1
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2025; 61:1597-1617. [PMID: 39279265 PMCID: PMC11903207 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Li TT, Guo XF, Zhao YJ, Cheng YH, Xin DQ, Song Y, Liu DX, Wang Z. Aberrant neuronal excitation promotes neuroinflammation in the primary motor cortex of ischemic stroke mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01518-6. [PMID: 40075146 DOI: 10.1038/s41401-025-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Current treatments for ischemic stroke aim to achieve rapid reperfusion with intravenous thrombolysis and/or endovascular thrombectomy, which have proven to attenuate disability. Despite the significant progress in reperfusion therapies, functional recovery remains inconsistent, primarily due to ongoing neuronal excitotoxicity and neuroinflammation. In this study we investigated the relationship between neuronal activity and neuroinflammation in an ischemic mouse model using chemogenetic techniques. MCAO cerebral ischemia model was established in mice; in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) was established in PC12 neurons. By measuring c-Fos expression, we showed that MCAO caused the activation of both excitatory and inhibitory neurons within the M1 primary motor cortex, which subsequently induced reactive activation of local microglia through the secretion of unique neuronal extracellular vesicles (EVs). Chemogenetic inhibition of abnormal neuronal activity in stroke-affected cortical neurons reversed microglia activation and reduced neuronal apoptosis. By analyzing the miRNAs in EVs from the ischemic M1 cortex, we found that miR-128-3p was significantly downregulated in ischemia-challenged neurons and their EVs, leading to neuronal injury and proinflammatory polarization of microglia. Intravenous injection of miR-128-3p mimics significantly improved neuronal survival, reduced neuroinflammation accompanied by better functional recovery after ischemic stroke. In summary, stroke-induced abnormal neuronal activity reduces miR-128-3p levels in ischemic neurons and EVs, leading to increased microglia activation and neuronal injury after a stroke. The study highlights that inhibiting abnormal neuronal activity or delivering miR-128-3p-enriched EVs as novel methods for stroke treatment.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Xiao-Fan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Yi-Jing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Ya-Hong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| |
Collapse
|
3
|
Kim JH, Hwang SY, Lee HL, Yoon SL, Ha Y, Lee HY, Ryu S. Effects of chemogenetic virus injection and clozapine administration in spinal cord injury. Neurotherapeutics 2025; 22:e00547. [PMID: 39955176 DOI: 10.1016/j.neurot.2025.e00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Neuromodulation therapy using chemogenetic stimulation has shown potential in enhancing motor recovery and neuroregeneration following spinal cord injury (SCI). These therapeutic benefits are hypothesized to result from the promotion of neuroplasticity, particularly when administered during the acute phase of injury. In this study, we investigated the effects of chemogenetic stimulation using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in conjunction with clozapine, a ligand for receptor activation. DREADDs enable targeted, reversible neuromodulation, facilitating the histological characterization of engineered neurons. We utilized these receptors to modulate G-protein-coupled receptor (GPCR) signaling pathways, leading to the activation or inhibition of intracellular signaling. The objective was to determine whether the administration of DREADDs and clozapine (0.1 mg/kg) could enhance motor function and neuronal recovery, particularly when applied during the acute phase of SCI. Weekly behavioral assessments demonstrated significant improvements in motor skills and neuronal regeneration in treated animals compared to controls, with the most pronounced effects observed when stimulation was initiated early after injury. These enhancements in neuroplasticity were reflected in improved ladder rung test scores and Basso, Beattie, and Bresnahan (BBB) scale results in DREADDs-treated rats. Histological analyses, including immunohistochemistry (IHC) staining, Western blotting, and quantitative reverse transcription PCR (qRT-PCR), confirmed that the treatment group exhibited a higher density of neurons, increased signaling protein expression, and reduced inflammatory markers. These findings suggest that chemogenetic stimulation, particularly when administered during the acute phase, effectively promotes neuroregeneration and motor recovery. Future research should focus on assessing the long-term safety and efficacy of chemogenetic virus injection and clozapine administration, with an emphasis on the timing of intervention.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; Life Science Cluster, Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sae Yeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Sol Lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seungjun Ryu
- Life Science Cluster, Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; Department of Neurosurgery, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Nerella SG, Eldridge MAG, Innis RB, Pike VW. PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges. J Med Chem 2025; 68:2198-2218. [PMID: 39879224 DOI: 10.1021/acs.jmedchem.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Gene therapy and cell transduction are gaining interest as therapeutic strategies for neurological and psychiatric disorders. Positron emission tomography (PET) has been established as a uniquely powerful modality for brain molecular imaging in vivo. The utility of PET depends on the development and application of suitably specific radiotracers and/or reporter probes. PET probes are potentially useful to confirm the success of gene therapy or cell transduction without the need for brain biopsy or necroscopy. Probes are needed to target proteins expressed by specific exogenous transgenes or cells and could play a crucial role in elucidating neurobiological mechanisms and in longitudinal tracking of expression for therapeutic applications. This perspective article describes the current status and ongoing challenges for the design and development of PET reporter probes for verifying the expression of reporter genes and cells in the brain. Radiochemical aspects, applications, and translational challenges for diagnostic and therapeutic interventions are highlighted.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, U.K
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| |
Collapse
|
5
|
Winiarski M, Madecka A, Yadav A, Borowska J, Wołyniak MR, Jędrzejewska-Szmek J, Kondrakiewicz L, Mankiewicz L, Chaturvedi M, Wójcik DK, Turzyński K, Puścian A, Knapska E. Information sharing within a social network is key to behavioral flexibility-Lessons from mice tested under seminaturalistic conditions. SCIENCE ADVANCES 2025; 11:eadm7255. [PMID: 39752499 PMCID: PMC11698118 DOI: 10.1126/sciadv.adm7255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/18/2024] [Indexed: 01/06/2025]
Abstract
Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions. In these settings, male mice spontaneously form social networks, with individuals occupying diverse positions. We show that a rewarded group member's scent affects the ability of conspecifics to search for rewards in familiar and novel environments. The scent's impact depends on the animal's social position. Furthermore, disruption of neuronal plasticity in the prelimbic cortex (PL) disrupts the social networks and animals' interest in social information related to rewards; only the latter is blocked by the acute PL inhibition. This experimental design represents a cutting-edge approach to studying the brain mechanisms of social learning.
Collapse
Affiliation(s)
- Maciej Winiarski
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Madecka
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anjaly Yadav
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria R. Wołyniak
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Lech Mankiewicz
- Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mayank Chaturvedi
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Faculty of Management and Social Communication, Jagiellonian University, 30-348 Cracow, Poland
| | - Krzysztof Turzyński
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Pan Y, Pan C, Mao L, Yu P. Neuromodulation with chemicals: Opportunities and challenges. FUNDAMENTAL RESEARCH 2025; 5:55-62. [PMID: 40166084 PMCID: PMC11955035 DOI: 10.1016/j.fmre.2024.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/02/2025] Open
Abstract
Chemicals play a crucial role in neurophysiological and neuropathological processes. By regulating the concentration of specific chemicals, receptors on the neuron cell membrane can be modulated to activate or inhibit, thereby influencing specific ion channels and facilitating neuromodulation. This review introduces several chemical modulation techniques, such as microinjection, electrode/nanoparticle-based chemical delivery methods, in situ electrochemical synthesis and chemogenetics. While these techniques show promise in expanding the application of chemical neuromodulation, they currently exhibit different degrees of shortcomings and room for improvement. This review summarizes the opportunities and challenges for chemical neuromodulation methods and provide an outlook for their prospects in the future.
Collapse
Affiliation(s)
- Yifei Pan
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Velasco E, Flores-Cortés M, Guerra-Armas J, Flix-Díez L, Gurdiel-Álvarez F, Donado-Bermejo A, van den Broeke EN, Pérez-Cervera L, Delicado-Miralles M. Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehav Rev 2024; 167:105886. [PMID: 39278607 DOI: 10.1016/j.neubiorev.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
Collapse
Affiliation(s)
- Enrique Velasco
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain.
| | - Mar Flores-Cortés
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Javier Guerra-Armas
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Laura Flix-Díez
- Department of Otorrinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | - Aser Donado-Bermejo
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain; Department of Pathology and Surgery. Physiotherapy Area. Faculty of Medicine, Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
8
|
Zahacy R, Ma Y, Winship IR, Jackson J, Chan AW. Claustrum modulation drives altered prefrontal cortex dynamics and connectivity. Commun Biol 2024; 7:1556. [PMID: 39578634 PMCID: PMC11584859 DOI: 10.1038/s42003-024-07256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
This study delves into the claustrum's role in modulating spontaneous and sensory-evoked network activity across cortical regions. Using mesoscale calcium imaging and Gi and Gq DREADDs in anesthetized mice, we show that decreasing claustral activity enhances prefrontal cortical activity, while activation reduces prefrontal cortical activity. This claustrum modulation also caused changes to the brain's large-scale functional networks, emphasizing the claustrum's ability to influence long-range functional connectivity in the cortex. Claustrum inhibition increased the local coupling between frontal cortex areas, but reduced the correlation between anterior medial regions and lateral/posterior regions, while also enhancing sensory-evoked responses in the visual cortex. These findings indicate the claustrum can participate in orchestrating neural communication across cortical regions through modulation of prefrontal cortical activity. These insights deepen our understanding of the claustrum's impact on prefrontal connectivity, large-scale network dynamics, and sensory processing, positioning the claustrum as a key node modulating large-scale cortical dynamics.
Collapse
Affiliation(s)
- Ryan Zahacy
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yonglie Ma
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| | - Allen W Chan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Tamayo-Molina YS, Giraldo MA, Rodríguez BA, Machado-Rodríguez G. A biological rhythm in the hypothalamic system links sleep-wake cycles with feeding-fasting cycles. Sci Rep 2024; 14:28897. [PMID: 39572629 PMCID: PMC11582708 DOI: 10.1038/s41598-024-77915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
The hypothalamus senses the appetite-regulating hormones and also coordinates the metabolic function in alignment with the circadian rhythm. This alignment is essential to maintain the physiological conditions that prevent clinically important comorbidities, such as obesity or type-2 diabetes. However, a complete model of the hypothalamus that relates food intake with circadian rhythms and appetite hormones has not yet been developed. In this work, we present a computational model that accurately allows interpreting neural activity in terms of hormone regulation and sleep-wake cycles. We used a conductance-based model, which consists of a system of four differential equations that considers the ionotropic and metabotropic receptors, and the input currents from homeostatic hormones. We proposed a logistic function that fits available experimental data of insulin hormone concentration and added it into a short-term ghrelin model that served as an input to our dynamical system. Our results show a double oscillatory system, one synchronized by light-regulated sleep-wake cycles and the other by food-regulated feeding-fasting cycles. We have also found that meal timing frequency is highly relevant for the regulation of the hypothalamus neurons. We therefore present a mathematical model to explore the plausible link between the circadian rhythm and the endogenous food clock.
Collapse
Affiliation(s)
- Y S Tamayo-Molina
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia.
| | - M A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia.
| | - B A Rodríguez
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| | - G Machado-Rodríguez
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
10
|
Iguchi Y, Benton R, Kobayashi K. A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain. Neurosci Res 2024:S0168-0102(24)00136-6. [PMID: 39532176 DOI: 10.1016/j.neures.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this "IR-mediated neuronal activation" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| |
Collapse
|
11
|
Maltsev DI, Solotenkov MA, Mukhametshina LF, Sokolov RA, Solius GM, Jappy D, Tsopina AS, Fedotov IV, Lanin AA, Fedotov AB, Krut' VG, Ermakova YG, Moshchenko AA, Rozov A, Zheltikov AM, Podgorny OV, Belousov VV. Human TRPV1 is an efficient thermogenetic actuator for chronic neuromodulation. Cell Mol Life Sci 2024; 81:437. [PMID: 39448456 PMCID: PMC11502623 DOI: 10.1007/s00018-024-05475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Thermogenetics is a promising neuromodulation technique based on the use of heat-sensitive ion channels. However, on the way to its clinical application, a number of questions have to be addressed. First, to avoid immune response in future human applications, human ion channels should be studied as thermogenetic actuators. Second, heating levels necessary to activate these channels in vivo in brain tissue should be studied and cytotoxicity of these temperatures addressed. Third, the possibility and safety of chronic neuromodulation has to be demonstrated. In this study, we present a comprehensive framework for thermogenetic neuromodulation in vivo using the thermosensitive human ion channel hTRPV1. By targeting hTRPV1 expression to excitatory neurons of the mouse brain and activating them within a non-harmful temperature range with a fiber-coupled infrared laser, we not only induced neuronal firing and stimulated locomotion in mice, but also demonstrated that thermogenetics can be employed for repeated neuromodulation without causing evident brain tissue injury. Our results lay the foundation for the use of thermogenetic neuromodulation in brain research and therapy of neuropathologies.
Collapse
Affiliation(s)
- Dmitry I Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | | - Liana F Mukhametshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Rostislav A Sokolov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022, Nizhny Novgorod, Russia
| | - Georgy M Solius
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Kazan Federal University, 420008, Kazan, Russia
| | | | - Ilya V Fedotov
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Aleksandr A Lanin
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Andrei B Fedotov
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Viktoriya G Krut'
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Yulia G Ermakova
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
| | | | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia.
| |
Collapse
|
12
|
Lanni I, Chiacchierini G, Papagno C, Santangelo V, Campolongo P. Treating Alzheimer's disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci Biobehav Rev 2024; 165:105831. [PMID: 39074672 DOI: 10.1016/j.neubiorev.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) is a severe and progressive neurodegenerative condition that exerts detrimental effects on brain function. As of now, there is no effective treatment for AD patients. This review explores two distinct avenues of research. The first revolves around the use of animal studies and preclinical models to gain insights into AD's underlying mechanisms and potential treatment strategies. Specifically, it delves into the effectiveness of interventions such as Optogenetics and Chemogenetics, shedding light on their implications for understanding pathophysiological mechanisms and potential therapeutic applications. The second avenue focuses on non-invasive brain stimulation (NiBS) techniques in the context of AD. Evidence suggests that NiBS can successfully modulate cognitive functions associated with various neurological and neuropsychiatric disorders, including AD, as demonstrated by promising findings. Here, we critically assessed recent findings in AD research belonging to these lines of research and discuss their potential impact on the clinical horizon of AD treatment. These multifaceted approaches offer hope for advancing our comprehension of AD pathology and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Ilenia Lanni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Chiacchierini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
13
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Wang X, Chen S, Wang X, Song Z, Wang Z, Niu X, Chen X, Chen X. Application of artificial hibernation technology in acute brain injury. Neural Regen Res 2024; 19:1940-1946. [PMID: 38227519 DOI: 10.4103/1673-5374.390968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Controlling intracranial pressure, nerve cell regeneration, and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury. There is currently a lack of effective treatment methods. Hibernation has the characteristics of low temperature, low metabolism, and hibernation rhythm, as well as protective effects on the nervous, cardiovascular, and motor systems. Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body's metabolism, lowering the body's core temperature, and allowing the body to enter a state similar to hibernation. This review introduces artificial hibernation technology, including mild hypothermia treatment technology, central nervous system regulation technology, and artificial hibernation-inducer technology. Upon summarizing the relevant research on artificial hibernation technology in acute brain injury, the research results show that artificial hibernation technology has neuroprotective, anti-inflammatory, and oxidative stress-resistance effects, indicating that it has therapeutic significance in acute brain injury. Furthermore, artificial hibernation technology can alleviate the damage of ischemic stroke, traumatic brain injury, cerebral hemorrhage, cerebral infarction, and other diseases, providing new strategies for treating acute brain injury. However, artificial hibernation technology is currently in its infancy and has some complications, such as electrolyte imbalance and coagulation disorders, which limit its use. Further research is needed for its clinical application.
Collapse
Affiliation(s)
- Xiaoni Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xiaoyu Wang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhen Song
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqi Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaochu Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| |
Collapse
|
15
|
Deal PE, Lee H, Mondal A, Lolicato M, Mendonça PRFD, Black H, Jang S, El-Hilali X, Bryant C, Isacoff EY, Renslo AR, Minor DL. Development of covalent chemogenetic K 2P channel activators. Cell Chem Biol 2024; 31:1305-1323.e9. [PMID: 39029456 PMCID: PMC11433823 DOI: 10.1016/j.chembiol.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024]
Abstract
K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.
Collapse
Affiliation(s)
- Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | | | - Holly Black
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Xochina El-Hilali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Weill Neurohub, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 93858-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 93858-2330, USA.
| |
Collapse
|
16
|
Fu X, Tasker JG. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front Cell Neurosci 2024; 18:1421617. [PMID: 38994327 PMCID: PMC11236696 DOI: 10.3389/fncel.2024.1421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
Collapse
Affiliation(s)
- Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
17
|
Zhang C, Tong F, Zhou B, He M, Liu S, Zhou X, Ma Q, Feng T, Du WJ, Yang H, Xu H, Xiao L, Xu ZZ, Zhu C, Wu R, Wang YQ, Han Q. TMC6 functions as a GPCR-like receptor to sense noxious heat via Gαq signaling. Cell Discov 2024; 10:66. [PMID: 38886367 PMCID: PMC11183229 DOI: 10.1038/s41421-024-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Abstract
Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Fang Tong
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Bin Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Mingdong He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Shuai Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xiaomeng Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qiang Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyu Feng
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wan-Jie Du
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Huan Yang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hao Xu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Wu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Qingjian Han
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Iguchi Y, Fukabori R, Kato S, Takahashi K, Eifuku S, Maejima Y, Shimomura K, Mizuma H, Mawatari A, Doi H, Cui Y, Onoe H, Hikishima K, Osanai M, Nishijo T, Momiyama T, Benton R, Kobayashi K. Chemogenetic activation of mammalian brain neurons expressing insect Ionotropic Receptors by systemic ligand precursor administration. Commun Biol 2024; 7:547. [PMID: 38714803 PMCID: PMC11076466 DOI: 10.1038/s42003-024-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazumi Takahashi
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroshi Mizuma
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Research, Institute for Drug Discovery Science, Collaborative Creation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keigo Hikishima
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, 305-8564, Japan
| | - Makoto Osanai
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, 565-0871, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai, 480-0392, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
19
|
Minetti A. Unlocking the potential of adeno-associated virus in neuroscience: a brief review. Mol Biol Rep 2024; 51:563. [PMID: 38647711 PMCID: PMC11035420 DOI: 10.1007/s11033-024-09521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal tool in neuroscience research, owing to its remarkable versatility and efficiency in delivering genetic material to diverse cell types within the nervous system. This mini review aims to underscore the advanced applications of AAV vectors in neuroscience and their profound potential to revolutionize our understanding of brain function and therapeutic interventions for neurological disorders. By providing a concise overview of the latest developments and strategies employing AAV vectors, this review illuminates the transformative role of AAV technology in unraveling the complexities of neural circuits and paving the way for innovative treatments. Through elucidating the multifaceted capabilities of AAV-mediated gene delivery, this review underscores its pivotal role as a cornerstone in contemporary neuroscience research, promising remarkable insights into the intricacies of brain biology and offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Antea Minetti
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
20
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Hadler MD, Tzilivaki A, Schmitz D, Alle H, Geiger JRP. Gamma oscillation plasticity is mediated via parvalbumin interneurons. SCIENCE ADVANCES 2024; 10:eadj7427. [PMID: 38295164 PMCID: PMC10830109 DOI: 10.1126/sciadv.adj7427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.
Collapse
Affiliation(s)
- Michael D. Hadler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle-Straße 10, 13125 Berlin, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R. P. Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Parrini M, Tricot G, Caroni P, Spolidoro M. Circuit mechanisms of navigation strategy learning in mice. Curr Biol 2024; 34:79-91.e4. [PMID: 38101403 DOI: 10.1016/j.cub.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Navigation tasks involve the gradual selection and deployment of increasingly effective searching procedures to reach targets. The brain mechanisms underlying such complex behavior are poorly understood, but their elucidation might provide insights into the systems linking exploration and decision making in complex learning. Here, we developed a trial-by-trial goal-related search strategy analysis as mice learned to navigate identical water mazes encompassing distinct goal-related rules and monitored the strategy deployment process throughout learning. We found that navigation learning involved the following three distinct phases: an early phase during which maze-specific search strategies are deployed in a minority of trials, a second phase of preferential increasing deployment of one search strategy, and a final phase of increasing commitment to this strategy only. The three maze learning phases were affected differently by inhibition of retrosplenial cortex (RSC), dorsomedial striatum (DMS), or dorsolateral striatum (DLS). Through brain region-specific inactivation experiments and gain-of-function experiments involving activation of learning-related cFos+ ensembles, we unraveled how goal-related strategy selection relates to deployment throughout these sequential processes. We found that RSC is critically important for search strategy selection, DMS mediates strategy deployment, and DLS ensures searching consistency throughout maze learning. Notably, activation of specific learning-related ensembles was sufficient to direct strategy selection (RSC) or strategy deployment (DMS) in a different maze. Our results establish a goal-related search strategy deployment approach to dissect unsupervised navigation learning processes and suggest that effective searching in navigation involves evidence-based goal-related strategy direction by RSC, reinforcement-modulated strategy deployment through DMS, and online guidance through DLS.
Collapse
Affiliation(s)
- Martina Parrini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Guillaume Tricot
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Maria Spolidoro
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
23
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
24
|
Finkelstein DS, Du Bois J. Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels. Chembiochem 2023; 24:e202300493. [PMID: 37746898 PMCID: PMC10863845 DOI: 10.1002/cbic.202300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Voltage-gated sodium ion channels (NaV s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of NaV s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple NaV isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na+ conductance when applied to recombinant NaV s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of NaV s expressed in the plasma membranes of cells.
Collapse
Affiliation(s)
- Darren S Finkelstein
- Department of Chemistry, Stanford University, 337 Campus Dr., Stanford, CA 94305, USA
- Present address: Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, CA 94080, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Dr., Stanford, CA 94305, USA
| |
Collapse
|
25
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Deal PE, Lee H, Mondal A, Lolicato M, de Mendonca PRF, Black H, El-Hilali X, Bryant C, Isacoff EY, Renslo AR, Minor DL. Development of covalent chemogenetic K 2P channel activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.561774. [PMID: 37905049 PMCID: PMC10614804 DOI: 10.1101/2023.10.15.561774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (Covalent Activation of TREK family K+ channels to cLAmp Membrane Potential) that leverages the discovery of a site in the K2P modulator pocket that reacts with electrophile-bearing derivatives of a TREK subfamily small molecule activator, ML335, to activate the channel irreversibly. We show that the CATKLAMP strategy can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a new means to alter K2P channel activity that should facilitate studies both molecular and systems level studies of K2P function and enable the search for new K2P modulators.
Collapse
Affiliation(s)
- Parker E. Deal
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | | | - Holly Black
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Xochina El-Hilali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 93858-2330 USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
| |
Collapse
|
27
|
Perez-Sanchez J, Middleton SJ, Pattison LA, Hilton H, Awadelkareem MA, Zuberi SR, Renke MB, Hu H, Yang X, Clark AJ, Smith ESJ, Bennett DL. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci Transl Med 2023; 15:eadh3839. [PMID: 37792955 PMCID: PMC7615191 DOI: 10.1126/scitranslmed.adh3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM4-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM4-GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM4-GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM4-GlyR activation decreased the excitability of human-induced pluripotent stem cell-derived sensory neurons and spontaneous activity due to a gain-of-function NaV1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.
Collapse
Affiliation(s)
- Jimena Perez-Sanchez
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Luke A. Pattison
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | - Helen Hilton
- Department of Pharmacology, University of Cambridge; Cambridge CB2 1PD, UK
| | | | - Sana R. Zuberi
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Maria B. Renke
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Huimin Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| | - Alex J. Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry; London E1 2AT, UK
| | | | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford; Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
29
|
Kimura K, Nagai Y, Hatanaka G, Fang Y, Tanabe S, Zheng A, Fujiwara M, Nakano M, Hori Y, Takeuchi RF, Inagaki M, Minamimoto T, Fujita I, Inoue KI, Takada M. A mosaic adeno-associated virus vector as a versatile tool that exhibits high levels of transgene expression and neuron specificity in primate brain. Nat Commun 2023; 14:4762. [PMID: 37553329 PMCID: PMC10409865 DOI: 10.1038/s41467-023-40436-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.
Collapse
Affiliation(s)
- Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Gaku Hatanaka
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Fang
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Mayuko Nakano
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ryosuke F Takeuchi
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikio Inagaki
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ichiro Fujita
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
30
|
Arús BA, Cosco ED, Yiu J, Balba I, Bischof TS, Sletten EM, Bruns OT. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice. Front Neurosci 2023; 17:1135494. [PMID: 37274204 PMCID: PMC10232761 DOI: 10.3389/fnins.2023.1135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Extracting biological information from awake and unrestrained mice is imperative to in vivo basic and pre-clinical research. Accordingly, imaging methods which preclude invasiveness, anesthesia, and/or physical restraint enable more physiologically relevant biological data extraction by eliminating these extrinsic confounders. In this article, we discuss the recent development of shortwave infrared (SWIR) fluorescent imaging to visualize peripheral organs in freely-behaving mice, as well as propose potential applications of this imaging modality in the neurosciences.
Collapse
Affiliation(s)
- Bernardo A. Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Emily D. Cosco
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joycelyn Yiu
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ilaria Balba
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas S. Bischof
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Oliver T. Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
31
|
Arús BA, Cosco ED, Yiu J, Balba I, Bischof TS, Sletten EM, Bruns OT. Shortwave infrared (SWIR) fluorescence imaging of peripheral organs in awake and freely moving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538387. [PMID: 37163051 PMCID: PMC10168299 DOI: 10.1101/2023.04.26.538387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracting biological information from awake and unrestrained mice is imperative to in vivo basic and pre-clinical research. Accordingly, imaging methods which preclude invasiveness, anesthesia, and/or physical restraint enable more physiologically relevant biological data extraction by eliminating these extrinsic confounders. In this article we discuss the recent development of shortwave infrared (SWIR) fluorescent imaging to visualize peripheral organs in freely-behaving mice, as well as propose potential applications of this imaging modality in the neurosciences.
Collapse
|
32
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
33
|
Dygalo NN. Connectivity of the Brain in the Light of Chemogenetic Modulation of Neuronal Activity. Acta Naturae 2023; 15:4-13. [PMID: 37538804 PMCID: PMC10395778 DOI: 10.32607/actanaturae.11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 08/05/2023] Open
Abstract
Connectivity is the coordinated activity of the neuronal networks responsible for brain functions; it is detected based on functional magnetic resonance imaging signals that depend on the oxygen level in the blood (blood oxygen level-dependent (BOLD) signals) supplying the brain. The BOLD signal is only indirectly related to the underlying neuronal activity; therefore, it remains an open question whether connectivity and changes in it are only manifestations of normal and pathological states of the brain or they are, to some extent, the causes of these states. The creation of chemogenetic receptors activated by synthetic drugs (designer receptors exclusively activated by designer drugs, DREADDs), which, depending on the receptor type, either facilitate or, on the contrary, inhibit the neuronal response to received physiological stimuli, makes it possible to assess brain connectivity in the light of controlled neuronal activity. Evidence suggests that connectivity is based on neuronal activity and is a manifestation of connections between brain regions that integrate sensory, cognitive, and motor functions. Chemogenetic modulation of the activity of various groups and types of neurons changes the connectivity of the brain and its complex functions. Chemogenetics can be useful in reconfiguring the pathological mechanisms of nervous and mental diseases. The initiated integration, based on the whole-brain connectome from molecular-cellular, neuronal, and synaptic processes to higher nervous activity and behavior, has the potential to significantly increase the fundamental and applied value of this branch of neuroscience.
Collapse
Affiliation(s)
- N. N. Dygalo
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Novosibirsk, 630090 Russian Federation
| |
Collapse
|
34
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
35
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534429. [PMID: 37034819 PMCID: PMC10081263 DOI: 10.1101/2023.03.27.534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rationale Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| |
Collapse
|
36
|
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior. Nat Commun 2023; 14:1613. [PMID: 36959176 PMCID: PMC10036610 DOI: 10.1038/s41467-023-37319-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Dopamine has a significant role in motor and cognitive function. The dopaminergic pathways originating from the midbrain have received the most attention; however, the relevance of the cerebellar dopaminergic system is largely undiscovered. Here, we show that the major cerebellar astrocyte type Bergmann glial cells express D1 receptors. Dopamine can be synthesized in Purkinje cells by cytochrome P450 and released in an activity-dependent fashion. We demonstrate that activation of D1 receptors induces membrane depolarization and Ca2+ release from the internal store. These astrocytic activities in turn modify Purkinje cell output by altering its excitatory and inhibitory synaptic input. Lastly, we show that conditional knockout of D1 receptors in Bergmann glial cells results in decreased locomotor activity and impaired social activity. These results contribute to the understanding of the molecular, cellular, and circuit mechanisms underlying dopamine function in the cerebellum, revealing a critical role for the cerebellar dopaminergic system in motor and social behavior.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie B Saliba
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah Martin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole A Losurdo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroscience Program, The University of Utah, Salt Lake City, UT, USA
| | - Kian Kolahdouzan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyan Siddiqui
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Destynie Medeiros
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Miranda JM, Cruz E, Bessières B, Alberini CM. Hippocampal parvalbumin interneurons play a critical role in memory development. Cell Rep 2022; 41:111643. [PMID: 36384113 PMCID: PMC9737056 DOI: 10.1016/j.celrep.2022.111643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Episodic memories formed in early childhood rapidly decay, but their latent traces remain stored long term. These memories require the dorsal hippocampus (dHPC) and seem to undergo a developmental critical period. It remains to be determined whether the maturation of parvalbumin interneurons (PVIs), a major mechanism of critical periods, contributes to memory development. Here, we show that episodic infantile learning significantly increases the levels of parvalbumin in the dHPC 48 h after training. Chemogenetic inhibition of PVIs before learning indicated that these neurons are required for infantile memory formation. A bilateral dHPC injection of the γ-aminobutyric acid type A receptor agonist diazepam after training elicited long-term memory expression in infant rats, although direct PVI chemogenetic activation had no effect. Finally, PVI activity was required for brain-derived neurotrophic factor (BDNF)-dependent maturation of memory competence, i.e., adult-like long-term memory expression. Thus, dHPC PVIs are critical for the formation of infantile memories and for memory development.
Collapse
Affiliation(s)
- Janelle M Miranda
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Emmanuel Cruz
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Benjamin Bessières
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
38
|
Raper J, Eldridge MAG, Sternson SM, Shim JY, Fomani GP, Richmond BJ, Wichmann T, Galvan A. Characterization of Ultrapotent Chemogenetic Ligands for Research Applications in Nonhuman Primates. ACS Chem Neurosci 2022; 13:3118-3125. [PMID: 36279419 PMCID: PMC9910343 DOI: 10.1021/acschemneuro.2c00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chemogenetics is a technique for obtaining selective pharmacological control over a cell population by expressing an engineered receptor that is selectively activated by an exogenously administered ligand. A promising approach for neuronal modulation involves the use of "Pharmacologically Selective Actuator Modules" (PSAMs); these chemogenetic receptors are selectively activated by ultrapotent "Pharmacologically Selective Effector Molecules" (uPSEMs). To extend the use of PSAM/PSEMs to studies in nonhuman primates, it is necessary to thoroughly characterize the efficacy and safety of these tools. We describe the time course and brain penetrance in rhesus monkeys of two compounds with promising binding specificity and efficacy profiles in in vitro studies, uPSEM792 and uPSEM817, after systemic administration. Rhesus monkeys received subcutaneous (s.c.) or intravenous (i.v.) administration of uPSEM817 (0.064 mg/kg) or uPSEM792 (0.87 mg/kg), and plasma and cerebrospinal fluid samples were collected over 48 h. Both compounds exhibited good brain penetrance, relatively slow washout, and negligible conversion to potential metabolites─varenicline or hydroxyvarenicline. In addition, we found that neither of these uPSEMs significantly altered the heart rate or sleep. Our results indicate that both compounds are suitable candidates for neuroscience studies using PSAMs in nonhuman primates.
Collapse
Affiliation(s)
- Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, United States
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, United States
| | - Jalene Y Shim
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Grace P Fomani
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Thomas Wichmann
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322, United States
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Singh I, Wang L, Xia B, Liu J, Tahiri A, El Ouaamari A, Wheeler MB, Pang ZP. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci 2022; 12:178. [PMID: 36309763 PMCID: PMC9618215 DOI: 10.1186/s13578-022-00914-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy balance. In the brain, Glucagon-like peptide 1 (GLP-1), encoded by the proglucagon 'Gcg' gene, produced in a distinct population of neurons in the nucleus tractus solitarius (NTS), has been shown to regulate feeding behavior leading to the suppression of appetite. However, neuronal networks that mediate endogenous GLP-1 action in the CNS on feeding and energy balance are not well understood. RESULTS We analyzed the distribution of GLP-1R-expressing neurons and axonal projections of NTS GLP-1-producing neurons in the mouse brain. GLP-1R neurons were found to be broadly distributed in the brain and specific forebrain regions, particularly the hypothalamus, including the arcuate nucleus of the hypothalamus (ARC), a brain region known to regulate energy homeostasis and feeding behavior, that receives dense NTSGcg neuronal projections. The impact of GLP-1 signaling in the ARC GLP-1R-expressing neurons and the impact of activation of ARC GLP-1R on food intake was examined. Application of GLP-1R specific agonist Exendin-4 (Exn-4) enhanced a proportion of the ARC GLP-1R-expressing neurons and pro-opiomelanocortin (POMC) neuronal action potential firing rates. Chemogenetic activation of the ARC GLP-1R neurons by using Cre-dependent hM3Dq AAV in the GLP-1R-ires-Cre mice, established that acute activation of the ARC GLP-1R neurons significantly suppressed food intake but did not have a strong impact on glucose homeostasis. CONCLUSIONS These results highlight the importance of central GLP-1 signaling in the ARC that express GLP-1R that upon activation, regulate feeding behavior.
Collapse
Affiliation(s)
- Ishnoor Singh
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Baijuan Xia
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025 China
| | - Ji Liu
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.59053.3a0000000121679639National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Azeddine Tahiri
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Abdelfattah El Ouaamari
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Michael B. Wheeler
- grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada ,Metabolism Research Group, Division of Advanced Diagnostics, Toronto, ON Canada
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
40
|
Tan N, Shi J, Xu L, Zheng Y, Wang X, Lai N, Fang Z, Chen J, Wang Y, Chen Z. Lateral Hypothalamus Calcium/Calmodulin-Dependent Protein Kinase II α Neurons Encode Novelty-Seeking Signals to Promote Predatory Eating. Research (Wash D C) 2022; 2022:9802382. [PMID: 36061821 PMCID: PMC9394055 DOI: 10.34133/2022/9802382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Predatory hunting is an innate appetite-driven and evolutionarily conserved behavior essential for animal survival, integrating sequential behaviors including searching, pursuit, attack, retrieval, and ultimately consumption. Nevertheless, neural circuits underlying hunting behavior with different features remain largely unexplored. Here, we deciphered a novel function of lateral hypothalamus (LH) calcium/calmodulin-dependent protein kinase II α (CaMKIIα+) neurons in hunting behavior and uncovered upstream/downstream circuit basis. LH CaMKIIα+ neurons bidirectionally modulate novelty-seeking behavior, predatory attack, and eating in hunting behavior. LH CaMKIIα+ neurons integrate hunting-related novelty-seeking information from the medial preoptic area (MPOA) and project to the ventral periaqueductal gray (vPAG) to promote predatory eating. Our results demonstrate that LH CaMKIIα+ neurons are the key hub that integrate MPOA-conveyed novelty-seeking signals and encode predatory eating in hunting behavior, which enriched the neuronal substrate of hunting behavior.
Collapse
Affiliation(s)
- Na Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Shi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingyu Xu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhuowen Fang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jialu Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
Karami S, Doroodmand MM, Mootabi-Alavi A. In Vivo Chemogenetic Biocompatibility of Mercury as a Specific Hypercalcemia Actuator in Snail's Spinal Cord Cell Manipulation: An Extracellular Field Potential Biosensor. ACS APPLIED BIO MATERIALS 2022; 5:3649-3657. [PMID: 35830462 DOI: 10.1021/acsabm.1c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo chemogenetic property of mercuric ions (Hg2+) was investigated as a specific hypercalcemia actuator in snail's spinal cord cell manipulation by extracellular field potential biosensing analysis. For this purpose, a three-microelectrode system with working, counter, and pseudo reference electrodes was blindly implanted into the snail's spinal cord to electrically stimulate (triggering) the action potential with a staircase electrical voltage at a very low frequency level, along with measurement of the electrical current, as a detection system. Under optimum conditions, using the one-factor-at-a-time method, a wide linear range between 1.0 × 10-14 and 1.0 × 10-1 mol L-1 with correlation coefficients (R2) >0.98 and a response time (t90) of maximum 10.0 s were approximated. Percentages of relative standard deviation were estimated to be 3.08 (reproducibility, n = 50) and 7.31 (repeatability, n = 15). The detection limit was estimated to be sub 2.1 × 10-16 mol L-1 based on the Xb- + 3Sb definition. The reliability of this phenomenon was evidenced by the estimation of recovery percentages (between 95 and 107%) during spiking Hg2+ standard solutions. The probable mechanism behind this process could be attributed to the following: (i) the neuronal ephaptic coupling during electrical synchronization by a specific brain-triggered wave as a neuronal motor toolkit and (ii) chemical synchronization using a Hg2+ hypercalcemia actuator (biosensor). Linear correlation has been evidenced during interactions between Hg2+ and a calcium ionic channel's protein with a gram molecular weight of 66.2 ± 0.3 KCU. This process, therefore, caused an opening of the Ca2+ channel gates and majorly released the Ca2+ (hypercalcemia) that was detected as the main source of the measured electrical current. At this condition, ultratrace levels of Hg2+ ions not only were considered as nontoxic reagents but also had chemically regulating effects as ephaptic synchronizers to the neuron cells. This report may pave the way for using mercury ions at an ultratrace level for clinical controlling purposes during neuronal spinal cord cell manipulation.
Collapse
Affiliation(s)
- Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz 71454, Iran
| | | | - Amir Mootabi-Alavi
- Physiological Division of Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
42
|
Liu Z, Hruby VJ. MC4R biased signalling and the conformational basis of biological function selections. J Cell Mol Med 2022; 26:4125-4136. [PMID: 35818295 PMCID: PMC9344818 DOI: 10.1111/jcmm.17441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The MC4R, a GPCR, has long been a major target for obesity treatment. As the most well‐studied melanocortin receptor subtype, the evolutionary knowledge pushes the drug development and structure–activity relationship (SAR) moving forward. The past decades have witnessed the evolution of scientists' view on GPCRs gradually from the control of a single canonical signalling pathway via a bilateral ‘active‐inactive’ model to a multi‐state alternative model where the ligands' binding affects the selection of the downstream signalling. This evolution brings the concept of biased signalling and the beginning of the next generation of peptide drug development, with the aim of turning from receptor subtype specificity to signalling pathway selectivity. The determination of the value structures of the MC4R revealed insights into the working mechanism of MC4R activation upon binding of agonists. However, new challenge has risen as we seek to unravel the mystery of MC4R signalling selection. Thus, more biased agonists and ligands with representative biological functions are needed to solve the rest of the puzzle.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
43
|
Strategy updating mediated by specific retrosplenial-parafascicular-basal ganglia networks. Curr Biol 2022; 32:3477-3492.e5. [DOI: 10.1016/j.cub.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
|
44
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|
45
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
46
|
Nentwig TB, Obray JD, Vaughan DT, Chandler LJ. Behavioral and slice electrophysiological assessment of DREADD ligand, deschloroclozapine (DCZ) in rats. Sci Rep 2022; 12:6595. [PMID: 35449195 PMCID: PMC9023443 DOI: 10.1038/s41598-022-10668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - J Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA.
| |
Collapse
|
47
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
48
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
50
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|