1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Sainero-Alcolado L, Mushtaq M, Liaño-Pons J, Rodriguez-Garcia A, Yuan Y, Liu T, Ruiz-Pérez MV, Schlisio S, Bedoya-Reina O, Arsenian-Henriksson M. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:226. [PMID: 35850708 PMCID: PMC9295514 DOI: 10.1186/s13046-022-02399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuroblastoma (NB), a childhood tumor derived from the sympathetic nervous system, presents with heterogeneous clinical behavior. While some tumors regress spontaneously without medical intervention, others are resistant to therapy, associated with an aggressive phenotype. MYCN-amplification, frequently occurring in high-risk NB, is correlated with an undifferentiated phenotype and poor prognosis. Differentiation induction has been proposed as a therapeutic approach for high-risk NB. We have previously shown that MYCN maintains an undifferentiated state via regulation of the miR-17 ~ 92 microRNA cluster, repressing the nuclear hormone receptors (NHRs) estrogen receptor alpha (ERα) and the glucocorticoid receptor (GR). METHODS Cell viability was determined by WST-1. Expression of differentiation markers was analyzed by Western blot, RT-qPCR, and immunofluorescence analysis. Metabolic phenotypes were studied using Agilent Extracellular Flux Analyzer, and accumulation of lipid droplets by Nile Red staining. Expression of angiogenesis, proliferation, and neuronal differentiation markers, and tumor sections were assessed by immunohistochemistry. Gene expression from NB patient as well as adrenal gland cohorts were analyzed using GraphPad Prism software (v.8) and GSEA (v4.0.3), while pseudo-time progression on post-natal adrenal gland cells from single-nuclei transcriptome data was computed using scVelo. RESULTS Here, we show that simultaneous activation of GR and ERα potentiated induction of neuronal differentiation, reduced NB cell viability in vitro, and decreased tumor burden in vivo. This was accompanied by a metabolic reprogramming manifested by changes in the glycolytic and mitochondrial functions and in lipid droplet accumulation. Activation of the retinoic acid receptor alpha (RARα) with all-trans retinoic acid (ATRA) further enhanced the differentiated phenotype as well as the metabolic switch. Single-cell nuclei transcriptome analysis of human adrenal glands indicated a sequential expression of ERα, GR, and RARα during development from progenitor to differentiated chromaffin cells. Further, in silico analysis revealed that patients with higher combined expression of GR, ERα, and RARα mRNA levels had elevated expression of neuronal differentiation markers and a favorable outcome. CONCLUSION Together, our findings suggest that combination therapy involving activation of several NHRs could be a promising pharmacological approach for differentiation treatment of NB patients.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Muhammad Mushtaq
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.440526.10000 0004 0609 3164Present address: Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300 Pakistan
| | - Judit Liaño-Pons
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Ye Yuan
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tong Liu
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Present address: Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, SE-171 64 Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Susanne Schlisio
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar Bedoya-Reina
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
3
|
Anifantaki F, Pervanidou P, Lambrinoudaki I, Panoulis K, Vlahos N, Eleftheriades M. Maternal Prenatal Stress, Thyroid Function and Neurodevelopment of the Offspring: A Mini Review of the Literature. Front Neurosci 2021; 15:692446. [PMID: 34566560 PMCID: PMC8455916 DOI: 10.3389/fnins.2021.692446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022] Open
Abstract
Fetal brain is extremely plastic and vulnerable to environmental influences that may have long-term impact on health and development of the offspring. Both the Hypothalamic-Pituitary-Adrenal (HPA) and the Hypothalamic-Pituitary-Thyroid (HPT) axes are involved in stress responses, whereas, their final effectors, the Glucocorticoids (GCs) and the Thyroid Hormones (TH s), mediate several fundamental processes involved in neurodevelopment. The effects of these hormones on brain development are found to be time and dose-dependent. Regarding THs, the developing fetus depends on maternal supply of hormones, especially in the first half of pregnancy. It is acknowledged that inadequate or excess concentrations of both GCs and THs can separately cause abnormalities in the neuronal and glial structures and functions, with subsequent detrimental effects on postnatal neurocognitive function. Studies are focused on the direct impact of maternal stress and GC excess on growth and neurodevelopment of the offspring. Of particular interest, as results from recent literature data, is building understanding on how chronic stress and alterations of the HPA axis interacts and influences HPT axis and TH production. Animal studies have shown that increased GC concentrations related to maternal stress, most likely reduce maternal and thus fetal circulating THs, either directly or through modifications in the expression of placental enzymes responsible for regulating hormone levels in fetal microenvironment. The purpose of this review is to provide an update on data regarding maternal stress and its impact on fetal neurodevelopment, giving particular emphasis in the interaction of two axes and the subsequent thyroid dysfunction resulting from such circumstances.
Collapse
Affiliation(s)
- Foteini Anifantaki
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Panoulis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Vlahos
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
A Scoping Review of Life-Course Psychosocial Stress and Kidney Function. CHILDREN-BASEL 2021; 8:children8090810. [PMID: 34572242 PMCID: PMC8467128 DOI: 10.3390/children8090810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Increased exposure to maternal psychosocial stress during gestation and adverse neonatal environments has been linked to alterations in developmental programming and health consequences in offspring. A programmed low nephron endowment, among other altered pathways of susceptibility, likely increases the vulnerability to develop chronic kidney disease in later life. Our aim in this scoping review was to identify gaps in the literature by focusing on understanding the association between life-course exposure to psychosocial stress, and the risk of reduced kidney function. A systematic search in four databases (PubMed, ProQuest, Wed of Science, and Scopus) was performed, yielding 609 articles. Following abstract and full-text review, we identified 19 articles meeting our inclusion criteria, reporting associations between different psychosocial stressors and an increase in the prevalence of kidney disease or decline in kidney function, mainly in adulthood. There are a lack of studies that specifically evaluated the association between gestational exposure to psychosocial stress and measures of kidney function or disease in early life, despite the overall evidence consistent with the independent effects of prenatal stress on other perinatal and postnatal outcomes. Further research will establish epidemiological studies with clear and more comparable psychosocial stressors to solve this critical research gap.
Collapse
|
5
|
Cortez CM, Silva D. Biological Stress as a Principle of Nature: A Review of Literature. OPEN JOURNAL OF BIOPHYSICS 2020; 10:150-173. [DOI: 10.4236/ojbiphy.2020.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
6
|
Bloomfield MA, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife 2019; 8:46797. [PMID: 31711569 PMCID: PMC6850765 DOI: 10.7554/elife.46797] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic psychosocial adversity induces vulnerability to mental illnesses. Animal studies demonstrate that this may be mediated by dopaminergic dysfunction. We therefore investigated whether long-term exposure to psychosocial adversity was associated with dopamine dysfunction and its relationship to psychological and physiological responses to acute stress. Using 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine ([18F]-DOPA) positron emission tomography (PET), we compared dopamine synthesis capacity in n = 17 human participants with high cumulative exposure to psychosocial adversity with n = 17 age- and sex-matched participants with low cumulative exposure. The PET scan took place 2 hr after the induction of acute psychosocial stress using the Montréal Imaging Stress Task to induce acute psychosocial stress. We found that dopamine synthesis correlated with subjective threat and physiological response to acute psychosocial stress in the low exposure group. Long-term exposure to psychosocial adversity was associated with dampened striatal dopaminergic function (p=0.03, d = 0.80) and that psychosocial adversity blunted physiological yet potentiated subjective responses to acute psychosocial stress. Future studies should investigate the roles of these changes in vulnerability to mental illnesses.
Collapse
Affiliation(s)
- Michael Ap Bloomfield
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom.,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert A McCutcheon
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Matthew Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,Department of Psychology, University of Bath, Bath, United Kingdom
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
7
|
Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci 2019; 73:41-49. [PMID: 30634053 DOI: 10.1016/j.ijdevneu.2019.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During development, the placenta can be said to be the most important organ, however, the most poorly researched. There is currently a broader understanding of how specific insults during development affect the fetal brain, and also the importance of placental signaling in neurodevelopmental programming. Epigenetic responses to maternal and fetal signals are an obvious candidate for transforming early life inputs into long-term programmatic outcomes. As a mediator of maternal and environmental signals to the developing fetus, epigenetic processes within the placenta are particularly powerful such that alterations of placental gene expression, downstream function, and signalling during foetal development have the potential for dramatic changes in developmental programming. SUMMARY In this article, we reviewed emerging evidence for a placental role in prenatal neurodevelopmental programming with a specific focus on nutrient and prenatal stress signals integration into chromatin changes; this new understanding, we hope will provide the means for lowering developmentally based disorder risk, and new therapeutic targets for treatment in adulthood. KEY MESSAGES Based on this review, the placenta is a potent micro-environmental player in neurodevelopment as it orchestrates a series of complex maternal-foetal interactions. Maternal insults to this microenvironment will impair these processes and disrupt foetal brain development resulting in the prenatal programming of neurodevelopmental disorders. These findings should inspire advance animal model and human research drive to appraise gene-environment impacts during pregnancy that will target the developmental cause of adult-onset mental disorders.
Collapse
Affiliation(s)
- Philemon Dauda Shallie
- Optics and Imaging Centre, School of Laboratory Medicine and Medical Sciences, Nelson Mandela Medical School, University of KwaZulu-Natal, Durban, South Africa.
| | - Thajasvarie Naicker
- Optics and Imaging Centre, School of Laboratory Medicine and Medical Sciences, Nelson Mandela Medical School, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
9
|
Slotkin TA, Ko A, Seidler FJ. Does growth impairment underlie the adverse effects of dexamethasone on development of noradrenergic systems? Toxicology 2018; 408:11-21. [PMID: 29935188 DOI: 10.1016/j.tox.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | - Ashley Ko
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
10
|
Slotkin TA, Skavicus S, Seidler FJ. Developmental neurotoxicity resulting from pharmacotherapy of preterm labor, modeled in vitro: Terbutaline and dexamethasone, separately and together. Toxicology 2018. [PMID: 29524569 DOI: 10.1016/j.tox.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Terbutaline and dexamethasone are used in the management of preterm labor, often for durations of treatment exceeding those recommended, and both have been implicated in increased risk of neurodevelopmental disorders. We used a variety of cell models to establish the critical stages at which neurodifferentiation is vulnerable to these agents and to determine whether combined exposures produce a worsened outcome. Terbutaline selectively promoted the initial emergence of glia from embryonic neural stem cells (NSCs). The target for terbutaline shifted with developmental stage: at later developmental stages modeled with C6 and PC12 cells, terbutaline had little effect on glial differentiation (C6 cells) but impaired the differentiation of neuronotypic PC12 cells into neurotransmitter phenotypes. In contrast to the specificity shown by terbutaline, dexamethasone affected both neuronal and glial differentiation at all stages, impairing the emergence of both cell types in NSCs but with a much greater impairment for glia. At later stages, dexamethasone promoted glial cell differentiation (C6 cells), while shifting neuronal cell differentiation so as to distort the balance of neurotransmitter phenotypes (PC12 cells). Finally, terbutaline and dexamethasone interacted synergistically at the level of late stage glial cell differentiation, with dexamethasone boosting the ability of terbutaline to enhance indices of glial cell growth and neurite formation while producing further decrements in glial cell numbers. Our results support the conclusion that terbutaline and dexamethasone are directly-acting neuroteratogens, and further indicate the potential for their combined use in preterm labor to worsen neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Zhang P, Li G, Li H, Tan X, Cheng HYM. Environmental perturbation of the circadian clock during pregnancy leads to transgenerational mood disorder-like behaviors in mice. Sci Rep 2017; 7:12641. [PMID: 28974783 PMCID: PMC5626699 DOI: 10.1038/s41598-017-13067-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023] Open
Abstract
It remains unknown whether chronic circadian disturbance (CCD) during pregnancy can lead to mood disorders in the offspring. Here we show that pregnant mice in the F0 generation that were exposed to CCD stress displayed depression-like behaviors, and produced offspring in the F1 and F2 generations that also exhibited mood-associated behavioral phenotypes despite the lack of direct stressful experiences during their postnatal or adult period. Prenatal CCD stress was correlated with the elevation of plasma corticosterone levels in F1 mice. Furthermore, the diurnal expression profiles of core circadian clock genes were disrupted in the suprachiasmatic nucleus of F1 mice. Proteomics analysis revealed that prenatal CCD stress resulted in distinct changes in protein expression in the hypothalamus of female F1 mice, in particular proteins that were associated with cellular activities, metabolism, development and diseases. Sex-specific differences in melanocortin 4 receptor expression were apparent in the CCD F1 generation. We conclude that maternal exposure to chronic circadian disturbance during pregnancy can lead to sex-specific mood disorders that persist for at least two filial generations. The underlying mechanisms may depend on transgenerational changes in plasma corticosterone levels, circadian pacemaking, and hypothalamic protein expression.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Medicine; Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province; Southwest Medical University, Luzhou, 646009, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Medicine; Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province; Southwest Medical University, Luzhou, 646009, China
| | - Hui Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Medicine; Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province; Southwest Medical University, Luzhou, 646009, China
| | - XiaoQiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Medicine; Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province; Southwest Medical University, Luzhou, 646009, China
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
12
|
Ribeiro D, Klarqvist MDR, Westermark UK, Oliynyk G, Dzieran J, Kock A, Savatier Banares C, Hertwig F, Johnsen JI, Fischer M, Kogner P, Lovén J, Arsenian Henriksson M. Regulation of Nuclear Hormone Receptors by MYCN-Driven miRNAs Impacts Neural Differentiation and Survival in Neuroblastoma Patients. Cell Rep 2016; 16:979-993. [PMID: 27396325 DOI: 10.1016/j.celrep.2016.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/01/2016] [Accepted: 06/12/2016] [Indexed: 01/04/2023] Open
Abstract
MYCN amplification and MYC signaling are associated with high-risk neuroblastoma with poor prognosis. Treating these tumors remains challenging, although therapeutic approaches stimulating differentiation have generated considerable interest. We have previously shown that the MYCN-regulated miR-17∼92 cluster inhibits neuroblastoma differentiation by repressing estrogen receptor alpha. Here, we demonstrate that this microRNA (miRNA) cluster selectively targets several members of the nuclear hormone receptor (NHR) superfamily, and we present a unique NHR signature associated with the survival of neuroblastoma patients. We found that suppressing glucocorticoid receptor (GR) expression in MYCN-driven patient and mouse tumors was associated with an undifferentiated phenotype and decreased survival. Importantly, MYCN inhibition and subsequent reactivation of GR signaling promotes neural differentiation and reduces tumor burden. Our findings reveal a key role for the miR-17∼92-regulated NHRs in neuroblastoma biology, thereby providing a potential differentiation approach for treating neuroblastoma patients.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Marcus D R Klarqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ulrica K Westermark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Dzieran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Carolina Savatier Banares
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jakob Lovén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Behavioral epigenetics and the developmental origins of child mental health disorders. J Dev Orig Health Dis 2015; 3:395-408. [PMID: 25084292 DOI: 10.1017/s2040174412000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in understanding the molecular basis of behavior through epigenetic mechanisms could help explain the developmental origins of child mental health disorders. However, the application of epigenetic principles to the study of human behavior is a relatively new endeavor. In this paper we discuss the 'Developmental Origins of Health and Disease' including the role of fetal programming. We then review epigenetic principles related to fetal programming and the recent application of epigenetics to behavior. We focus on the neuroendocrine system and develop a simple heuristic stress-related model to illustrate how epigenetic changes in placental genes could predispose the infant to neurobehavioral profiles that interact with postnatal environmental factors potentially leading to mental health disorders. We then discuss from an 'Evo-Devo' perspective how some of these behaviors could also be adaptive. We suggest how elucidation of these mechanisms can help to better define risk and protective factors and populations at risk.
Collapse
|
14
|
Tesic D, Hawes JE, Zosky GR, Wyrwoll CS. Vitamin D Deficiency in BALB/c Mouse Pregnancy Increases Placental Transfer of Glucocorticoids. Endocrinology 2015; 156:3673-9. [PMID: 26252062 DOI: 10.1210/en.2015-1377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prevalence of vitamin D deficiency in pregnancy is increasing and implicated in adverse consequences for the health of offspring in later life. The aim of this study was to determine whether vitamin D deficiency increases fetal exposure to glucocorticoids, which are known to alter fetal development and result in adverse adult health outcomes. Female BALB/c mice were placed on either a vitamin D control (2195 IU/kg) or deficient (0 IU/kg) diet for 5 weeks before and during pregnancy. Maternal serum, placentas and fetal brains were collected at embryonic day 14.5 or 17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy increased maternal corticosterone concentrations and reduced placental weight. Maternal vitamin D deficiency decreased placental expression of 11β-hydroxysteroid dehydrogenase type II, which inactivates glucocorticoids thereby protecting the fetus from inappropriate glucocorticoid exposure. There was a corresponding increase in placental and fetal expression of the highly glucocorticoid-sensitive factor glucocorticoid-induced leucine zipper. Furthermore, placental expression of the angiogenic factor vascular endothelial growth factor-A was reduced in vitamin D-deficient pregnancies, with a corresponding decline in fetal capillary volume within the placenta. Overall, we show that prenatal vitamin D deficiency leads to an increase in maternal corticosterone, alterations in genes indicative of increased fetal glucocorticoid exposure and impairment in placental vascular development. Thus, the long-term adverse health consequences of vitamin D deficiency during early development may not just be due to alteration in direct vitamin D-related pathways but also altered fetal glucocorticoid exposure.
Collapse
Affiliation(s)
- Dijana Tesic
- School of Anatomy, Physiology and Human Biology (D.T., J.E.H., C.S.W.), The University of Western Australia, Perth 6009, Australia; and School of Medicine (G.R.Z.), University of Tasmania, Hobart 7000, Australia
| | - Jazmin E Hawes
- School of Anatomy, Physiology and Human Biology (D.T., J.E.H., C.S.W.), The University of Western Australia, Perth 6009, Australia; and School of Medicine (G.R.Z.), University of Tasmania, Hobart 7000, Australia
| | - Graeme R Zosky
- School of Anatomy, Physiology and Human Biology (D.T., J.E.H., C.S.W.), The University of Western Australia, Perth 6009, Australia; and School of Medicine (G.R.Z.), University of Tasmania, Hobart 7000, Australia
| | - Caitlin S Wyrwoll
- School of Anatomy, Physiology and Human Biology (D.T., J.E.H., C.S.W.), The University of Western Australia, Perth 6009, Australia; and School of Medicine (G.R.Z.), University of Tasmania, Hobart 7000, Australia
| |
Collapse
|
15
|
Su Y, van der Spek R, Foppen E, Kwakkel J, Fliers E, Kalsbeek A. Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiol Int 2014; 32:211-24. [DOI: 10.3109/07420528.2014.963198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Lester BM, Conradt E, Marsit CJ. Are epigenetic changes in the intrauterine environment related to newborn neurobehavior? Epigenomics 2014; 6:175-8. [PMID: 24811786 PMCID: PMC4407197 DOI: 10.2217/epi.14.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Barry M Lester
- Department of Pediatrics, Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA and Department of Psychiatry & Human Behavior, Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Elisabeth Conradt
- Department of Pediatrics, Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Carmen J Marsit
- Departments of Pharmacology & Toxicology and Community & Family Medicine, Section Biostatistics and Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
17
|
Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 2013; 8:1321-9. [PMID: 24135662 PMCID: PMC3933492 DOI: 10.4161/epi.26634] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/18/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Exposure to maternal mood disorder in utero may program infant neurobehavior via DNA methylation of the glucocorticoid receptor (NR3C1) and 11β-hydroxysteroid dehydrogenase type 2 ( 11β-HSD-2), two placental genes that have been implicated in perturbations of the hypothalamic pituitary adrenocortical (HPA) axis. We tested the relations among prenatal exposure to maternal depression or anxiety, methylation of exon 1F of NR3C1 and 11β-HSD-2, and newborn neurobehavior. Controlling for relevant covariates, infants whose mothers reported depression during pregnancy and showed greater methylation of placental NR3C1 CpG2 had poorer self-regulation, more hypotonia, and more lethargy than infants whose mothers did not report depression. On the other hand, infants whose mothers reported anxiety during pregnancy and showed greater methylation of placental 11β-HSD-2 CpG4 were more hypotonic compared with infants of mothers who did not report anxiety during pregnancy. Our results support the fetal programming hypothesis and suggest that fetal adjustments to cues from the intrauterine environment, in this case an environment that could be characterized by increased exposure to maternal cortisol, may lead to poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Elisabeth Conradt
- Brown Center for the Study of Children at Risk; Department of Pediatrics; Women & Infants Hospital of Rhode Island; Providence, RI USA
- Department of Psychiatry; Warren Alpert Medical School of Brown University; Providence, RI USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk; Department of Pediatrics; Women & Infants Hospital of Rhode Island; Providence, RI USA
- Department of Psychiatry; Warren Alpert Medical School of Brown University; Providence, RI USA
- Department of Pediatrics; Warren Alpert Medical School of Brown University; Providence, RI USA
| | - Allison A Appleton
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - David A Armstrong
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Carmen J Marsit
- Department of Community and Family Medicine; Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| |
Collapse
|
18
|
Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: significance for maternal stress and preterm labor. Neurotoxicol Teratol 2013; 41:35-42. [PMID: 24177596 DOI: 10.1016/j.ntt.2013.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
Abstract
Glucocorticoids are the consensus treatment given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so human developmental coexposures to these two agents are common. This study explores how prenatal dexamethasone exposure modifies the neurobehavioral teratology of chlorpyrifos, one of the most widely used organophosphates. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. Dexamethasone did not alter brain chlorpyrifos concentrations, nor did either agent alone or in combination affect brain thyroxine levels. Assessments were carried out from adolescence through adulthood encompassing T-maze alternation, Figure 8 maze (locomotor activity, habituation), novelty-suppressed feeding and novel object recognition tests. For behaviors where chlorpyrifos or dexamethasone individually had small effects, the dual exposure produced larger, significant effects that reflected additivity (locomotor activity, novelty-suppressed feeding, novel object recognition). Where the individual effects were in opposite directions or were restricted to only one agent, we found enhancement of chlorpyrifos' effects by prenatal dexamethasone (habituation). Finally, for behaviors where controls displayed a normal sex difference in performance, the combined treatment either eliminated or reversed the difference (locomotor activity, novel object recognition). Combined exposure to dexamethasone and chlorpyrifos results in a worsened neurobehavioral outcome, providing a proof-of-principle that prenatal glucocorticoids can create a subpopulation with enhanced vulnerability to environmental toxicants.
Collapse
|
19
|
Abstract
The growing field of epigenetics and human behavior affords an unprecedented opportunity to discover molecular underpinnings of mental health disorders and pave the way for the development of preventive intervention programs. Maternal depression during pregnancy is a serious public health issue and leads to a 4-fold increase in the likelihood that the child will develop depression. We describe how mood disorders, particularly depression, may be shaped by early life stress, programming, and epigenetic processes and pathways showing how these processes could lead to depression in childhood. Implications of this approach to the study of mental health disorders for preventive interventions are discussed.
Collapse
Affiliation(s)
- Barry M Lester
- Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University and Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
20
|
Slotkin TA, Card J, Infante A, Seidler FJ. Prenatal dexamethasone augments the sex-selective developmental neurotoxicity of chlorpyrifos: implications for vulnerability after pharmacotherapy for preterm labor. Neurotoxicol Teratol 2013; 37:1-12. [PMID: 23416428 DOI: 10.1016/j.ntt.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are routinely given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so coexposures to these two agents are pervasive. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of dexamethasone and chlorpyrifos given individually. Dexamethasone did not enhance the systemic toxicity of chlorpyrifos, as evidenced by weight gain and measurements of cholinesterase inhibition during chlorpyrifos treatment. Nevertheless, it enhanced the loss of presynaptic ACh function selectively in females, who ordinarily show sparing of organophosphate developmental neurotoxicity relative to males. Females receiving the combined treatment showed decrements in choline transporter binding and choline acetyltransferase activity that were unique (not found with either treatment alone), as well as additive decrements in nicotinic receptor binding. On the other hand, males given dexamethasone showed no augmentation of the effects of chlorpyrifos. Our findings indicate that prior dexamethasone exposure could create a subpopulation that is especially vulnerable to the adverse effects of organophosphates or other developmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
21
|
Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 2012; 34:505-12. [PMID: 22796634 DOI: 10.1016/j.ntt.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on models relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuritogenesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent.
Collapse
|
22
|
Kalinina TS, Shishkina GT, Dygalo NN. Induction of Tyrosine Hydroxylase Gene Expression by Glucocorticoids in the Perinatal Rat Brain is Age-Dependent. Neurochem Res 2012; 37:811-8. [DOI: 10.1007/s11064-011-0676-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
23
|
Lomanowska AM, Chatterjee-Chakraborty M, Steiner M, Kraemer GW. Effects of motherless rearing on basal and stress-induced corticosterone secretion in rat pups. Stress 2011; 14:685-96. [PMID: 21790476 DOI: 10.3109/10253890.2011.594470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rearing of rat pups without a mother, artificial rearing (AR), produces substantial changes in the pups' behavior in later life. These changes are similar to those produced by the stress of repeated mother-pup separations. The predominant interpretation is that the long-term effects of disruptions to the mother-pup relationship are mediated by exposure to elevated levels of corticosterone which affect the development of neurobiological systems underlying cognition and behavior. Indeed, repeated separation of pups from the mother sensitizes the pups' corticosterone response to stress. This study examined basal and stress-induced corticosterone release in AR pups. Corticosterone levels were increased immediately following implantation of feeding cannulae. One day after the start of AR, circulating concentrations of corticosterone were not increased unless AR pups were challenged with an additional stressor (injection). Corticosterone levels were lowest when cannulation and AR started on postnatal day (PND) 5 compared with earlier PNDs. On PND 12, there was no evidence of increased corticosterone levels in AR pups at baseline or in response to stress, indicating that AR did not result in persistent sensitization of corticosterone release. The long-term effects of motherless rearing on rat behavior are mediated by mechanisms that are independent of sustained early corticosterone exposure.
Collapse
Affiliation(s)
- A M Lomanowska
- Department of Psychology, University of Toronto at Mississauga, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Wyrwoll CS, Holmes MC, Seckl JR. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 2011; 32:265-86. [PMID: 21144857 PMCID: PMC3149101 DOI: 10.1016/j.yfrne.2010.12.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insufficient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorticoids within cells are determined not only by blood steroid levels and target cell receptor density, but also by intracellular metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSD). 11β-HSD1 regenerates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the adult CNS. Elevated hippocampal and neocortical 11β-HSD1 is observed with ageing and causes cognitive decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11β-HSD2 is a dehydrogenase, inactivating glucocorticoids. The major central effects of 11β-HSD2 occur in development, as expression of 11β-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11β-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glucocorticoid programming.
Collapse
Affiliation(s)
- Caitlin S Wyrwoll
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | | | | |
Collapse
|
25
|
Benchimol de Souza D, Silva D, Marinho Costa Silva C, Barcellos Sampaio FJ, Silva Costa W, Martins Cortez C. Effects of immobilization stress on kidneys of Wistar male rats: a morphometrical and stereological analysis. Kidney Blood Press Res 2011; 34:424-9. [PMID: 21709423 DOI: 10.1159/000328331] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 04/01/2011] [Indexed: 01/09/2023] Open
Abstract
This paper verifies the morphological changes induced by immobilization stress on the kidney of rats by using stereological methods. Fifteen 4-week-old Wistar male rats were randomly assigned to control (n = 7) and stressed (n = 8) groups. Stress stimuli were performed over 5 weeks by immobilization of the rats for 2 h daily in a rigid opaque plastic cylinder that restrained their movements. Increases in the adrenal mass index (p < 0.05) and decreases in serum testosterone levels (p < 0.05) demonstrated the efficacy of the stressor stimuli. Stressed rats presented diminished body weight gain when compared to controls (p < 0.05). The mean values of kidney weight, kidney volume, kidney volume index and glomerular volume density were significantly lower in the stressed group (p < 0.05); nevertheless, no significant difference was found in the cortical/medullar ratio or in the volume-weighted mean glomerular volume. The number of glomeruli per kidney was 45% lower in the stressed group (p < 0.0001), but no change in serum creatinine levels was found. However, the morphological alterations may have serious implications predisposing individuals to renal disease and hypertension in adult life.
Collapse
Affiliation(s)
- Diogo Benchimol de Souza
- Urogenital Research Unit, IBRAG, Rio de Janeiro State University, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Catalani A, Alemà GS, Cinque C, Zuena AR, Casolini P. Maternal corticosterone effects on hypothalamus–pituitary–adrenal axis regulation and behavior of the offspring in rodents. Neurosci Biobehav Rev 2011; 35:1502-17. [DOI: 10.1016/j.neubiorev.2010.10.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 12/28/2022]
|
27
|
Walker C, Anand K, Plotsky PAULM. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Abstract
The purpose of this article was to review follow up studies of children with prenatal drug exposure from preschool through adolescence. Specifically, the authors focus on the effects of prenatal exposure to cocaine, methamphetamine, and opiates on behavior and development. The largest number of studies have examined cocaine-exposed children. The authors identified 42 studies that suggest that there are unique effects of prenatal cocaine exposure on 4- to 13-year-old children, particularly in the areas of behavior problems, attention, language, and cognition. In addition, studies make reasonable attempts to control for possible confounding factors. Systematic research on the long-term effects of prenatal methamphetamine exposure is just beginning but seems to be showing similar effects to that of cocaine. The literature on the on the long-term effects of children with prenatal opiate exposure is more substantial than the methamphetamine literature but it is still relatively sparse and surprising in that there is little recent work. Thus, there are no studies on the current concerns with opiates used for prescription mediation. There is a growing literature using neuroimaging techniques to study the effects of prenatal drug exposure that holds promise for understanding brain/behavior relationships. In addition to pharmacological and teratogenic effects, drugs can also be viewed from a prenatal stressor model. The author discuss this "fetal origins" approach that involves fetal programming and the neuroendocrine system and the potential implications for adolescent brain and behavioral development.
Collapse
Affiliation(s)
- Barry M Lester
- Brown Center for the Study of Children at Risk, The Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI 02905, USA.
| | | |
Collapse
|
29
|
Galeeva A, Pelto-Huikko M, Pivina S, Ordyan N. Postnatal ontogeny of the glucocorticoid receptor in the hippocampus. VITAMINS AND HORMONES 2010; 82:367-89. [PMID: 20472148 DOI: 10.1016/s0083-6729(10)82019-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corticosteroid hormones are important intrinsic factors that not only mediate the response to stress but also largely contribute to the main physiological processes. The biological actions of these steroids involve, first of all, the activation of specific receptors, namely mineralocorticoid (MR) and glucocorticoid (GR) receptors. These two receptor types govern a flexible and well-balanced mechanism that leads to the often opposing changes in the cell. The hippocampus is the central part of the extrahypothalamic feedback loop in the control of the hypothalamic-pituitary-adrenal (HPA) axis activity. The coexpression of both MR and GR in the hippocampus serves a coordinated response to corticosteroids in the hippocampal neurons, thereby mediating the neuronal excitability, stress response, and behavioral adaptation. Each receptor type reveals distinct ontogenetic pattern over the postnatal period. This review addresses the issues relating to postnatal development of the HPA axis and especially the hippocampal expression of the GR proteins in intact and prenatally stressed rats.
Collapse
Affiliation(s)
- Anastasia Galeeva
- Pavlov Institute of Physiology, Russian Academy of Science, Makarova 6, Saint-Petersburg, Russia
| | | | | | | |
Collapse
|
30
|
Abstract
Psychoactive drug use by pregnant women has the potential to effect fetal development; the effects are often thought to be drug-specific and gestational age dependent. This article describes the effects of three drugs with similar molecular targets that involve monoaminergic transmitter systems: cocaine, methamphetamine, and selective serotonin re-uptake inhibitors (SSRIs) used to treat maternal depression during pregnancy. We propose a possible common epigenetic mechanism for their potential effects on the developing child. We suggest that exposure to these substances acts as a stressor that affects fetal programming, disrupts fetal placental monoamine transporter expression and alters neuroendocrine and neurotransmitter system development. We also discuss neurobehavioral techniques that may be useful in the early detection of the effects of in utero drug exposure.
Collapse
Affiliation(s)
- Amy L Salisbury
- Department of Pediatrics, Brown Center for the Study of Children at Risk, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA.
| | | | | | | |
Collapse
|
31
|
|
32
|
Ferrari E, Magri F. Role of neuroendocrine pathways in cognitive decline during aging. Ageing Res Rev 2008; 7:225-33. [PMID: 18672097 DOI: 10.1016/j.arr.2008.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/30/2022]
Abstract
The pineal and pituitary-adrenocortical secretions play an important role in adaptive responses of the organism acting as coordinating signals for both several biological rhythms and multiple neuroendocrine and metabolic functions. The more relevant neuroendocrine changes occurring with ageing affect the secretion of melatonin and of corticosteroids. These changes may be clearly appreciated by the study of their circadian rhythmicity. The circadian profile of plasma melatonin was clearly flattened in elderly subjects and even more in old individuals with dementia. Indeed, the impairment of melatonin signal occurring in aging was related either to age itself or to the cognitive performances of subjects. The biosynthetic dissociation between glucocorticoids and androgen secretion is responsible for the selective impairment of androgens, such as DHEA and DHEA-S, by comparison to cortisol. Due to the opposite effects of the two kinds of corticosteroids either in the periphery and in the CNS, the imbalance between glucocorticoids and androgens, well demonstrated by the evaluation of the cortisol/DHEA-S molar ratio, may be responsible for the occurrence in the CNS of a more neurotoxic steroidal milieu, already present in clinically healthy elderly subjects and especially in patients with dementia. The effects of that steroidal milieu are more prominent at the level of the hippocampal-limbic structure, involved both in the modulation of endocrine structures, such as the HPA axis, and in the control of cognitive, behavioral and affective functions.
Collapse
Affiliation(s)
- Ettore Ferrari
- Department of Internal Medicine and Medical Therapy, University of Pavia, Via Alboino 21, 27100 Pavia, Italy.
| | | |
Collapse
|
33
|
Wilcoxon JS, Redei EE. Maternal glucocorticoid deficit affects hypothalamic-pituitary-adrenal function and behavior of rat offspring. Horm Behav 2007; 51:321-7. [PMID: 17275820 PMCID: PMC1865577 DOI: 10.1016/j.yhbeh.2006.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Detrimental consequences of prenatal stress include increased hypothalamic-pituitary-adrenal (HPA) function, anxiety and depression-like behavior in adult offspring. To identify the role of maternal corticosterone milieu in the fetal programming of adult function, we measured these same behavioral and hormonal endpoints after maternal adrenalectomy (ADX) and replacement with normal or moderately high levels of corticosterone (CORT). Adult male and female offspring exhibited differing HPA responses to maternal ADX. In female offspring of ADX mothers, exaggerated plasma ACTH stress responses were reversed by the higher, but not the lower, dose of maternal CORT. In contrast, male offspring of both ADX and ADX dams with higher CORT replacement showed exaggerated ACTH stress responses. Hypothalamic glucocorticoid receptor (GR) expression was decreased in these latter groups, while hippocampal GR increased only in the ADX offspring. Activity of young offspring of ADX dams replaced with the higher dose of CORT decreased in the open field test of exploration/anxiety, while immobility behavior of adult offspring in the forced swim test of depression increased following maternal ADX or higher levels of CORT replacement. Interestingly, for some measures, none or moderately high CORT replacement resulted in similar deficits in this study. These findings are in accord with consequences of prenatal stress or prenatal dexamethasone exposure, suggesting that a common mechanism may underlie the effects of too low or too high maternal glucocorticoids on adult HPA function and behavior.
Collapse
Affiliation(s)
- Jennifer Slone Wilcoxon
- Northwestern University Feinberg School of Medicine, The Asher Center, Department of Psychiatry and Behavioral Sciences Chicago, IL 60611, USA.
| | | |
Collapse
|
34
|
Segar JL, Roghair RD, Segar EM, Bailey MC, Scholz TD, Lamb FS. Early gestation dexamethasone alters baroreflex and vascular responses in newborn lambs before hypertension. Am J Physiol Regul Integr Comp Physiol 2006; 291:R481-8. [PMID: 16914435 DOI: 10.1152/ajpregu.00677.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exposure of the early gestation ovine fetus to exogenous glucocorticoids induces alterations in postnatal cardiovascular physiology, including hypertension. To determine whether autonomic function and systemic vascular reactivity are altered by in utero programming before the development of systemic hypertension, we examined arterial baroreflex function and in vivo hemodynamic and in vitro vascular responses to vasoactive agents in 10- to 14-day-old newborn lambs exposed to early gestation glucocorticoids. Dexamethasone (Dex, 0.28 mg·kg−1·day−1) or saline was administered to pregnant ewes by intravenous infusion over 48 h beginning at 27 days gestation (term 145 days), and lambs were allowed to deliver ( n = 6 in each group). Resting mean arterial blood pressure (MABP; 77 ± 1 vs. 74 ± 3 mmHg) and heart rate (HR; 249 ± 9 vs. 226 ± 21 beats/min) were similar in Dex-exposed and control animals, respectively. The arterial baroreflex curve, relating changes in HR to MABP, was significantly shifted toward higher pressure in the Dex-exposed lambs although no change in the sensitivity (gain) of the response was seen. In vivo changes in blood pressure in response to bolus doses of ANG II (20, 50, and 100 ng/kg) and phenylephrine (2, 5, and 10 μg/kg) were similar in the two groups. However, Dex lambs displayed greater decreases in MABP in response to ganglionic blockade with tetraethylammonium bromide (10 mg/kg; −30 ± 3 vs. −20 ± 3 mmHg, P < 0.05) and greater increases in MABP after nitric oxide synthase blockade with NG-nitro-l-arginine (25 mg/kg; 23 ± 3 vs. 13 ± 2 mmHg, P < 0.05) compared with control lambs. By in vitro wire myography, mesenteric and femoral artery microvessel contractile responses to KCl were similar, whereas responses to endothelin (in mesenteric) and norepinephrine (in femoral) were significantly attenuated in Dex lambs compared with controls. Femoral vasodilatory responses to forskolin and sodium nitroprusside were similar in the two groups ( n = 4). These findings suggest that resetting of the baroreflex, accompanied by increased sympathetic activity and altered nitric oxide-mediated compensatory vasodilatory function, may be important contributors to programming of hypertension.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Magri F, Cravello L, Barili L, Sarra S, Cinchetti W, Salmoiraghi F, Micale G, Ferrari E. Stress and dementia: the role of the hypothalamicpituitary-adrenal axis. Aging Clin Exp Res 2006; 18:167-70. [PMID: 16702789 DOI: 10.1007/bf03327435] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hippocampus plays a crucial role in learning and memory and, in spite of its remarkable plasticity, it is also particularly sensitive to stress hormones due to its high concentration of corticosteroid receptors. Indeed, adrenal steroids modulate hippocampal plasticity, acting on excitability and long term potentiation or depression. By a chronobiological approach, we studied the cortisol and DHEAS secretion in clinically healthy old subjects and in age-matched demented patients, including both the degenerative and the vascular type. When compared to young controls, both clinically healthy elderly subjects and demented patients, particularly those with AD, had significantly higher cortisol levels at night time, i.e. at the moment of the maximal sensitivity of HPA axis to stimulatory or inhibitory inputs. At the same time, a clear age- and disease-dependent reduction of DHEAS secretion was found. Thus the cortisol to DHEAS molar ratio was significantly higher in healthy old subjects, and even more in demented patients, when compared to young controls, and significantly linked to both age and cognitive impairment. Finally, the quantitative and qualitative changes of the adrenal secretory pattern were significantly correlated with the decline of hippocampal volumes, measured by MRI. In conclusion, several lines of evidence deal with a pathogenetic role of stress hormones in the occurrence and progression of cognitive disorders in elderly subjects. The consequent hippocampal neuronal impairment may in turn be responsible for the continuous activation of HPA axis and the increased hypothalamic expression of vasopressin and corticotropin releasing hormone.
Collapse
Affiliation(s)
- Flavia Magri
- UO of Internal Medicine and Endocrinology, IRCCS S. Maugeri Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee JJ, Widmaier EP. Gene array analysis of the effects of chronic adrenocorticotropic hormone in vivo on immature rat adrenal glands. J Steroid Biochem Mol Biol 2005; 96:31-44. [PMID: 15890514 DOI: 10.1016/j.jsbmb.2005.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 01/20/2005] [Indexed: 12/29/2022]
Abstract
Development of a mature adrenocortical phenotype is a critical event in the transition of mammals from fetal to postnatal life. We previously reported that the functional maturation of the adrenal glands of newborn rats is accelerated by adrenocorticotropic hormone (ACTH). We report here that chronic exposure of neonatal/juvenile rat pups to ACTH in vivo results in significant changes in expression of over 200 genes in the adrenal glands. ACTH significantly upregulated genes associated with cell signaling, gene transcription, cell migration and tissue remodeling. In addition, ACTH significantly downregulated several genes associated with de novo cholesterol biosynthesis and cholesterol trafficking. Finally, ACTH upregulated genes associated with intracellular metabolism and inactivation of glucocorticoids. The results demonstrate that the developmental effects of ACTH alter expression of a broad range of genes involved not solely in steroid synthesis, but in cellular functions related to growth and differentiation of the glands. In addition, the negative effects of ACTH on genes required for cholesterol synthesis and production of active glucocorticoids, suggests a mechanism whereby excessive production of glucocorticoids, which may have deleterious actions on developing structures like the central nervous system, is prevented.
Collapse
Affiliation(s)
- Julie J Lee
- Department of Biology, 5 Cummington Street, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
37
|
Han F, Ozawa H, Matsuda KI, Nishi M, Kawata M. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 2005; 51:371-81. [PMID: 15740800 DOI: 10.1016/j.neures.2004.12.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/09/2004] [Accepted: 12/08/2004] [Indexed: 11/17/2022]
Abstract
We investigated the distribution and colocalization pattern of the two corticosteroid receptors, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the hippocampus and hypothalamus, the main target regions of corticosterone in the rat brain, using double immunofluorescence histochemistry in conjunction with specific polyclonal antibodies against MR and GR. In the hippocampus, MR- and GR-immunoreactivity (ir) were colocalized in CA1 and CA2 pyramidal neurons and granule cells of the dentate gyrus, while only MR-ir was seen in the CA3 pyramidal neurons. Colocalization of MR- and GR-ir was also observed in the parvocellular region, but not in the magnocellular region of the paraventricular nucleus (PVN). Subcellular distribution of MR-ir was more cytoplasmic in comparison with that of GR-ir, while the ratio of cytoplasmic to nuclear distribution of these receptors was different among the regions. After adrenalectomy (ADX), the distribution pattern of both receptors was changed to cytoplasmic, although the degree of the change of distribution was different among each region. Replacement of corticosterone after ADX recovered the distribution pattern to that of the sham-operated animals. These results suggest that the balance of MR and GR in the cell underlies the potential regulation of corticosteroid through the hippocampus and hypothalamus.
Collapse
Affiliation(s)
- Fang Han
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kyoto 602-8566, Japan
| | | | | | | | | |
Collapse
|
38
|
Antonow-Schlorke I, Schwab M, Li C, Nathanielsz PW. Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J Physiol 2003; 547:117-23. [PMID: 12562943 PMCID: PMC2342613 DOI: 10.1113/jphysiol.2002.025700] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids have been used for 30 years to accelerate fetal lung maturation in human pregnancy at risk of preterm delivery. Exposure to inappropriate levels of steroid, however, leads to altered maturation of the cardiovascular, metabolic and central nervous systems. The effects of betamethasone on neuronal development and function were determined in the fetal baboon brain by examination of cytoskeletal microtubule associated proteins (MAPs) and the presynaptic marker protein synaptophysin. At 0.73 gestation, commencing 28 weeks of gestation, pregnant baboons received four doses of saline (n = 8) or 87.5 microg (kg body weight)(-1) betamethasone I.M. (n = 7) 12 h apart. This dose is equivalent to 12 mg betamethasone administered daily over two consecutive days to a 70 kg woman. Baboons underwent Caesarean section 12 h after the last injection. Paraffin sections of the fetal neocortex and the underlying white matter were labelled immunohistochemically against MAP1B, MAP2abc, MAP2ab and synaptophysin and stained histochemically with hematoxylin-eosin and silver. Tissue staining was quantified morphometrically. Betamethasone exposure resulted in decreased immunoreactivity (IR) of MAP1B by 34.3 % and MAP2abc by 34.1 % (P < 0.05). Loss of MAP2 IR was due to loss of IR of the juvenile isoform MAP2c (P < 0.05). MAP1B and MAP2c are involved in neuritogenesis and neuronal plasticity. Synaptophysin IR was reduced by 51.8 % (P < 0.01). These changes might reflect functional neuronal disturbances because they were not accompanied by an alteration of the density of neurofibrils or neuronal necrosis. These results are in agreement with earlier findings of alterations of cytoskeletal proteins and presynaptic terminals in the fetal sheep brain after betamethasone infusion directly to the fetus and support a common effect of inappropriate fetal exposure to glucocorticoids on neuronal cytoskeleton and synapses in mammalian species.
Collapse
|
39
|
Lindley SE, Bengoechea TG, Wong DL, Schatzberg AF. Mesotelencephalic dopamine neurochemical responses to glucocorticoid administration and adrenalectomy in Fischer 344 and Lewis rats. Brain Res 2002; 958:414-22. [PMID: 12470878 DOI: 10.1016/s0006-8993(02)03719-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of alterations in peripheral corticosterone levels on multiple dopamine neurochemical estimates were examined in inbred Fischer and Lewis inbred rat strains. 2x2 ANOVA's (treatment x strain) showed a main effect for treatment (1 week CORT versus placebo) on the concentrations of the dopamine metabolites homovanillic acid and dihydroxyphenylacetic acid in the medial prefrontal cortex, with lower levels after treatment, but no significant treatment versus strain interaction. There was no effect of CORT treatment on DA metabolites in the nucleus accumbens shell or dorsal striatum. DOPA accumulation in any terminal region examined and tyrosine hydroxylase protein content in the ventral tegmental area were also not affected by 1 week of corticosterone in either strain. One week after adrenalectomy, homovanillic acid but not dihydroxyphenylacetic acid concentrations were significantly increased in the medial prefrontal cortex, dorsal striatum, and nucleus accumbens shell in the Lewis but not the Fischer strain, with a significant treatment x strain interaction only in the dorsal striatum. Based on these findings, the effect of adrenalectomy on DOPA accumulation and extracellular DA concentrations was examined in the Lewis strain only. Adrenalectomy produced a decrease in DOPA accumulation in the dorsal striatum with no significant change in the other regions. Adrenalectomy did not alter estimates of extracellular dopamine concentrations determined by in vivo no net flux microdialysis but did significantly increase in vivo dopamine recovery in the dorsal striatum. The findings indicate a pattern of changes in neurochemical measurements consistent with a small magnitude inhibition of basal dopamine metabolism, but not with a change neuronal activity, release or reuptake.
Collapse
Affiliation(s)
- Steven E Lindley
- National Center for PTSD, Department of Veterans Affairs, Palo Alto Health Care Systema, PTSD 352/117, 795 Willow Road, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
40
|
Quinlivan JA, Beazley LD, Archer M, Evans SF, Newnham JP, Dunlop SA. Repeated prenatal corticosteroids reduce glial fibrillary acidic protein in the ovine central nervous system. J Perinat Med 2002; 30:209-19. [PMID: 12122902 DOI: 10.1515/jpm.2002.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION A single course of corticosteroid reduces intracranial hemorrhage in preterm infants. The mechanism of protection is unclear. Glial fibrillary acidic protein (GFAP), expressed by astrocytes, is regulated by glucosteroids and is an important component of the cells forming the blood brain barrier. We have evaluated the effect of prenatal corticosteroid upon ovine GFAP. METHODS Date-mated ewes were studied in two protocols and lambs delivered on day 125 or 145 (term = 150). In the maternal injection protocol (n = 36) ewes were administered saline, single or repeated injections of corticosteroid. In the fetal injection protocol (n = 48) direct ultrasound-guided fetal injections of saline, single or repeated corticosteroid were administered, and an additional control group did not receive fetal injections. Optic nerve GFAP immunohistochemistry was performed and quantified. RESULTS At 125 days, repeated, but not single, administration of corticosteroid, by either maternal or fetal route, was associated with a significant reduction in GFAP (both p < 0.002); by 145 days, the deficit had recovered (both p > 0.05). The process of performing repeated fetal injections had an independent effect upon GFAP at 145 days (p = 0.002). CONCLUSION Repeated administration of corticosteroid results in a reduction in GFAP in the developing ovine optic nerve, with recovery demonstrated by 145 days.
Collapse
Affiliation(s)
- Julie A Quinlivan
- Department of Obstetrics and Gynecology, Melbourne University, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Segar JL, Van Natta T, Smith OJ. Effects of fetal ovine adrenalectomy on sympathetic and baroreflex responses at birth. Am J Physiol Regul Integr Comp Physiol 2002; 283:R460-7. [PMID: 12121859 DOI: 10.1152/ajpregu.00056.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Department of Pediatrics, Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
42
|
Van Praag HM. Crossroads of corticotropin releasing hormone, corticosteroids and monoamines. About a biological interface between stress and depression. Neurotox Res 2002; 4:531-555. [PMID: 12754165 DOI: 10.1080/1029842021000022115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mental disorders are frequently preceded by stressful events or situations. Depression is a typical case in point. This raises the question, is depression - or possibly better: are certain forms of depression - caused by stress? Can stress be a true pathogenic factor? Phrased differently: can stress destabilize neuronal systems in the central nervous system to such an extent that depressive symptoms are generated? This question is discussed with the corticotrophin releasing hormone (CRH) and MA systems and hypothalamic-pituitary-adrenal (HPA) axis as major foci. The following issues are explored: the effect of antidepressants on corticosteroid receptor gene expression; the behavioral sequellae of CRH administration; CRH disturbances in depression; the impact of early life adversity on the development of the CRH system and on stress reactivity; the interrelationships of stress hormones and monoaminergic (MA ergic) transmission and finally the therapeutic potential of CRH and cortisol antagonists. The available data suggest that CRH overdrive and cortisol overproduction may play a pathogenic role in the occurrence of certain types of depression, directly and/or indirectly, i.e. by induction or exacerbation of disturbances in MA ergic transmission. Stress should, thus, become a major focus of biological depression research.
Collapse
Affiliation(s)
- H. M. Van Praag
- Department of Psychiatry and Neuropsychology, Academic Hospital Maastricht, and the Brain and Behavior Research Institute, Maastricht University, P.O.Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
43
|
Barbany G, Persson H. Regulation of Neurotrophin mRNA Expression in the Rat Brain by Glucocorticoids. Eur J Neurosci 2002; 4:396-403. [PMID: 12106347 DOI: 10.1111/j.1460-9568.1992.tb00888.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Northern blot analysis was used to examine the effects of glucocorticoids on neurotrophin mRNA expression in the rat cerebral cortex and hippocampus. The results show that 3 days after adrenalectomy the mRNA levels for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) decreased significantly in both these regions. In adrenalectomized animals given dexamethasone replacement the mRNA levels for the three neurotrophins were restored to control levels. The effect of a single dose of dexamethasone (5 mg/kg) administered i.p. to intact animals on the expression of neurotrophins was also examined. NGF and NT-3 mRNAs showed a 2.5-fold and a 1.4-fold increase, respectively, during the first 4 h after the injection. The increase was followed by a decrease, with levels approximately 50% of control 24 and 48 h after the injection. In contrast, the level of BDNF mRNA did not change during the first 10 h after the injection, but decreased to 70% of control 48 h after the injection. These data indicate that glucocorticoids regulate neurotrophin mRNA expression both in the cortex and in the hippocampus, and suggest further that the known effects of glucocorticoids on neuronal survival in the brain could be due to changes in the levels of neurotrophins in the brain.
Collapse
Affiliation(s)
- Gisela Barbany
- Department of Medical Chemistry, Laboratory of Molecular Neurobiology, Karolinska Institute, Box 60400, S-10401 Stockholm, Sweden
| | | |
Collapse
|
44
|
Lindholm D, Castrén E, Hengerer B, Zafra F, Berninger B, Thoenen H. Differential Regulation of Nerve Growth Factor (NGF) Synthesis in Neurons and Astrocytes by Glucocorticoid Hormones. Eur J Neurosci 2002; 4:404-410. [PMID: 12106348 DOI: 10.1111/j.1460-9568.1992.tb00889.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoid hormones are important regulators of brain development and ageing. Here we show that dexamethasone, a synthetic glucocorticoid, differentially affects the expression of nerve growth factor (NGF) in cultured neurons and astrocytes. Dexamethasone increased the levels of NGF mRNA in cultured hippocampal neurons in a time- and concentration-dependent manner, whereas it down-regulated the NGF mRNA levels in astrocytes. However, dexamethasone had no effect on the mRNA levels of brain-derived neurotrophic factor in the hippocampal neurons. Aldosterone, a mineralocorticoid, in higher concentrations also up-regulated NGF mRNA levels in the hippocampal neurons. Dexamethasone increased the levels of NGF mRNA in the rat hippocampus in vivo, but not to the same extent as observed with kainic acid, a glutamate receptor agonist. There is no apparent diurnal rhythm in the hippocampal NGF protein levels corresponding to circadian variations in the levels of glucocorticoid hormones in serum. The increase in NGF mRNA in the hippocampus in vivo following dexamethasone treatments may reflect the physiological response of hippocampal neurons to high glucocorticoid levels reached under conditions of stress.
Collapse
Affiliation(s)
- Dan Lindholm
- Max Planck Institute for Psychiatry, Department of Neurochemistry, Am Klopferspitz 18A, D-8033 Martinsried bei München, FRG
| | | | | | | | | | | |
Collapse
|
45
|
Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT. Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 2002; 283:C126-34. [PMID: 12055080 DOI: 10.1152/ajpcell.00457.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some members of the epithelial Na+ channel/degenerin (ENaC/DEG) family of ion channels have been detected in mammalian brain. Therefore, we examined the RNA and protein expression of these channels in another part of the central nervous system, the rabbit retina. We next sought to demonstrate physiological evidence for an amiloride-sensitive current in Müller glia, which, on the basis of a previous study, are thought to express alpha-ENaC (Golestaneh N, de Kozak Y, Klein C, and Mirshahi M. Glia 33: 160-168, 2001). RT-PCR of retinal RNA revealed the presence of alpha-, beta-, gamma-, and delta-ENaC as well as acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and ASIC4. Immunohistochemical localization with antibodies against alpha-ENaC and beta-ENaC showed labeling in Müller cells and neurons, respectively. The presence of alpha-ENaC, beta-ENaC, and ASIC1 was detected by Western blotting. Cultured Müller cells were whole cell patch clamped. These cells exhibited an inward Na+ current that was blocked by amiloride. These data demonstrate for the first time both the expression of a variety of ENaC and ASIC subunits in the rabbit retina as well as distinct cellular expression patterns of specific subunits in neurons and glia.
Collapse
Affiliation(s)
- L M Brockway
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OFX. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J 2002; 16:761-70. [PMID: 12039857 DOI: 10.1096/fj.01-0577com] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In analyzing the molecular mechanisms underlying glucocorticoid-induced apoptosis in neural cells, we observed that dexamethasone, by activating glucocorticoid receptors, causes arrest of HT-22 cells in the G1 phase of the cell cycle; upon withdrawal of the agonist, cells resume proliferation. Our investigations revealed that glucocorticoid treatment, although having no effects on endogenous p53 protein stability, induces rapid translocation of p53 to the nucleus and enhances its transcriptional activity. Consistently, transfection studies with p53-responsive promoters revealed a substantial stimulation of the trans-activation potential of exogenous p53 by dexamethasone. Cells arrested in G1 failed to show signs of apoptosis even after overexpression of p53. Although dexamethasone induced transcription of the proapoptotic gene bax, there was no increase of Bax protein levels. We conclude that glucocorticoid receptor-induced neural cell cycle arrest is associated with an increase in nuclear translocation and transcriptional activity of p53, and suggest that potentiation of p53 may serve as a brake on cell proliferation and may prime cells for differentiation or death induced by other signals.
Collapse
|
47
|
Okimoto DK, Blaus A, Schmidt MV, Schmidt M, Gordon MK, Dent GW, Levine S. Differential expression of c-fos and tyrosine hydroxylase mRNA in the adrenal gland of the infant rat: evidence for an adrenal hyporesponsive period. Endocrinology 2002; 143:1717-25. [PMID: 11956153 DOI: 10.1210/endo.143.5.8819] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rats exhibit a stress hyporesponsive period from postnatal day (PND) 4-14 in which the neonate displays a minimal corticosterone response to stress. We used the maternal deprivation model to test whether this adrenocortical hyporesponsiveness to stress results from a decrease in adrenal sensitivity to ACTH. Neonates (PND 6, 9, and 12) were injected ip with dexamethasone to block endogenous ACTH release, and 4 h later injected with graded doses of ACTH and killed. In another experiment, neonates were injected with isotonic saline and adrenal glands were collected at 30, 60, and 120 min post injection to examine c-fos and tyrosine hydroxylase mRNA levels using in situ hybridization. Maternally deprived pups demonstrated elevated corticosterone levels at the two highest ACTH doses and showed a greater magnitude in glucocorticoid secretion compared with the nondeprived pups. Maternally deprived pups given a saline injection exhibited elevated basal and stress-induced levels of corticosterone, in contrast to the nondeprived pups that showed a minimal response. Strikingly, maternally deprived pups exhibited elevated levels of adrenocortical c-fos mRNA, whereas the nondeprived pups did not. In contrast, the pattern of c-fos gene expression in the adrenal medulla in both groups did not display any correlation with glucocorticoid secretion. Tyrosine hydroxylase gene expression in the adrenal medulla was observed in both nondeprived and maternally deprived pups, with the latter exhibiting an earlier response of greater magnitude. These results demonstrate that the suppression of steroidogenesis occurs directly in the adrenal cortex and provide further evidence for an adrenal hyporesponsive period in the rat.
Collapse
Affiliation(s)
- Darren K Okimoto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sui N, Hu J, Chen J, Kuang P, Joyce D. Reversed effects of RU486 and anisomycin on memory retention of light exposure or corticosterone facilitation in the dark-incubated chicks. J Psychopharmacol 2001; 15:287-91. [PMID: 11769823 DOI: 10.1177/026988110101500413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Memory formation for a weak passive avoidance task in the dark-incubated chicks is facilitated by light exposure or corticosterone administration at optimally pre-hatch time points. To explore the potential mechanisms underlying activation of brain memory function development by light or corticosterone exposure during late embryo, steroid receptor antagonist RU486, or protein synthetic inhibitor anisomycin, was administered intraembryonically to the embryos of either only 24-h light-exposure or complete dark-hatched on embryonic day 20 (E20). The results showed that RU486 and anisomycin significantly retarded the facilitated retention both by light and corticosterone exposure in the dark-incubated chicks. They also suggest that the act of corticosterone or light exposure on the development of brain memory function is mediated by the effect of steroid receptor, or afterward on related protein syntheses that is involved in memory formation of post-hatched performance of day-old chicks.
Collapse
Affiliation(s)
- N Sui
- Brain and Behavior Research Center, Institute of Psychology, Academia Sinica, Beijing, China.
| | | | | | | | | |
Collapse
|
49
|
Bakker JM, van Bel F, Heijnen CJ. Neonatal glucocorticoids and the developing brain: short-term treatment with life-long consequences? Trends Neurosci 2001; 24:649-53. [PMID: 11672809 DOI: 10.1016/s0166-2236(00)01948-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although synthetic glucocorticoids are frequently used in hospital for the prevention of chronic lung disease in premature infants, major concern has arisen about the possible long-term consequences of these treatments. Animal research provides evidence for the idea that neonatal glucocorticoid treatment enhances susceptibility to autoimmune disease in adult life. Altered functioning of the hypothalamo-pituitary-adrenal axis, and/or changes at higher brain levels might underlie alterations in disease susceptibility.
Collapse
Affiliation(s)
- J M Bakker
- Dept of Neonatology, Wilhelmina Children's Hospital of the University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | | | | |
Collapse
|
50
|
Huang WL, Harper CG, Evans SF, Newnham JP, Dunlop SA. Repeated prenatal corticosteroid administration delays astrocyte and capillary tight junction maturation in fetal sheep. Int J Dev Neurosci 2001; 19:487-93. [PMID: 11470378 DOI: 10.1016/s0736-5748(01)00035-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoids are powerful regulators of cell differentiation and maturation. Their synthetic counterparts, the corticosteroids, are used widely in obstetric practice to enhance fetal lung maturation in cases of threatened preterm birth. Here we examined the effects of repeated corticosteroid administration on astrocyte and capillary tight junction development in the fetal sheep brain, selecting the corpus callosum for analysis. Pregnant ewes were given saline or betamethasone (0.5 mg/kg) at 104, 111, 118 and 124 days gestation. Lambs were delivered at term, terminally anaesthetized and transcardially perfused. Transverse semi-thin sections of the corpus callosum were cut and immuno-stained with antibody against glial fibrillary acidic protein (GFAP). Ultra-thin sections were examined in the electron microscope. The percentage area of GFAP staining was reduced in the corticosteroid-treated group compared to control (5.2 vs. 8.7%, P<0.05). The expression of GFAP in peri-capillary and parenchymal astrocytes was also reduced compared to control (peri-capillary: 3.0 vs. 9.5 microm2; parenchymal: 14.6 vs. 29.4 microm2, P<0.05). Furthermore, capillary tight junction maturation was delayed compared to control. Immature 'type II' junctions were more common in the corticosteroid-treated group (63 vs. 22%, P<0.05), whereas more mature 'type III' junctions were less common (27 vs. 65%, P<0.05). Our data suggest that repeated corticosteroids delay both astrocyte and capillary tight junction maturation. The implications for clinical practice are as yet unknown.
Collapse
Affiliation(s)
- W L Huang
- Neurobiology Laboratory, Department of Zoology, University of Western Australia, WA 6009, Crawley, Australia
| | | | | | | | | |
Collapse
|