhibit colorectal cancer (CRC) invasion and metastasis. We found that CCR9 protein expression levels were highest in colon adenomas and progressively decreased in invasive and metastatic CRCs. CCR9 was expressed in both primary tumor cell cultures and colon-cancer-initiating cell (CCIC) lines derived from early-stage CRCs but not from metastatic CRC. CCL25 stimulated cell proliferation by activating AKT signaling. In vivo, systemically injected CCR9+ early-stage CCICs led to the formation of orthotopic gastrointestinal xenograft tumors. Blocking CCR9 signaling inhibited CRC tumor formation in the native gastrointestinal CCL25+ microenvironment, while increasing extraintestinal tumor incidence. NOTCH signaling, which promotes CRC metastasis, increased extraintestinal tumor frequency by stimulating CCR9 proteasomal degradation. Overall, these data indicate that CCL25 and CCR9 regulate CRC progression and invasion and further demonstrate an appropriate in vivo experimental system to study CRC progression in the native colon microenvironment.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- Department of Medicine, Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol 2012; 371:1-12. [PMID: 22766025 DOI: 10.1016/j.ydbio.2012.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/23/2012] [Accepted: 06/04/2012] [Indexed: 01/08/2023]
Abstract
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development.
Collapse
|
35
|
Maric I, Kucic N, Turk Wensveen T, Smoljan I, Grahovac B, Zoricic Cvek S, Celic T, Bobinac D, Vukicevic S. BMP signaling in rats with TNBS-induced colitis following BMP7 therapy. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1151-62. [PMID: 22361727 DOI: 10.1152/ajpgi.00244.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Beyond stimulating bone formation, bone morphogenetic proteins (BMPs) are important in development, inflammation, and malignancy of the gut. We have previously shown that BMP7 has a regenerative, anti-inflammatory, and antiproliferative effect on experimental inflammatory bowel disease (IBD) in rats. To further investigate the BMP signaling pathway we monitored the effect of BMP7 therapy on the BMP signaling components in the rat colon during different stages of experimentally induced colitis by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed a significantly decreased BMP7 expression in the acute phase, followed by a significantly increased BMP2 and decreased BMP6 expression during the chronic phase of colitis. BMP7 therapy influenced the expression of several BMPs with the most prominent effect on downregulation of BMP2 and upregulation of BMP4 in the chronic phase of colitis. Importantly, connective tissue growth factor and noggin expression were elevated in the acute stage and significantly decreased upon BMP7 therapy. BMP receptor I expression was unchanged, whereas BMP receptor II was decreased at day 2 and increased at days 14 and 30 of TNBS inflammation. However, an opposite pattern of expression following BMP7 therapy has been observed. BMP7 increased the expression of BR-Smad including Smad3 and Smad4. Inhibitory Smads were increased in colitis and significantly decreased following BMP7 therapy at later stages of the disease. We suggest that BMP signaling was altered during TNBS-induced colitis and was recovered with BMP7 administration, suggesting that IBD is a reversible process.
Collapse
Affiliation(s)
- Ivana Maric
- Department of Anatomy, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Long YS, Qin JM, Su T, Zhao QH, Yi YH, Liao WP. Human transcription factor genes involved in neuronal development tend to have high GC content and CpG elements in the proximal promoter region. J Genet Genomics 2011; 38:157-63. [PMID: 21530899 DOI: 10.1016/j.jgg.2011.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Transcription factors (TFs) play critical roles in the development of the nervous system, but the transcriptional regulatory mechanisms of these genes are poorly understood. Here we analyzed 5-kb of the 5' flanking genomic DNA sequences of 41 TF genes involved in neuronal development. The results showed that the TF genes tend to have higher GC contents in the proximal region and most of the TF genes have at least one proximal GC-rich (GC content > 60%) promoter with a CpG island. The promoter distribution analysis showed that the GC-poor promoters were sporadically distributed within the 5-kb flanking genomic sequence (FGS); however, more than half (37 of 70) of the GC-rich promoters were located in the proximal region between nucleotides -1 and -500. Luciferase assays showed that partial GC-rich promoters increased gene expression in SH-SY5Y cells and that CpG methylation repressed the promoter activity. This study suggests a potential general mechanism for regulation of TF expression.
Collapse
Affiliation(s)
- Yue-Sheng Long
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | | | | | | | | | | |
Collapse
|
37
|
Madison BB, Nakagawa H. Delta force in intestinal crypts. Gastroenterology 2011; 140:1135-9. [PMID: 21349361 DOI: 10.1053/j.gastro.2011.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Abstract
The mesenchymal elements of the intestinal lamina propria reviewed here are the myofibroblasts, fibroblasts, mural cells (pericytes) of the vasculature, bone marrow-derived stromal stem cells, smooth muscle of the muscularis mucosae, and smooth muscle surrounding the lymphatic lacteals. These cells share similar marker molecules, origins, and coordinated biological functions previously ascribed solely to subepithelial myofibroblasts. We review the functional anatomy of intestinal mesenchymal cells and describe what is known about their origin in the embryo and their replacement in adults. As part of their putative role in intestinal mucosal morphogenesis, we consider the intestinal stem cell niche. Lastly, we review emerging information about myofibroblasts as nonprofessional immune cells that may be important as an alarm system for the gut and as a participant in peripheral immune tolerance.
Collapse
Affiliation(s)
- D.W. Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0764
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0764
| | - I.V. Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0764
| | - J.I. Saada
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0764
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143
| | - R.C. Mifflin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0764
| |
Collapse
|
39
|
Hartman TR, Zinshteyn D, Schofield HK, Nicolas E, Okada A, O'Reilly AM. Drosophila Boi limits Hedgehog levels to suppress follicle stem cell proliferation. ACTA ACUST UNITED AC 2010; 191:943-52. [PMID: 21098113 PMCID: PMC2995164 DOI: 10.1083/jcb.201007142] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Boi receptor regulates stem cell function by sequestering the diffusible hedgehog ligand. Stem cells depend on signals from cells within their microenvironment, or niche, as well as factors secreted by distant cells to regulate their maintenance and function. Here we show that Boi, a Hedgehog (Hh)-binding protein, is a novel suppressor of proliferation of follicle stem cells (FSCs) in the Drosophila ovary. Hh is expressed in apical cells, distant from the FSC niche, and diffuses to reach FSCs, where it promotes FSC proliferation. We show that Boi is expressed in apical cells and exerts its suppressive effect on FSC proliferation by binding to and sequestering Hh on the apical cell surface, thereby inhibiting Hh diffusion. Our studies demonstrate that cells distant from the local niche can regulate stem cell function through ligand sequestration, a mechanism that likely is conserved in other epithelial tissues.
Collapse
|
40
|
Wang Z, Matsudaira P, Gong Z. STORM: a general model to determine the number and adaptive changes of epithelial stem cells in teleost, murine and human intestinal tracts. PLoS One 2010; 5:e14063. [PMID: 21124758 PMCID: PMC2993223 DOI: 10.1371/journal.pone.0014063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/29/2010] [Indexed: 01/27/2023] Open
Abstract
Intestinal stem cells play a pivotal role in the epithelial tissue renewal, homeostasis and cancer development. The lack of a general marker for intestinal stem cells across species has hampered analysis of stem cell number in different species and their adaptive changes upon intestinal lesions or during development of cancer. Here a two-dimensional model, named STORM, has been developed to address this issue. By optimizing epithelium renewal dynamics, the model examines the epithelial stem cell number by taking experimental input information regarding epithelium proliferation and differentiation. As the results suggest, there are 2.0-4.1 epithelial stem cells on each pocket section of zebrafish intestine, 2.0-4.1 stem cells on each crypt section of murine small intestine and 1.8-3.5 stem cells on each crypt section of human duodenum. The model is able to provide quick results for stem cell number and its adaptive changes, which is not easy to measure through experiments. Its general applicability to different species makes it a valuable tool for analysis of intestinal stem cells under various pathological conditions.
Collapse
Affiliation(s)
- Zhengyuan Wang
- Computation and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore.
| | | | | |
Collapse
|
41
|
Summers KM, Raza S, van Nimwegen E, Freeman TC, Hume DA. Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. Eur J Hum Genet 2010; 18:1209-15. [PMID: 20551991 DOI: 10.1038/ejhg.2010.91] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the human FBN1 gene cause Marfan syndrome, a complex disease affecting connective tissues but with a highly variable phenotype. To identify genes that might participate in epistatic interactions with FBN1, and could therefore explain the observed phenotypic variability, we have looked for genes that are co-expressed with Fbn1 in the mouse. Microarray expression data derived from a range of primary mouse cells and cell lines were analysed using the network analysis tool BioLayout Express(3D). A cluster of 205 genes, including Fbn1, were selectively expressed by mouse cell lines of different mesenchymal lineages and by mouse primary mesenchymal cells (preadipocytes, myoblasts, fibroblasts, osteoblasts). Promoter analysis of this gene set identified several candidate transcriptional regulators. Genes within this co-expressed cluster are candidate genetic modifiers for Marfan syndrome and for other connective tissue diseases.
Collapse
Affiliation(s)
- Kim M Summers
- The Roslin Institute, University of Edinburgh, Midlothian, UK.
| | | | | | | | | |
Collapse
|
42
|
Zacharias WJ, Li X, Madison BB, Kretovich K, Kao JY, Merchant JL, Gumucio DL. Hedgehog is an anti-inflammatory epithelial signal for the intestinal lamina propria. Gastroenterology 2010; 138:2368-77, 2377.e1-4. [PMID: 20206176 PMCID: PMC2883680 DOI: 10.1053/j.gastro.2010.02.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/16/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Epithelial Hedgehog (Hh) ligands regulate several aspects of fetal intestinal organogenesis, and emerging data implicate the Hh pathway in inflammatory signaling in the adult colon. Here, we investigated the effects of chronic Hh inhibition in vivo and profiled molecular pathways acutely modulated by Hh signaling in the intestinal mesenchyme. METHODS The progression of inflammatory disease was characterized in a bi-transgenic mouse model of chronic Hh inhibition (VFHhip). In parallel, microarray and bioinformatic analyses (Gene Ontology terms overrepresentation analysis, hierarchical clustering, and MeSH term filtration) were performed on isolated cultured intestinal mesenchyme acutely exposed to Hh ligand. RESULTS Six- to 10-month-old VFHhip animals exhibited villus smooth muscle loss and subsequent villus atrophy. Areas of villus loss became complicated by spontaneous inflammation and VFHhip animals succumbed to wasting and death. Phenotypic similarities were noted between the VFHhip phenotype and human inflammatory disorders, especially human celiac disease. Microarray analysis revealed that inflammatory pathways were acutely activated in intestinal mesenchyme cultured in the absence of epithelium, and the addition of Hh ligand alone was sufficient to largely reverse this inflammatory response within 24 hours. CONCLUSIONS Hh ligand is a previously unrecognized anti-inflammatory epithelial modulator of the mesenchymal inflammatory milieu. Acute modulation of Hh signals results in changes in inflammatory pathways in intestinal mesenchyme, while chronic inhibition of Hh signaling in adult animals leads to spontaneous intestinal inflammation and death. Regulation of epithelial Hh signaling may be an important mechanism to modulate tolerogenic versus proinflammatory signaling in the small intestine.
Collapse
Affiliation(s)
- William J. Zacharias
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xing Li
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan
| | - Blair B. Madison
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Katherine Kretovich
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Y. Kao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
43
|
Nayak A, Ferluga J, Tsolaki AG, Kishore U. The non-classical functions of the classical complement pathway recognition subcomponent C1q. Immunol Lett 2010; 131:139-50. [PMID: 20381531 DOI: 10.1016/j.imlet.2010.03.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 11/28/2022]
Abstract
C1q, the ligand recognition subcomponent of the classical complement pathway has steadily been gaining recognition as a bridge between innate and adaptive immunity. C1q has been shown to be involved in the modulation of various immune cells (such as dendritic cells, platelets, microglia cells and lymphocytes), clearance of apoptotic cells, a range of cell processes such as differentiation, chemotaxis, aggregation and adhesion, and pathogenesis of neurodegenerative diseases and systemic lupus erythematosus. Recent studies have highlighted the importance of C1q during pregnancy, coagulation process and embryonic development including neurological synapse function. It is intriguing to note that a prototypical defence molecule has so many diverse functions that probably have its origin in its versatility as a potent charge pattern recognition molecule, modularity within the ligand-recognising globular domain, and the redundancy of putative C1q receptors. The range of function that C1q has been shown to perform also provides clues for the undiscovered functions of a number of C1q family members.
Collapse
Affiliation(s)
- Annapurna Nayak
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, London UB8 3PH, UK
| | | | | | | |
Collapse
|
44
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
45
|
Li X, Udager AM, Hu C, Qiao XT, Richards N, Gumucio DL. Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life. Dev Dyn 2010; 238:3205-17. [PMID: 19877272 DOI: 10.1002/dvdy.22134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus, and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization. We identify specific transcription factors (Hnf4 gamma, Creb3l3, and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan.
Collapse
Affiliation(s)
- Xing Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
46
|
Richmond CA, Breault DT. Regulation of gene expression in the intestinal epithelium. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:207-29. [PMID: 21075346 DOI: 10.1016/b978-0-12-381280-3.00009-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/β-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation.
Collapse
Affiliation(s)
- Camilla A Richmond
- Division of Gastroenterology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
47
|
Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol 2009; 29:6294-308. [PMID: 19805521 DOI: 10.1128/mcb.00939-09] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF-4alpha) is a transcription factor which is highly expressed in the intestinal epithelium from duodenum to colon and from crypt to villus. The homeostasis of this constantly renewing epithelium relies on an integrated control of proliferation, differentiation, and apoptosis, as well as on the functional architecture of the epithelial cells. In order to determine the consequences of HNF-4alpha loss in the adult intestinal epithelium, we used a tamoxifen-inducible Cre-loxP system to inactivate the Hnf-4a gene. In the intestines of adult mice, loss of HNF-4alpha led to an increased proliferation in crypts and to an increased expression of several genes controlled by the Wnt/beta-catenin system. This control of the Wnt/beta-catenin signaling pathway by HNF-4alpha was confirmed in vitro. Cell lineage was affected, as indicated by an increased number of goblet cells and an impairment of enterocyte and enteroendocrine cell maturation. In the absence of HNF-4alpha, cell-cell junctions were destabilized and paracellular intestinal permeability increased. Our results showed that HNF-4alpha modulates Wnt/beta-catenin signaling and controls intestinal epithelium homeostasis, cell function, and cell architecture. This study indicates that HNF-4alpha regulates the intestinal balance between proliferation and differentiation, and we hypothesize that it might act as a tumor suppressor.
Collapse
|
48
|
Kolterud Å, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE, Madison B, Waghray M, Ferris JE, Hu C, Merchant JL, Dlugosz A, Kottmann AH, Gumucio DL. Paracrine Hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology 2009; 137:618-28. [PMID: 19445942 PMCID: PMC2717174 DOI: 10.1053/j.gastro.2009.05.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hedgehog signaling is critical in gastrointestinal patterning. Mice deficient in Hedgehog signaling exhibit abnormalities that mirror deformities seen in the human VACTERL (vertebral, anal, cardiac, tracheal, esophageal, renal, limb) association. However, the direction of Hedgehog signal flow is controversial and the cellular targets of Hedgehog signaling change with time during development. We profiled cellular Hedgehog response patterns from embryonic day 10.5 (E10.5) to adult in murine antrum, pyloric region, small intestine, and colon. METHODS Hedgehog signaling was profiled using Hedgehog pathway reporter mice and in situ hybridization. Cellular targets were identified by immunostaining. Ihh-overexpressing transgenic animals were generated and analyzed. RESULTS Hedgehog signaling is strictly paracrine from antrum to colon throughout embryonic and adult life. Novel findings include the following: mesothelial cells of the serosa transduce Hedgehog signals in fetal life; the hindgut epithelium expresses Ptch but not Gli1 at E10.5; the 2 layers of the muscularis externa respond differently to Hedgehog signals; organogenesis of the pyloric sphincter is associated with robust Hedgehog signaling; dramatically different Hedgehog responses characterize stomach and intestine at E16; and after birth, the muscularis mucosa and villus smooth muscle consist primarily of Hedgehog-responsive cells and Hh levels actively modulate villus core smooth muscle. CONCLUSIONS These studies reveal a previously unrecognized association of paracrine Hedgehog signaling with several gastrointestinal patterning events involving the serosa, pylorus, and villus smooth muscle. The results may have implications for several human anomalies and could potentially expand the spectrum of the human VACTERL association.
Collapse
Affiliation(s)
- Åsa Kolterud
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Ann S. Grosse
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - William J. Zacharias
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Katherine D. Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Katherine E. Kretovich
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Blair Madison
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Meghna Waghray
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Jennifer E. Ferris
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Chunbo Hu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Juanita L. Merchant
- Department of Physiology and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Andrzej Dlugosz
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| | - Andreas H. Kottmann
- Department of Psychiatry, Genome Center and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200
| |
Collapse
|
49
|
McLin VA, Henning SJ, Jamrich M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136:2074-91. [PMID: 19303014 DOI: 10.1053/j.gastro.2009.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/11/2022]
Abstract
The gastrointestinal (GI) tract forms from the endoderm (which gives rise to the epithelium) and the mesoderm (which develops into the smooth muscle layer, the mesenchyme, and numerous other cell types). Much of what is known of GI development has been learned from studies of the endoderm and its derivatives, because of the importance of epithelial biology in understanding and treating human diseases. Although the necessity of epithelial-mesenchymal cross talk for GI development is uncontested, the role of the mesoderm remains comparatively less well understood. The transformation of the visceral mesoderm during development is remarkable; it differentiates from a very thin layer of cells into a complex tissue comprising smooth muscle cells, myofibroblasts, neurons, immune cells, endothelial cells, lymphatics, and extracellular matrix molecules, all contributing to the form and function of the digestive system. Understanding the molecular processes that govern the development of these cell types and elucidating their respective contribution to GI patterning could offer insight into the mechanisms that regulate cell fate decisions in the intestine, which has the unique property of rapid cell renewal for the maintenance of epithelial integrity. In reviewing evidence from both mammalian and nonmammalian models, we reveal the important role of the visceral mesoderm in the ontogeny of the GI tract.
Collapse
Affiliation(s)
- Valérie A McLin
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, Texas, USA.
| | | | | |
Collapse
|
50
|
Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 2009; 16:588-99. [PMID: 19386267 DOI: 10.1016/j.devcel.2009.02.010] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/16/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
Abstract
We demonstrate that conditional ablation of the homeobox transcription factor Cdx2 from early endoderm results in the replacement of the posterior intestinal epithelium with keratinocytes, a dramatic cell fate conversion caused by ectopic activation of the foregut/esophageal differentiation program. This anterior homeotic transformation of the intestine was first apparent in the early embryonic Cdx2-deficient gut by a caudal extension of the expression domains of several key foregut endoderm regulators. While the intestinal transcriptome was severely affected, Cdx2 deficiency only transiently modified selected posterior Hox genes and the primary enteric Hox code was maintained. Further, we demonstrate that Cdx2-directed intestinal cell fate adoption plays an important role in the establishment of normal epithelial-mesenchymal interactions, as multiple signaling pathways involved in this process were severely affected. We conclude that Cdx2 controls important aspects of intestinal identity and development, and that this function is largely independent of the enteric Hox code.
Collapse
|