1
|
Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: MAPKs, MAP3Ks, MAP4Ks and DUSPs. Cell Signal 2024; 124:111397. [PMID: 39251052 DOI: 10.1016/j.cellsig.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Mammalian cardiomyocytes become terminally-differentiated during the perinatal period. In rodents, cytokinesis ceases after a final division cycle immediately after birth. Nuclear division continues and most cardiomyocytes become binucleated by ∼11 days. Subsequent growth results from an increase in cardiomyocyte size. The mechanisms involved remain under investigation. Mitogen-activated protein kinases (MAPKs) regulate cell growth/death: extracellular signal-regulated kinases 1/2 (ERK1/2) promote proliferation, whilst c-Jun N-terminal kinases (JNKs) and p38-MAPKs respond to cellular stresses. We assessed their regulation in rat hearts during postnatal development (2, 7, 14, and 28 days, 12 weeks) during which time there was rapid, substantial downregulation of mitosis/cytokinesis genes (Cenpa/e/f, Aurkb, Anln, Cdca8, Orc6) with lesser downregulation of DNA replication genes (Orcs1-5, Mcms2-7). MAPK activation was assessed by immunoblotting for total and phosphorylated (activated) kinases. Total ERK1/2 was downregulated, but not JNKs or p38-MAPKs, whilst phosphorylation of all MAPKs increased relative to total protein albeit transiently for JNKs. These profiles differed from activation of Akt (also involved in cardiomyocyte growth). Dual-specificity phosphatases, upstream MAPK kinase kinases (MAP3Ks), and MAP3K kinases (MAP4Ks) identified in neonatal rat cardiomyocytes by RNASeq were differentially regulated during postnatal cardiac development. The MAP3Ks that we could assess by immunoblotting (RAF kinases and Map3k3) showed greater downregulation of the protein than mRNA. MAP3K2/MAP3K3/MAP4K5 were upregulated in human failing heart samples and may be part of the "foetal gene programme" of re-expressed genes in disease. Thus, MAPKs, along with kinases and phosphatases that regulate them, potentially play a significant role in postnatal remodelling of the heart.
Collapse
Affiliation(s)
- Hajed O Alharbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Quassim University, Buraydah, Saudi Arabia; School of Biological Sciences, University of Reading, Reading, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Reading, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
2
|
Wen S, Huang X, Xiong L, Zeng H, Wu S, An K, Bai J, Zhou Z, Yin T. WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. Mol Cell Biochem 2024; 479:3341-3354. [PMID: 38341833 DOI: 10.1007/s11010-024-04937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.
Collapse
Affiliation(s)
- Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Xueqing Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Jing Bai
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Hong T, Park J, An G, Song J, Song G, Lim W. Evaluation of organ developmental toxicity of environmental toxicants using zebrafish embryos. Mol Cells 2024; 47:100144. [PMID: 39489379 PMCID: PMC11635654 DOI: 10.1016/j.mocell.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
There is increasing global concern about environmental pollutants, such as heavy metals, plastics, pharmaceuticals, personal care products, and pesticides, which have been detected in a variety of environments and are likely to be exposed to nontarget organisms, including humans. Various animal models have been utilized for toxicity assessment, and zebrafish are particularly valuable for studying the toxicity of various compounds owing to their similarity to other aquatic organisms and 70% genetic similarity to humans. Their development is easy to observe, and transgenic models for organs such as the heart, liver, blood vessels, and nervous system enable efficient studies of organ-specific toxicity. This suggests that zebrafish are a valuable tool for evaluating toxicity in specific organs and forecasting the potential impacts on other nontarget species. This review describes organ toxicity caused by various toxic substances and their mechanisms in zebrafish.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Tang W, Gu Z, Guo J, Lin M, Tao H, Jia D, Jia P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules 2024; 14:1462. [PMID: 39595638 PMCID: PMC11592067 DOI: 10.3390/biom14111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Activins and inhibins, members of the transforming growth factor β (TGFβ) superfamily, were initially recognized for their opposing effects on the secretion of follicle-stimulating hormone. Subsequent research has demonstrated their broader biological roles across various tissue types. Primarily, activins and inhibins function through the classical TGFβ SMAD signaling pathway, but studies suggest that they also act through other pathways, with their specific signaling being complex and context-dependent. Recent research has identified significant roles for activins and inhibins in the cardiovascular system. Their actions in other systems and their signaling pathways show strong correlations with the development and progression of cardiovascular diseases, indicating potential broader roles in the cardiovascular system. This review summarizes the progress in research on the biological functions and mechanisms of activins and inhibins and their signaling pathways in cardiovascular diseases, offering new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| |
Collapse
|
5
|
Senechal I, Andres MS, Tong J, Ramalingam S, Nazir MS, Rosen SD, Young K, Idaikkadar P, Larkin J, Lyon AR. Risk Stratification, Screening and Treatment of BRAF/MEK Inhibitors-Associated Cardiotoxicity. Curr Oncol Rep 2024; 26:1431-1441. [PMID: 39316222 DOI: 10.1007/s11912-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE OF REVIEW In this review article we describe the cardiovascular adverse events associated with BRAF and MEK inhibitors as well as their pathophysiologic mechanisms and provide up to date guidance for risk stratified surveillance of patients on treatment and the optimal management of emergent cardiotoxicities. RECENT FINDINGS Combination BRAF/MEK inhibition has become an established standard treatment option for patients with a wide variety of BRAF mutant haematological and solid organ cancers, its use is most commonly associated with stage three and metastatic melanoma. The introduction of these targeted drugs has significantly improved the prognosis of previously treatment resistant cancers. It is increasingly recognised that these drugs have a number of cardiovascular toxicities including left ventricular systolic dysfunction, hypertension and QTc interval prolongation. Whilst cardiotoxicity is largely reversible and manageable with medical therapy, it does limit the effective use of these highly active agents.
Collapse
Affiliation(s)
- Isabelle Senechal
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada.
| | - Maria Sol Andres
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jieli Tong
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sivatharshini Ramalingam
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Muhummad Sohaib Nazir
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stuart D Rosen
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kate Young
- Royal Marsden Hospital Foundation Trust, London, UK
| | | | - James Larkin
- Royal Marsden Hospital Foundation Trust, London, UK
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
7
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
8
|
Fu H, Kong B, Shuai W, Zhu J, Wang X, Tang Y, Huang H, Huang C. Leukocyte Ig-like receptor B4 (Lilrb4a) alleviates cardiac dysfunction and isoproterenol-induced arrhythmogenic remodeling associated with cardiac fibrosis and inflammation. Heart Rhythm 2024; 21:1998-2009. [PMID: 38636927 DOI: 10.1016/j.hrthm.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Heart failure is usually accompanied by activation of the sympathetic nerve, and excessive activation of the sympathetic nerve promotes cardiac remodeling and cardiac dysfunction. In the isoproterenol (ISO)-induced animal model, it is often accompanied by myocardial hypertrophy, fibrosis, and inflammation. Leukocyte immunoglobulin-like receptor B4a (Lilrb4a), an immunosuppressive regulatory receptor, plays a vital role in cardiovascular disease. However, the effect of Lilrb4a on ventricular arrhythmia in an ISO-induced mouse model remains unclear. OBJECTIVE The purpose of this study was to explore the role and molecular mechanism of Lilrb4a in ISO-induced arrhythmogenic remodeling. METHODS Lilrb4a knockout mice and Lilrb4a overexpression mice were infused with ISO (15 mg/kg per 24 hours, 4 weeks). Echocardiography and histology evaluations of myocardial hypertrophy and cardiac structural remodeling were conducted. Surface electrocardiography and electrophysiologic examination were used to evaluate cardiac electrical remodeling and susceptibility to ventricular arrhythmias. Quantitative reverse transcriptase-polymerase chain reaction analysis and Western blotting were used to detect the expression levels of ion channel proteins and signal pathway proteins. RESULTS The results discovered that ISO induced cardiac hypertrophy, fibrosis, and inflammation and led to electrical remodeling and the occurrence of ventricular arrhythmias. Lilrb4a alleviated cardiac structural and electrical remodeling and protected against the occurrence of ventricular arrhythmias in ISO-induced mice by gain-of-function or loss-of-function approaches. The mechanism is that Lilrb4a inhibited NF-κB signaling and MAPK signaling activation mediated by transforming growth factor kinase 1. CONCLUSION Lilrb4a alleviates cardiac dysfunction and ISO-induced arrhythmogenic remodeling associated with cardiac fibrosis and inflammation through the regulation of NF-κB signaling and MAPK signaling activation.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
9
|
Jiang Y, Gu J, Niu X, Hu J, Zhang Y, Li D, Tang Y, Liu C, Li Z. Phosphorylation-Regulated Dynamic Phase Separation of HIP-55 Protects Against Heart Failure. Circulation 2024; 150:938-951. [PMID: 38328928 PMCID: PMC11404759 DOI: 10.1161/circulationaha.123.067519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Heart failure (HF), which is the terminal stage of many cardiovascular diseases, is associated with low survival rates and a severe financial burden. The mechanisms, especially the molecular mechanism combined with new theories, underlying the pathogenesis of HF remain elusive. We demonstrate that phosphorylation-regulated dynamic liquid-liquid phase separation of HIP-55 (hematopoietic progenitor kinase 1-interacting protein of 55 kDa) protects against HF. METHODS Fluorescence recovery after photobleaching assay, differential interference contrast analysis, pull-down assay, immunofluorescence, and immunohistochemical analysis were used to investigate the liquid-liquid phase separation capacity of HIP-55 and its dynamic regulation in vivo and in vitro. Mice with genetic deletion of HIP-55 and mice with cardiac-specific overexpression of HIP-55 were used to examine the role of HIP-55 on β-adrenergic receptor hyperactivation-induced HF. Mutation analysis and mice with specific phospho-resistant site mutagenesis were used to identify the role of phosphorylation-regulated dynamic liquid-liquid phase separation of HIP-55 in HF. RESULTS Genetic deletion of HIP-55 aggravated HF, whereas cardiac-specific overexpression of HIP-55 significantly alleviated HF in vivo. HIP-55 possesses a strong capacity for phase separation. Phase separation of HIP-55 is dynamically regulated by AKT-mediated phosphorylation at S269 and T291 sites, failure of which leads to impairment of HIP-55 dynamic phase separation by formation of abnormal aggregation. Prolonged sympathetic hyperactivation stress induced decreased phosphorylation of HIP-55 S269 and T291, dysregulated phase separation, and subsequent aggregate formation of HIP55. Moreover, we demonstrated the important role of dynamic phase separation of HIP-55 in inhibiting hyperactivation of the β-adrenergic receptor-mediated P38/MAPK (mitogen-activated protein kinase) signaling pathway. A phosphorylation-deficient HIP-55 mutation, which undergoes massive phase separation and forms insoluble aggregates, loses the protective activity against HF. CONCLUSIONS Our work reveals that the phosphorylation-regulated dynamic phase separation of HIP-55 protects against sympathetic/adrenergic system-mediated heart failure.
Collapse
Affiliation(s)
- Yunqi Jiang
- Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Vascular Homeostasis and Remodeling, and NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry and State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (J.G., J.H., C.L.)
| | - Xiaodou Niu
- Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Vascular Homeostasis and Remodeling, and NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry and State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (J.G., J.H., C.L.)
| | - Yongzhen Zhang
- Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Vascular Homeostasis and Remodeling, and NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China (D.L.)
| | - Yida Tang
- Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Vascular Homeostasis and Remodeling, and NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry and State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (J.G., J.H., C.L.)
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine (Y.J., X.N., Y.Z., Y.T., Z.L.), Peking University Third Hospital, Beijing, China
- Department of Pharmacy (Z.L.), Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Vascular Homeostasis and Remodeling, and NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (Y.J., X.N., Y.Z., Y.T., Z.L.)
| |
Collapse
|
10
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Han Y, Xi J, Zhang P, Gong M, Luo T, Shao F, Li Y, Zhong L, Quan H. 5(S)-5-Carboxystrictosidine from the Root of Mappianthus iodoides Ameliorates H2O2-induced Apoptosis in H9c2 Cardiomyocytes via PI3K/AKT and ERK Pathways. PLANTA MEDICA 2024; 90:885-895. [PMID: 38857860 DOI: 10.1055/a-2341-6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Junli Xi
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Puzhao Zhang
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Ming Gong
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Tao Luo
- Blood Purification Center of the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Feng Shao
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Yongxin Li
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Hexiu Quan
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| |
Collapse
|
12
|
Ibrahim Z, Khan NA, Siddiqui R, Qaisar R, Marzook H, Soares NC, Elmoselhi AB. Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being. Nutr Metab (Lond) 2024; 21:66. [PMID: 39123239 PMCID: PMC11316329 DOI: 10.1186/s12986-024-00836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS,, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Nelson C Soares
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid university of Medicine and Health Sciences, Dubai, 0000, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av Padre Cruz, Lisbon, 1649-016, Portugal
| | - Adel B Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE.
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
13
|
Tran P, Lau C, Joshi M, Kuehl M, Maddock H, Banerjee P. Exploring Changes in Myocyte Structure, Contractility, and Energetics From Mechanical Unloading in Patients With Heart Failure Undergoing Ventricular Assist Device Implantation: A Systematic Review and Meta-Analysis. Heart Lung Circ 2024; 33:1097-1116. [PMID: 38704332 DOI: 10.1016/j.hlc.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 05/06/2024]
Abstract
AIMS Recent reports of myocardial recovery after mechanical unloading with left ventricular assist devices (LVADs) have challenged the prevailing notion that end-stage heart failure (HF) is irreversible. To improve our understanding of this phenomenon, we comprehensively analysed the structural, functional, and energetic changes in failing human cardiomyocytes after LVAD implantation. METHODS Based on a prospectively registered protocol (PROSPERO-CRD42022380214), 30 eligible studies were identified from 940 records with a pooled population of 648 patients predominantly with non-ischaemic cardiomyopathy. RESULTS LVAD led to a substantial regression in myocyte size similar to that of donor hearts (standardised mean difference, -1.29; p<0.001). The meta-regression analysis revealed that HF duration was a significant modifier on the changes in myocyte size. There were some suggestions of fibrosis reversal (-5.17%; p=0.009); however, this was insignificant after sensitivity analysis. Developed force did not improve in cardiac trabeculae (n=5 studies); however, non-physiological isometric contractions were tested. At the myocyte level (n=4 studies), contractile kinetics improved where the time-to-peak force reduced by 41.7%-50.7% and time to 50% relaxation fell by 47.4%-62.1% (p<0.05). Qualitatively, LVAD enhanced substrate utilisation and mitochondrial function (n=6 studies). Most studies were at a high risk of bias. CONCLUSION The regression of maladaptive hypertrophy, partial fibrosis reversal, and normalisation in metabolic pathways after LVAD may be a testament to the heart's remarkable plasticity, even in the advanced stages of HF. However, inconsistencies exist in force-generating capabilities. Using more physiological force-length work-loop assays, addressing the high risks of bias and clinical heterogeneity are crucial to better understand the phenomenon of reverse remodelling.
Collapse
Affiliation(s)
- Patrick Tran
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Clement Lau
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Mithilesh Joshi
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Michael Kuehl
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Helen Maddock
- Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Prithwish Banerjee
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Li Y, Yao M, Xie F, Qiu Y, Zhao X, Li R. Gut microbiota as a residual risk factor causally influencing cardiac structure and function: Mendelian randomization analysis and biological annotation. Front Microbiol 2024; 15:1410272. [PMID: 39132134 PMCID: PMC11316272 DOI: 10.3389/fmicb.2024.1410272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meidan Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Key Laboratory of Chinese Medicine Evidence, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjun Zhao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Talevi V, Melas K, Pehlivan G, Imtiaz MA, Krüger DM, Centeno TP, Aziz NA, Fischer A, Breteler MMB. Peripheral whole blood microRNA expression in relation to vascular function: a population-based study. J Transl Med 2024; 22:670. [PMID: 39030538 PMCID: PMC11264787 DOI: 10.1186/s12967-024-05407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Konstantinos Melas
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Mohammed A Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Hu S, Wen J, Fan XD, Li P. Study on therapeutic mechanism of total salvianolic acids against myocardial ischemia-reperfusion injury based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117902. [PMID: 38360382 DOI: 10.1016/j.jep.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae, also known as Danshen in Chinese, effectively activates the blood and resolves stasis. Total salvianolic acids (SA) is the main active ingredient of Danshen, and related preparations, such as salvianolate injection are commonly used clinically to treat myocardial ischemia-reperfusion injury (MIRI). However, the potential targets and key active ingredients of SA have not been sufficiently investigated. AIM OF THE STUDY This study aimed to investigate the mechanism of action of SA in treating MIRI. MATERIALS AND METHODS Network pharmacology and molecular docking techniques were used to predict SA targets against MIRI. The key acting pathway of SA were validated by performing experiments in a rat MIRI model. RESULTS Twenty potential ingredients and 54 targets of SA in treating MIRI were identified. Ingredient-target-pathway network analysis revealed that salvianolic acid B and rosmarinic acid had the highest degree value. Pathway enrichment analysis showed that SA may regulate MIRI through the IL-17 signaling pathway, and this result was confirmed in the rat MIRI experiment. CONCLUSION The results of this study indicate that SA may protect MIRI by regulating the IL-17 pathway.
Collapse
Affiliation(s)
- Shuang Hu
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Wen
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-di Fan
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| |
Collapse
|
18
|
Cao B, Kong H, Shen C, She G, Tian S, Liu H, Cui L, Zhang Y, He Q, Xia Q, Liu K. Dimethyl phthalate induced cardiovascular developmental toxicity in zebrafish embryos by regulating MAPK and calcium signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171902. [PMID: 38521262 DOI: 10.1016/j.scitotenv.2024.171902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.
Collapse
Affiliation(s)
- Bianneng Cao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haotian Kong
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuimiao Tian
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haojie Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Lishuang Cui
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| |
Collapse
|
19
|
Chen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep 2024; 29:73. [PMID: 38488029 PMCID: PMC10955520 DOI: 10.3892/mmr.2024.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium‑glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.
Collapse
Affiliation(s)
- Bixian Chen
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jing Guo
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Hongmei Ye
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xinyu Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yufei Feng
- Clinical Trial Institution, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
20
|
Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the Potential Mechanisms of Guanxinshutong Capsules in Treating Pathological Cardiac Hypertrophy based on Network Pharmacology, Computer-Aided Drug Design, and Animal Experiments. ACS OMEGA 2024; 9:18083-18098. [PMID: 38680308 PMCID: PMC11044149 DOI: 10.1021/acsomega.3c10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Cardiovascular diseases (CVDs) are significant causes of morbidity and mortality worldwide, and pathological cardiac hypertrophy (PCH) is an essential predictor of many heart diseases. Guanxinshutong capsule (GXST) is a Chinese patent medicine widely used in the clinical treatment of CVD, In our previous research, we identified 111 compounds of GXST. In order to reveal the potential molecular mechanisms by which GXST treats PCH, this study employed network pharmacology methods to screen for the active ingredients of GXST in treating PCH and predicted the potential targets. The results identified 26 active ingredients of GXST and 110 potential targets for PCH. Through a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed AKT1, MAPK1, and MAPK3 as the core proteins in GXST treatment of PCH, thus establishing the PI3K/AKT and MAPK signaling pathways as the significant mechanisms of GXST in treating PCH. The results of molecular docking (MD) demonstrate that flavonoid naringenin and diterpenoid tanshinone iia have the highest binding affinity with the core protein. Before performing molecular dynamics simulations (MDSs), the geometric structure of naringenin and tanshinone iia was optimized using density functional theory (DFT) at the B97-3c level, and RESP2 atomic charge calculations were carried out at the B3LYP-D3(BJ)/def2-TZVP level. Further MDS results demonstrated that in the human body environment, the complex of naringenin and tanshinone iii with core proteins exhibited high stability, flexibility, and low binding free energy. Additionally, naringenin and tanshinone iia showed favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics and passed the drug similarity (DS) assessment. Ultrasound cardiograms and cardiac morphometric measurements in animal experiments demonstrate that GXST can improve the PCH induced by isoproterenol (ISO). Protein immunoblotting results indicate that GXST increases the expression of P-eNOS and eNOS by activating the PI3K/AKT signaling pathway and the MAPK signaling pathway, further elucidating the mechanism of action of GXST in treating PCH. This study contributes to the elucidation of the key ingredients and molecular mechanisms of GXST in treating PCH.
Collapse
Affiliation(s)
- Yuanfeng Liu
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Qixiang Li
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Chongyu Shao
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yong She
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou, Zhejiang 310053, China
| | - Huiyan An
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Ting Wang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
21
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
22
|
Beurton A, Michot M, Hérion FX, Rienzo M, Oddos C, Couffinhal T, Imbault J, Ouattara A. Systemic Hemodynamics, Cardiac Mechanics, and Signaling Pathways Induced by Extracorporeal Membrane Oxygenation in a Cardiogenic Shock Model. ASAIO J 2024; 70:177-184. [PMID: 38261663 DOI: 10.1097/mat.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO) is increasingly being used in patients suffering from refractory cardiogenic shock (CS). Although considered life-saving, peripheral VA-ECMO may also be responsible for intracardiac hemodynamic changes, including left ventricular overload and dysfunction. Venoarterial extracorporeal membrane oxygenation may also increase myocardial wall stress and stroke work, possibly affecting the cellular cardioprotective and apoptosis signaling pathways, and thus the infarct size. To test this hypothesis, we investigated the effects of increasing the peripheral VA-ECMO blood flow (25-100% of the baseline cardiac output) on systemic and cardiac hemodynamics in a closed-chest CS model. Upon completion of the experiment, the hearts were removed for assessment of infarct size, histology, apoptosis measurements, and phosphorylation statuses of p38 and protein Kinase B (Akt), and extracellular signal-regulated kinase mitogen-activated protein kinases (ERK-MAPK). Peripheral VA-ECMO restored systemic perfusion but induced a significant and blood flow-dependent increase in left ventricular preload and afterload. Venoarterial extracorporeal membrane oxygenation did not affect infarct size but significantly decreased p38-MAPK phosphorylation and cardiac myocyte apoptosis in the border zone.
Collapse
Affiliation(s)
- Antoine Beurton
- From the CHU Bordeaux, Department of Cardiovascular Anesthesia and Critical Care, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| | - Maxime Michot
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| | - François-Xavier Hérion
- From the CHU Bordeaux, Department of Cardiovascular Anesthesia and Critical Care, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| | - Mario Rienzo
- Department of Anesthesia and Intensive Care, Private Hospital of Parly 2, Le Chesnay, France
| | - Claire Oddos
- From the CHU Bordeaux, Department of Cardiovascular Anesthesia and Critical Care, F-33000 Bordeaux, France
| | - Thierry Couffinhal
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| | - Julien Imbault
- From the CHU Bordeaux, Department of Cardiovascular Anesthesia and Critical Care, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| | - Alexandre Ouattara
- From the CHU Bordeaux, Department of Cardiovascular Anesthesia and Critical Care, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, Biology of cardiovascular diseases, U1034, F-33600 Pessac, France
| |
Collapse
|
23
|
Lin KH, Ng SC, Lu SY, Lin YM, Lin SH, Su TC, Huang CY, Kuo WW. Diallyl trisulfide (DATS) protects cardiac cells against advanced glycation end-product-induced apoptosis by enhancing FoxO3A-dependent upregulation of miRNA-210. J Nutr Biochem 2024; 125:109567. [PMID: 38185348 DOI: 10.1016/j.jnutbio.2024.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy is a common complication of diabetes, resulting in cardiac hypertrophy and heart failure associated with excessive reactive oxygen species and mitochondria-mediated apoptosis generation. Mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK), regulated by microRNA (miR)-210, affects mitochondrial function and is activated by advanced glycation end-products (AGE) in cardiac cells. Diallyl trisulfide (DATS), an antioxidant in garlic oil, inhibits stress-induced cardiac apoptosis. This study examined whether DATS enhances miR-210 expression to attenuate cardiac apoptosis. We investigated the DATS-mediated attenuation mechanism of AGE-enhanced cardiac apoptosis by modulating miR-210 and its upstream transcriptional regulator, FoxO3a. We found FoxO3a binding sites in the miR-210 promoter region. Our results indicated that DATS treatment inhibited AGE-induced JNK activation, phosphoprotein c-Jun nuclear transactivation, and cardiac apoptosis and reversed the AGE-induced reduction in cardiac miR-210 levels. The luciferase activity after DATS treatment was significantly lower than that of the control and was reversed following AGE treatment. We also showed that FoxO3a, upregulated by DATS treatment, may bind to the miR-210 promoter to enhance its expression and downregulates JNK expression to attenuate AGE-induced cardiac apoptosis. Oral administration of DATS enhanced FoxO3a expression in the heart and reduced diabetes-induced heart apoptosis. Our findings indicate that DATS mediates AGE-induced cardiac cell apoptosis attenuation by promoting FoxO3a nuclear transactivation to enhance miR-210 expression and regulate JNK activation. Our results suggest that DATS can be used as a cardioprotective agent, and miR-210 is a critical regulator in inhibiting diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan ROC; Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan ROC
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan ROC
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan ROC; School of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC; Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan ROC
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan ROC; Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan ROC; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan ROC
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan ROC; School of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan ROC; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan ROC; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ROC; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan ROC; Program for Biotechnology Industry, China Medical University, Taichung, Taiwan ROC.
| |
Collapse
|
24
|
Wei S, Ju F, Xiao J, Li J, Liu T, Hu Z. Aloperine Alleviates Myocardial Injury Induced by Myocardial Ischemia and Reperfusion by Activating the ERK1/2/β-catenin Signaling Pathway. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07566-0. [PMID: 38416285 DOI: 10.1007/s10557-024-07566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury can cause severe cardiac damage. Aloperine is a quinolizidine alkaloid found in the leaves and seeds of Sophora alopecuroides L. It has been recognized that aloperine has organ-protective properties; however, its role in cardioprotection is poorly characterized. This study aimed to evaluate the cardioprotective effects of aloperine against myocardial I/R injury in vivo. METHODS Adult male Sprague‒Dawley rats were randomly divided into sham-operated, control, and aloperine groups. All rats except for the sham-operated rats were subjected to 45 min of myocardial ischemia (by left anterior descending ligation) followed by 3 h of reperfusion. Aloperine (10 mg/kg) was given intravenously at the onset of reperfusion. The cardioprotective effects of aloperine were evaluated by determining infarct size, hemodynamics, histological changes, cardiac biomarkers, and cardiac apoptosis. RESULTS Aloperine limited infarct size; improved hemodynamics; attenuated myocardial I/R-induced histological deterioration; decreased serum LDH, CK-MB, and α-HBDH levels; and inhibited apoptosis after myocardial I/R injury. Moreover, aloperine stimulated the phosphorylation of ventricular ERK1/2, which is a major module of MAPK signaling pathways. Furthermore, aloperine increased the ventricular expression levels of β-catenin. Pharmacological inhibition of ERK1/2 diminished aloperine-induced cardioprotection and blocked ERK1/2/β-catenin signaling. CONCLUSIONS These data support the cardioprotective effect of aloperine against myocardial I/R injury, which is mediated, at least in part, by the ERK1/2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
26
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
27
|
Salyer LG, Salhi HE, Brundage EA, Shettigar V, Sturgill SL, Zanella H, Templeton B, Abay E, Emmer KM, Lowe J, Rafael-Fortney JA, Parinandi N, Foster DB, McKinsey TA, Woulfe KC, Ziolo MT, Biesiadecki BJ. Troponin I Tyrosine Phosphorylation Beneficially Accelerates Diastolic Function. Circ Res 2024; 134:33-45. [PMID: 38095088 PMCID: PMC10872382 DOI: 10.1161/circresaha.123.323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND A healthy heart is able to modify its function and increase relaxation through post-translational modifications of myofilament proteins. While there are known examples of serine/threonine kinases directly phosphorylating myofilament proteins to modify heart function, the roles of tyrosine (Y) phosphorylation to directly modify heart function have not been demonstrated. The myofilament protein TnI (troponin I) is the inhibitory subunit of the troponin complex and is a key regulator of cardiac contraction and relaxation. We previously demonstrated that TnI-Y26 phosphorylation decreases calcium-sensitive force development and accelerates calcium dissociation, suggesting a novel role for tyrosine kinase-mediated TnI-Y26 phosphorylation to regulate cardiac relaxation. Therefore, we hypothesize that increasing TnI-Y26 phosphorylation will increase cardiac relaxation in vivo and be beneficial during pathological diastolic dysfunction. METHODS The signaling pathway involved in TnI-Y26 phosphorylation was predicted in silico and validated by tyrosine kinase activation and inhibition in primary adult murine cardiomyocytes. To investigate how TnI-Y26 phosphorylation affects cardiac muscle, structure, and function in vivo, we developed a novel TnI-Y26 phosphorylation-mimetic mouse that was subjected to echocardiography, pressure-volume loop hemodynamics, and myofibril mechanical studies. TnI-Y26 phosphorylation-mimetic mice were further subjected to the nephrectomy/DOCA (deoxycorticosterone acetate) model of diastolic dysfunction to investigate the effects of increased TnI-Y26 phosphorylation in disease. RESULTS Src tyrosine kinase is sufficient to phosphorylate TnI-Y26 in cardiomyocytes. TnI-Y26 phosphorylation accelerates in vivo relaxation without detrimental structural or systolic impairment. In a mouse model of diastolic dysfunction, TnI-Y26 phosphorylation is beneficial and protects against the development of disease. CONCLUSIONS We have demonstrated that tyrosine kinase phosphorylation of TnI is a novel mechanism to directly and beneficially accelerate myocardial relaxation in vivo.
Collapse
Affiliation(s)
- Lorien G Salyer
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Hussam E Salhi
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Vikram Shettigar
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Sarah L Sturgill
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Helena Zanella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Benjamin Templeton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Eaman Abay
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Kathryn M Emmer
- University Laboratory Animal Resources (K.M.E.), Ohio State University, Columbus
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Narasimham Parinandi
- Division of Pulmonary, Critical Care and Sleep Medicine (N.P.), Ohio State University, Columbus
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (D.B.F.)
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology (T.A.M., K.C.W.), University of Colorado Anschutz Medical Campus, Aurora
- Consortium for Fibrosis Research and Translation (T.A.M.), University of Colorado Anschutz Medical Campus, Aurora
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology (T.A.M., K.C.W.), University of Colorado Anschutz Medical Campus, Aurora
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute (L.G.S., H.E.S., E.A.B., V.S., S.L.S., H.Z., B.T., E.A., J.L., J.A.R.-F., M.T.Z., B.J.B.), Ohio State University, Columbus
| |
Collapse
|
28
|
Wang G, Zhao R, Zhang X, Zheng Y, Xie F, Jiang Y, Lv G, Long D, Sun C, Bao Y, Qi S, Liu X, Zhang Q, Yang X. EGFR/MAPK signaling pathway acts as a potential therapeutic target for sulforaphane-rescued heart tube malformation induced by various concentrations of PhIP exposure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155270. [PMID: 38096717 DOI: 10.1016/j.phymed.2023.155270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND 2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyrimidine (PhIP) is a known carcinogen generated mainly from cooking meat and environmental pollutants. It is worth exploring the potential of natural small-molecule drugs to protect against adverse effects on embryonic development. PURPOSE In this study, we investigated the potential toxicological effects of PhIP on embryonic heart tube formation and the effect of Sulforaphane (SFN) administration on the anti-toxicological effects of PhIP on embryonic cardiogenesis. STUDY DESIGN AND METHODS First, the chicken embryo model was used to investigate the different phenotypes of embryonic heart tubes induced by various concentrations of PhIP exposure. We also proved that SFN rescues PhIP-induced embryonic heart tube malformation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR) and flow cytometry experiments were employed to explore the mechanisms by which SFN protects cardiac cells from oxidative damage in the presence of PhIP. We used RNA-seq analysis, molecular docking, in situ hybridization, cellular thermal shift assay and solution nuclear magnetic resonance spectroscopy to explore whether SFN protects cardiogenesis through the EGFR/MAPK signaling pathway. RESULTS The study showed that PhIP might dose-dependently interfere with the C-looping heart tube (mild) or the fusion of a pair of bilateral endocardial tubes (severe) in chick embryos, while SFN administration prevented cardiac cells from oxidative damage in the presence of high-level PhIP. Furthermore, we found that excessive reactive oxygen species (ROS) production and subsequent apoptosis were not the principal mechanisms by which low-level PhIP induced malformation of heart tubes. This is due to PhIP-disturbed Mitogen-activated protein kinase (MAPK) signaling pathway could be corrected by SFN administration. CONCLUSIONS This study provided novel insight that PhIP exposure could increase the risk of abnormalities in early cardiogenesis and that SFN could partially rescue various concentrations of PhIP-induced abnormal heart tube formation by targeting EGFR and mediating EGFR/MAPK signaling pathways.
Collapse
Affiliation(s)
- Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xinxia Zhang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Ying Zheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Feiling Xie
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yu Jiang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guohua Lv
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Denglu Long
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Chengyang Sun
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, United Kingdom
| | - Shuangyu Qi
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xinyue Liu
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China; Clinical Research Center, Clifford Hospital, Guangzhou 511495, China.
| |
Collapse
|
29
|
Momeni Z, Danesh S, Ahmadpour M, Eshraghi R, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions. Curr Med Chem 2024; 31:3733-3751. [PMID: 37815180 DOI: 10.2174/0109298673259299230921150030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Zahra Momeni
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Danesh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Samarghandian
- University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
30
|
Chen YC, Chen JH, Hsieh FI. Major adverse cardiovascular events of vascular endothelial growth factor tyrosine kinase inhibitors among patients with different malignancy: A systemic review and network meta-analysis. J Chin Med Assoc 2024; 87:48-57. [PMID: 37991373 DOI: 10.1097/jcma.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) are a common cancer treatment. However, the pharmacologic characteristics of VEGF-TKIs may influence cardiovascular risks. The relative risks of major adverse cardiovascular events (MACEs) associated with VEGF-TKIs are poorly understood. METHODS We searched PubMed, Embase, and ClinicalTrials.gov from inception until August 31, 2021, for phase II/III randomized controlled trials of 11 VEGF-TKIs (axitinib, cabozantinib, lenvatinib, pazopanib, ponatinib, ripretinib, regorafenib, sorafenib, sunitinib, tivozanib, and vandetanib). The endpoints were heart failure, thromboembolism, and cardiovascular death. The Mantel-Haenszel method was used to calculate the risk of VEGF-TKI among users by comparing it to nonusers. Pairwise meta-analyses with a random-effects model were used to estimate the risks of the various VEGF-TKIs. We estimated ranked probability with a P-score and assessed credibility using the Confidence in Network Meta-Analysis framework. RESULTS We identified 69 trials involving 30 180 patients with cancer. The highest risk of MACEs was associated with high-potency tivazonib (odds ratio [OR]: 3.34), lenvatinib (OR: 3.26), and axitinib (OR: 2.04), followed by low-potency pazopanib (OR: 1.79), sorafenib (OR: 1.77), and sunitinib (OR: 1.66). The risk of heart failure significantly increased in association with less-selective sorafenib (OR: 3.53), pazopanib (OR: 3.10), and sunitinib (OR: 2.65). The risk of thromboembolism significantly increased in association with nonselective lenvatinib (OR: 3.12), sorafenib (OR: 1.54), and sunitinib (OR: 1.53). Higher potency (tivozanib, axitinib) and lower selectivity (sorafenib, vandetanib, pazopanib, sunitinib) were associated with a higher probability of heart failure. Low selectivity (lenvatinib, cabozantinib, sorafenib, sunitinib) was associated with a higher probability of thromboembolism. CONCLUSION Higher-potency and lower-selectivity VEGF-TKIs may influence the risks of MACEs, heart failure, and thromboembolism. These findings may facilitate evidence-based decision-making in clinical practice.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan, ROC
- Health Data Analytics and Statistics Centre, Office of Data Science, Taipei Medical University, Taipei, Taiwan, ROC
| | - Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan, ROC
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomic, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
31
|
Lee H, An G, Park J, You J, Song G, Lim W. Mevinphos induces developmental defects via inflammation, apoptosis, and altered MAPK and Akt signaling pathways in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109768. [PMID: 37858660 DOI: 10.1016/j.cbpc.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Mevinphos, an organophosphate insecticide, is widely used to control pests and enhance crop yield. Because of its high solubility, it can easily flow into water and threaten the aquatic environment, and it is known to be hazardous to non-target organisms. However, little is known about its developmental toxicity and the underlying toxic mechanisms. In this study, we utilized zebrafish, which is frequently used for toxicological research to estimate the toxicity in other aquatic organisms or vertebrates including humans, to elucidate the developmental defects induced by mevinphos. Here, we observed that mevinphos induced various phenotypical abnormalities, such as diminished eyes and head sizes, shortened body length, loss of swim bladder, and increased pericardiac edema. Also, exposure to mevinphos triggered inflammation, apoptosis, and DNA fragmentation in zebrafish larvae. In addition, MAPK and Akt signaling pathways, which control apoptosis, inflammation, and proper development of various organs, were also altered by the treatment of mevinphos. Furthermore, these factors induced various organ defects which were confirmed by various transgenic models. We identified neuronal toxicity through transgenic olig2:dsRed zebrafish, cardiovascular toxicity through transgenic fli1:eGFP zebrafish, and hepatotoxicity and pancreatic toxicity through transgenic lfabp:dsRed;elastase:GFP zebrafish. Overall, our results elucidated the developmental toxicities of mevinphos in zebrafish and provided the parameters for the assessment of toxicities in aquatic environments.
Collapse
Affiliation(s)
- Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
32
|
Son CO, Hong MH, Kim HY, Han BH, Seo CS, Lee HS, Yoon JJ, Kang DG. Sibjotang Protects against Cardiac Hypertrophy In Vitro and In Vivo. Life (Basel) 2023; 13:2307. [PMID: 38137908 PMCID: PMC10744393 DOI: 10.3390/life13122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiac hypertrophy is developed by various diseases such as myocardial infarction, valve diseases, hypertension, and aortic stenosis. Sibjotang (, Shizaotang, SJT), a classic formula in Korean traditional medicine, has been shown to modulate the equilibrium of body fluids and blood pressure. This research study sought to explore the impact and underlying process of Sibjotang on cardiotoxicity induced by DOX in H9c2 cells. In vitro, H9c2 cells were induced by DOX (1 μM) in the presence or absence of SJT (1-5 μg/mL) and incubated for 24 h. In vivo, SJT was administrated to isoproterenol (ISO)-induced cardiac hypertrophy mice (n = 8) at 100 mg/kg/day concentrations. Immunofluorescence staining revealed that SJT mitigated the enlargement of H9c2 cells caused by DOX in a dose-dependent way. Using SJT as a pretreatment notably suppressed the rise in cardiac hypertrophic marker levels induced by DOX. SJT inhibited the DOX-induced ERK1/2 and p38 MAPK signaling pathways. In addition, SJT significantly decreased the expression of the hypertrophy-associated transcription factor GATA binding factor 4 (GATA 4) induced by DOX. SJT also decreased hypertrophy-associated calcineurin and NFAT protein levels. Pretreatment with SJT significantly attenuated DOX-induced apoptosis-associated proteins such as Bax, caspase-3, and caspase-9 without affecting cell viability. In addition, the results of the in vivo study indicated that SJT significantly reduced the left ventricle/body weight ratio level. Administration of SJT reduced the expression of hypertrophy markers, such as ANP and BNP. These results suggest that SJT attenuates cardiac hypertrophy and heart failure induced by DOX or ISO through the inhibition of the calcineurin/NFAT/GATA4 pathway. Therefore, SJT may be a potential treatment for the prevention and treatment of cardiac hypertrophy that leads to heart failure.
Collapse
Affiliation(s)
- Chan-Ok Son
- Department of Ophthalmology, Konkuk University School of Medicine, Gwangjin-gu, Seoul 05030, Republic of Korea;
| | - Mi-Hyeon Hong
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
- College of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
33
|
Jiang YN, Yang SX, Guan X, Chen Q, Zhao L, Yu XY, Ren FF, Wu SJ, Wu LP, Lai TF, Li L. Loss of USP22 alleviates cardiac hypertrophy induced by pressure overload through HiF1-α-TAK1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166813. [PMID: 37488049 DOI: 10.1016/j.bbadis.2023.166813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-β-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Yi-Na Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shou-Xing Yang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiaoying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shu-Jie Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
34
|
Ricchiuti N, Chenoweth K, Gao X, Bare DJ, Yan J, Ai X. Long-Term Alcohol-Activated c-Jun N-terminal Kinase Isoform 2 Preserves Cardiac Function but Drives Ca 2+-Triggered Arrhythmias. Cells 2023; 12:2233. [PMID: 37759456 PMCID: PMC10527640 DOI: 10.3390/cells12182233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Long-term alcohol consumption leads to cardiac arrhythmias including atrial fibrillation (AF), the most common alcohol-related arrhythmia. While AF significantly increases morbidity and mortality in patients, it takes years for an alcoholic individual undergoing an adaptive status with normal cardiac function to reach alcoholic cardiomyopathy. The underlying mechanism remains unclear to date. In this study, we assessed the functional role of JNK2 in long-term alcohol-evoked atrial arrhythmogenicity but preserved cardiac function. Wild-type (WT) mice and cardiac-specific JNK2dn mice (with an overexpression of inactive dominant negative (dn) JNK2) were treated with alcohol (2 g/kg daily for 2 months; 2 Mo). Confocal Ca2+ imaging in the intact mouse hearts showed that long-term alcohol prolonged intracellular Ca2+ transient decay, and increased pacing-induced Ca2+ waves, compared to that of sham controls, while cardiac-specific JNK2 inhibition in JNK2dn mice precluded alcohol-evoked Ca2+-triggered activities. Moreover, activated JNK2 enhances diastolic SR Ca2+ leak in 24 h and 48 h alcohol-exposed HL-1 atrial myocytes as well as HEK-RyR2 cells (inducible expression of human RyR2) with the overexpression of tGFP-tagged active JNK2-tGFP or inactive JNK2dn-tGFP. Meanwhile, the SR Ca2+ load and systolic Ca2+ transient amplitude were both increased in ventricular myocytes, along with the preserved cardiac function in 2 Mo alcohol-exposed mice. Moreover, the role of activated JNK2 in SR Ca2+ overload and enhanced transient amplitude was also confirmed in long-term alcohol-exposed HL-1 atrial myocytes. In conclusion, our findings suggest that long-term alcohol-activated JNK2 is a key driver in preserved cardiac function, but at the expense of enhanced cardiac arrhythmogenicity. Modulating JNK2 activity could be a novel anti-arrhythmia therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | - Jiajie Yan
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Dixit G, Pappas BA, Bhardwaj G, Schanz W, Maretzky T. Functional Distinctions of Endometrial Cancer-Associated Mutations in the Fibroblast Growth Factor Receptor 2 Gene. Cells 2023; 12:2227. [PMID: 37759450 PMCID: PMC10526318 DOI: 10.3390/cells12182227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Functional analysis of somatic mutations in tumorigenesis facilitates the development and optimization of personalized therapy for cancer patients. The fibroblast growth factor receptor 2 (FGFR2) gene is frequently mutated in endometrial cancer (EC), but the functional implications of FGFR2 mutations in cancer development remain largely unexplored. In this study, we introduced a reliable and readily deployable screening method to investigate the effects of FGFR2 mutations. We demonstrated that distinct mutations in FGFR2 can lead to differential downstream consequences, specifically affecting a disintegrin- and metalloprotease 17 (ADAM17)-dependent shedding of the epidermal growth factor receptor (EGFR) ligand heparin-binding EGF-like growth factor (HB-EGF) and phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, we showed that the distribution of mutations within the FGFR2 gene can influence their oncogenic effects. Together, these findings provide important insights into the complex nature of FGFR2 mutations and their potential implications for EC. By unraveling the distinct effects of different mutations, our study contributes to the identification of personalized treatment strategies for patients with FGFR2-mutated cancers. This knowledge has the potential to guide the development of targeted therapies that specifically address the underlying molecular alterations associated with FGFR2 mutations, ultimately improving patient outcomes in EC and potentially other cancer types characterized by FGFR2 mutations.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Benjamin A. Pappas
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Willow Schanz
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Thorsten Maretzky
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
- Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Golatkar V, Bhatt LK. mAKAPβ signalosome: A potential target for cardiac hypertrophy. Drug Dev Res 2023; 84:1072-1084. [PMID: 37203301 DOI: 10.1002/ddr.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPβ is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPβ near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPβ improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPβ is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPβ is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPβ signalosome as a potential target for cardiac hypertrophy intervention.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
37
|
Dinh H, Kovács ZZA, Márványkövi F, Kis M, Kupecz K, Szűcs G, Freiwan M, Lauber GY, Acar E, Siska A, Ibos KE, Bodnár É, Kriston A, Kovács F, Horváth P, Földesi I, Cserni G, Podesser BK, Pokreisz P, Kiss A, Dux L, Csabafi K, Sárközy M. The kisspeptin-1 receptor antagonist peptide-234 aggravates uremic cardiomyopathy in a rat model. Sci Rep 2023; 13:14046. [PMID: 37640761 PMCID: PMC10462750 DOI: 10.1038/s41598-023-41037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Uremic cardiomyopathy is characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis. Dysregulation of the kisspeptin receptor (KISS1R)-mediated pathways are associated with the development of fibrosis in cancerous diseases. Here, we investigated the effects of the KISS1R antagonist peptide-234 (P234) on the development of uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (i) Sham, (ii) chronic kidney disease (CKD) induced by 5/6 nephrectomy, (iii) CKD treated with a lower dose of P234 (ip. 13 µg/day), (iv) CKD treated with a higher dose of P234 (ip. 26 µg/day). Treatments were administered daily from week 3 for 10 days. At week 13, the P234 administration did not influence the creatinine clearance and urinary protein excretion. However, the higher dose of P234 led to reduced anterior and posterior wall thicknesses, more severe interstitial fibrosis, and overexpression of genes associated with left ventricular remodeling (Ctgf, Tgfb, Col3a1, Mmp9), stretch (Nppa), and apoptosis (Bax, Bcl2, Casp7) compared to the CKD group. In contrast, no significant differences were found in the expressions of apoptosis-associated proteins between the groups. Our results suggest that the higher dose of P234 hastens the development and pathophysiology of uremic cardiomyopathy by activating the fibrotic TGF-β-mediated pathways.
Collapse
Affiliation(s)
- Hoa Dinh
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Biochemistry, Bach Mai Hospital, Hanoi, 100000, Vietnam
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Merse Kis
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Klaudia Kupecz
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Marah Freiwan
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gülsüm Yilmaz Lauber
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Peter Pokreisz
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - László Dux
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Márta Sárközy
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
38
|
Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. JACC. ASIA 2023; 3:539-555. [PMID: 37614533 PMCID: PMC10442885 DOI: 10.1016/j.jacasi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 08/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure characterized by the enlargement of the left ventricular cavity and contractile dysfunction of the myocardium. Lipids are the major sources of energy for the myocardium. Impairment of lipid homeostasis has a potential role in the pathogenesis of DCM. In this review, we have summarized the role of different lipids in the progression of DCM that can be considered as potential biomarkers. Further, we have also explained the mechanistic pathways followed by the lipid molecules in disease progression along with the cardioprotective role of certain lipids. As the global epidemiological status of DCM is alarming, it is high time to define some disease-specific biomarkers with greater prognostic value. We are proposing an adaptation of a system lipidomics-based approach to profile DCM patients in order to achieve a better diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Shubham Saha
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Hiteshi Vaidya
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Prakash Chand Negi
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| |
Collapse
|
39
|
Sun Y, Xu C, Jiang Z, Jiang X. DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis 2023; 14:483. [PMID: 37524688 PMCID: PMC10390462 DOI: 10.1038/s41419-023-05948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China.
| |
Collapse
|
40
|
Singh M, Anvekar P, Baraskar B, Pallipamu N, Gadam S, Cherukuri ASS, Damani DN, Kulkarni K, Arunachalam SP. Prospective of Pancreatic Cancer Diagnosis Using Cardiac Sensing. J Imaging 2023; 9:149. [PMID: 37623681 PMCID: PMC10455647 DOI: 10.3390/jimaging9080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Pancreatic carcinoma (Ca Pancreas) is the third leading cause of cancer-related deaths in the world. The malignancies of the pancreas can be diagnosed with the help of various imaging modalities. An endoscopic ultrasound with a tissue biopsy is so far considered to be the gold standard in terms of the detection of Ca Pancreas, especially for lesions <2 mm. However, other methods, like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), are also conventionally used. Moreover, newer techniques, like proteomics, radiomics, metabolomics, and artificial intelligence (AI), are slowly being introduced for diagnosing pancreatic cancer. Regardless, it is still a challenge to diagnose pancreatic carcinoma non-invasively at an early stage due to its delayed presentation. Similarly, this also makes it difficult to demonstrate an association between Ca Pancreas and other vital organs of the body, such as the heart. A number of studies have proven a correlation between the heart and pancreatic cancer. The tumor of the pancreas affects the heart at the physiological, as well as the molecular, level. An overexpression of the SMAD4 gene; a disruption in biomolecules, such as IGF, MAPK, and ApoE; and increased CA19-9 markers are a few of the many factors that are noted to affect cardiovascular systems with pancreatic malignancies. A comprehensive review of this correlation will aid researchers in conducting studies to help establish a definite relation between the two organs and discover ways to use it for the early detection of Ca Pancreas.
Collapse
Affiliation(s)
- Mansunderbir Singh
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Priyanka Anvekar
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA;
| | - Bhavana Baraskar
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
| | - Akhila Sai Sree Cherukuri
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Devanshi N. Damani
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX 79995, USA
| | - Kanchan Kulkarni
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, U1045, 33000 Bordeaux, France;
- IHU Liryc, Heart Rhythm Disease Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (M.S.); (B.B.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Putra TMH, Rodriguez-Fernandez R, Widodo WA, Elfiana M, Laksono S, Nguyen QN, Tan JWC, Narula J. Myocardial fibrosis in rheumatic heart disease: emerging concepts and clinical implications. Front Cardiovasc Med 2023; 10:1230894. [PMID: 37564912 PMCID: PMC10411611 DOI: 10.3389/fcvm.2023.1230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Rheumatic heart disease (RHD) remains a significant cardiovascular burden in the world even though it is no longer common in affluent countries. Centuries of history surrounding this disease provide us with a thorough understanding of its pathophysiology. Infections in the throat, skin, or mucosa are the gateway for Group A Streptococcus (GAS) to penetrate our immune system. A significant inflammatory response to the heart is caused by an immunologic cascade triggered by GAS antigen cross-reactivity. This exaggerated immune response is primarily responsible for cardiac dysfunction. Recurrent inflammatory processes damage all layers of the heart, including the endocardium, myocardium, and pericardium. A vicious immunological cycle involving inflammatory mediators, angiotensin II, and TGF-β promotes extracellular matrix remodeling, resulting in myocardial fibrosis. Myocardial fibrosis appears to be a prevalent occurrence in patients with RHD. The presence of myocardial fibrosis, which causes left ventricular dysfunction in RHD, might be utilized to determine options for treatment and might also be used to predict the outcome of interventions in patients with RHD. This emerging concept of myocardial fibrosis needs to be explored comprehensively in order to be optimally utilized in the treatment of RHD.
Collapse
Affiliation(s)
| | | | - Wishnu Aditya Widodo
- Department of Cardiology and Vascular Medicine, Jakarta Heart Center, Jakarta, Indonesia
| | - Maria Elfiana
- Research Unit, Jakarta Heart Center, Jakarta, Indonesia
| | - Sidhi Laksono
- Faculty of Medicine, Universitas Muhammadiyah Prof. DR. Hamka, Tangerang, Indonesia
| | | | - Jack Wei Chieh Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
42
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
43
|
Nakhaei-Rad S, Haghighi F, Bazgir F, Dahlmann J, Busley AV, Buchholzer M, Kleemann K, Schänzer A, Borchardt A, Hahn A, Kötter S, Schanze D, Anand R, Funk F, Kronenbitter AV, Scheller J, Piekorz RP, Reichert AS, Volleth M, Wolf MJ, Cirstea IC, Gelb BD, Tartaglia M, Schmitt JP, Krüger M, Kutschka I, Cyganek L, Zenker M, Kensah G, Ahmadian MR. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol 2023; 6:657. [PMID: 37344639 PMCID: PMC10284840 DOI: 10.1038/s42003-023-05013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dahlmann
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Alexandra Viktoria Busley
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Borchardt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Vera Kronenbitter
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Kutschka
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany.
| | - George Kensah
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
44
|
Ridwan M, Dimiati H, Syukri M, Lesmana R. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review. Egypt Heart J 2023; 75:46. [PMID: 37306727 PMCID: PMC10260731 DOI: 10.1186/s43044-023-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common risk factors for cardiovascular disease in the world with prevalence of more than 500 million population in 2021. Cardiac fibrosis with its complex process has been hypothesized as one of the mechanisms explaining development of heart failure in diabetic patients. Recently, the biomolecular mechanism of cardiac fibrosis in the hyperglycemia setting has been focusing around transforming growth factor β-1 (TGFβ-1) as a major factor. However, there is interplay role of several factors including microRNAs (miRNAs) which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. This narrative review included articles from the PubMed and Science Direct databases published in the last 10 years (2012-2022). MAIN TEXT In diabetic patients, excessive activation of myofibroblasts occurs and triggers pro-collagen to convert into mature collagen to fill the cardiac interstitial space resulting in a pathological process of extracellular matrix remodeling. The balance between matrix metalloproteinase (MMP) and its inhibitor (tissue inhibitor of metalloproteinase, TIMP) is crucial in degradation of the extracellular matrix. Diabetes-related cardiac fibrosis is modulated by increasing level of TGF-β1 mediated by cellular components, including cardiomyocyte and non-cardiomyocyte cells involving fibroblasts, vascular pericytes smooth muscle cells, endothelial cells, mast cells, macrophages, and dendritic cells. Several miRNAs such as miR-21, miR-9, miR-29, miR-30d, miR-144, miR-34a, miR-150, miR-320, and miR-378 are upregulated in diabetic cardiomyopathy. TGF-β1, together with inflammatory cytokines, oxidative stress, combined sma and the mothers against decapentaplegic (smad) protein, mitogen-activated protein kinase (MAPK), and microRNAs, is interconnectedly involved in extracellular matrix production and fibrotic response. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. CONCLUSIONS Long-term hyperglycemia activates cardiac fibroblast via complex processes involving TGF-β1, miRNA, inflammatory chemokines, oxidative stress, smad, or MAPK pathways. There is increasing evidence of miRNA's roles lately in modulating cardiac fibrosis.
Collapse
Affiliation(s)
- Muhammad Ridwan
- Doctorate School of Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Herlina Dimiati
- Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Maimun Syukri
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
45
|
Kumar S, Awasthi A, Raj K, Singh S. L-theanine attenuates LPS-induced motor deficit in experimental rat model of Parkinson's disease: emphasis on mitochondrial activity, neuroinflammation, and neurotransmitters. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06382-y. [PMID: 37191688 DOI: 10.1007/s00213-023-06382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
RATIONALE Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. The pathogenesis of PD includes oxidative stress, mitochondrial dysfunction, neuroinflammation, and neurotransmitter dysregulation. L-theanine is found in green tea and has antioxidant, anti-inflammatory, and neuroprotective effects with a high blood brain barrier permeability. OBJECTIVE The objective of this study was to investigate the possible neuroprotective effect of L-theanine in lipopolysaccharide (LPS) induced motor deficits and striatal neurotoxicity in a rat model of PD. METHODS LPS was infused at a dose of 5 μg/5 μl PBS stereotaxically into SNpc of rats. Treatment with L-theanine (50 and 100 mg/kg; po) and Sinemet (36 mg/kg; po) was given from day 7 to 21 in of LPS injected rat. On a weekly basis all behavioral parameters were assessed, and animals were sacrificed on day 22. The striatum tissue of brain was isolated for biochemicals (Nitrite, GSH, catalase, SOD, mitochondrial complexes I and IV), neuroinflammatory markers, and neurotransmitters (serotonin, dopamine, norepinephrine, GABA, and glutamate) estimations. RESULTS Results revealed that L-theanine dose-dependently and significantly reversed motor deficits, assessed through locomotor and rotarod activity. Moreover, L-theanine attenuated biochemical markers, reduced oxidative stress, and neurotransmitters dysbalance in the brain. L-theanine treatment at 100 mg/kg; po substantially reduced these pathogenic events by increasing mitochondrial activity, restoring neurotransmitter levels, and inhibiting neuroinflammation. CONCLUSIONS These data suggest that the positive effects of L-theanine on motor coordination may be mediated by the suppression of NF-κB induced by LPS. Therefore, L-theanine would have a new therapeutic potential for PD.
Collapse
Affiliation(s)
- Shivam Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
46
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
47
|
Fu C, Wang M, Lu Y, Pan J, Li Y, Li Y, Wang Y, Wang A, Huang Y, Sun J, Liu C. Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway. Molecules 2023; 28:molecules28093687. [PMID: 37175097 PMCID: PMC10180121 DOI: 10.3390/molecules28093687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Although Polygonum orientale L. (PO) has a beneficial effect on treatment of myocardial ischemia (MI), its mechanism remains unclear. This study aimed to explore the pharmacological mechanism of PO against MI through MAPK signaling pathways. Firstly, the therapeutic effect of PO was evaluated for treatment of MI mice. Using Western blot and immunohistochemistry, the influence of PO on MAPK signaling pathways and cell apoptosis was investigated. Subsequently, one key pathway (ERK) of MAPK signaling pathways was screened out, on which PO posed the most obvious impact. Finally, an inhibitor of ERK1/2 was utilized to further verify the regulatory effect of PO on the MAPK/ERK signaling pathway. It was found that PO could reduce the elevation of the ST segment; injury of heart tissue; the activity of LDH, CK, NOS, cNOS and iNOS and the levels of NO, BNP, TNF-α and IL-6. It is notable that PO could significantly modulate the protein content of p-ERK/ERK in mice suffering from MI but hardly had an effect on p-JNK/JNK and p-p38/p38. Additionally, the expressions of bax, caspase3 and caspase9 were inhibited in heart tissue in the PO-treated group. To evaluate whether ERK1/2 inhibitor (PD98059) could block the effect of PO on treatment of MI, both PO and PD98059 were given to mice with MI. It was discovered that the inhibitor indeed could significantly reverse the regulatory effects of PO on the above indicators, indicating that PO could regulate p-ERK/ERK. This study provides experimental evidence that PO extenuates MI injury, cardiomyocyte apoptosis and inflammation by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Changli Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingjin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yueting Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
48
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
49
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
50
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|