1
|
Lu Y, Zhu F, Zhou X, Li Y, Rong G, Liu N, Hong J, Cheng Y. A Supramolecular Deferoxamine-Crisaborole Nanoparticle Targets Ferroptosis, Inflammation, and Oxidative Stress in the Treatment of Retinal Ischemia/Reperfusion Injury. NANO LETTERS 2025; 25:1058-1066. [PMID: 39670541 DOI: 10.1021/acs.nanolett.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Retinal ischemia-reperfusion (IR) injury is a major cause of vision loss worldwide, with ferroptosis, oxidative stress, and inflammation playing key roles in its pathogenesis. Currently, treatments targeting multiple aspects of this condition are limited. This study introduces a supramolecular nanoparticle combining the phosphodiesterase 4 (PDE4) inhibitor crisaborole and the ferroptosis inhibitor deferoxamine to address these pathological processes. Crisaborole forms a dynamic bond with deferoxamine via benzoxaborole-catechol chemistry, creating an amphiphilic molecule that assembles into nanoparticles. Treatment with these nanoparticles enhances glutathione peroxidase 4 (GPX4) levels, downregulates ferroptosis-related genes [Acyl-CoA synthetase long chain family member 4 (Acsl4), heme oxygenase 1 (Hmox1)], reduces inflammatory markers (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha), and decreases reactive oxygen species. Electroretinogram and histochemical analysis confirm the nanoparticles' superior protective effects compared to control treatments. This study proposes a novel nanoparticle approach for retinal IR injury by simultaneously targeting multiple pathogenic pathways.
Collapse
Affiliation(s)
- Yiteng Lu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Fang Zhu
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Yuhan Li
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Liu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, 200031, China
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, 201102, China
| | - Yiyun Cheng
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Fang X, Zhuang X, Zheng L, Lv Y, Gao F, Mo C, Zheng X. SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis. Life Sci 2025; 361:123330. [PMID: 39719169 DOI: 10.1016/j.lfs.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Nicotine-exacerbated atherosclerosis significantly increases global mortality. Endothelial cells, which line the interior of blood vessels, are crucial for maintaining vascular function. How nicotine is involved in vascular remodeling in atherosclerosis via modulating endothelial dysfunction remains unknown. MATERIALS AND METHODS Comprehensive gene expression analyses identified key genes upregulated in the ferroptosis pathway in smoking-exacerbated atherosclerosis. Predictive models integrating these ferroptosis-related genes were constructed to differentiate atherosclerotic plaques. KEY FINDINGS Here, we reveal that ferroptosis mediates nicotine-induced endothelial dysfunction, exacerbating atherosclerosis. Mechanistically, nicotine elevates sequestosome 1 (SQSTM1), leading to iron overload and an increase in reactive oxygen species (ROS) and the levels of ferroptosis markers heme-oxygenase 1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2), contributing to ferroptosis in endothelial cells and the aberrant production of inflammatory factors. Pharmacological inhibition of ferroptosis and normalization of iron levels by knocking down SQSTM1 mitigate endothelial ferroptosis and reduce production of pro-inflammatory factors. Diagnostically, human plasma levels of HMOX1, SQSTM1, and PTGS2 are elevated in smokers with atherosclerosis but reduce in ex-smokers. Predictive models, including a support vector machine integrating these ferroptosis-related genes, effectively differentiate between early- and advanced-stage atherosclerotic plaques. SIGNIFICANCE SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis, suggesting excellent predictive efficacy for atherosclerosis development and potential for clinical applications. TRIAL REGISTRATION This study has been registered in the Chinese Clinical Trial Registry (ChiCTR2400083484, Registration Date: April 26, 2024).
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Xiu'e Zhuang
- Department of Anesthesiology, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian 362000, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yi Lv
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, Fujian 350001, China.
| |
Collapse
|
3
|
Wayne N, Singamneni VS, Venkatesh R, Cherlin T, Verma SS, Guerraty MA. Genetic Insights Into Coronary Microvascular Disease. Microcirculation 2025; 32:e12896. [PMID: 39755372 DOI: 10.1111/micc.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Coronary microvascular disease (CMVD) affects the coronary pre-arterioles, arterioles, and capillaries and can lead to blood supply-demand mismatch and cardiac ischemia. CMVD can present clinically as ischemia or myocardial infarction with no obstructive coronary arteries (INOCA or MINOCA, respectively). Currently, therapeutic options for CMVD are limited, and there are no targeted therapies. Genetic studies have emerged as an important tool to gain rapid insights into the molecular mechanisms of human diseases. For example, coronary artery disease (CAD) genome-wide association studies (GWAS) have enrolled hundreds of thousands of patients and have identified > 320 loci, elucidating CAD pathogenic pathways and helping to identify therapeutic targets. Here, we review the current landscape of genetic studies of CMVD, consisting mostly of genotype-first approaches. We then present the hypothesis that CAD GWAS have enrolled heterogenous populations and may be better characterized as ischemic heart disease (IHD) GWAS. We discuss how several of the genetic loci currently associated with CAD may be involved in the pathogenesis of CMVD. Genetic studies could help accelerate progress in understanding CMVD pathophysiology and identifying putative therapeutic targets. Larger phenotype-first genomic studies into CMVD with adequate sex and ancestry representation are needed. Given the extensive CAD genetic and functional validation data, future research should leverage these loci as springboards for CMVD genomic research.
Collapse
Affiliation(s)
- Nicole Wayne
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Venkata S Singamneni
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rasika Venkatesh
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tess Cherlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marie A Guerraty
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Wang J, Guo Y, Huang J, Yan J, Ma J. Using Network Pharmacology and in vivo Experiments to Uncover the Mechanisms of Radix Paeoniae Rubra and Radix Angelicae Sinensis Granules in Treating Diabetes Mellitus-Induced Erectile Dysfunction. Drug Des Devel Ther 2024; 18:6243-6262. [PMID: 39735336 PMCID: PMC11682668 DOI: 10.2147/dddt.s493198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose Diabetes mellitus-induced erectile dysfunction (DMED) lacks targeted therapies. This study investigates the mechanisms and targets of Radix Paeoniae Rubra and Radix Angelicae Sinensis Granules (RAG) in treating DMED using network pharmacology and animal models. Methods We identified RAG's active ingredients and potential targets from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. DMED targets were obtained from GeneCards, OMIM, and PharmGKB. Common targets were identified using R, and interaction networks were built. Cytoscape was used to construct a drug-ingredient-disease-target network, and OmicShare tools performed Gene Ontology and KEGG pathway analyses. Molecular Operating Environment software assessed compound-core gene interactions. Additionally, animal models were used for validation. Results Twenty compounds and 25 common targets linked to vasodilation, protein secretion, apoptosis, and hypoxia were selected. Key pathways included HIF-1, MAPK, cAMP, and Ras. Six core genes (INS, CAT, BDNF, CASP3, CRP, HMOX1) were targeted by RAG. Molecular docking showed stable interactions with oleic acid, catechin, and butylated hydroxytoluene. RAG increased NO, intracavernous pressure, and improved penile histology in rats, upregulating eNOS, iNOS, HMOX1, and downregulating HIF-1. Conclusion RAG may treat DMED via the HIF-1α/HMOX1 pathway, offering a potential novel therapy for DMED.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Hospital, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Yingxue Guo
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Jie Huang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Junfeng Yan
- Zhejiang Hospital, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Jianxiong Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
5
|
Tan J, Min J, Jiang Y, Liu S, Ke M, Wang Z, Yang HT. CircCHSY1 protects hearts against ischaemia/reperfusion injury by enhancing heme oxygenase 1 expression via miR-24-3p. Cardiovasc Res 2024; 120:1924-1938. [PMID: 39082269 DOI: 10.1093/cvr/cvae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Circular RNAs (circRNAs) are important players involved in a variety of physiological and pathological processes. However, their functions and mechanisms during myocardial ischaemic injury and protection remain largely unknown. We recently found significant alterations of many circRNAs including circCHSY1 following myocardial ischaemia/reperfusion (I/R) injury, whereas their exact functions are unclear. Here, we investigated the roles of circCHSY1 in the acute myocardial I/R injury and the potential mechanisms involved. METHODS AND RESULTS The expression of circCHSY1 was detected in cardiomyocytes from mouse, rat, and human embryonic stem cells (hESC-CMs). It was further up-regulated in mouse I/R (30 min/24 h) hearts, oxygen glucose deprivation/reperfusion (OGD/R, 6 h/2 h) primary neonatal rat ventricular cardiomyocytes (NRCMs) and OGD/R (48 h/2 h) hESC-CMs. Adenovirus-mediated circCHSY1 overexpression significantly decreased infarct size and lactate dehydrogenase (LDH) release in mouse I/R hearts. Consistently, circCHSY1 overexpression reduced the LDH release in the OGD/R NRCMs and hESC-CMs, improved cell viability, and preserved mitochondrial function in the OGD/R NRCMs, whereas there were no significant differences in cell viability and LDH release between the OGD/R NRCMs with and without small interfering RNA (siRNA)-mediated circCHSY1 knockdown. Mechanistically, circCHSY1 was detected to bind with miR-24-3p analysed by dual-luciferase assay and RNA pull-down assays. CircCHSY1 overexpression-mediated protective effects on cells and mitochondria in OGD/R NRCMs were reversed by the miR-24-3p mimic. Furthermore, dual-luciferase assay showed that miR-24-3p was directly bound to heme oxygenase 1 (HO1) via its 3'UTR. The protein level of HO1 was down-regulated by miR-24-3p mimic in OGD/R NRCMs but enhanced by the circCHSY1 overexpression in vitro and in vivo. Functionally, the HO1 knockdown by adenovirus in vivo and by siRNA in vitro eliminated cardioprotective effects of circCHSY1 overexpression. CONCLUSION CircCHSY1 is up-regulated following myocardial I/R injury. The higher level of circCHSY1 protects I/R hearts and cardiomyocytes. The protection of circCHSY1 is mediated through enhancement of the HO1 level, resulting in preserving mitochondrial homoeostasis via targeting miR-24-3p in cardiomyocytes. These findings suggest circCHSY1 as a protective factor.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/prevention & control
- Humans
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Disease Models, Animal
- Mice, Inbred C57BL
- Male
- Cells, Cultured
- Human Embryonic Stem Cells/metabolism
- Human Embryonic Stem Cells/enzymology
- Human Embryonic Stem Cells/pathology
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/genetics
- Myocardial Infarction/prevention & control
- Signal Transduction
- Rats, Sprague-Dawley
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Rats
- 3' Untranslated Regions
- Heme Oxygenase (Decyclizing)
- Membrane Proteins
Collapse
Affiliation(s)
- Jiliang Tan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yue Yang Road, Shanghai 200031, P.R. China
| | - Jie Min
- Department of Cardiovascular Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, P.R. China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yue Yang Road, Shanghai 200031, P.R. China
| | - Shenyan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yue Yang Road, Shanghai 200031, P.R. China
| | - Minxia Ke
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yue Yang Road, Shanghai 200031, P.R. China
| | - Zhinong Wang
- Department of Cardiovascular Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, P.R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yue Yang Road, Shanghai 200031, P.R. China
| |
Collapse
|
6
|
Wang E, Hao Y, Song J, Yuan J, Hong Y, Li Y, Wang Y, Wang C, Wang M, Zhang L. M2 macrophage derived HMOX1 defines chronic rhinosinusitis with nasal polyps. Clin Transl Allergy 2024; 14:e70014. [PMID: 39644500 PMCID: PMC11624889 DOI: 10.1002/clt2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Molecular signatures of chronic rhinosinusitis with nasal polyps (CRSwNP) related to macrophages remain unclear. This study aimed to develop a macrophage-associated diagnostic signature for CRSwNP. METHODS Transcriptome data from 54 patients with CRSwNP and 37 healthy controls across GSE136825, GSE36830, and GSE72713 were used to identify differentially expressed genes (DEGs) between two groups. Gene Set Enrichment Analysis and Weighted Gene Co-Expression Network Analysis pinpointed crucial pathways and gene clusters. A diagnostic model was created from these analyses and receiver operating characteristic curve (ROC), and further validated in our transcriptome data from 29 samples. Immune cell infiltration analysis was performed and linked those diagnostic genes to macrophages and verified by single-cell RNA sequencing data. Immunofluorescence co-staining of CD163 and HMOX1 was performed in nasal tissues. Mouse bone marrow-derived macrophage (BMDMs) cultures were used in functional experiments. Correlations between the expression of HMOX1 and eotaxin genes were investigated. RESULTS DEGs of CRSwNP versus control group were enriched in the INTERLEUKIN_4_AND_13_SIGNALING pathways. A four-gene diagnostic model (HMOX1, ALOX5, F13A1 and ITGB2) was developed and demonstrated high diagnostic precision with an area under ROC curve of 0.980 for training dataset and 0.895 for test dataset. M2 macrophage presence and HMOX1 expression significantly correlated with CRSwNP (p < 0.001). Single-cell RNA sequencing data underscored the altered cellular composition in CRSwNP, with HMOX1 notably expressed in M2 macrophages. Immunofluorescence staining highlighted the increased infiltration of CD163+ M2 macrophages in nasal mucosa samples of eosinophilic CRSwNP, which correlated with HMOX1 protein levels (p < 0.05). The HMOX1 inhibitor zinc protoporphyrin reduced the ratio of CD163 + HMOX1 + M2 macrophages in mouse BMDM cultures (p < 0.05). HMOX1 expression showed a strong positive correlation with the expression of eotaxin genes (CCL11, CCL24, and CCL26; p < 0.05 respectively). CONCLUSION M2 macrophage-derived HMOX1 can be used as an innovative diagnostic signature for CRSwNP, which might be a potential regulator of eosinophilic inflammation.
Collapse
Affiliation(s)
- Enhao Wang
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Yanghe Hao
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Jing Song
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Jing Yuan
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Yu Hong
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Ying Li
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Yang Wang
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Chengshuo Wang
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Ming Wang
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
| | - Luo Zhang
- Department of OtolaryngologyHead and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of OtolaryngologyBeijing Laboratory of Allergic DiseasesBeijing Key Laboratory of Nasal DiseasesKey Laboratory of Otolaryngology Head and Neck SurgeryMinistry of EducationCapital Medical UniversityBeijingChina
- Research Unit of Diagnosis and Treatment of Chronic Nasal DiseasesChinese Academy of Medical SciencesBeijingChina
- Department of AllergyBeijing TongRen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Liu J, Ren J, Zhou L, Tan K, Du D, Xu L, Cao W, Zhang Y. Proteomic and lipidomic analysis of the mechanism underlying astragaloside IV in mitigating ferroptosis through hypoxia-inducible factor 1α/heme oxygenase 1 pathway in renal tubular epithelial cells in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118517. [PMID: 38972525 DOI: 10.1016/j.jep.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jun Liu
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Jing Ren
- College of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, Chongqing, 401331, PR China.
| | - Linlan Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Donglin Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Lei Xu
- Laboratory Animal Center, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China.
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China; College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Yudi Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China; College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, No. 61, Puguobao Road, Bicheng Street, Bishan District, Chongqing, 402760, PR China.
| |
Collapse
|
8
|
Nakanishi N, Kaikita K, Oimatsu Y, Ishii M, Kuyama N, Arima Y, Araki S, Nakamura T, Yamamoto E, Tsujita K. 5-Aminolevulinic acid combined with ferrous iron ameliorates myocardial ischemia/reperfusion injury by increasing heme oxygenase-1. Heart Vessels 2024:10.1007/s00380-024-02480-9. [PMID: 39499265 DOI: 10.1007/s00380-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a naturally occurring metabolic precursor of heme, and 5-ALA combined with ferrous iron can induce heme oxygenase-1 (HO-1) in various cells. In this study, we investigated the cardioprotective effect of 5-ALA after myocardial ischemia/reperfusion (I/R) injury using a murine model. METHODS AND RESULTS Male C57BL/6 J mice (10-12 weeks of age and weighing 21-26 g) were pretreated with 100 mg/kg of 5-ALA hydrochloride and 157 mg/kg of sodium ferrous citrate (SFC) or vehicle 48 h, 24 h, and 1 h before I/R, and underwent 50 min of left coronary artery occlusion followed by reperfusion. Infarct area (IA) and area at risk (AAR) were determined by Evans blue and triphenyltetrazolium chloride double staining after reocclusion. Pre-administration with 5-ALA/SFC significantly reduced IA/AAR compared with placebo (34.0% vs. 51.7%, respectively; p = 0.001). Real-time PCR assay after reperfusion showed that mRNA expressions of TNF-α, IL-1β, and BNP were significantly lower, and that of HO-1 was significantly higher in the 5-ALA/SFC group than in the vehicle group in ischemic sites. An inhibition experiment revealed that zinc protoporphyrin IX, an inhibitor of HO-1, inhibited the cardioprotective effects of 5-ALA/SFC. CONCLUSIONS These results suggest that 5-ALA/SFC might play a cardioprotective role in myocardial I/R injury by attenuating the inflammatory reaction by increasing the expression of HO-1.
Collapse
Affiliation(s)
- Nobuhiro Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Yu Oimatsu
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoto Kuyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Nakamura
- Department of Medical Information Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
10
|
Chen J, Qiu S, Liu Y, Sun W, Zhou T, Zhao L, Li Z, Duan Y. Ultrasound targeted microbubble destruction assisted exosomal delivery of siHmox1 effectively inhibits doxorubicin-induced cardiomyocyte ferroptosis. J Nanobiotechnology 2024; 22:531. [PMID: 39218878 PMCID: PMC11367924 DOI: 10.1186/s12951-024-02794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Jianmei Chen
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shuo Qiu
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Tian Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, The Fourth Military Medical University, NO. 569th Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
11
|
Shen Z, Zhao M, Lu J, Chen H, Zhang Y, Chen S, Wang Z, Wang M, Liu X, Fu G, Huang H. Integrated multi-omic high-throughput strategies across-species identified potential key diagnostic, prognostic, and therapeutic targets for atherosclerosis under high glucose conditions. Mol Cell Biochem 2024:10.1007/s11010-024-05097-8. [PMID: 39223351 DOI: 10.1007/s11010-024-05097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is a well-known risk factor for atherosclerosis (AS), but the underlying molecular mechanism remains unknown. The dysregulated immune response is an important reason. High glucose is proven to induce foam cell formation under lipidemia situations in clinical patients. Exploring the potential regulatory programs of accelerated foam cell formation stimulated by high glucose is meaningful. Macrophage-derived foam cells were induced in vitro, and high-throughput sequencing was performed. Coexpression gene modules were constructed using weighted gene co-expression network analysis (WGCNA). Highly related modules were identified. Hub genes were identified by multiple integrative strategies. The potential roles of selected genes were further validated in bulk-RNA and scRNA datasets of human plaques. By transfection of the siRNA, the role of the screened gene during foam cell formation was further explored. Two modules were found to be both positively related to high glucose and ox-LDL. Further enrichment analyses confirmed the association between the brown module and AS. The high correlation between the brown module and macrophages was identified and 4 hub genes (Aldoa, Creg1, Lgmn, and Pkm) were screened. Further validation in external bulk-RNA and scRNA revealed the potential diagnostic and therapeutic value of selected genes. In addition, the survival analysis confirmed the prognostic value of Aldoa while knocking down Aldoa expression alleviated the foam cell formation in vitro. We systematically investigated the synergetic effects of high glucose and ox-LDL during macrophage-derived foam cell formation and identified that ALDOA might be an important diagnostic, prognostic, and therapeutic target in these patients.
Collapse
Affiliation(s)
- Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Jiangting Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yicheng Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Songzan Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Zhaojing Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianglan Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| |
Collapse
|
12
|
Lv J, Shi S, Fu Z, Wang Y, Duan C, Hu S, Wu H, Zhang B, Li Y, Song Q. Exploring the inflammation-related mechanisms of Lingguizhugan decoction on right ventricular remodeling secondary to pulmonary arterial hypertension based on integrated strategy using UPLC-HRMS, systems biology approach, and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155879. [PMID: 39032277 DOI: 10.1016/j.phymed.2024.155879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/27/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and the consequent right heart dysfunction persist with high morbidity and mortality, and the mechanisms and pharmacologic interventions for chronic right-sided heart failure (RHF) have not been adequately investigated. Research has shown that prolonged inflammation is critical in precipitating the progression of PAH-associated right heart pathology. Some research demonstrated that Lingguizhugan decoction (LGZGD), as a classical Chinese medicine formula, had beneficial effects in alleviating PAH and RHF, while its underlying mechanisms involved are not fully elucidated. PURPOSE Based on that, this study aims to investigate the effects and underlying mechanisms of LGZGD on PAH-induced RHF. STUDY DESIGN In this study, we identified the serum constituents and deciphered the potential anti-inflammatory mechanism and crucial components of LGZGD using combined approaches of UPLC-HRMS, transcriptomic analysis, and molecular docking techniques. Finally, we used in vivo experiments to verify the expression of key targets in the monocrotaline (MCT)-induced RHF model and the intervene effect of LGZGD. RESULTS Integrated strategies based on UPLC-HRMS and systems biology approach combined with in vivo experimental validation showed that LGZGD could improve right heart fibrosis and dysfunction via regulating diverse inflammatory signaling pathways and the activity of immune cells, including chemokine family CCL2, CXCR4, leukocyte integrins family ITGAL, ITGB2, and M2 macrophage infiltration, as well as lipid peroxidation-associated HMOX1, NOX4, and 4-HNE. CONCLUSION The present research demonstrated for the first time that LGZGD might improve PAH-induced RHF through multiple anti-inflammatory signaling and inhibition of ferroptosis, which could provide certain directions for future research in related fields.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
McClendon LK, Lanz RB, Panigrahi A, Gomez K, Bolt MJ, Liu M, Stossi F, Mancini MA, Dacso CC, Lonard DM, O'Malley BW. Transcriptional coactivation of NRF2 signaling in cardiac fibroblasts promotes resistance to oxidative stress. J Mol Cell Cardiol 2024; 194:70-84. [PMID: 38969334 DOI: 10.1016/j.yjmcc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Lisa K McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Kristan Gomez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Min Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
14
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
15
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
16
|
Ai W, Casey CA, Mishra PK, Alnouti Y, Daria S, Saraswathi V. Blockade of thromboxane A2 signaling attenuates ethanol-induced myocardial inflammatory response in mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1529-1540. [PMID: 39030742 DOI: 10.1111/acer.15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Alcohol-associated cardiomyopathy (ACM) is a cardiac muscle disease characterized by inflammation and oxidative stress. Thromboxane-prostanoid receptor (TP-R) plays an important role in the pathogenesis of cardiovascular disease. Herein, we hypothesize that TP-R mediates alcohol-induced early cardiac injury. METHODS Eight-week-old male C57BL/6 wild-type mice were fed a chronic ethanol (ET) or control diet (CON) for 10 days followed by a single binge of ethanol or maltose-dextrin through oral gavage. A cohort of ethanol-fed mice received SQ 29,548 (SQ), a TP-R antagonist. RNA sequencing, real-time PCR, and western blot analysis were performed on left ventricle to investigate alterations in genes and/or proteins mediating oxidative stress, inflammation, and cardiac remodeling. Sirius Red staining was performed to measure myocardial fibrosis. RESULTS RNA-sequencing analysis of myocardium from CON and ET groups identified 142 genes that were significantly altered between the two groups. In particular, the gene expression of thioredoxin-interacting protein (TXNIP), a component of NLR family pyrin domain containing 3 (NLRP3) signaling, which mediates oxidative stress and inflammatory response, was upregulated in response to ethanol exposure. The myocardial protein levels of TP-R and thromboxane A2 synthase were increased upon alcohol exposure. Ethanol increased the levels of 4-hydroxynonenal, a marker of oxidative stress, with a concomitant increase in the protein levels of TXNIP and NLRP3, and administration of SQ attenuated these effects. Additionally, ethanol increased the protein levels of pro-inflammatory mediators, including tumor necrosis factor alpha and the NLRP3 downstream product, secretory interleukin 1 beta, and SQ blunted these effects. Finally, the Sirius red staining of the myocardium revealed an increase in collagen deposition in ethanol-fed mice which was attenuated by TP-R antagonism. CONCLUSION This study demonstrates that ethanol promotes the NLRP3 signaling pathway within the myocardium, leading to a pro-inflammatory milieu that potentially initiates early myocardial remodeling, and TP-R antagonism attenuates this effect.
Collapse
Affiliation(s)
- Weilun Ai
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A Casey
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sohel Daria
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Zhao T, Lv T. Correlation between serum bilirubin, blood uric acid, and C-reactive protein and the severity of chronic obstructive pulmonary disease. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:105. [PMID: 38978143 PMCID: PMC11232315 DOI: 10.1186/s41043-024-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To explore the correlation between serum bilirubin, blood uric acid, and C-reactive protein (CRP) and the severity of chronic obstructive pulmonary disease (COPD). METHODS Patients with COPD who were admitted to our hospital between March 2020 and March 2023 were retrospectively studied. Based on whether their condition progressed to the acute exacerbation stage, they were divided into an exacerbation group (100 cases) and a stability group (100 cases). The clinical data from both groups were analysed to assess the correlations between serum bilirubin, blood uric acid, CRP, and the severity of COPD. RESULTS Univariate analysis indicated significant differences in the neutrophil-to-lymphocyte ratio (t = 5.678, P < 0.05), α-hydroxybutyrate dehydrogenase (t = 5.862, P < 0.05), total bilirubin (t = 4.341, P < 0.05), direct bilirubin (t = 5.342, P < 0.05), indirect bilirubin (t = 5.452, P < 0.05), blood uric acid (t = 4.698, P < 0.05), and CRP (t = 4.892, P < 0.05) between the two groups. Multivariate analysis revealed that total bilirubin, blood uric acid, and CRP were positively correlated with exacerbations of COPD (regression coefficients were 0.413, 0.354, and 0.356, respectively; P < 0.05). The evaluation of predictive value showed that the combined predictive value of these three indicators was the highest, with an AUC of 0.823 (95% CI: 0.754-0.911). CONCLUSION Serum bilirubin, blood uric acid, and CRP levels are elevated in patients with acute exacerbations of COPD (AECOPD), showing good consistency in predicting the occurrence of AECOPD. The combined diagnostic value of these three indicators is greater than that of any single indicator, providing a reference for the early clinical prediction of AECOPD.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Respiratory and Critical Care Medicine, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, No. 9 Jianmin Road, Taozhu Street, Zhuji, Zhejiang, 311800, China.
| | - Tian Lv
- Department of Neurology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, 311800, China
| |
Collapse
|
18
|
Yadav AK, Murthy TPK, Divyashri G, Prasad N D, Prakash S, Vaishnavi V V, Shukla R, Singh TR. Computational screening of pathogenic missense nsSNPs in heme oxygenase 1 (HMOX1) gene and their structural and functional consequences. J Biomol Struct Dyn 2024; 42:5072-5091. [PMID: 37434323 DOI: 10.1080/07391102.2023.2231553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Heme Oxygenase 1 (HMOX1) is a cytoprotective enzyme, exhibiting the highest activity in the spleen, catalyzing the heme ring breakdown into products of biological significance- biliverdin, CO, and Fe2+. In vascular cells, HMOX1 possesses strong anti-apoptotic, antioxidant, anti-proliferative, anti-inflammatory, and immunomodulatory actions. The majority of these activities are crucial for the prevention of atherogenesis. Single amino acid substitutions in proteins generated by missense non-synonymous single nucleotide polymorphism (nsSNPs) in the protein-encoding regions of genes are potent enough to cause significant medical challenges due to the alteration of protein structure and function. The current study aimed at characterizing and analyzing high-risk nsSNPs associated with the human HMOX1 gene. Preliminary screening of the total available 288 missense SNPs was performed through the lens of deleteriousness and stability prediction tools. Finally, a total of seven nsSNPs (Y58D, A131T, Y134H, F166S, F167S, R183S and M186V) were found to be most deleterious by all tools that are present at highly conserved positions. Molecular dynamics simulations (MDS) analysis explained the mutational effects on the dynamic action of the wild-type and mutant proteins. In a nutshell, R183S (rs749644285) was identified as a highly detrimental mutation that could significantly render the enzymatic activity of HMOX1. The finding of this computational analysis might help subject the experimental confirmatory analysis to characterize the role of nsSNPs in HMOX1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - T P Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Gangaraju Divyashri
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Durga Prasad N
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Sriraksha Prakash
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Vijaya Vaishnavi V
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
19
|
Wei H, Chen C, Di F, Sun C, Wang X, Sun M, Liu N, Zhang M, Li M, Zhang J, Zhang S, Liang X. PM 2.5-induced ferroptosis by Nrf2/Hmox1 signaling pathway led to inflammation in microglia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124130. [PMID: 38729511 DOI: 10.1016/j.envpol.2024.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Particulate matter (PM) has been a dominant contributor to air contamination, which will enter the central nervous system (CNS), causing neurotoxicity. However, the biological mechanism is poorly identified. In this study, C57BL/6J mice were applied to evaluate the neurotoxicity of collected fine particulate matter (PM2.5), via oropharyngeal aspiration at two ambient equivalent concentrations. The Y-maze results showed that PM2.5 exposure in mice would lead to the damage in hippocampal-dependent working memory. In addition, cell neuroinflammation, microglial activation were detected in hippocampus of PM2.5-exposure mice. To confirm the underlying mechanism, the microarray assay was conducted to screen the differentially expressed genes (DEGs) in microglia after PM2.5 exposure, and the results indicated the enrichment of DEGs in ferroptosis pathways. Furthermore, Heme oxygenase-1 (Hmox1) was found to be one of the most remarkably upregulated genes after PM2.5 exposure for 24 h. And PM2.5 exposure induced ferroptosis with iron accumulation through heme degradation by Nrf2-mediated Hmox1 upregulation, which could be eliminated by Nrf2-inhibition. Meanwhile, Hmox1 antagonist zinc protoporphyrin IX (ZnPP) could protect BV2 cells from ferroptosis. The results taken together indicated that PM2.5 resulted in the ferroptosis by causing iron overload through Nrf2/Hmox1 signaling pathway, which could account for the inflammation in microglia.
Collapse
Affiliation(s)
- Haiyun Wei
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chao Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Fanglin Di
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Changhua Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, 250014, China
| | - Xinzhi Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Natong Liu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Min Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xue Liang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
20
|
Haines DD, Cowan FM, Tosaki A. Evolving Strategies for Use of Phytochemicals in Prevention and Long-Term Management of Cardiovascular Diseases (CVD). Int J Mol Sci 2024; 25:6176. [PMID: 38892364 PMCID: PMC11173167 DOI: 10.3390/ijms25116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This report describes major pathomechanisms of disease in which the dysregulation of host inflammatory processes is a major factor, with cardiovascular disease (CVD) as a primary model, and reviews strategies for countermeasures based on synergistic interaction between various agents, including drugs and generally regarded as safe (GRAS) natural medical material (NMM), such as Ginkgo biloba, spice phytochemicals, and fruit seed flavonoids. The 15 well-defined CVD classes are explored with particular emphasis on the extent to which oxidative stressors and associated ischemia-reperfusion tissue injury contribute to major symptoms. The four major categories of pharmaceutical agents used for the prevention of and therapy for CVD: statins, beta blockers (β-blockers), blood thinners (anticoagulants), and aspirin, are presented along with their adverse effects. Analyses of major cellular and molecular features of drug- and NMM-mediated cardioprotective processes are provided in the context of their development for human clinical application. Future directions of the evolving research described here will be particularly focused on the characterization and manipulation of calcium- and calcineurin-mediated cascades of signaling from cell surface receptors on cardiovascular and immune cells to the nucleus, with the emergence of both protective and pathological epigenetic features that may be modulated by synergistically-acting combinations of drugs and phytochemicals in which phytochemicals interact with cells to promote signaling that reduces the effective dosage and thus (often) toxicity of drugs.
Collapse
Affiliation(s)
| | - Fred M. Cowan
- Uppsala Inc., 67 Shady Brook Drive, Colora, MD 21917, USA;
| | - Arpad Tosaki
- Department Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
21
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
22
|
Wang Y, Shen Y, Li Q, Xu H, Gao A, Li K, Rong Y, Gao S, Liang H, Zhang X. Exploring the causal association between genetically determined circulating metabolome and hemorrhagic stroke. Front Nutr 2024; 11:1376889. [PMID: 38812939 PMCID: PMC11133746 DOI: 10.3389/fnut.2024.1376889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Hemorrhagic stroke (HS), a leading cause of death and disability worldwide, has not been clarified in terms of the underlying biomolecular mechanisms of its development. Circulating metabolites have been closely associated with HS in recent years. Therefore, we explored the causal association between circulating metabolomes and HS using Mendelian randomization (MR) analysis and identified the molecular mechanisms of effects. Methods We assessed the causal relationship between circulating serum metabolites (CSMs) and HS using a bidirectional two-sample MR method supplemented with five ways: weighted median, MR Egger, simple mode, weighted mode, and MR-PRESSO. The Cochran Q-test, MR-Egger intercept test, and MR-PRESSO served for the sensitivity analyses. The Steiger test and reverse MR were used to estimate reverse causality. Metabolic pathway analyses were performed using MetaboAnalyst 5.0, and genetic effects were assessed by linkage disequilibrium score regression. Significant metabolites were further synthesized using meta-analysis, and we used multivariate MR to correct for common confounders. Results We finally recognized four metabolites, biliverdin (OR 0.62, 95% CI 0.40-0.96, PMVMR = 0.030), linoleate (18. 2n6) (OR 0.20, 95% CI 0.08-0.54, PMVMR = 0.001),1-eicosadienoylglycerophosphocholine* (OR 2.21, 95% CI 1.02-4.76, PMVMR = 0.044),7-alpha-hydroxy-3 -oxo-4-cholestenoate (7-Hoca) (OR 0.27, 95% CI 0.09-0.77, PMVMR = 0.015) with significant causal relation to HS. Conclusion We demonstrated significant causal associations between circulating serum metabolites and hemorrhagic stroke. Monitoring, diagnosis, and treatment of hemorrhagic stroke by serum metabolites might be a valuable approach.
Collapse
Affiliation(s)
- Yaolou Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingjie Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hangjia Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kuo Li
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yiwei Rong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Cell Transplantation, Harbin, Heilongjiang, China
| | - Xiangtong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Cell Transplantation, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Shao JM, Shen B, Zhou ZX, D’Angelo L, James SM, Lin JF, Zheng C. Bilirubin Elevation During Hospitalization Post Radiofrequency Catheter Ablation of Persistent Atrial Fibrillation: Variation Trend, Related Factors, and Relevance to 1-Year Recurrence. Clin Interv Aging 2024; 19:817-825. [PMID: 38765794 PMCID: PMC11102068 DOI: 10.2147/cia.s461832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Background The role of total bilirubin (TBIL) in cardiovascular disease has been increasingly recognized in recent decades. Studies have shown a correlation between total bilirubin levels and the prognosis of patients after heart surgery. This study aimed to investigate the clinical significance of bilirubin elevation in persistent atrial fibrillation (PAF) patients who received radiofrequency catheter ablation (RFCA). Methods and Results A total of 184 patients with PAF who received RFCA were retrospectively studied. Laboratory examinations and demographic data were analyzed to identify independent predictors of TBIL elevation. The relationship between TBIL and prognosis was further investigated. Our results indicated that TBIL increased significantly after RFCA. Multiple linear regression analysis showed that TBIL elevation owned a negative correlation with the percentile of low voltage areas (LVAs) in left atria (β=-0.490, P<0.001). In contrast, a positive correlation was observed with the white blood cell (WBC) ratio (β=0.153, P=0.042) and left atrial diameter (LAD) (β=0.232, P=0.025). It was found that postoperative TBIL levels increased and then gradually decreased to baseline within 5 days without intervention. The bilirubin ratio <1.211 indicated the possibility of 1-year AF recurrence after ablation with a predictive value of 0.743 (specificity = 75.00%, sensitivity = 66.67%). Conclusion Bilirubin elevation post PAF RFCA was a common phenomenon and was associated with 1-year recurrence of AF in PAF patients after RFCA.
Collapse
Affiliation(s)
- Jia-Meng Shao
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Bing Shen
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Zhi-Xiang Zhou
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Lucia D’Angelo
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Shea Michaela James
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Jia-Feng Lin
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Cheng Zheng
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
24
|
Mun SK, Sim HB, Lee JH, Kim H, Park DH, Lee YA, Han JY, Choi YJ, Son JS, Park J, Lim TH, Yee ST, Chang YT, Lee S, Chang DJ, Kim JJ. Targeting Heme Oxygenase 2 (HO2) with TiNIR, a Theragnostic Approach for Managing Metastatic Non-Small Cell Lung Cancer. Biomater Res 2024; 28:0026. [PMID: 38665698 PMCID: PMC11045274 DOI: 10.34133/bmr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Despite notable advancements in cancer therapeutics, metastasis remains a primary obstacle impeding a successful prognosis. Our prior study has identified heme oxygenase 2 (HO2) as a promising therapeutic biomarker for the aggressive subsets within tumor. This study aims to systematically evaluate HO2 as a therapeutic target of cancer, with a specific emphasis on its efficacy in addressing cancer metastasis. Through targeted inhibition of HO2 by TiNIR (tumor-initiating cell probe with near infrared), we observed a marked increase in reactive oxygen species. This, in turn, orchestrated the modulation of AKT and cJUN activation, culminating in a substantial attenuation of both proliferation and migration within a metastatic cancer cell model. Furthermore, in a mouse model, clear inhibition of cancer metastasis was unequivocally demonstrated with an HO2 inhibitor administration. These findings underscore the therapeutic promise of targeting HO2 as a strategic intervention to impede cancer metastasis, enhancing the effectiveness of cancer treatments.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae-Hyuk Lee
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yong-An Lee
- Genome Institute of Singapore (GIS),
Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Ji Yeon Han
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jun Sang Son
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jeongwon Park
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Tae-Hwan Lim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Tae Chang
- School of Interdisciplinary Bioscience and Bioengineering,
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemistry,
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology,
Chung-Ang University, Anseong 17546, Republic of Korea
- Department of Bio-Analysis Science,
University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong-Jo Chang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
25
|
Long SW, Li SH, Li J, He Y, Tan B, Jing HH, Zheng W, Wu J. Identification of osteoporosis ferroptosis-related markers and potential therapeutic compounds based on bioinformatics methods and molecular docking technology. BMC Med Genomics 2024; 17:99. [PMID: 38650009 PMCID: PMC11036634 DOI: 10.1186/s12920-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
RESEARCH BACKGROUND AND PURPOSE Osteoporosis (OP) is one of the most common bone diseases worldwide, characterized by low bone mineral density and susceptibility to pathological fractures, especially in postmenopausal women and elderly men. Ferroptosis is one of the newly discovered forms of cell death regulated by genes in recent years. Many studies have shown that ferroptosis is closely related to many diseases. However, there are few studies on ferroptosis in osteoporosis, and the mechanism of ferroptosis in osteoporosis is still unclear. This study aims to identify biomarkers related to osteoporosis ferroptosis from the GEO (Gene Expression Omnibus) database through bioinformatics technology, and to mine potential therapeutic small molecule compounds through molecular docking technology, trying to provide a basis for the diagnosis and treatment of osteoporosis in the future. MATERIALS AND METHODS We downloaded the ferroptosis-related gene set from the FerrDb database ( http://www.zhounan.org/ferrdb/index.html ), downloaded the data sets GSE56815 and GSE7429 from the GEO database, and used the R software "limma" package to screen differentially expressed genes (DEGs) from GSE56815, and intersected with the ferroptosis gene set to obtain ferroptosis-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by the R software "clusterProfiler" package. The random forest model was further screened to obtain essential ferroptosis genes. R software "corrplot" package was used for correlation analysis of essential ferroptosis genes, and the Wilcox test was used for significance analysis. The lncRNA-miRNA-mRNA-TF regulatory network was constructed using Cytoscape software. The least absolute shrinkage and selection operator (LASSO) was used to construct a disease diagnosis model, and a Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance, and then GSE7429 was used to verify the reliability of the diagnosis model. Molecular docking technology was used to screen potential small molecule compounds from the Drugbank database. Finally, a rat osteoporosis model was constructed, and peripheral blood mononuclear cells were extracted for qRT-PCR detection to verify the mRNA expression levels of crucial ferroptosis genes. RESULT Six DEGs related to ferroptosis were initially screened out. GO function and KEGG pathway enrichment analysis showed that ferroptosis-related DEGs were mainly enriched in signaling pathways such as maintenance of iron ion homeostasis, copper ion binding function, and ferroptosis. The random forest model identified five key ferroptosis genes, including CP, FLT3, HAMP, HMOX1, and SLC2A3. Gene correlation analysis found a relatively low correlation between these five key ferroptosis genes. The lncRNA-miRNA-mRNA-TF regulatory network shows that BAZ1B and STAT3 may also be potential molecules. The ROC curve of the disease diagnosis model shows that the model has a good diagnostic performance. Molecular docking technology screened out three small molecule compounds, including NADH, Midostaurin, and Nintedanib small molecule compounds. qRT-PCR detection confirmed the differential expression of CP, FLT3, HAMP, HMOX1 and SLC2A3 between OP and normal control group. CONCLUSION This study identified five key ferroptosis genes (CP, FLT3, HAMP, HMOX1, and SLC2A3), they were most likely related to OP ferroptosis. In addition, we found that the small molecule compounds of NADH, Midostaurin, and Nintedanib had good docking scores with these five key ferroptosis genes. These findings may provide new clues for the early diagnosis and treatment of osteoporosis in the future.
Collapse
Affiliation(s)
- Shi-Wei Long
- General Hospital of Western Theater Command, Chengdu, China
| | - Shi-Hong Li
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- General Hospital of Western Theater Command, Chengdu, China
| | - Jian Li
- General Hospital of Western Theater Command, Chengdu, China
| | - Yang He
- Southwest Jiao Tong University School of Medicine, Chengdu, China
| | - Bo Tan
- General Hospital of Western Theater Command, Chengdu, China
| | - Hao-Han Jing
- General Hospital of Western Theater Command, Chengdu, China
| | - Wei Zheng
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Southwest Jiao Tong University School of Medicine, Chengdu, China.
- General Hospital of Western Theater Command, Chengdu, China.
| | - Juan Wu
- General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
26
|
Lu L, Jang S, Zhu J, Qin Q, Sun L, Sun J. Nur77 mitigates endothelial dysfunction through activation of both nitric oxide production and anti-oxidant pathways. Redox Biol 2024; 70:103056. [PMID: 38290383 PMCID: PMC10844745 DOI: 10.1016/j.redox.2024.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Nur77 belongs to the member of orphan nuclear receptor 4A family that plays critical roles in maintaining vascular homeostasis. This study aims to determine whether Nur77 plays a role in attenuating vascular dysfunction, and if so, to determine the molecular mechanisms involved. METHODS Both Nur77 knockout (Nur77 KO) and Nur77 endothelial specific transgenic mice (Nur77-Tg) were employed to examine the functional significance of Nur77 in vascular endothelium in vivo. Endothelium-dependent vasodilatation to acetylcholine (Ach) and reactive oxygen species (ROS) production was determined under inflammatory and high glucose conditions. Expression of genes was determined by real-time PCR and western blot analysis. RESULTS In response to tumor necrosis factor alpha (TNF-α) treatment and diabetes, the endothelium-dependent vasodilatation to Ach was significantly impaired in aorta from Nur77 KO as compared with those from the wild-type (WT) mice. Endothelial specific overexpression of Nur77 markedly prevented both TNF-α- and high glucose-induced endothelial dysfunction. Compared with WT mice, after TNF-α and high glucose treatment, ROS production in aorta was significantly increased in Nur77 KO mice, but it was inhibited in Nur77-Tg mice, as determined by dihydroethidium (DHE) staining. Furthermore, we demonstrated that Nur77 overexpression substantially increased the expression of several key enzymes involved in nitric oxide (NO) production and ROS scavenging, including endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GCH-1), glutathione peroxidase-1 (GPx-1), and superoxide dismutases (SODs). Mechanistically, we found that Nur77 increased GCH1 mRNA stability by inhibiting the expression of microRNA-133a, while Nur77 upregulated SOD1 expression through directly binding to the human SOD1 promoter in vascular endothelial cells. CONCLUSION Our results suggest that Nur77 plays an essential role in attenuating endothelial dysfunction through activating NO production and anti-oxidant pathways in vascular endothelium. Targeted activation of Nur77 may provide a novel therapeutic approach for the treatment of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Soohwa Jang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jiaqi Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qing Qin
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lijun Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
27
|
Mrug M, Mrug E, Rosenblum F, Chen J, Cui X, Agarwal A, Zarjou A. Distinct developmental reprogramming footprint of macrophages during acute kidney injury across species. Am J Physiol Renal Physiol 2024; 326:F635-F641. [PMID: 38357719 PMCID: PMC11208015 DOI: 10.1152/ajprenal.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Elias Mrug
- Math-Science Department, Alabama School of Fine Arts, Birmingham, Alabama, United States
| | - Frida Rosenblum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jiandong Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
28
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
29
|
Li Y, Gao Y, Yao D, Li Z, Wang J, Zhang X, Zhao X, Zhang Y. Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. Int J Mol Sci 2024; 25:2578. [PMID: 38473826 DOI: 10.3390/ijms25052578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.
Collapse
Affiliation(s)
- Yina Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Dan Yao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zongshuai Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xijun Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
30
|
Guo J, Ning Y, Pan D, Wu S, Gao X, Wang C, Guo L, Gu Y. Identification of potential hub genes and regulatory networks of smoking-related endothelial dysfunction in atherosclerosis using bioinformatics analysis. Technol Health Care 2024; 32:1781-1794. [PMID: 38073349 DOI: 10.3233/thc-230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endothelial dysfunction, the earliest stage of atherosclerosis, can be caused by smoking, but its molecular mechanism requires further investigation. OBJECTIVE This study aimed to use bioinformatics analysis to identify potential mechanisms involved in smoking-related atherosclerotic endothelial dysfunction. METHODS The transcriptome data used for this bioinformatics analysis were obtained from the Gene Expression Omnibus (GEO) database. The GSE137578 and GSE141136 datasets were used to identify common differentially expressed genes (co-DEGs) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) and tobacco. The co-DEGs were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) databases. Additionally, a protein-protein interaction (PPI) network was constructed to visualize their interactions and screen for hub genes. GSE120521 dataset was used to verify the expression of hub genes in unstable plaques. The miRNA expression profile GSE137580 and online databases (starBase 2.0, TargetScan 8.0 and DGIdb v4.2.0) were used to predict the related non-coding RNAs and drugs. RESULTS A total of 232 co-DEGs were identified, including 113 up-regulated genes and 119 down-regulated genes. These DEGs were primarily enriched in detrimental autophagy, cell death, transcription factors, and cytokines, and were implicated in ferroptosis, abnormal lipid metabolism, inflammation, and oxidative stress pathways. Ten hub genes were screened from the constructed PPI network, including up-regulated genes such as FOS, HMOX1, SQSTM1, PTGS2, ATF3, DDIT3, and down-regulated genes MCM4, KIF15, UHRF1, and CCL2. Importantly, HMOX1 was further up-regulated in unstable plaques (p= 0.034). Finally, a regulatory network involving lncRNA/circRNA-miRNA-hub genes and drug-hub genes was established. CONCLUSION Atherosclerotic endothelial dysfunction is associated with smoking-induced injury. Through bioinformatics analysis, we identified potential mechanisms and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Julong Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yachan Ning
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Han W, Li C, Wang Y, Huo B, Li W, Shi W. Heme Metabolism-Related Gene TENT5C is a Prognostic Marker and Investigating Its Immunological Role in Colon Cancer. Pharmgenomics Pers Med 2023; 16:1127-1143. [PMID: 38152411 PMCID: PMC10752234 DOI: 10.2147/pgpm.s433790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Background There is a strong correlation between consuming high amounts of heme and an elevated risk of developing various types of cancer, including colorectal cancer. However, the role of heme metabolism-related genes (HRGs) in colorectal cancer remains unclear. Our study aimed to identify prognostic markers for colorectal cancer patients based on these genes. Methods The heme metabolism score was assessed using gene set variation analysis (GSVA). Potential prognostic HRGs were identified from the TCGA-COAD dataset using LASSO and COX regression analyses. The expression level of TENT5C was validated in the GEO database and clinical samples. To explore the association between TENT5C expression and immune cell infiltrations, we performed ESTIMATE and single-sample gene set enrichment analysis (ssGSEA). Results The low level of heme metabolism score was associated with a poor prognosis in colorectal cancer patients. TENT5C is a prognostic gene and an independent prognostic biomarker for overall survival. Its expression was confirmed in multiple datasets and clinical samples, showing a positive correlation with immune cells and immune score. GSEA results suggested TENT5C's significant role in regulating immune and inflammatory responses in colorectal cancer. Conclusion TENT5C can be used as a biomarker in colorectal cancer. Additionally, TENT5C is associated with both prognosis and immune infiltration. These findings lay a strong groundwork for future research to delve into the specific role of TENT5C in the development and advancement of colorectal cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Cheng Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Yongheng Wang
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Binliang Huo
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wen Shi
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
32
|
Chen H, Xie X, Xiao H, Liang W, Lin ZJ, Lin B, Lin KY, Chen C, Guo Y. A Pilot Study About the Role of PANoptosis-Based Genes in Atherosclerosis Development. J Inflamm Res 2023; 16:6283-6299. [PMID: 38149113 PMCID: PMC10750489 DOI: 10.2147/jir.s442260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Background As a chronic inflammatory disease, atherosclerosis (AS) and ischemia events are primarily affected by inflammation in AS. PANoptosis has been implicated in many human systemic disorders, including infection, cancer, neurodegeneration, and inflammation. On the other hand, little is understood about PANoptosis's function in AS. Methods We used consensus clustering to divide the GSE100927 dataset into two panoptosis-related subgroups. PANoptosis-associated genes were screened by differential analysis and weighted gene co-expression network analysis (WGCNA) and enriched by ClueGO software. Investigating LASSO regression and MCODE to identify AS Diagnostic Markers. Immunoinfiltration analysis and single-cell analysis were used to search for cell types associated with the diagnostic genes. Final validation was performed by polymerase chain reaction (PCR). Results We classified the GSE100927 dataset into two PANoptosis-related subtypes based on the expression of PANoptosis-related genes (PRGs) using consensus clustering. A total of 36 PANoptosis-associated genes were screened in the differentially expressed genes and WGCNA-related module. 4 hub genes were identified by MCODE and LASSO regression, and 3 AS diagnostic markers (ACP5, CCL3, HMOX1) were screened by external validation set. Immunoinfiltration analysis and single-cell analysis showed that the three diagnostic markers were associated with macrophages, and PCR results demonstrated that ACP5 and HMOX1 could be used as AS diagnostic markers. Conclusion Our study identified ACP5 and HMOX1 as diagnostic genes for AS that may be associated with PANoptosis. ACP5 and HMOX1 may be involved in the pathogenesis of AS by regulating macrophage PANoptosis.
Collapse
Affiliation(s)
- HongKui Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Xianwei Xie
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Heart Failure Center Al liance, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Huazhen Xiao
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Wenjia Liang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Zhi-Jie Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Biting Lin
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Heart Failure Center Al liance, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Kai-Yang Lin
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Heart Failure Center Al liance, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350000, People’s Republic of China
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350000, People’s Republic of China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, Fujian Province, 350000, People’s Republic of China
| |
Collapse
|
33
|
Halliwell B, Watt F, Minqin R. Iron and atherosclerosis: Lessons learned from rabbits relevant to human disease. Free Radic Biol Med 2023; 209:165-170. [PMID: 37852545 DOI: 10.1016/j.freeradbiomed.2023.10.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Research Programme, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Frank Watt
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| | - Ren Minqin
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| |
Collapse
|
34
|
Peng R, Liu X, Wang C, Li F, Li T, Li L, Zhang H, Gao Y, Yu X, Zhang S, Zhang J. Iron overload enhances TBI-induced cardiac dysfunction by promoting ferroptosis and cardiac inflammation. Biochem Biophys Res Commun 2023; 682:46-55. [PMID: 37801989 DOI: 10.1016/j.bbrc.2023.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Previous studies have proved that cardiac dysfunction and myocardial damage can be found in TBI patients, but the underlying mechanisms of myocardial damage induced by TBI can't be illustrated. We want to investigate the function of ferroptosis in myocardial damage after TBI and determine if inhibiting iron overload might lessen myocardial injury after TBI due to the involvement of iron overload in the process of ferroptosis and inflammation. We detect the expression of ferroptosis-related proteins in cardiac tissue at different time points after TBI, indicating that TBI can cause ferroptosis in the heart in vivo. The echocardiography and myocardial enzymes results showed that ferroptosis can aggravate TBI-induced cardiac dysfunction. The result of DHE staining and 4-HNE expression showed that inhibition of ferroptosis can reduce ROS production and lipid peroxidation in myocardial tissue. In further experiments, DFO intervention was used to explore the effect of iron overload inhibition on myocardial ferroptosis after TBI, the production of ROS, expression of p38 MAPK and NF-κB was detected to explore the effect of iron overload on myocardial inflammation after TBI. The results above show that TBI can cause heart ferroptosis in vivo. Inhibition of iron overload can alleviate myocardial injury after TBI by reducing ferroptosis and inflammatory response induced by TBI.
Collapse
Affiliation(s)
- Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Hejun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China; Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Xuefang Yu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300000, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China.
| |
Collapse
|
35
|
Seyiti Z, Yang L, Kasimujiang A, Dejite T, Shan XF, Gao XM. Predictive value of serum creatinine and total bilirubin for long-term death in patients with ischemic heart disease: A cohort study. PLoS One 2023; 18:e0294335. [PMID: 37971981 PMCID: PMC10653523 DOI: 10.1371/journal.pone.0294335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) has a high mortality in the population. Although serum creatinine (Cr) and serum total bilirubin (TBil) are rapid and readily available biomarkers in routine blood tests, there is a lack of literature on the prognostic value of combined Cr and TBil tests for IHD. This study aimed to evaluate a combined equation based on Cr and TBil to predict the long-term risk of death in IHD and to find indicators sensitive to the prognosis of IHD patients. METHOD In this study, 2625 patients with IHD were included, and the combined value and combined equations of Cr and TBil were obtained by logistic regression analysis based on Cr and TBil collected at the time of admission. Patients were divided into four groups according to the quartiles of the combined value. COX proportional hazard regression model was used to analyze the risk factors for long-term death in IHD patients. Receiver operating characteristic (ROC) curves were used to evaluate the prognostic effect of Cr, TBil and combined value on long-term death events. RESULTS Logistic regression analysis was performed for long-term death events with Cr and TBil as independent variables, and the logit regression model was Logit(P) = 0.0129×TBil+0.007×Cr-0.417. Multifactorial Cox regression analysis showed that high values of the equation were independent risk factors for long-term death events (all-cause death: HR 1.457, 95% CI 1.256-1.689, P<0.001; cardiovascular death: HR 1.452, 95% CI 1.244-1.695, P<0.001). Combined Cr and TBil value are more valuable in predicting long-term death (AUC: 0.609, 95% CI 0.587-0.630, P<0.001). CONCLUSION Combined Cr and TBil assay is superior to single biomarkers for predicting long-term death in patients with IHD. High values of the equation are independent predictors of long-term death and can be used to identify patients at high risk for IHD.
Collapse
Affiliation(s)
- Zulihuma Seyiti
- College of Pediatrics, Xinjiang Medical University, Urumqi, China
| | - Long Yang
- College of Pediatrics, Xinjiang Medical University, Urumqi, China
| | | | | | - Xue-Feng Shan
- Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
- Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
36
|
Cetin-Atalay R, Meliton AY, Ozcan C, Woods PS, Sun KA, Fang Y, Hamanaka RB, Mutlu GM. Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice. PLoS One 2023; 18:e0292990. [PMID: 37844118 PMCID: PMC10578579 DOI: 10.1371/journal.pone.0292990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, United States of America
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
37
|
Zou X, Zeng M, Zheng Y, Zheng A, Cui L, Cao W, Wang X, Liu J, Xu J, Feng Z. Comparative Study of Hydroxytyrosol Acetate and Hydroxytyrosol in Activating Phase II Enzymes. Antioxidants (Basel) 2023; 12:1834. [PMID: 37891913 PMCID: PMC10604236 DOI: 10.3390/antiox12101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is fundamental to the maintenance of redox homeostasis within cells via the regulation of a series of phase II antioxidant enzymes. The unique olive-derived phenolic compound hydroxytyrosol (HT) is recognized as an Nrf2 activator, but knowledge of the HT derivative hydroxytyrosol acetate (HTac) on Nrf2 activation remains limited. In this study, we observed that an HT pretreatment could protect the cell viability, mitochondrial membrane potential, and redox homeostasis of ARPE-19 cells against a t-butyl hydroperoxide challenge at 50 μM. HTac exhibited similar benefits at 10 μM, indicating a more effective antioxidative capacity compared with HT. HTac consistently and more efficiently activated the expression of Nrf2-regulated phase II enzymes than HT. PI3K/Akt was the key pathway accounting for the beneficial effects of HTac in ARPE-19 cells. A further RNA-Seq analysis revealed that in addition to the consistent upregulation of phase II enzymes, the cells presented distinct expression profiles after HTac and HT treatments. This indicated that HTac could trigger a diverse cellular response despite its similar molecular structure to HT. The evidence in this study suggests that Nrf2 activation is the major cellular activity shared by HTac and HT, and HTac is more efficient at activating the Nrf2 system. This supports its potential future employment in various disease management strategies.
Collapse
Affiliation(s)
- Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Mengqi Zeng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Adi Zheng
- School of Medicine, Northwest University, Xi'an 710069, China
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
38
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Kim SW, Yang JH, Kweon SS, Lee YH, Choi SW, Ryu SY, Nam HS, Kim HY, Shin MH. Association Between Serum Bilirubin and Atrial Fibrillation: A Mendelian Randomization Study. Korean Circ J 2023; 53:472-479. [PMID: 37271750 PMCID: PMC10406528 DOI: 10.4070/kcj.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The association between bilirubin and atrial fibrillation (AF) has been evaluated previously in observational studies but with contradictory results. This study evaluated the causal association between serum bilirubin level and AF using Mendelian randomization (MR) analysis. METHODS This cross-sectional study includes 8,977 participants from the Dong-gu Study. In the observational analysis, multivariate logistic regression was performed to evaluate the association between bilirubin and prevalent AF. To evaluate the causal association between bilirubin and AF, MR analysis was conducted by using the UGT1A1 rs11891311 and rs4148323 polymorphisms as instrumental variables. RESULTS Elevated serum bilirubin levels were associated with an increased risk for AF in observational analysis (total bilirubin: odds ratio [OR], 1.31; 95% confidence interval [95% CI], 1.15-1.48 per 1 standard deviation [SD]; direct bilirubin: OR, 1.31; 95% CI, 1.18-1.46 per 1 SD), whereas the genetically predicted serum bilirubin levels in MR analysis did not show this association (total bilirubin: OR, 1.02; 95% CI, 0.67-1.53 per 1 SD; direct bilirubin: OR, 1.03; 95% CI, 0.61-1.73 per 1 SD). CONCLUSIONS Genetically predicted bilirubin levels were not associated with prevalent AF. Thus, the observational association between serum bilirubin levels and AF may be non-causal and affected by reverse causality or unmeasured confounding.
Collapse
Affiliation(s)
- Si-Woo Kim
- Chonnam National University Medical School, Hwasun, Korea
| | - Jung-Ho Yang
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Hoon Lee
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Seong-Woo Choi
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| | - So-Yeon Ryu
- Department of Preventive Medicine, Chosun University Medical School, Gwangju, Korea
| | - Hae-Sung Nam
- Department of Preventive Medicine, Chungnam National University Medical School, Daejeon, Korea
| | - Hye-Yeon Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea.
| |
Collapse
|
40
|
Kyle Martin W, Schladweiler MC, Oshiro W, Smoot J, Fisher A, Williams W, Valdez M, Miller CN, Jackson TW, Freeborn D, Kim YH, Davies D, Ian Gilmour M, Kodavanti U, Kodavanti P, Hazari MS, Farraj AK. Wildfire-related smoke inhalation worsens cardiovascular risk in sleep disrupted rats. FRONTIERS IN ENVIRONMENTAL HEALTH 2023; 2:1166918. [PMID: 38116203 PMCID: PMC10726696 DOI: 10.3389/fenvh.2023.1166918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 μg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.
Collapse
Affiliation(s)
- W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC, Chapel Hill, NC, United States
| | - M. C. Schladweiler
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Oshiro
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - J. Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - A. Fisher
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Williams
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Valdez
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - C. N. Miller
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - T. W. Jackson
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Freeborn
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - Y. H. Kim
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Davies
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Ian Gilmour
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - U. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - P. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. S. Hazari
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - A. K. Farraj
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| |
Collapse
|
41
|
Ben-Eltriki M, Gayle EJ, Walker N, Deb S. Pharmacological Significance of Heme Oxygenase 1 in Prostate Cancer. Curr Issues Mol Biol 2023; 45:4301-4316. [PMID: 37232742 DOI: 10.3390/cimb45050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is a detoxifying antioxidant microsomal enzyme that regulates inflammation, apoptosis, cell proliferation, and angiogenesis in prostate cancer (PCa). This makes HO-1 a promising target for therapeutic prevention and treatment due to its anti-inflammatory properties and ability to control redox homeostasis. Clinical evidence highlights the possible correlation between HO-1 expression and PCa growth, aggressiveness, metastasized tumors, resistance to therapy, and poor clinical outcomes. Interestingly, studies have reported anticancer benefits mediated by both HO-1 induction and inhibition in PCa models. Contrasting evidence exists on the role of HO-1 in PCa progression and possible treatment targets. Herein, we provide an overview of available evidence on the clinical significance of HO-1 signaling in PCa. It appears that the beneficial effects of HO-1 induction or inhibition are dependent on whether it is a normal versus malignant cell as well as the intensity (major vs. minor) of the increase in HO-1 enzymatic activity. The current literature evidence indicates that HO-1 has dual effects in PCa. The amount of cellular iron and reactive oxygen species (ROS) can determine the role of HO-1 in PCa. A major increase in ROS enforces HO-1 to a protective role. HO-1 overexpression may provide cryoprotection to normal cells against oxidative stress via suppressing the expression of proinflammatory genes, and thus offer therapeutic prevention. In contrast, a moderate increase in ROS can lead to the perpetrator role of HO-1, which is associated with PCa progression and metastasis. HO-1 inhibition by xenobiotics in DNA-damaged cells tilts the balance to promote apoptosis and inhibit PCa proliferation and metastasis. Overall, the totality of the evidence revealed that HO-1 may play a dual role in the therapeutic prevention and treatment of PCa.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Clinical Pharmacology Lab, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Noah Walker
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
42
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
43
|
Hamann B, Klimova A, Klotz F, Frank F, Jänichen C, Kapalla M, Sabarstinski P, Wolk S, Morawietz H, Poitz DM, Hofmann A, Reeps C. Regulation of CD163 Receptor in Patients with Abdominal Aortic Aneurysm and Associations with Antioxidant Enzymes HO-1 and NQO1. Antioxidants (Basel) 2023; 12:antiox12040947. [PMID: 37107322 PMCID: PMC10135987 DOI: 10.3390/antiox12040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Red blood cells are found within the abdominal aortic aneurysm (AAA), in the intraluminal thrombus (ILT), and in neovessels. Hemolysis promotes aortic degeneration, e.g., by heme-induced reactive oxygen species formation. To reduce its toxicity, hemoglobin is endocytosed by the CD163 receptor and heme is degraded by heme oxygenase-1 (HO-1). A soluble form (sCD163) is discussed as an inflammatory biomarker representing the activation of monocytes and macrophages. HO-1 and NAD(P)H quinone dehydrogenase 1 (NQO1) are antioxidant genes that are induced by the Nrf2 transcription factor, but their regulation in AAA is only poorly understood. The aim of the present study was to analyze linkages between CD163, Nrf2, HO-1, and NQO1 and to clarify if plasma sCD163 has diagnostic and risk stratification potential. Soluble CD163 was 1.3-fold (p = 0.015) higher in AAA compared to patients without arterial disease. The difference remained significant after adjusting for age and sex. sCD163 correlated with the thickness of the ILT (rs = 0.26; p = 0.02) but not with the AAA diameter or volume. A high aneurysmal CD163 mRNA was connected to increases in NQO1, HMOX1, and Nrf2 mRNA. Further studies are needed to analyze the modulation of the CD163/HO-1/NQO1 pathway with the overall goal of minimizing the detrimental effects of hemolysis.
Collapse
Affiliation(s)
- Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anna Klimova
- Core Unit Data Management and Analytics, National Center for Tumor Diseases Dresden (NCT/UCC), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Felicia Klotz
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Jänichen
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
44
|
Attallah NGM, Kabbash A, Negm WA, Elekhnawy E, Binsuwaidan R, Al-Fakhrany OM, Shaldam MA, Moglad E, Tarek M, Samir N, Fawzy HM. Protective Potential of Saussurea costus (Falc.) Lipsch. Roots against Cyclophosphamide-Induced Pulmonary Injury in Rats and Its In Vitro Antiviral Effect. Pharmaceuticals (Basel) 2023; 16:318. [PMID: 37259460 PMCID: PMC9959296 DOI: 10.3390/ph16020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 10/29/2023] Open
Abstract
Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.
Collapse
Affiliation(s)
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Marwa Tarek
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Nehal Samir
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Heba M. Fawzy
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| |
Collapse
|
45
|
Qin S, Wang G, Chen L, Geng H, Zheng Y, Xia C, Wu S, Yao J, Deng L. Pharmacological vitamin C inhibits mTOR signaling and tumor growth by degrading Rictor and inducing HMOX1 expression. PLoS Genet 2023; 19:e1010629. [PMID: 36787291 PMCID: PMC9928125 DOI: 10.1371/journal.pgen.1010629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| |
Collapse
|
46
|
Massaiu I, Campodonico J, Mapelli M, Salvioni E, Valerio V, Moschetta D, Myasoedova VA, Cappellini MD, Pompilio G, Poggio P, Agostoni P. Dysregulation of Iron Metabolism-Linked Genes at Myocardial Tissue and Cell Levels in Dilated Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24032887. [PMID: 36769209 PMCID: PMC9918212 DOI: 10.3390/ijms24032887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).
Collapse
Affiliation(s)
| | | | | | | | | | - Donato Moschetta
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Maria Domenica Cappellini
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| |
Collapse
|
47
|
Huang Y, He B, Song C, Long X, He J, Huang Y, Liu L. Oxymatrine ameliorates myocardial injury by inhibiting oxidative stress and apoptosis via the Nrf2/HO-1 and JAK/STAT pathways in type 2 diabetic rats. BMC Complement Med Ther 2023; 23:2. [PMID: 36597092 PMCID: PMC9808977 DOI: 10.1186/s12906-022-03818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The necessity of increasing the efficiency of organ preservation has encouraged researchers to explore the mechanisms underlying diabetes-related myocardial injuries. This study intended to evaluate the protective effects of oxymatrine (OMT) in myocardial injury caused by type 2 diabetes mellitus. A model of diabetic rats was established to simulate type 2 diabetes mellitus using an intraperitoneal injection of a single dose of 65 mg/kg streptozotocin with a high-fat and high-cholesterol diet, and diabetic rats were subsequently treated with OMT (60, 120 mg/kg) by gavage for 8 weeks. Thereafter, diabetic rats demonstrated notable decreases in left ventricular systolic pressure (LVSP), ±dp/dtmax, and in the activities of glutathione peroxidase, superoxide dismutase, and catalase. Moreover, we found notable increases in left ventricular end-diastolic pressure, fasting blood glucose, and malondialdehyde, as well as changes in cell apoptosis and decreased expression levels of Nrf2, HO-1, tyrosine protein kinase JAK (JAK), and signal transducer and transcription activator (STAT). Treatment with OMT alleviated all of the measured parameters. Collectively, these findings suggest that activation of the Nrf2/HO-1 and inhibition of the JAK/STAT signaling are involved in mediating the cardioprotective effects of OMT and also highlight the benefits of OMT in ameliorating myocardial injury in diabetic rats.
Collapse
Affiliation(s)
- Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Bin He
- grid.67293.39School of Nursing, Hunan University of Medicine, Huaihua, 418000 China
| | - Chong Song
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, affiliated to University of South China, Huaihua, 418000 Hunan China
| | - Yansong Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Lijing Liu
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| |
Collapse
|
48
|
Yue D, Zhang Q, Zhang J, Liu W, Chen L, Wang M, Li R, Qin S, Song X, Ji Y. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 171:107706. [PMID: 36565570 DOI: 10.1016/j.envint.2022.107706] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Fine particulate matter (PM2.5) has been widely reported to contribute to the pathogenesis of pulmonary diseases. The direct hazardous effect of PM2.5 on the respiratory system at high concentrations in vitro and in vivo have been well identified. However, its effect on the pre-existing respiratory diseases of patients at environment-related concentrations remains unclear. Diesel exhaust PM2.5 as a primary representative of ambient PM2.5 fine particles were used to investigated the effect of PM2.5 on the fibrosis progression of existing pulmonary fibrosis disease models. This study reported that PM2.5 could result in the enhanced sensitivity to fibrotic response, which may be ascribed to ferroptosis induced by PM2.5 in damaged lung areas. Proteomic analysis revealed that the upregulation of HO-1 as a key mechanism in the ferroptosis and exacerbation of pulmonary fibrosis induced by PM2.5. As a result, HO-1 degraded heme-containing protein and released iron in fibrotic cells, leading to generation of mitochondrial ROS and impaired mitochondrial function. Transmission electron microscopic assay verified that PM2.5 entered the mitochondria of fibrotic cells and was accompanied by significant mitochondrial morphological changes characterized by increased mitochondrial membrane density and reduced mitochondrial size. The HO-1 inhibitor zinc protoporphyrin and mitochondrion-targeted antioxidant Mito-TEMPO significantly attenuated PM2.5-induced ferroptosis and exacerbation of fibrosis. In addition, AMPK-ULK1 axis-triggered autophagy activation and NCOA4-mediated degradation of ferritin by autophagy were found to be related to the PM2.5-induced ferroptosis of fibrotic cells. As evidenced by the inhibition of autophagy with 3-methyladenine or AMPK inhibitor, NCOA4 knockdown decreased intracellular iron accumulation and lipid peroxidation, thereby relieving PM2.5-induced epithelial-mesenchymal transition and cell death in fibrotic cells. Overall, this study provided experimental support for the idea that PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis, and HO-1-mediated mitochondrial dysfunction and NCOA4-mediated ferritinophagy are jointly required for the PM2.5-induced ferroptosis and enhanced fibrosis effects.
Collapse
Affiliation(s)
- Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
49
|
Wang Z, Yao C, Huang L, Liang J, Zhang X, Shi J, Wei W, Zhou J, Zhang Y, Wu G. Enhanced external counterpulsation improves dysfunction of forearm muscle caused by radial artery occlusion. Front Cardiovasc Med 2023; 10:1115494. [PMID: 36937941 PMCID: PMC10022471 DOI: 10.3389/fcvm.2023.1115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Objective This study aimed to investigate the therapeutic effect of enhanced external counterpulsation (EECP) on radial artery occlusion (RAO) through the oscillatory shear (OS) and pulsatile shear (PS) models of human umbilical vein endothelial cells (HUVECs) and RAO dog models. Methods We used high-throughput sequencing data GSE92506 in GEO database to conduct time-series analysis of functional molecules on OS intervened HUVECs, and then compared the different molecules and their functions between PS and OS. Additionally, we studied the effect of EECP on the radial artery hemodynamics in Labrador dogs through multi-channel physiological monitor. Finally, we studied the therapeutic effect of EECP on RAO at the histological level through Hematoxylin-Eosin staining, Masson staining, ATPase staining and immunofluorescence in nine Labrador dogs. Results With the extension of OS intervention, the cell cycle decreased, blood vessel endothelial cell proliferation and angiogenesis responses of HUVECs were down-regulated. By contrast, the inflammation and oxidative stress responses and the related pathways of anaerobic metabolism of HUVECs were up-regulated. Additionally, we found that compared with OS, PS can significantly up-regulate muscle synthesis, angiogenesis, and NO production related molecules. Meanwhile, PS can significantly down-regulate inflammation and oxidative stress related molecules. The invasive arterial pressure monitoring showed that 30Kpa EECP treatment could significantly increase the radial artery peak pressure (p = 0.030, 95%CI, 7.236-82.524). Masson staining showed that RAO significantly increased muscle interstitial fibrosis (p = 0.002, 95%CI, 0.748-2.128), and EECP treatment can reduce this change (p = 0.011, 95%CI, -1.676 to -0.296). ATPase staining showed that RAO significantly increased the area of type II muscle fibers (p = 0.004, 95%CI, 7.181-25.326), and EECP treatment could reduce this change (p = 0.001, 95%CI, -29.213 to -11.069). In addition, immunofluorescence showed that EECP increased angiogenesis in muscle tissue (p = 0.035, 95%CI, 0.024-0.528). Conclusion EECP improves interstitial fibrosis and hypoxia, and increases angiogenesis of muscle tissue around radial artery induced by RAO.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Yao
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lihan Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaocong Zhang
- Department of Cardiology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Jian Shi
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenbin Wei
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jing Zhou
- Department of Cardiology, Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yahui Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Shandong, China
- Yahui Zhang,
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, Guangdong, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guifu Wu,
| |
Collapse
|
50
|
Sun T, Cruz GI, Mousavi N, Marić I, Brewer A, Wong RJ, Aghaeepour N, Sayed N, Wu JC, Stevenson DK, Leonard SA, Gymrek M, Winn VD. HMOX1 Genetic Polymorphisms Display Ancestral Diversity and May Be Linked to Hypertensive Disorders in Pregnancy. Reprod Sci 2022; 29:3465-3476. [PMID: 35697922 PMCID: PMC9734242 DOI: 10.1007/s43032-022-01001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Racial disparity exists for hypertensive disorders in pregnancy (HDP), which leads to disparate morbidity and mortality worldwide. The enzyme heme oxygenase-1 (HO-1) is encoded by HMOX1, which has genetic polymorphisms in its regulatory region that impact its expression and activity and have been associated with various diseases. However, studies of these genetic variants in HDP have been limited. The objective of this study was to examine HMOX1 as a potential genetic contributor of ancestral disparity seen in HDP. First, the 1000 Genomes Project (1 KG) phase 3 was utilized to compare the frequencies of alleles, genotypes, and estimated haplotypes of guanidine thymidine repeats (GTn; containing rs3074372) and A/T SNP (rs2071746) among females from five ancestral populations (Africa, the Americas, Europe, East Asia, and South Asia, N = 1271). Then, using genomic DNA from women with a history of HDP, we explored the possibility of HMOX1 variants predisposing women to HDP (N = 178) compared with an equivalent ancestral group from 1 KG (N = 263). Both HMOX1 variants were distributed differently across ancestries, with African women having a distinct distribution and an overall higher prevalence of the variants previously associated with lower HO-1 expression. The two HMOX1 variants display linkage disequilibrium in all but the African group, and within EUR cohort, LL and AA individuals have a higher prevalence in HDP. HMOX1 variants demonstrate ancestral differences that may contribute to racial disparity in HDP. Understanding maternal genetic contribution to HDP will help improve prediction and facilitate personalized approaches to care for HDP.
Collapse
Affiliation(s)
- Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanna I Cruz
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alina Brewer
- Preeclampsia Foundation, Juneau Biosciences, LLC, Salt Lake City, UT, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nazish Sayed
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie A Leonard
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa Gymrek
- Department of Medicine, Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|