1
|
Abe K, McDermott J, Valia Madapally H, Marimuthu P, Gopalasingam CC, Gerle C, Shigematsu H, Khandelia H, Blanco G. Molecular Structure of the Na +,K +-ATPase α4β1 Isoform in Its Ouabain-Bound Conformation. Int J Mol Sci 2024; 25:12397. [PMID: 39596464 PMCID: PMC11594824 DOI: 10.3390/ijms252212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Na+,K+-ATPase is the active ion transport system that maintains the electrochemical gradients for Na+ and K+ across the plasma membrane of most animal cells. Na+,K+-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na+,K+-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties. Na+,K+-ATPase α4β1 is only found in male germ cells of the testis and is mainly expressed in the sperm flagellum, where it plays a critical role in sperm motility and male fertility. Here, we report the molecular structure of Na+,K+-ATPase α4β1 at 2.37 Å resolution in the ouabain-bound state and in the presence of beryllium fluoride. Overall, Na+,K+-ATPase α4 structure exhibits the basic major domains of a P-Type ATPase, resembling Na+,K+-ATPase α1, but has differences specific to its distinct sequence. Dissimilarities include the site where the inhibitor ouabain binds. Molecular simulations indicate that glycosphingolipids can bind to a putative glycosphingolipid binding site, which could potentially modulate Na+,K+-ATPase α4 activity. This is the first experimental evidence for the structure of Na+,K+-ATPase α4β1. These data provide a template that will aid in better understanding the function Na+,K+-ATPase α4β1 and will be important for the design and development of compounds that can modulate Na+,K+-ATPase α4 activity for the purpose of improving male fertility or to achieve male contraception.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Hokkaido 060-0808, Japan
| | - Jeff McDermott
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Hridya Valia Madapally
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL—Pharmacy) and Structural Bioinformatics Laboratory (SBL—Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland;
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | | | - Christoph Gerle
- RIKEN SPring-8 Center, Kouto, Sayo-gun, Hyogo 679-5148, Japan; (C.C.G.); (C.G.)
| | - Hideki Shigematsu
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan;
| | - Himanshu Khandelia
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| |
Collapse
|
2
|
Busselman BW, Ratnayake I, Terasaki MR, Thakkar VP, Ilyas A, Otterpohl KL, Zimmerman JL, Chandrasekar I. Actin cytoskeleton and associated myosin motors within the renal epithelium. Am J Physiol Renal Physiol 2024; 327:F553-F565. [PMID: 39052845 PMCID: PMC11483076 DOI: 10.1152/ajprenal.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney. With recent advances in technologies to visualize the actin cytoskeleton and associated proteins within intact kidneys, it has become increasingly imperative to reimagine the functional roles of these proteins in situ to provide a rationale for their unique, cell type-specific functions that are necessary to establish and maintain complex physiological processes.
Collapse
Affiliation(s)
- Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | | | - Mark R Terasaki
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Vedant P Thakkar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Arooba Ilyas
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | - Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Jenna L Zimmerman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| |
Collapse
|
3
|
Cirilo MAS, Santos VBS, Lima NKS, Muzi-Filho H, Paixão ADO, Vieyra A, Vieira LD. Reactive oxygen species impair Na+ transport and renal components of the renin-angiotensin-aldosterone system after paraquat poisoning. AN ACAD BRAS CIENC 2024; 96:e20230971. [PMID: 38597493 DOI: 10.1590/0001-3765202420230971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.
Collapse
Affiliation(s)
- Marry A S Cirilo
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Valéria B S Santos
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Natália K S Lima
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Humberto Muzi-Filho
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana D O Paixão
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Adalberto Vieyra
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- Grande Rio University, 1160 Professor José de Souza Herdy Street, Building C, Second Floor, 25071-202 Duque de Caxias, RJ, Brazil
| | - Leucio D Vieira
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Yadav J, Ahsan F, Panda P, Mahmood T, Ansari VA, Shamim A. Empagliflozin-A Sodium Glucose Co-transporter-2 Inhibitor: Overview ofits Chemistry, Pharmacology, and Toxicology. Curr Diabetes Rev 2024; 20:e230124226010. [PMID: 38265382 DOI: 10.2174/0115733998271026231127051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Empagliflozin is a sodium glucose co-transporter-2 (SGLT2) inhibitor that has gained significant attention in the treatment of type 2 diabetes mellitus. Understanding its chemistry, pharmacology, and toxicology is crucial for the safe and effective use of this medication. OBJECTIVE This review aims to provide a comprehensive overview of the chemistry, pharmacology, and toxicology of empagliflozin, synthesizing the available literature to present a concise summary of its properties and implications for clinical practice. METHODS A systematic search of relevant databases was conducted to identify studies and articles related to the chemistry, pharmacology, and toxicology of empagliflozin. Data from preclinical and clinical studies, as well as post-marketing surveillance reports, were reviewed to provide a comprehensive understanding of the topic. RESULTS Empagliflozin is a selective SGLT2 inhibitor that works by constraining glucose reabsorption in the kidneys, causing increased urinary glucose elimination. Its unique mechanism of action provides glycemic control, weight reduction, and blood pressure reduction. The drug's chemistry is characterized by its chemical structure, solubility, and stability. Pharmacologically, empagliflozin exhibits favorable pharmacokinetic properties with rapid absorption, extensive protein binding, and renal elimination. Clinical studies have demonstrated its efficacy in improving glycemic control, reducing cardiovascular risks, and preserving renal function. However, adverse effects, for instance, urinary tract infections, genital infections, and diabetic ketoacidosis have been reported. Toxicological studies indicate low potential for organ toxicity, mutagenicity, or carcinogenicity. CONCLUSION Empagliflozin is a promising SGLT2 inhibitor that offers an innovative approach to the treatment of type 2 diabetes mellitus. Its unique action mechanism and favorable pharmacokinetic profile contribute to its efficacy in improving glycemic control and reducing cardiovascular risks. While the drug's safety profile is generally favorable, clinicians should be aware of potential adverse effects and monitor patients closely. More study is required to determine the longterm safety and explore potential benefits in other patient populations. Overall, empagliflozin represents a valuable addition to the armamentarium of antidiabetic medications, offering significant benefits to patients suffering from type 2 diabetes mellitus. This study covers all aspects of empagliflozin, including its history, chemistry, pharmacology, and various clinical studies, case reports, and case series.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Prabhudatta Panda
- Department of Pharmacy, Institute of Technology & Management, Gorakhpur (U.P.), 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| |
Collapse
|
5
|
Albuquerque ALB, Dos Santos Borges R, Conegundes AF, Dos Santos EE, Fu FMM, Araujo CT, Vaz de Castro PAS, Simões E Silva AC. Inherited Fanconi syndrome. World J Pediatr 2023; 19:619-634. [PMID: 36729281 DOI: 10.1007/s12519-023-00685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Fanconi-Debré-de Toni syndrome (also known as Fanconi renotubular syndrome, or FRST) profoundly increased the understanding of the functions of the proximal convoluted tubule (PCT) and provided important insights into the pathophysiology of several kidney diseases and drug toxicities. DATA SOURCES We searched Pubmed and Scopus databases to find relevant articles about FRST. This review article focuses on the physiology of the PCT, as well as on the physiopathology of FRST in children, its diagnosis, and treatment. RESULTS FRST encompasses a wide variety of inherited and acquired PCT alterations that lead to impairment of PCT reabsorption. In children, FRST often presents as a secondary feature of systemic disorders that impair energy supply, such as Lowe's syndrome, Dent's disease, cystinosis, hereditary fructose intolerance, galactosemia, tyrosinemia, Alport syndrome, and Wilson's disease. Although rare, congenital causes of FRST greatly impact the morbidity and mortality of patients and impose diagnostic challenges. Furthermore, its treatment is diverse and considers the ability of the clinician to identify the correct etiology of the disease. CONCLUSION The early diagnosis and treatment of pediatric patients with FRST improve the prognosis and the quality of life.
Collapse
Affiliation(s)
- Anna Luiza Braga Albuquerque
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael Dos Santos Borges
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Flávia Conegundes
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erika Emmylaine Dos Santos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frederico Moreira Man Fu
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Clara Tavares Araujo
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- Department of Pediatrics, Faculty of Medicine, UFMG, Alfredo Balena Avenue, 190, 2Nd Floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
6
|
Tingskov SJ, D'Agostino M, Login FH, Tamma G, Nejsum LN, Nørregaard R. Tamoxifen Affects Aquaporin-3 Expression and Subcellular Localization in Rat and Human Renal Collecting Ducts. Cells 2023; 12:cells12081140. [PMID: 37190049 DOI: 10.3390/cells12081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Sex hormones play an important role in the regulation of water homeostasis, and we have previously shown that tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affects the regulation of aquaporin (AQP)-2. In this study, we investigated the effect of TAM on the expression and localization of AQP3 in collecting ducts using various animal, tissue, and cell models. The impact of TAM on AQP3 regulation was studied in rats subjected to 7 days of unilateral ureteral obstruction (UUO), with the rats fed a lithium-containing diet to induce nephrogenic diabetes insipidus (NDI), as well as in human precision-cut kidney slices (PCKS). Moreover, intracellular trafficking of AQP3 after TAM treatment was investigated in Madin-Darby Canine Kidney (MDCK) cells stably expressing AQP3. In all models, the expression of AQP3 was evaluated by Western blotting, immunohistochemistry and qPCR. TAM administration attenuated UUO-induced downregulation of AQP3 and affected the localization of AQP3 in both the UUO model and the lithium-induced NDI model. In parallel, TAM also affected the expression profile of other basolateral proteins, including AQP4 and Na/K-ATPase. In addition, TGF-β and TGF-β+TAM treatment affected the localization of AQP3 in stably transfected MDCK cells, and TAM partly attenuated the reduced AQP3 expression in TGF-β exposed human tissue slices. These findings suggest that TAM attenuates the downregulation of AQP3 in a UUO model and a lithium-induced NDI model and affects the intracellular localization in the collecting ducts.
Collapse
Affiliation(s)
| | - Mariagrazia D'Agostino
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Grazia Tamma
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
7
|
Mukherji ST, Brambilla L, Stuart KB, Mayes I, Kutz LC, Chen Y, Barbosa LA, Elmadbouh I, McDermott JP, Haller ST, Romero MF, Soleimani M, Liu J, Shapiro JI, Blanco GV, Xie Z, Pierre SV. Na/K-ATPase signaling tonically inhibits sodium reabsorption in the renal proximal tubule. FASEB J 2023; 37:e22835. [PMID: 36856735 PMCID: PMC10028530 DOI: 10.1096/fj.202200785rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.
Collapse
Affiliation(s)
- Shreya T. Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Luca Brambilla
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kailey B. Stuart
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Isabella Mayes
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, WI
| | - Leandro A Barbosa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Ibrahim Elmadbouh
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeff P. McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Michael F. Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN
| | - Manoocher Soleimani
- Department of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo V. Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
8
|
Rebelos E, Mari A, Oikonen V, Iida H, Nuutila P, Ferrannini E. Evaluation of renal glucose uptake with [ 18F]FDG-PET: Methodological advancements and metabolic outcomes. Metabolism 2023; 141:155382. [PMID: 36565992 DOI: 10.1016/j.metabol.2022.155382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND/PURPOSE Studying renal glucose metabolism non-invasively in humans is an unmet need. Positron emission tomography (PET) is the current gold standard for measuring regional tissue glucose uptake rates, but the most widely used glucose analog ([18F]FDG) is not a good substrate for sodium-glucose cotransporters (SGLTs). As a consequence, [18F]FDG spills over into the urine and [18F]FDG-PET considerably underestimates published rates of whole renal glucose uptake obtained using the arterial-venous difference technique. Our aim was to assess whether [18F]FDG-PET can be used in the study of renal glucose metabolism in humans. METHODS We measured individual [18F]FDG radioactivity in the urine and estimated intraluminal [18F]FDG radioactivity concentration; these values were used to correct renal [18F]FDG-PET data acquired ∼90 min from tracer injection under fasting conditions and during an insulin clamp in 9 lean and 16 obese subjects. RESULTS We found that the corrected glucose uptake is consistently higher in the medulla than cortex and that both cortical and medullary glucose uptake are higher in lean than obese participants under both fasting and insulinized conditions. Moreover, cortical but not medullary glucose uptake is increased from the fasting to the insulinized condition. CONCLUSION The data show for the first time that [18F]FDG-PET can still provide relevant physiological information on regional renal glucose uptake on the condition that [18F]FDG uptake is corrected for tubular radioactivity.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland; CNR Institute of Clinical Physiology, Pisa, Italy.
| | - Andrea Mari
- CNR Institute of Neuroscience, Padova, Italy
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | |
Collapse
|
9
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
10
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
11
|
Yoo MH, Lee SJ, Kim W, Kim Y, Kim YB, Moon KS, Lee BS. Bisphenol A impairs renal function by reducing Na +/K +-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114141. [PMID: 36206637 DOI: 10.1016/j.ecoenv.2022.114141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The kidney proximal tubule is responsible for reabsorbing water and NaCl to maintain the homeostasis of the body fluids, electrolytes, and nutrients. Thus, abnormal functioning of the renal proximal tubule can lead to life-threatening imbalances. Bisphenol A (BPA) has been used for decades as a representative chemical in household plastic products, but studies on its effects on the kidney proximal tubule are insufficient. In this study, immunocytochemical and cytotoxicity tests were performed using two- and three-dimensional human renal proximal tubular epithelial cell (hRPTEC) cultures to investigate the impact of low-dose BPA (1-10 μM) exposure. BPA was found to interfere with straight tubule formation as observed by low filamentous actin formation and reduced Na+/K+-ATPase expression in the tubules of hRPTEC 3D cultures. Similar results were observed in rat pup kidneys following oral administration of 250 mg/kg BPA. Moreover, the expression of HO-1 and 8-OHdG, key markers for oxidative stress, was increased in vitro and in vivo following BPA administration, whereas that of OAT1 and OAT, important transporters of the renal proximal tubules, was not altered. Overall, no-observed-adverse-effect-level (NOAEL)-dose BPA exposure can decrease renal function by promoting abnormal tubular formation both in vitro and in vivo. Therefore, we propose that although it does not exhibit life-threatening toxicity, exposure to low levels of BPA can negatively affect homeostasis in the body by means of long-term deterioration of renal proximal tubular function in humans.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Seung-Jin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Pereira-Acácio A, Veloso-Santos JPM, Nossar LF, Costa-Sarmento G, Muzi-Filho H, Vieyra A. Angiotensin-(3–4) normalizes the elevated arterial blood pressure and abnormal Na+/energy handling associated with chronic undernutrition by counteracting the effects mediated by type 1 angiotensin II receptors. PLoS One 2022; 17:e0273385. [PMID: 35984814 PMCID: PMC9390919 DOI: 10.1371/journal.pone.0273385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms by which chronic administration of a multideficient diet after weaning alters bodily Na+ handling, and culminates in high systolic blood pressure (SBP) at a juvenile age. From 28 to 92 days of age, weaned male Wistar rats were given a diet with low content and poor-quality protein, and low lipid, without vitamin supplementation, which mimics the diets consumed in impoverished regions worldwide. We measured food, energy and Na+ ingestion, together with urinary Na+ excretion, Na+ density (Na+ intake/energy intake), plasma Na+ concentration, SBP, and renal proximal tubule Na+-transporting ATPases. Undernourished rats aged 92 days had only one-third of the control body mass, lower plasma albumin, higher SBP, higher energy intake, and higher positive Na+ balance accompanied by decreased plasma Na+ concentration. Losartan or Ang-(3–4) normalized SBP, and the combination of the 2 substances induced an accentuated negative Na+ balance as a result of strong inhibition of Na+ ingestion. Na+ density in undernourished rats was higher than in control, irrespective of the treatment, and they had downregulated (Na++K+)ATPase and upregulated Na+-ATPase in proximal tubule cells, which returned to control levels after Losartan or Ang-(3–4). We conclude that Na+ density, not only Na+ ingestion, plays a central role in the pathophysiology of elevated SBP in chronically undernourished rats. The observations that Losartan and Ang-(3–4) normalized SBP together with negative Na+ balance give support to the proposal that Ang II⇒AT1R and Ang II⇒AT2R axes have opposite roles within the renin-angiotensin-aldosterone system of undernourished juvenile rats.
Collapse
Affiliation(s)
- Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P. M. Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F. Nossar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
Renal water transport in health and disease. Pflugers Arch 2022; 474:841-852. [PMID: 35678906 PMCID: PMC9338902 DOI: 10.1007/s00424-022-02712-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Saving body water by optimal reabsorption of water filtered by the kidney leading to excretion of urine with concentrations of solutes largely above that of plasma allowed vertebrate species to leave the aquatic environment to live on solid ground. Filtered water is reabsorbed for 70% and 20% by proximal tubules and thin descending limbs of Henle, respectively. These two nephron segments express the water channel aquaporin-1 located along both apical and basolateral membranes. In the proximal tubule, the paracellular pathway accounts for at least 30% of water reabsorption, and the tight-junction core protein claudin-2 plays a key role in this permeability. The ascending limb of Henle and the distal convoluted tubule are impermeant to water and are responsible for urine dilution. The water balance is adjusted along the collecting system, i.e. connecting tubule and the collecting duct, under the control of arginine-vasopressin (AVP). AVP is synthesized by the hypothalamus and released in response to an increase in extracellular osmolality or stimulation of baroreceptors by decreased blood pressure. In response to AVP, aquaporin-2 water channels stored in subapical intracellular vesicles are translocated to the apical plasma membrane and raise the water permeability of the collecting system. The basolateral step of water reabsorption is mediated by aquaporin-3 and -4, which are constitutively expressed. Drugs targeting water transport include classical diuretics, which primarily inhibit sodium transport; the new class of SGLT2 inhibitors, which promotes osmotic diuresis and the non-peptidic antagonists of the V2 receptor, which are pure aquaretic drugs. Disturbed water balance includes diabetes insipidus and hyponatremias. Diabetes insipidus is characterized by polyuria and polydipsia. It is either related to a deficit in AVP secretion called central diabetes insipidus that can be treated by AVP analogs or to a peripheral defect in AVP response called nephrogenic diabetes insipidus. Diabetes insipidus can be either of genetic origin or acquired. Hyponatremia is a common disorder most often related to free water excess relying on overstimulated or inappropriate AVP secretion. The assessment of blood volume is key for the diagnosis and treatment of hyponatremia, which can be classified as hypo-, eu-, or hypervolemic.
Collapse
|
14
|
Luo S, Li Y, Li S, Jiang R, Deng F, Liu G, Zhang J. Expression Regulation of Water Reabsorption Genes and Transcription Factors in the Kidneys of Lepus yarkandensis. Front Physiol 2022; 13:856427. [PMID: 35721542 PMCID: PMC9204326 DOI: 10.3389/fphys.2022.856427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lepus yarkandensis is a desert-dwelling animal that has various adaptations to cope with drought. The kidney maintains water and acid-base balance mainly through the vasopressin-regulated water reabsorption pathway and proximal tubular bicarbonate reabsorption pathway. In this study, we compared the differentially expressed genes (DEGs) and transcription factors in the kidneys of L. yarkandensis and Oryctolagus cuniculus to explore the relationship between the DEGs in kidneys and the animals’ adaptations. Transcriptome sequencing data were used to predict the differentially-expressed water reabsorption genes and their transcription factors. Quantitative real-time PCR, immunohistochemistry, and western blotting were used to detect and verify the expression of DEGs in the kidney at mRNA and protein levels. Transcriptome analysis of the kidney of L. yarkandensis and O. cuniculus showed that 6,610 genes were up-regulated and 5,727 genes down-regulated in data shared by both species. According to the data, 232 transcription factors and their corresponding target genes were predicted, from which genes and transcription factors related to renal water reabsorption were screened. Quantitative RT-PCR results showed AQP1, AQP2, ADCY3, HIF1A, CREB3, and NFATc1 had higher expression in the L. yarkandensis kidney; in comparison, FXYD2 mRNA expression levels were lower. In western blotting, transcription factors HIF1A, NFATc1, NF-κB1, and critical genes ADCY3, ATPA1, and SLC4A4, were highly expressed in the kidneys of L. yarkandensis. Immunohistochemical results showed that the ADCY3 protein was in the basolateral membrane of the collecting duct, the ATP1A1 protein was in the basolateral membrane and medulla of proximal tubules, and the SLC4A4 protein was in the basolateral membrane of proximal tubules. According to these results can be inferred that HIF1A, NFATc1, and NF-κB1 play a certain role in regulating the expression of genes related to water reabsorption in the kidney of L. yarkandensis, thus improving the water reclamation efficiency of L. yarkandensis, so as to adapt to the arid desert environment.
Collapse
Affiliation(s)
- Shengjie Luo
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Yongle Li
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| | - Renjun Jiang
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research and Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| |
Collapse
|
15
|
Ceramide-1-Phosphate as a Potential Regulator of the Second Sodium Pump from Kidney Proximal Tubules by Triggering Distinct Protein Kinase Pathways in a Hierarchic Way. Curr Issues Mol Biol 2022; 44:998-1011. [PMID: 35723289 PMCID: PMC8947104 DOI: 10.3390/cimb44030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.
Collapse
|
16
|
Pujia R, Maurotti S, Coppola A, Romeo S, Pujia A, Montalcini T. The Potential Role of C-peptide in Sexual and Reproductive Functions in Type 1 Diabetes Mellitus: An Update. Curr Diabetes Rev 2022; 18:e051021196983. [PMID: 34636302 DOI: 10.2174/1573399817666211005093434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although hyperglycaemia is known to be the leading cause of diabetic complications, the beneficial effect of optimal glucose control in preventing diabetic complications is still far from being proven. In fact, such complications may not be related to glycaemic control alone. OBJECTIVE This review summarizes several studies that suggest that a C-peptide deficiency could be new and common pathophysiology for complications in type 1 diabetes, including sexual and reproductive dysfunction. METHODS We reviewed in vitro, in vivo, and human studies on the association between C-peptide deficiency or C-peptide replacement therapy and complications in type 1 diabetes. It seems that Cpeptide replacement therapy may interrupt the connection between diabetes and sexual/reproductive dysfunction. RESULTS The Diabetes Control and Complications Trial suggested that maintaining C-peptide secretion is associated with a reduced incidence of retinopathy, nephropathy, and hypoglycaemia. Risk of vascular, hormonal, and neurologic damage in the structures supplying blood to the penis increases with increasing levels of HbA1. However, several human studies have suggested an association between C-peptide production and hypothalamic/pituitary functions. When exposed to C-peptide, cavernosal smooth muscle cells increase the production of nitric oxide. C-peptide in diabetic rats improves sperm count, sperm motility, testosterone levels, and nerve conduction compared to non-treated diabetic rats. CONCLUSION C-peptide deficiency may be involved, at least partially, in the development of several pathological features associated with type 1 diabetes, including sexual/reproductive dysfunction. Preliminary studies have reported that C-peptide administration protects against diabetic microand macrovascular damages as well as sexual/reproductive dysfunction. Therefore, further studies are needed to confirm these promising findings.
Collapse
Affiliation(s)
- Roberta Pujia
- Department of Health Science, University Magna Grecia, Catanzaro,Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | | | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine, Clinical Nutrition Unit, University Magna Græcia of Catanzaro, Catanzaro,Italy
| |
Collapse
|
17
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
18
|
Role of Na +/K +-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med (Berl) 2021; 100:395-410. [PMID: 34839371 DOI: 10.1007/s00109-021-02143-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.
Collapse
|
19
|
Petrič M, Vidović A, Dolinar K, Miš K, Chibalin AV, Pirkmajer S. Phosphorylation of Na +,K +-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells. J Membr Biol 2021; 254:531-548. [PMID: 34748042 PMCID: PMC8595181 DOI: 10.1007/s00232-021-00209-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100–1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.
Collapse
Affiliation(s)
- Metka Petrič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- National Research Tomsk State University, Tomsk, Russia. .,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Nepal N, Arthur S, Butts MR, Singh S, Palaniappan B, Sundaram U. Molecular Mechanism of Stimulation of Na-K-ATPase by Leukotriene D4 in Intestinal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22147569. [PMID: 34299188 PMCID: PMC8303499 DOI: 10.3390/ijms22147569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
Na-K-ATPase provides a favorable transcellular Na gradient required for the functioning of Na-dependent nutrient transporters in intestinal epithelial cells. The primary metabolite for enterocytes is glutamine, which is absorbed via Na-glutamine co-transporter (SN2; SLC38A5) in intestinal crypt cells. SN2 activity is stimulated during chronic intestinal inflammation, at least in part, secondarily to the stimulation of Na-K-ATPase activity. Leukotriene D4 (LTD4) is known to be elevated in the mucosa during chronic enteritis, but the way in which it may regulate Na-K-ATPase is not known. In an in vitro model of rat intestinal epithelial cells (IEC-18), Na-K-ATPase activity was significantly stimulated by LTD4. As LTD4 mediates its action via Ca-dependent protein kinase C (PKC), Ca levels were measured and were found to be increased. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, also mediated stimulation of Na-K-ATPase like LTD4, while BAPTA-AM (Ca chelator) and calphostin-C (Cal-C; PKC inhibitor) prevented the stimulation of Na-K-ATPase activity. LTD4 caused a significant increase in mRNA and plasma membrane protein expression of Na-K-ATPase α1 and β1 subunits, which was prevented by calphostin-C. These data demonstrate that LTD4 stimulates Na-K-ATPase in intestinal crypt cells secondarily to the transcriptional increase of Na-K-ATPase α1 and β1 subunits, mediated via the Ca-activated PKC pathway.
Collapse
|
21
|
The effect of nanomicellar curcuminoids on renal ischemia/reperfusion injury and the expressions of COX-2 and Na +/K +-ATPase in rat’s kidney. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Teixeira MP, Passos EF, Haddad NF, Andrade MN, Rumjanek VM, Miranda-Alves L, de Carvalho DP, de Paiva LS. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. ENVIRONMENTAL TOXICOLOGY 2021; 36:1338-1348. [PMID: 33760381 DOI: 10.1002/tox.23130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Ouabain is a steroid described as a compound extracted from plants that is capable of binding to Na+ , K+ -ATPase, inhibiting ion transport and triggering cell signaling pathways. Due to its positive ionotropic effect, ouabain was used for more than 200 years for the treatment of cardiac dysfunctions. Numerous antitumor effects of ouabain have been described so far; however, its role on thyroid cancer is still poorly understood. Therefore, the aim of the present work was to evaluate the effect of ouabain on the biology of human papillary thyroid cancer cells. For this, three human thyroid cell lines were used: NTHY-ori, a non-tumor lineage, BCPAP and TPC-1, both derived from papillary carcinomas. Cells were cultured in the presence or absence of ouabain. Subsequently, we evaluated its effects on the viability, cell death, cell cycle, and migratory ability of these cell lines. We also investigated the impact of ouabain in IL-6/IL-6R and epithelial to mesenchymal transition markers expression. Our results indicate that ouabain (10-7 M), decreased the number of NTHY-ori, TPC-1 and BCPAP viable cells and induced cell cycle arrest after in vitro culture, but did not appear to promote cell death. In TPC-1 cells ouabain also inhibited cell migration; increased IL-6/IL-6R expression and IL-6 secretion; and diminished vimentin and SNAIL-1 expression. Collectively, our results indicate that ouabain has an antitumoral role on human papillary thyroid carcinomas in vitro. Even though additional studies are necessary, our work contributes to the discussion of the possibility of new clinical trials of ouabain.
Collapse
Affiliation(s)
- Mariana Pires Teixeira
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliza Freitas Passos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Ferreira Haddad
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
23
|
McDermott JP, Numata S, Blanco G. Na,K-ATPase Atp1a4 isoform is important for maintaining sperm flagellar shape. J Assist Reprod Genet 2021; 38:1493-1505. [PMID: 33977467 DOI: 10.1007/s10815-021-02087-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the mechanisms by which the testis specific Na,K-ATPase ion transport system (Atp1a4) controls sperm morphology and shape. METHODS Sperm from wild-type (WT) and Atp1a4 knockout (Atp1a4 KO) mice were analyzed morphologically, using light, transmission, and scanning electron microscopy; and functionally, applying sperm osmotic challenge and viability tests. In addition, a sperm proteomic study was performed. RESULTS Light microscopy confirmed that sperm lacking Atp1a4 present a bend at the junction of the mid- and principal piece of the flagellum. This bend had different degrees of angulation, reaching occasionally a complete flagellar retroflexion. The defect appeared in sperm collected from the cauda epididymis, but not the epididymal caput or the testis. Transmission and scanning electron microscopy revealed a dilation of the cytoplasm at the site of the bend, with fusion of the plasma membrane in overlapping segments of the flagellum. This was accompanied by defects in the axoneme and peri-axonemal structures. Sperm from Atp1a4 KO mice showed an abnormal response to hypoosmotic challenge with decreased viability, suggesting reduced capacity for volume regulation. Exposure to Triton X-100 only partially recovered the flagellar bend of Atp1a4 KO sperm, showing that factors other than osmotic regulation contribute to the flagellar defect. Interestingly, several key sperm structural proteins were expressed in lower amounts in Atp1a4 KO sperm, with no changes in their localization. CONCLUSIONS Altogether, our results show that Atp1a4 plays an important role in maintaining the proper shape of the sperm flagellum through both osmotic control and structurally related mechanisms.
Collapse
Affiliation(s)
- Jeff P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - September Numata
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Feraille É, Olivier V. [Role of distal nephron in the control of extracellular volume in physiology and in nephrotic syndrome]. Med Sci (Paris) 2021; 37:359-365. [PMID: 33908853 DOI: 10.1051/medsci/2021032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kidney plays a major role to maintain the constancy of the "milieu intérieur" by adjusting the urinary excretion of water and solutes to the requirement of the body balance. This function is coordinated with elimination of waste products generated among others by the catabolism of proteins and nucleic acids. To cope with these two major functions, the human kidneys generate each day about 180 L of ultrafiltrate from plasma and reabsorbs the vast majority of filtered water and solutes to excrete daily about one-two liter(s) of urine containing concentrations of sodium, potassium and chloride ranging from 20 to 200 mM. The final adjustment of urine composition is finely tuned along the aldosterone-sensitive distal nephron (ASDN) which includes the distal convoluted tubule and the collecting system (connecting tubule and collecting duct). Sodium reabsorption is predominant along the distal tubule if potassium must be spared, or along the collecting system when large amounts of potassium must be secreted. Nephrotic syndrome is characterized by heavy proteinuria consecutive to a glomerular injury, associated with renal sodium and water retention taking initially place along ASDN and leading to edema.
Collapse
Affiliation(s)
- Éric Feraille
- Département de physiologie cellulaire et métabolisme, Université de Genève, Centre médical universitaire, 1 rue Michel-Servet, CH-1211 Genève 4, Suisse
| | - Valérie Olivier
- Département de physiologie cellulaire et métabolisme, Université de Genève, Centre médical universitaire, 1 rue Michel-Servet, CH-1211 Genève 4, Suisse
| |
Collapse
|
25
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
27
|
Pechère-Bertschi A, Olivier V, Burnier M, Udwan K, de Seigneux S, Ponte B, Maillard M, Martin PY, Feraille E. Dietary sodium intake does not alter renal potassium handling and blood pressure in healthy young males. Nephrol Dial Transplant 2021; 37:548-557. [PMID: 33492394 PMCID: PMC8875469 DOI: 10.1093/ndt/gfaa381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/03/2022] Open
Abstract
Background The effects of sodium (Na+) intakes on renal handling of potassium (K+) are insufficiently studied. Methods We assessed the effect of Na+ on renal K+ handling in 16 healthy males assigned to three 7-day periods on low salt diet [LSD, 3 g sodium chloride (NaCl)/day], normal salt diet (NSD, 6 g NaCl/day) and high salt diet (HSD, 15 g NaCl/day), with constant K+ intake. Contributions of distal NaCl co-transporter and epithelial Na+ channel in the collecting system on K+ and Na+ handling were assessed at steady state by acute response to 100 mg oral hydrochlorothiazide and with addition of 10 mg of amiloride to hydrochlorothiazide, respectively. Results Diurnal blood pressure slightly increased from 119.30 ± 7.95 mmHg under LSD to 123.00 ± 7.50 mmHg (P = 0.02) under HSD, while estimated glomerular filtration rate increased from 133.20 ± 34.68 mL/min under LSD to 187.00 ± 49.10 under HSD (P = 0.005). The 24-h K+ excretion remained stable on all Na+ intakes (66.28 ± 19.12 mmol/24 h under LSD; 55.91 ± 21.17 mmol/24 h under NSD; and 66.81 ± 20.72 under HSD, P = 0.9). The hydrochlorothiazide-induced natriuresis was the highest under HSD (30.22 ± 12.53 mmol/h) and the lowest under LSD (15.38 ± 8.94 mmol/h, P = 0.02). Hydrochlorothiazide increased kaliuresis and amiloride decreased kaliuresis similarly on all three diets. Conclusions Neither spontaneous nor diuretic-induced K+ excretion was influenced by Na+ intake in healthy male subjects. However, the respective contribution of the distal convoluted tubule and the collecting duct to renal Na+ handling was dependent on dietary Na+ intake.
Collapse
Affiliation(s)
| | - Valérie Olivier
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Khalil Udwan
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Sophie de Seigneux
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Belén Ponte
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland
| | - Marc Maillard
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Pierre-Yves Martin
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Eric Feraille
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
28
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
29
|
Wang Z, Detomasi TC, Chang CJ. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells. Chem Sci 2020; 12:1720-1729. [PMID: 34163931 PMCID: PMC8179100 DOI: 10.1039/d0sc03844j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K+ homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K+ physiology and pathology owing to the large differences in intracellular versus extracellular K+ concentrations ([K+]intra = 150 mM, [K+]extra = 3-5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K+ in biological specimens that meet the dual challenges of low affinity and high selectivity for K+, particularly over Na+, currently available fluorescent K+ sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K+ detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (RPS-1), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. RPS-1 links a potassium-responsive fluorescent sensor fragment (PS525) with a low-affinity, high-selectivity crown ether receptor for K+ to a potassium-insensitive reference fluorophore (Coumarin 343) as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K+. RPS-1 responds to K+ in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, RPS-1 was applied for comparative screening of K+ pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K+ in metastatic breast cancer cell lines vs. normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.
Collapse
Affiliation(s)
- Zeming Wang
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Tyler C Detomasi
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
30
|
Lima NKS, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, Muzi-Filho H, Paixão ADO, Vieira LD. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na + transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci 2020; 266:118879. [PMID: 33310030 DOI: 10.1016/j.lfs.2020.118879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300-350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.
Collapse
Affiliation(s)
- Natália K S Lima
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Wilka R A Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Marry A S Cirilo
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Angélica G Oliveira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana D O Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Bugg WS, Yoon GR, Schoen AN, Laluk A, Brandt C, Anderson WG, Jeffries KM. Effects of acclimation temperature on the thermal physiology in two geographically distinct populations of lake sturgeon ( Acipenser fulvescens). CONSERVATION PHYSIOLOGY 2020; 8:coaa087. [PMID: 34603733 PMCID: PMC7526614 DOI: 10.1093/conphys/coaa087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 05/31/2023]
Abstract
Temperature is one of the most important abiotic factors regulating development and biological processes in ectotherms. By 2050, climate change may result in temperature increases of 2.1-3.4°C in Manitoba, Canada. Lake sturgeon, Acipenser fulvescens, from both northern and southern populations in Manitoba were acclimated to 16, 20 and 24°C for 30 days, after which critical thermal maximum (CTmax) trials were conducted to investigate their thermal plasticity. We also examined the effects of temperature on morphological and physiological indices. Acclimation temperature significantly influenced the CTmax, body mass, hepatosomatic index, metabolic rate and the mRNA expression of transcripts involved in the cellular response to heat shock and hypoxia (HSP70, HSP90a, HSP90b, HIF-1α) in the gill of lake sturgeon. Population significantly affected the above phenotypes, as well as the mRNA expression of Na+/K+ ATPase-α1 and the hepatic glutathione peroxidase enzyme activity. The southern population had an average CTmax that was 0.71 and 0.45°C higher than the northern population at 20 and 24°C, respectively. Immediately following CTmax trials, mRNA expression of HSP90a and HIF-1α was positively correlated with individual CTmax of lake sturgeon across acclimation treatments and populations (r = 0.7, r = 0.62, respectively; P < 0.0001). Lake sturgeon acclimated to 20 and 24°C had decreased hepatosomatic indices (93 and 244% reduction, respectively; P < 0.0001) and metabolic suppression (27.7 and 42.1% reduction, respectively; P < 0.05) when compared to sturgeon acclimated to 16°C, regardless of population. Glutathione peroxidase activity and mRNA expression Na+/K+ ATPase-α1 were elevated in the northern relative to the southern population. Acclimation to 24°C also induced mortality in both populations when compared to sturgeon acclimated to 16 and 20°C. Thus, increased temperatures have wide-ranging population-specific physiological consequences for lake sturgeon across biological levels of organization.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | - Andrew Laluk
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
32
|
Wankhar W, Syiem D, Pakyntein CL, Thabah D, Sunn SE. Effect of 5-HT 2C receptor agonist and antagonist on chronic unpredictable stress (CUS) - Mediated anxiety and depression in adolescent Wistar albino rat: Implicating serotonin and mitochondrial ETC-I function in serotonergic neurotransmission. Behav Brain Res 2020; 393:112780. [PMID: 32579979 DOI: 10.1016/j.bbr.2020.112780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022]
Abstract
Anxiety and depression are among the major neuropsychiatric disorders worldwide, and yet the etiologies of these disorders remain unclear to date. Chronic unpredictable stress (CUS) procedure mimics several behavioral characteristics such as anxiety and depression in rodents. Using this animal model, we have attempted to understand the serotonergic system in the hippocampus and prefrontal cortex, while using the 5-HT2CR agonist and antagonist in evaluating 5-HT2C receptor neurotransmission. A decrease in serotonin (5-HT) level, tryptophan hydroxylase-2 activity and, 5-HT2CR receptor protein down-regulation in the CUS exposed group, explains the involvement of 5-HT and 5-HT2CR neurotransmission in the genesis of anxiety and depression. Besides, the oxidative stress - attenuated electrolyte imbalance via decrease ATPase pump activity, and compromised oxidative phosphorylation via decrease ETC-I activity are some of the underlying factors affecting neuronal cell survival and serotonergic neurotransmission. To complement our finding, altered behavioral performance scored in the open field test, elevated plus maze test, and the forced swim test, when exposed to CUS is indicative or consistent with anxiety, depression, emotional and locomotor status of the animals. Keeping these findings in mind, treatment with 5-HT2CR agonist (1-Methylpsilocin at 0.7 mg/kg), and 5-HT2CR antagonist (RS-102221 hydrochloride at 1 mg/kg) displayed varying results. One prominent finding was the anxiolytic ability of the 5-HT2CR agonist and the anti-depressive ability of the 5-HT2CR antagonist on the 7th-day treatment. Though the exact mechanism of action is not clear, their ability to equilibrate brain redox status, restoring Ca2+ level via Ca2+ATPase pump activity, and sustaining the mitochondrial bioenergetics can all be accounted for facilitating neurogenesis and the serotonergic system.
Collapse
Affiliation(s)
- Wankupar Wankhar
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India.
| | - Donkupar Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Careen Liza Pakyntein
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Daiahun Thabah
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Shelareen Ediemi Sunn
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| |
Collapse
|
33
|
Abstract
BACKGROUND The temporality between the mandated reduction of salt in processed food and the decrease of death from stroke and ischemic heart disease, the association of hypertension, and cardiovascular disease led many public health organizations to recommend reducing dietary sodium to a maximum of 2300 mg per day. It turns out that some nuances can be brought about to this universally shared belief. METHODS & RESULTS Indeed, consideration of health outcomes instead of only blood pressure as a surrogate marker of cardiovascular disease and prognosis gave contradictory results whereas low sodium intake is associated to an excess of death and cardiovascular events. CONCLUSIONS Accordingly, sodium intake should be adapted to individual risk factors, and evidence is still clearly lacking to support indiscriminate recommendations in healthy people. By contrast, a restricted sodium diet is certainly useful in patients with chronic kidney disease exposed to salt retention, and by reciprocity, low sodium diet must be absolutely avoided in all patients presenting renal or extra renal sodium wasting where sodium depletion is a life-threatening condition.
Collapse
Affiliation(s)
- Georges Deschênes
- Department of Pediatric Nephrology, APHP Robert-Debré, University of Paris, APHP Robert-Debré, 48 Bd Sérurier, 75019, Paris, France.
| |
Collapse
|
34
|
Syeda SS, Sánchez G, McDermott JP, Hong KH, Blanco G, Georg GI. The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraception†. Biol Reprod 2020; 103:343-356. [PMID: 32588885 PMCID: PMC7401355 DOI: 10.1093/biolre/ioaa093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
One of the mechanisms that cells have developed to fulfil their specialized tasks is to express different molecular variants of a particular protein that has unique functional properties. Na,K-ATPase (NKA), the ion transport mechanism that maintains the transmembrane Na+ and K+ concentrations across the plasma membrane of cells, is one of such protein systems that shows high molecular and functional heterogeneity. Four different isoforms of the NKA catalytic subunit are expressed in mammalian cells (NKAα1, NKAα2, NKAα3, and NKAα4). NKAα4 (ATP1A4) is the isoform with the most restricted pattern of expression, being solely produced in male germ cells of the testis. NKAα4 is abundant in spermatozoa, where it is required for sperm motility and hyperactivation. This review discusses the expression, functional properties, mechanism of action of NKAα4 in sperm physiology, and its role in male fertility. In addition, we describe the use of NKAα4 as a target for male contraception and a potential approach to pharmacologically block its ion transport function to interfere with male fertility.
Collapse
Affiliation(s)
- Shameem Sultana Syeda
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kwon Ho Hong
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
35
|
Vio CP, Gallardo P, Cespedes C, Salas D, Diaz-Elizondo J, Mendez N. Dietary Potassium Downregulates Angiotensin-I Converting Enzyme, Renin, and Angiotensin Converting Enzyme 2. Front Pharmacol 2020; 11:920. [PMID: 32625100 PMCID: PMC7314933 DOI: 10.3389/fphar.2020.00920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background The importance of dietary potassium in health and disease has been underestimated compared with that placed on dietary sodium. Larger effort has been made on reduction of sodium intake and less on the adequate dietary potassium intake, although natural food contains much more potassium than sodium. The benefits of a potassium-rich diet are known, however, the mechanism by which it exerts its preventive action, remains to be elucidated. With the hypothesis that dietary potassium reduces renal vasoconstrictor components of the renin-angiotensin system in the long-term, we studied the effect of high potassium diet on angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2. Methods Sprague Dawley male rats on a normal sodium diet received normal potassium (0.9%, NK) or high potassium diet (3%, HK) for 4 weeks. Urine was collected in metabolic cages for electrolytes and urinary volume measurement. Renal tissue was used to analyze angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2 expression. Protein abundance analysis was done by Western blot; gene expression by mRNA levels by RT-qPCR. Renal distribution of angiotensin-I converting enzyme and renin was done by immunohistochemistry and morphometric analysis in coded samples. Results High potassium diet (4 weeks) reduced the levels of renin, angiotensin-I converting enzyme, and angiotensin converting enzyme 2. Angiotensin-I converting enzyme was located in the brush border of proximal tubules and with HK diet decreased the immunostaining intensity (P < 0.05), decreased the mRNA (P < 0.01) and the protein levels (P < 0.01). Renin localization was restricted to granular cells of the afferent arteriole and HK diet decreased the number of renin positive cells (P < 0.01) and renin mRNA levels (P < 0.01). High potassium intake decreased angiotensin converting enzyme 2 gene expression and protein levels (P < 0.01).No morphological abnormalities were observed in renal tissue during high potassium diet.The reduced expression of angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2 during potassium supplementation suggest that high dietary potassium intake could modulate these vasoactive enzymes and this effects can contribute to the preventive and antihypertensive effect of potassium.
Collapse
Affiliation(s)
- Carlos P Vio
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Pedro Gallardo
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Carlos Cespedes
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Daniela Salas
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jessica Diaz-Elizondo
- Center for Aging and Regeneration CARE UC, Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Mendez
- Facultad de Medicina, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
36
|
Saha SR, Sakase M, Fukushima M, Harayama H. Effects of digoxin on full-type hyperactivation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades. Theriogenology 2020; 154:100-109. [PMID: 32540510 DOI: 10.1016/j.theriogenology.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous researches of our laboratory reported that addition of cAMP analog cBiMPS and protein phosphatase inhibitor calyculin A (stimulators of cAMP signaling cascades) improved the capacity of incubation medium to induce full-type hyperactivation in bovine ejaculated spermatozoa. However, this modified medium was valid only for samples with relatively good survivability for incubation with stimulators of cAMP signaling cascades. Thus, it is necessary to make further modified medium for evaluation of potentials to exhibit full-type hyperactivation in bovine sperm samples with relatively lower survivability. Na+/K+-ATPase is an integral membrane protein and involved with the regulation of rodent sperm motility. To make further modification of the medium, we examined effects of Na+/K+-ATPase inhibition with digoxin on motility, full-type hyperactivation and protein tyrosine phosphorylation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades and also performed the immunodetection of bovine sperm Na+/K+-ATPase. The addition of Na+/K+-ATPase inhibitor digoxin to the incubation medium containing cBiMPS and calyculin A had the tendency to lessen the decreases in the percentages of motile spermatozoa in all of 12 samples after the incubation for 1-3 h and significantly increased the percentages of full-type hyperactivation in one group of 4 samples (Sample-A1) and another group of 4 samples (Sample-A2) after 1 and 2 h respectively, though it had no significant effects on full-type hyperactivation in the other group of 4 samples (Sample-B). In addition, incubation time-related changes in the sperm protein tyrosine phosphorylation (a good marker for sperm capacitation) were correlated with those in the percentages of full-type hyperactivation in Sample-A1 containing digoxin. Immunodetection showed that Na+/K+-ATPase is present in the middle and principal pieces of the flagella, indicating that Na+/K+-ATPase has possible relations with sperm motility. These results obtained with bull ejaculated spermatozoa with relatively lower survivability indicate that incubation method using digoxin is useful to evaluate potentials of sperm samples to exhibit full-type hyperactivation, that digoxin has effects on suppressing reduction of sperm motility, and that prolonged incubation with digoxin induces reduction of capacitation state which may suppress the maintenance of full-type hyperactivation.
Collapse
Affiliation(s)
- Soma Rani Saha
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Mitsuhiro Sakase
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Moriyuki Fukushima
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
37
|
Ferrannini E, Pereira-Moreira R, Seghieri M, Rebelos E, Souza AL, Chueire VB, Arvia C, Muscelli E. Insulin enhances renal glucose excretion: relation to insulin sensitivity and sodium-glucose cotransport. BMJ Open Diabetes Res Care 2020; 8:8/1/e001178. [PMID: 32423964 PMCID: PMC7245398 DOI: 10.1136/bmjdrc-2020-001178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Insulin regulates renal glucose production and utilization; both these fluxes are increased in type 2 diabetes (T2D). Whether insulin also controls urinary glucose excretion is not known. METHODS We applied the pancreatic clamp technique in 12 healthy subjects and 13 T2D subjects. Each participant received a somatostatin infusion and a variable glucose infusion to achieve (within 1 hour) and maintain glycemia at 22 mmol/L for 3 hours; next, a constant insulin infusion (240 pmol/min/kg) was added for another 3 hours. Urine was collected separately in each period for glucose and creatinine determination. RESULTS During saline, glucose excretion was lower in T2D than controls in absolute terms (0.49 (0.32) vs 0.69 (0.18) mmol/min, median (IQR), p=0.01) and as a fraction of filtered glucose (16.2 (6.4) vs 19.9 (7.5)%, p<0.001). With insulin, whole-body glucose disposal rose more in controls than T2D (183 (48) vs 101 (48) µmol/kgFFM/min, p<0.0003). Insulin stimulated absolute and fractional glucose excretion in controls (p<0.01) but not in T2D. Sodium excretion paralleled glucose excretion. In the pooled data, fractional glucose excretion was directly related to whole-body glucose disposal and to fractional sodium excretion (r=0.52 and 0.54, both p<0.01). In another group of healthy controls, empagliflozin was administered before starting the pancreatic clamp to block sodium-glucose cotransporter 2 (SGLT2). Under these conditions, insulin still enhanced both glucose and sodium excretion. CONCLUSIONS Acute exogenous insulin infusion jointly stimulates renal glucose and sodium excretion, indicating that the effect may be mediated by SGLTs. This action is resistant in patients with diabetes, accounting for their increased retention of glucose and sodium, and is not abolished by partial SGLT2 inhibition by empagliflozin.
Collapse
Affiliation(s)
| | - Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Marta Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Aglécio L Souza
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Valeria B Chueire
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
38
|
Robert A, Cheddani L, Ebel A, Vilaine E, Seidowsky A, Massy Z, Essig M. Métabolisme du sodium : une mise au point en 2019. Nephrol Ther 2020; 16:77-82. [DOI: 10.1016/j.nephro.2019.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
|
39
|
Yoneda JS, Sebinelli HG, Itri R, Ciancaglini P. Overview on solubilization and lipid reconstitution of Na,K-ATPase: enzyme kinetic and biophysical characterization. Biophys Rev 2020; 12:49-64. [PMID: 31955383 DOI: 10.1007/s12551-020-00616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Na,K-ATPase is a membrane protein which plays a vital role. It pumps Na+ and K+ ions across the cellular membranes using energy from ATP hydrolysis, and is responsible for maintaining the osmotic equilibrium and generating the membrane potential. Moreover, Na,K-ATPase has also been involved in cell signaling, interacting with partner proteins. Cardiotonic steroids bind specifically to Na,K-ATPase triggering a number of signaling pathways. Because of its importance, many efforts have been employed to study the structure and function of this protein. Difficulties associated with its removal from natural membranes and the concomitant search for appropriate replacement conditions to keep the protein in solution have presented a challenge that had to be overcome prior to carrying out biophysical and biochemical studies in vitro. In this review, we summarized all of the methods and techniques applied by our group in order to obtain information about Na,K-ATPase in respect to solubilization, reconstitution into mimetic system, influence of lipid composition, stability, oligomerization, and aggregation.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil.
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
40
|
Abstract
Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt‐sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)—tap water, high salt (HS)—1% NaCl, L‐buthionine‐sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO–treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO–treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.
Collapse
Affiliation(s)
- Anees A Banday
- Heart and Kidney Institute College of Pharmacy University of Houston TX
| | | |
Collapse
|
41
|
Aubert V, Kaminski J, Guillaud F, Hauet T, Hannaert P. A Computer Model of Oxygen Dynamics in the Cortex of the Rat Kidney at the Cell-Tissue Level. Int J Mol Sci 2019; 20:E6246. [PMID: 31835730 PMCID: PMC6941061 DOI: 10.3390/ijms20246246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The renal cortex drives renal function. Hypoxia/reoxygenation are primary factors in ischemia-reperfusion (IR) injuries, but renal oxygenation per se is complex and awaits full elucidation. Few mathematical models address this issue: none captures cortical tissue heterogeneity. Using agent-based modeling, we develop the first model of cortical oxygenation at the cell-tissue level (RCM), based on first principles and careful bibliographical analysis. Entirely parameterized with Rat data, RCM is a morphometrically equivalent 2D-slice of cortical tissue, featuring peritubular capillaries (PTC), tubules and interstitium. It implements hemoglobin/O2 binding-release, oxygen diffusion, and consumption, as well as capillary and tubular flows. Inputs are renal blood flow RBF and PO2 feeds; output is average tissue PO2 (tPO2). After verification and sensitivity analysis, RCM was validated at steady-state (tPO2 37.7 ± 2.2 vs. 36.9 ± 6 mmHg) and under transients (ischemic oxygen half-time: 4.5 ± 2.5 vs. 2.3 ± 0.5 s in situ). Simulations confirm that PO2 is largely independent of RBF, except at low values. They suggest that, at least in the proximal tubule, the luminal flow dominantly contributes to oxygen delivery, while the contribution of capillaries increases under partial ischemia. Before addressing IR-induced injuries, upcoming developments include ATP production, adaptation to minutes-hours scale, and segmental and regional specification.
Collapse
Affiliation(s)
| | | | | | | | - Patrick Hannaert
- INSERM U1082-IRTOMIT, 86000 Poitiers, France; (V.A.); (J.K.); (F.G.); (T.H.)
| |
Collapse
|
42
|
Peruchetti DB, Freitas AC, Pereira VC, Lopes JV, Takiya CM, Nascimento NR, Pinheiro AAS, Caruso-Neves C. PKB is a central molecule in the modulation of Na+-ATPase activity by albumin in renal proximal tubule cells. Arch Biochem Biophys 2019; 674:108115. [DOI: 10.1016/j.abb.2019.108115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
|
43
|
Cheval L, Bakouh N, Walter C, Tembely D, Morla L, Escher G, Vogt B, Crambert G, Planelles G, Doucet A. ANP-stimulated Na + secretion in the collecting duct prevents Na + retention in the renal adaptation to acid load. Am J Physiol Renal Physiol 2019; 317:F435-F443. [PMID: 31188029 DOI: 10.1152/ajprenal.00059.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.
Collapse
Affiliation(s)
- Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Naziha Bakouh
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Christine Walter
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Dignê Tembely
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Luciana Morla
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Geneviève Escher
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Alain Doucet
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| |
Collapse
|
44
|
Watson AMD, Gould EAM, Penfold SA, Lambert GW, Pratama PR, Dai A, Gray SP, Head GA, Jandeleit-Dahm KA. Diabetes and Hypertension Differentially Affect Renal Catecholamines and Renal Reactive Oxygen Species. Front Physiol 2019; 10:309. [PMID: 31040788 PMCID: PMC6477025 DOI: 10.3389/fphys.2019.00309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
Patients with diabetic hypertensive nephropathy have accelerated disease progression. Diabetes and hypertension have both been associated with changes in renal catecholamines and reactive oxygen species. With a specific focus on renal catecholamines and oxidative stress we examined a combined model of hypertension and diabetes using normotensive BPN/3J and hypertensive BPH/2J Schlager mice. Induction of diabetes (5 × 55 mg/kg streptozotocin i.p.) did not change the hypertensive status of BPH/2J mice (telemetric 24 h avg. MAP, non-diabetic 131 ± 2 vs. diabetic 129 ± 1 mmHg, n.s at 9 weeks of study). Diabetes-associated albuminuria was higher in BPH/2J vs. diabetic BPN/3J (1205 + 196/-169 versus 496 + 67/-59 μg/24 h, p = 0.008). HPLC measurement of renal cortical norepinephrine and dopamine showed significantly greater levels in hypertensive mice whilst diabetes was associated with significantly lower catecholamine levels. Diabetic BPH/2J also had greater renal catecholamine levels than diabetic BPN/3J (diabetic: norepinephrine BPN/3J 40 ± 4, BPH/2J 91 ± 5, p = 0.010; dopamine: BPN/3J 2 ± 1; BPH/2J 3 ± 1 ng/mg total protein, p < 0.001 after 10 weeks of study). Diabetic BPH/2J showed greater cortical tubular immunostaining for monoamine oxidase A and cortical mitochondrial hydrogen peroxide formation was greater in both diabetic and non-diabetic BPH/2J. While cytosolic catalase activity was greater in non-diabetic BPH/2J it was significantly lower in diabetic BPH/2J (cytosolic: BPH/2J 127 ± 12 vs. 63 ± 6 nmol/min/ml, p < 0.001). We conclude that greater levels of renal norepinephrine and dopamine associated with hypertension, together with diabetes-associated compromised anti-oxidant systems, contribute to increased renal oxidative stress in diabetes and hypertension. Elevations in renal cortical catecholamines and reactive oxygen species have important therapeutic implications for hypertensive diabetic patients.
Collapse
Affiliation(s)
- Anna M D Watson
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Sally A Penfold
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Stephen P Gray
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karin A Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Li XC, Zheng X, Chen X, Zhao C, Zhu D, Zhang J, Zhuo JL. Genetic and genomic evidence for an important role of the Na +/H + exchanger 3 in blood pressure regulation and angiotensin II-induced hypertension. Physiol Genomics 2019; 51:97-108. [PMID: 30849009 PMCID: PMC6485378 DOI: 10.1152/physiolgenomics.00122.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaowen Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xu Chen
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Chunling Zhao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Dongmin Zhu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jianfeng Zhang
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
46
|
Taveira-da-Silva R, da Silva Sampaio L, Vieyra A, Einicker-Lamas M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press Res 2019; 44:1-11. [PMID: 30808844 DOI: 10.1159/000497806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.
Collapse
Affiliation(s)
| | - Luzia da Silva Sampaio
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bio Imaging (CENABIO), Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine (REGENERA), Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil,
| |
Collapse
|
47
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
48
|
Abstract
Calcium kidney stones are common worldwide. Most are idiopathic and composed of calcium oxalate. Calcium phosphate is present in around 80% and may initiate stone formation. Stone production is multifactorial with a polygenic genetic contribution. Phosphaturia is found frequently among stone formers but until recently received scant attention. This review examines possible mechanisms for the phosphaturia and its relevance to stone formation from a wide angle. There is a striking lack of clinical data. Phosphaturia is associated, but not correlated, with hypercalciuria, increased 1,25 dihydroxy-vitamin D [1,25 (OH)2D], and sometimes evidence of disturbances in proximal renal tubular function. Phosphate reabsorption in the proximal renal tubules requires tightly regulated interaction of many proteins. Paracellular flow through intercellular tight junctions is the major route of phosphate absorption from the intestine and can be reduced therapeutically in hyperphosphatemic patients. In monogenic defects stones develop when phosphaturia is associated with hypercalciuria, generally explained by increased 1,25 (OH)2D production in response to hypophosphatemia. Calcification does not occur in disorders with increased FGF23 when phosphaturia occurs in isolation and 1,25 (OH)2D is suppressed. Candidate gene studies have identified mutations in the phosphate transporters, but in few individuals. One genome-wide study identified a polymorphism of the phosphate transporter gene SLC34A4 associated with stones. Others did not find mutations obviously linked to phosphate reabsorption. Future genetic studies should have a wide trawl and should focus initially on groups of patients with clearly defined phenotypes. The global data should be pooled.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
49
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Silva LS, Peruchetti DB, Silva-Aguiar RP, Abreu TP, Dal-Cheri BKA, Takiya CM, Souza MC, Henriques MG, Pinheiro AAS, Caruso-Neves C. The angiotensin II/AT1 receptor pathway mediates malaria-induced acute kidney injury. PLoS One 2018; 13:e0203836. [PMID: 30204779 PMCID: PMC6133374 DOI: 10.1371/journal.pone.0203836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.
Collapse
Affiliation(s)
- Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago P. Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz K. A. Dal-Cheri
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana C. Souza
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria G. Henriques
- Instituto de tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|