1
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Priyanka K Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
2
|
Li Y, Zhang YT, Han B, Xue L, Wei Y, Li G. Single-cell sequencing analysis confirms the association of ANRIL with the increased smooth muscle cell proliferation and migration gene signatures in pulmonary artery hypertension in silico. Adv Med Sci 2024; 69:217-223. [PMID: 38631609 DOI: 10.1016/j.advms.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Smooth muscle cell (SMC) dysregulation is part of the pathological basis of pulmonary artery hypertension (PAH). We aimed to explore the heterogeneity of SMCs in PAH. METHODS The profile GSE210248 was obtained from NCBI Gene Expression Omnibus, containing the scRNA-seq data of pulmonary arteries (PA) from three patients with PAH and three healthy donors. After quality control, normalization, and dimension reduction, cell clustering analysis was performed. Differential expression analysis and functional enrichment analysis were carried out successively in smooth muscle cells (SMCs). The enrichment scores of cell cycle and cell migration gene sets in SMCs were calculated. Then, the Spearman correlation coefficients between antisense non-coding RNA in the INK4 locus (ANRIL) expression and two gene sets were computed. RESULTS Eight cell clusters were identified in PA from samples. The proportion of SMCs was increased in PAH samples. SMCs were divided into five subclusters with diverse biological functions. Muscle contraction-related SMC1 was decreased, while extracellular matrix organization-related SMC2, immune and inflammatory response-related SMC4 and SMC5 were increased in PAH samples compared with healthy donors. The enrichment scores of cell cycle and cell migration gene sets in SMCs were higher in PAH samples than in donors. ANRIL was down-regulated significantly in PAH samples and was negatively related to the scores of two gene sets. CONCLUSION SMCs exhibited significant heterogeneity in PAH. The altered abilities of SMC proliferation and migration in PAH were associated with ANRIL expression.
Collapse
Affiliation(s)
- Yan Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China.
| | - Yan-Tong Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China
| | - Bing Han
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China
| | - Lan Xue
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China
| | - Yan Wei
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China
| | - Ge Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, China
| |
Collapse
|
3
|
Xu S, Jiemy WF, Brouwer E, Burgess JK, Heeringa P, van der Geest KSM, Alba-Rovira R, Corbera-Bellalta M, Boots AH, Cid MC, Sandovici M. Current evidence on the role of fibroblasts in large-vessel vasculitides: From pathogenesis to therapeutics. Autoimmun Rev 2024; 23:103574. [PMID: 38782083 DOI: 10.1016/j.autrev.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.
Collapse
Affiliation(s)
- Shuang Xu
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - William F Jiemy
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Peter Heeringa
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Kornelis S M van der Geest
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Annemieke H Boots
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Sandovici
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands.
| |
Collapse
|
4
|
Wiejak J, Murphy FA, Maffia P, Yarwood SJ. Vascular smooth muscle cells enhance immune/vascular interplay in a 3-cell model of vascular inflammation. Sci Rep 2023; 13:15889. [PMID: 37741880 PMCID: PMC10517978 DOI: 10.1038/s41598-023-43221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Atherosclerosis is a serious cardiovascular disease that is characterised by the development of atheroma, which are lipid-laden plaques that build up within arterial walls due to chronic inflammatory processes. These lesions are fundamentally attributed to a complex cellular crosstalk between vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs) and central immune cells, such as macrophages (Mɸs), which promote vascular inflammation. The presence of VSMCs exerts both positive and negative effects during atheroma development, which can be attributed to their phenotypic plasticity. Understanding the interactions between these key cell types during the development of vascular inflammation and atheroma will enhance the scope for new therapeutic interventions. This study aims to determine the importance of VSMCs for shaping the extracellular cytokine/chemokine profile and transcriptional responses of VECs (human coronary artery endothelial cells; HCAECs) to activated lipopolysaccharide (LPS)-stimulated THP1 Mɸs, in a 3-cell model of human vascular inflammation. It is evident that within the presence of VSMCs, enhanced cytokine production was associated with up-regulation of genes associated with vascular inflammation t. Results demonstrate that the presence of VSMCs in co-culture experiments enhanced cytokine production (including CXCL1/GROα, IL-6, IL-8 and CCL2/MCP1) and inflammatory gene expression (including genes involved in JAK/STAT, Jun and NFκB signalling) in HCAECs co-cultured with LPS-stimulated THP1 Mɸs. Our results highlight the importance of VSMCs in immune/endothelial cell interplay and indicate that 3-cell, rather than 2-cell co-culture, may be more appropriate for the study of cellular crosstalk between immune and vascular compartments in response to inflammatory and atherogenic stimuli.
Collapse
Affiliation(s)
- Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fiona A Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
5
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
6
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Visniauskas B, Reverte V, Abshire CM, Ogola BO, Rosales CB, Galeas-Pena M, Sure VN, Sakamuri SSVP, Harris NR, Kilanowski-Doroh I, Mcnally AB, Horton AC, Zimmerman M, Katakam PVG, Lindsey SH, Prieto MC. High-plasma soluble prorenin receptor is associated with vascular damage in male, but not female, mice fed a high-fat diet. Am J Physiol Heart Circ Physiol 2023; 324:H762-H775. [PMID: 36930656 PMCID: PMC10151046 DOI: 10.1152/ajpheart.00638.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Plasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM. Male and female C57BL/6J mice were fed either a normal fat diet (NFD) or an HFD for 28 wk to assess changes in blood pressure, cardiometabolic phenotype, plasma prorenin/renin, sPRR, and ANG II. After completing dietary protocols, tissues were collected from males to assess vascular reactivity and aortic reactive oxygen species (ROS). A cohort of male mice was used to determine the direct contribution of increased systemic sPRR by infusion. To investigate the role of ovarian hormones, ovariectomy (OVX) was performed at 32 wk in females fed either an NFD or HFD. Significant sex differences were found after 28 wk of HFD, where only males developed T2DM and increased plasma prorenin/renin, sPRR, and ANG II. T2DM in males was accompanied by nondipping hypertension, carotid artery stiffening, and aortic ROS. sPRR infusion in males induced vascular thickening instead of material stiffening caused by HFD-induced T2DM. While intact females were less prone to T2DM, OVX increased plasma prorenin/renin, sPRR, and systolic blood pressure. These data suggest that sPRR is a novel indicator of systemic RAAS activation and reflects the onset of vascular complications during T2DM regulated by sex.NEW & NOTEWORTHY High-fat diet (HFD) for 28 wk leads to type 2 diabetes mellitus (T2DM) phenotype, concomitant with increased plasma soluble prorenin receptor (sPRR), nondipping blood pressure, and vascular stiffness in male mice. HFD-fed female mice exhibiting a preserved cardiometabolic phenotype until ovariectomy revealed increased plasma sPRR and blood pressure. Plasma sPRR may indicate the status of systemic renin-angiotensin-aldosterone system (RAAS) activation and the onset of vascular complications during T2DM in a sex-dependent manner.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
| | - Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nicholas R Harris
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Isabella Kilanowski-Doroh
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Margaret Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| |
Collapse
|
8
|
Zheng G, Su Y, Wei L, Yao Y, Wang Y, Luo X, Wang X, Ruan XZ, Li D, Chen Y. SCAP contributes to embryonic angiogenesis by negatively regulating KISS-1 expression in mice. Cell Death Dis 2023; 14:249. [PMID: 37024487 PMCID: PMC10079761 DOI: 10.1038/s41419-023-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) is indispensable in organ development because it maintains intracellular cholesterol homeostasis. The vessel is not widely conceived of as a cholesterol-sensitive tissue, so the specific role of SCAP in angiogenesis has not been paid attention to. As an important component of the vascular mesoderm, vascular smooth muscle cells (VSMCs) are widely involved in each step of angiogenesis. Here, we report for the first time that VSMC-specific ablation of SCAP inhibits VSMC proliferation and migration, interacting with endothelial cells (ECs), and finally causes defective embryonic angiogenesis in mice. Mechanistically, we demonstrated that SCAP ablation in VSMCs leads to the upregulation of KISS-1 protein, consequently resulting in suppressed activation of the MAPK/ERK signaling pathway and downregulation of matrix metalloproteinase 9 (MMP9) and vascular endothelial-derived growth factor (VEGF) expression to prevent angiogenesis. Importantly, we found that SCAP promotes the cleavage and nuclear translocation of SREBP2, which acts as a negative transcription regulator, regulating KISS-1 expression. Our findings suggest that SCAP contributes to embryonic angiogenesis by negatively regulating KISS-1 expression in mice and provide a new point of view for therapeutic targets of vascular development.
Collapse
Affiliation(s)
- Guo Zheng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yingcheng Yao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yizhe Wang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Luo
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xing Wang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Danyang Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
10
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
11
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
12
|
Guner S, Akhayeva T, Nichols CD, Gurdal H. The Ca2+/CaM, Src kinase and/or PI3K-dependent EGFR transactivation via 5-HT2A and 5-HT1B receptor subtypes mediates 5-HT-induced vasoconstriction. Biochem Pharmacol 2022; 206:115317. [DOI: 10.1016/j.bcp.2022.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
|
13
|
Oliverio R, Patenaude V, Liberelle B, Virgilio N, Banquy X, De Crescenzo G. Macroporous dextran hydrogels for controlled growth factor capture and delivery using coiled-coil interactions. Acta Biomater 2022; 153:190-203. [PMID: 36113720 DOI: 10.1016/j.actbio.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Macroporous hydrogels possess a vast potential for various applications in the biomedical field. However, due to their large pore size allowing for unrestricted diffusion in the macropore network, macroporous hydrogels alone are not able to efficiently capture and release biomolecules in a controlled manner. There is thus a need for biofunctionalized, affinity-based gels that can efficiently load and release biomolecules in a sustained and controlled manner. For this purpose, we report here the use of a E/K coiled-coil affinity pair for the controlled capture and delivery of growth factors from highly interconnected, macroporous dextran hydrogels. By conjugating the Kcoil peptide to the dextran backbone, we achieved controlled loading and release of Ecoil-tagged Epidermal and Vascular Endothelial Growth Factors. To finely tune the behavior of the gels, we propose four control parameters: (i) macropore size, (ii) Kcoil grafting density, (iii) Ecoil valency and (iv) E/K affinity. We demonstrate that Kcoil grafting can produce a 20-fold increase in passive growth factor capture by macroporous dextran gels. Furthermore, we demonstrate that our gels can release as little as 20% of the loaded growth factors over one week, while retaining bioactivity. Altogether, we propose a versatile, highly tunable platform for the controlled delivery of growth factors in biomedical applications. STATEMENT OF SIGNIFICANCE: This work presents a highly tunable platform for growth factor capture and sustained delivery using affinity peptides in macroporous, fully interconnected dextran hydrogels. It addresses several ongoing challenges by presenting: (i) a versatile platform for the delivery of a wide range of stable, bioactive molecules, (ii) a passive, affinity-based loading of growth factors in the platform, paving the way for in situ (re)loading of the device and (iii) four different control parameters to finely tune growth factor capture and release. Altogether, our macroporous dextran hydrogels have a vast potential for applications in controlled delivery, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
14
|
Ciechanowska A, Gora IM, Sabalinska S, Ladyzynski P. The Effect of High and Variable Glucose on the Viability of Endothelial Cells Co-Cultured with Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23126704. [PMID: 35743147 PMCID: PMC9223437 DOI: 10.3390/ijms23126704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus causes endothelial dysfunction. The aim of this study was to investigate the effect of normal (5 mmol/L), high (20 mmol/L), and fluctuating (5 and 20 mmol/L changed every day) glucose concentration in the culture medium on the viability of human umbilical vein endothelial cells (HUVECs) co-cultured with human umbilical artery smooth muscle cells (HUASMCs). The cultures were conducted on semi-permeable flat polysulfone (PSU) fibronectin-coated membranes immobilized in self-made inserts. The insert contained either HUVECs on a single membrane or HUASMCs and HUVECs on two membranes close to each other. Cultures were conducted for 7 or 14 days. Apoptosis, mitochondrial potential, and the production of reactive oxygen species and lactate by HUVECs were investigated. The results indicate that fluctuations in glucose concentration have a stronger negative effect on HUVECs viability than constant high glucose concentration. High and fluctuating glucose concentrations slow down cell proliferation compared to the culture carried out in the medium with normal glucose concentration. In conclusion, HUASMCs affect the viability of HUVECs when both types of cells are co-cultured in medium with normal or variable glucose concentration.
Collapse
|
15
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
16
|
Jansen J, Escriva X, Godeferd F, Feugier P. Multiscale bio-chemo-mechanical model of intimal hyperplasia. Biomech Model Mechanobiol 2022; 21:709-734. [DOI: 10.1007/s10237-022-01558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
17
|
Xu Z, Hu Z, Xu H, Zhang L, Li L, Wang Y, Zhu Y, Yang L, Hu D. Liquiritigenin alleviates doxorubicin-induced chronic heart failure via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. Exp Cell Res 2022; 411:113008. [PMID: 34990617 DOI: 10.1016/j.yexcr.2022.113008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/01/2022]
Abstract
Chronic heart failure (CHF) is one of the most common chronic diseases with increasing incidence and mortality. Liquiritigenin (LQG) is shown to protect mice from cardiotoxicity. However, its underlying mechanism remains unclear. Our study aimed to reveal the role of ARHGAP18 in LQG-mediated cardioprotective effects in CHF. In the current study, CHF cell model and rat model were established by the application of doxorubicin (DOX). The reactive oxygen species (ROS) level and cell apoptosis were determined by flow cytometry. The cardiac function of rats was evaluated by measuring left ventricular systolic pressure, left ventricular end diastolic pressure, and serum level of lactate dehydrogenase and brain natriuretic peptide. The expression of active RhoA was elevated and that of ARHGAP18 was decreased in DOX-induced CHF cell model. ARHGAP18 could reduce DOX-induced RhoA activation, ROS elevation, and cell apoptosis. Meanwhile, the knockdown of ARHGAP18 could promote the activation of RhoA, the level of ROS, and the rate of cell apoptosis, which could be reversed by the application of RhoA inhibitor. LQG promoted the expression of ARHGAP18 and exerted similar effects of ARHGAP18 in CHF cell model. The application of LQG could also reverse the effects mediated by ARHGAP18 knockdown. Moreover, LQG significantly improved cardiac function and ameliorated DOX-induced cardiotoxicity of CHF rats. In conclusion, LQG could alleviate DOX-induced CHF via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. LQG was a potential agent for CHF treatment.
Collapse
Affiliation(s)
- Zhibing Xu
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Zongde Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Lifen Zhang
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Liang Li
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Yi Wang
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Yuanqing Zhu
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China
| | - Limeng Yang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, China.
| | - Dan Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
18
|
Shen M, Liu C, Wu JC. Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2429:233-246. [PMID: 35507165 PMCID: PMC9667909 DOI: 10.1007/978-1-0716-1979-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vascular smooth muscle cells (VSMCs), a highly mosaic tissue, arise from multiple distinct embryonic origins and populate different regions of our vascular network with defined boundaries. Accumulating evidence has revealed that the heterogeneity of VSMC origins contributes to region-specific vascular diseases such as atherosclerosis and aortic aneurysm. These findings highlight the necessity of taking into account lineage-dependent responses of VSMCs to common vascular risk factors when studying vascular diseases. This chapter describes a reproducible, stepwise protocol for the generation of isogenic VSMC subtypes originated from proepicardium, second heart field, cardiac neural crest, and ventral somite using human induced pluripotent stem cells. By leveraging this robust induction protocol, patient-derived VSMC subtypes of desired embryonic origins can be generated for disease modeling as well as drug screening and development for vasculopathies with regional susceptibility.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F, Li BY. Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol 2021; 212:105948. [PMID: 34224859 DOI: 10.1016/j.jsbmb.2021.105948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress injury is an important link in the pathogenesis of diabetes, and reducing oxidative stress damage caused by long-term hyperglycemia is an important diabetic treatment strategy. Melatonin has been proved to be a free radical scavenger with strong antioxidant activity, and its protective effect on diabetes and the complications has been confirmed. However, the role and potential mechanism of melatonin in oxidative stress injury of diabetic aorta have not been reported. Besides, Notch signaling pathway plays an important role in vascular growth, differentiation, and apoptosis. We speculated that melatonin could improve oxidative stress injury of diabetic aorta through Notch1/Hes1 signaling pathway. STZ-induced diabetic rats and vascular smooth muscle cells (VSMCs) cultured with high glucose were treated with or without melatonin, melatonin receptor antagonist Luzindole, γ-secretase inhibitor DAPT respectively. We found that melatonin could improve the oxidative stress injury of diabetic aorta and reduce the apoptosis of VSMCs. Interestingly, melatonin could activate Notch1 signaling pathway, play an antioxidant role, and reduce the expression of apoptosis-related proteins. However, these protective effects could be largely eliminated by Luzindole or DAPT. We concluded that the repression of Notch1 signaling pathway would inhibit the repair of oxidative stress injury in diabetes. Melatonin could ameliorate oxidative stress injury and apoptosis of diabetic aorta by activating Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Wen Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, China.
| | - Wei Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Jian-Xing Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Fei Pei
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Bu-Ying Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| |
Collapse
|
20
|
High Na + Salt Diet and Remodeling of Vascular Smooth Muscle and Endothelial Cells. Biomedicines 2021; 9:biomedicines9080883. [PMID: 34440087 PMCID: PMC8389691 DOI: 10.3390/biomedicines9080883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Our knowledge on essential hypertension is vast, and its treatment is well known. Not all hypertensives are salt-sensitive. The available evidence suggests that even normotensive individuals are at high cardiovascular risk and lower survival rate, as blood pressure eventually rises later in life with a high salt diet. In addition, little is known about high sodium (Na+) salt diet-sensitive hypertension. There is no doubt that direct and indirect Na+ transporters, such as the Na/Ca exchanger and the Na/H exchanger, and the Na/K pump could be implicated in the development of high salt-induced hypertension in humans. These mechanisms could be involved following the destruction of the cell membrane glycocalyx and changes in vascular endothelial and smooth muscle cells membranes’ permeability and osmolarity. Thus, it is vital to determine the membrane and intracellular mechanisms implicated in this type of hypertension and its treatment.
Collapse
|
21
|
Ghionzoli N, Gentile F, Del Franco AM, Castiglione V, Aimo A, Giannoni A, Burchielli S, Cameli M, Emdin M, Vergaro G. Current and emerging drug targets in heart failure treatment. Heart Fail Rev 2021; 27:1119-1136. [PMID: 34273070 PMCID: PMC9197912 DOI: 10.1007/s10741-021-10137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
After initial strategies targeting inotropism and congestion, the neurohormonal interpretative model of heart failure (HF) pathophysiology has set the basis for current pharmacological management of HF, as most of guideline recommended drug classes, including beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists, blunt the activation of detrimental neurohormonal axes, namely sympathetic and renin–angiotensin–aldosterone (RAAS) systems. More recently, sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, combining inhibition of RAAS and potentiation of the counter-regulatory natriuretic peptide system, has been consistently demonstrated to reduce mortality and HF-related hospitalization. A number of novel pharmacological approaches have been tested during the latest years, leading to mixed results. Among them, drugs acting directly at a second messenger level, such as the soluble guanylate cyclase stimulator vericiguat, or other addressing myocardial energetics and mitochondrial function, such as elamipretide or omecamtiv-mecarbil, will likely change the therapeutic management of patients with HF. Sodium glucose cotransporter 2 inhibitors, initially designed for the management of type 2 diabetes mellitus, have been recently demonstrated to improve outcome in HF, although mechanisms of their action on cardiovascular system are yet to be elucidated. Most of these emerging approaches have shifted the therapeutic target from neurohormonal systems to the heart, by improving cardiac contractility, metabolism, fibrosis, inflammation, and remodeling. In the present paper, we review from a pathophysiological perspective current and novel therapeutic strategies in chronic HF.
Collapse
Affiliation(s)
- Nicolò Ghionzoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | | | - Anna Maria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
| | | | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
22
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
23
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
24
|
Xue T, Li C, Zhang H, Han Y, Wu J. Effects of Aster B-mediated intracellular accumulation of cholesterol on inflammatory process and myocardial cells in acute myocardial infarction. Hellenic J Cardiol 2021; 63:32-39. [PMID: 34147675 DOI: 10.1016/j.hjc.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND To investigate the effect of cholesterol accumulation in cells on the inflammatory process of acute myocardial infarction and cardiomyocytes and its mechanism. METHODS Blood samples of 15 patients with myocardial infarction were clinically collected to detect enzyme levels of cholesterol and related myocardial parameters in the serum. Correlation analysis was carried out. At the cellular level, simulation of cholesterol entry and exit from cells was conducted by a liposome-loaded cholesterol model in this study, and BNP and inflammatory factors were detected with enzyme-linked immunosorbent assay. Moreover, to investigate the molecular mechanism of myocardial damage caused by cholesterol, Gramd1b and Prkaca of HL-1 were knocked down with small interference RNA technique. Then, inhibitor C3 was used to weaken RhoA activity to explore the level of cardiac muscle cell BNP in order to identify key protein target sites that may be involved in the process of cholesterol damage to cardiac muscle cells. RESULTS Serum cholesterol concentration showed a significantly positive correlation with the levels of AST, CK, and LD in serum of patients with myocardial infarction. Cholesterol accumulation in cardiac muscle cells significantly increased the levels of BNP, inflammatory factors (IL-1β, IL-6, TNF-α, and CCL-2) in cardiac muscle cells, which exacerbated cardiomyocyte damage. Conversely, cholesterol excretion caused significant downregulation of BNP and inflammatory factors. Moreover, after knocking down Gramd1b, the accumulation of cholesterol in myocardial cells decreased, the levels of BNP and inflammatory factors significantly reduced, and the degree of myocardial cell damage was weakened. Knockdown of Prkaca inhibited RhoA activity and reversed cholesterol-induced elevation of BNP and inflammatory factors. CONCLUSION ASTER B-mediated intracellular accumulation of cholesterol in cardiac muscle cells may cause cardiomyocyte damage and inflammatory factor infiltration through PKA-Ca2+-RhoA pathways.
Collapse
Affiliation(s)
- Tan Xue
- Department of Cardiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161006, China
| | - Chunfeng Li
- Department of Cardiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161006, China
| | - Hongyan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161006, China
| | - Yunfeng Han
- Department of Epidemiology and Health Statistics, Public Health, Qiqihar Medical University, Qiqihar 161006, China
| | - Jiahui Wu
- Department of Environment and Occupational Health, School of Public Health, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
25
|
Truong V, Anand-Srivastava MB, Srivastava AK. Role of cyclic AMP response element binding protein (CREB) in angiotensin II-induced responses in vascular smooth muscle cells. Can J Physiol Pharmacol 2020; 99:30-35. [PMID: 33091310 DOI: 10.1139/cjpp-2020-0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic AMP response element (CRE) binding protein (CREB) is a nuclear transcription factor that regulates the transcription of several genes containing the CRE sites on their promoters. CREB is activated by phosphorylation on a key serine residue, Ser311, in response to a wide variety of extracellular stimuli including angiotensin II (Ang II). Ang II is an important vasoactive peptide and mitogen for vascular smooth muscle cells (VSMC) that in addition to regulating the contractile response in VSMC also plays an important role in phenotypic switch of VSMC from contractile to a synthetic state. The synthetic VSMC are known to exhibit proliferative and migratory properties due to hyperactivation of Ang II-induced signaling events. Ang II has been shown to induce CREB phosphorylation/activation and transcription of genes implicated in proliferation, growth, and migration. Here, we have highlighted some key studies that have demonstrated an important role of CREB in Ang II-mediated gene transcription, proliferation, hypertrophy, and migration of VSMC.
Collapse
Affiliation(s)
- Vanessa Truong
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, H3C 3J7, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
26
|
Dagamajalu S, Rex DAB, Palollathil A, Shetty R, Bhat G, Cheung LWT, Prasad TSK. A pathway map of AXL receptor-mediated signaling network. J Cell Commun Signal 2020; 15:143-148. [PMID: 32829427 DOI: 10.1007/s12079-020-00580-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Guruprasad Bhat
- Department of Medical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
27
|
Peng LY, Yu M, Yang MX, Liu P, Zhou H, Huang W, Kong H, Xie WP. Icotinib Attenuates Monocrotaline-Induced Pulmonary Hypertension by Preventing Pulmonary Arterial Smooth Muscle Cell Dysfunction. Am J Hypertens 2020; 33:775-783. [PMID: 32301965 DOI: 10.1093/ajh/hpaa066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/01/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aberrant activation of epidermal growth factor receptor (EGFR) signaling pathway is associated with the pathogenesis of pulmonary hypertension (PH). However, the effect of icotinib, a first generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), on PH remains to be elucidated. METHODS PH rat model was established by a single intraperitoneal injection of monocrotaline (MCT, 60 mg/kg). Icotinib (15, 30, and 60 mg/kg/day) was administered by oral gavage from the day of MCT injection. After 4 weeks, hemodynamic parameters and histological changes of the pulmonary arterial vessels were assessed, and the phenotypic switching of pulmonary arterial smooth muscle cells (PASMCs) was determined in vivo. Moreover, the effects of icotinib (10 µM) on epidermal growth factor (EGF, 50 ng/ml)-stimulated proliferation, migration, and phenotypic switching of human PASMCs were explored in vitro. RESULTS Icotinib significantly reduced the right ventricular systolic pressure and right ventricle hypertrophy index in rats with MCT-induced PH. Moreover, icotinib improved MCT-induced pulmonary vascular remodeling. The expression of contractile marker (smooth muscle 22 alpha (SM22α)) and synthetic markers (osteopontin (OPN) and vimentin) in pulmonary artery was restored by icotinib treatment. In vitro, icotinib suppressed EGF-induced PASMCs proliferation and migration. Meanwhile, icotinib inhibited EGF-induced downregulation of α-smooth muscle actin and SM22α and upregulation of OPN and Collagen I in PASMCs, suggesting that icotinib could inhibit EGF-induced phenotypic switching of PASMCs. Mechanistically, these effects of icotinib were associated with the inhibition of EGFR-Akt/ERK signaling pathway. CONCLUSIONS Icotinib can attenuate MCT-induced pulmonary vascular remodeling and improve PH. This effect of icotinib might be attributed to preventing PASMC dysfunction by inhibiting EGFR-Akt/ERK signaling pathway.
Collapse
Affiliation(s)
- Li-Yao Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Min Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Ming-Xia Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, P.R. China
| | - Ping Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
28
|
Fan S, Xiong Q, Zhang X, Zhang L, Shi Y. Glucagon-like peptide 1 reverses myocardial hypertrophy through cAMP/PKA/RhoA/ROCK2 signaling. Acta Biochim Biophys Sin (Shanghai) 2020; 52:612-619. [PMID: 32386193 DOI: 10.1093/abbs/gmaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Myocardial hypertrophy is a major pathological and physiological process during heart failure. Glucagon-like peptide 1 (GLP-1) is a glucagon incretin hormone released from the gut endocrine L-cells that has protective effects on various cardiovascular diseases, including hypertension, atherosclerosis, and myocardial hypertrophy. However, the protective mechanisms of GLP-1 in myocardial hypertrophy remain unclear. Here, we showed that the GLP-1 agonist liraglutide and dipeptidyl peptidase 4 inhibitor alogliptin decreased heart weight and cardiac muscle cell volume in spontaneously hypertensive rats (SHR). In H9C2 cell hypertensive models induced by angiotensin II, GLP-1 treatment reduced myocardial cell volume, inhibited the expressions of atrial natriuretic peptide, brain/B-type natriuretic peptide, β-myosin heavy chain, RhoA, and ROCK2, and decreased MLC and MYPT1 phosphorylation. When H9C2 cells were treated with H89, a PKA inhibitor, the inhibitory effect of GLP-1 disappeared, while the inhibitory role was enhanced under the treatment of Y-27632, a ROCK2 inhibitor. These results suggested that GLP-1 might reverse myocardial hypertrophy through the PKA/RhoA/ROCK2 signaling pathway.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Qianfeng Xiong
- Department of Cardiology, Fengcheng People’s Hospital, Fengcheng 331100, China
| | - Xin Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Lihui Zhang
- Department of Geriatrics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan 030024, China
| | - Yawei Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
29
|
Pérez-Torres I, Manzano-Pech L, Rubio-Ruíz ME, Soto ME, Guarner-Lans V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules 2020; 25:molecules25112555. [PMID: 32486343 PMCID: PMC7321091 DOI: 10.3390/molecules25112555] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive nitrogen species (RNS) are formed when there is an abnormal increase in the level of nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) and/or by the uncoupled endothelial nitric oxide synthase (eNOS). The presence of high concentrations of superoxide anions (O2−) is also necessary for their formation. RNS react three times faster than O2− with other molecules and have a longer mean half life. They cause irreversible damage to cell membranes, proteins, mitochondria, the endoplasmic reticulum, nucleic acids and enzymes, altering their activity and leading to necrosis and to cell death. Although nitrogen species are important in the redox imbalance, this review focuses on the alterations caused by the RNS in the cellular redox system that are associated with cardiometabolic diseases. Currently, nitrosative stress (NSS) is implied in the pathogenesis of many diseases. The mechanisms that produce damage remain poorly understood. In this paper, we summarize the current knowledge on the participation of NSS in the pathology of cardiometabolic diseases and their possible mechanisms of action. This information might be useful for the future proposal of anti-NSS therapies for cardiometabolic diseases.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
- Correspondence: (I.P.-T.); (V.G.-L.)
| | - Linaloe Manzano-Pech
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Esther Rubio-Ruíz
- Physiology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
- Correspondence: (I.P.-T.); (V.G.-L.)
| |
Collapse
|
30
|
IL10 Alters Peri-Collateral Macrophage Polarization and Hind-Limb Reperfusion in Mice after Femoral Artery Ligation. Int J Mol Sci 2020; 21:ijms21082821. [PMID: 32316628 PMCID: PMC7215303 DOI: 10.3390/ijms21082821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Arteriogenesis is a process by which a pre-existing arterioarterial anastomosis develops into a functional collateral network following an arterial occlusion. Alternatively activated macrophages polarized by IL10 have been described to promote collateral growth. This study investigates the effect of different levels of IL10 on hind-limb reperfusion and the distribution of perivascular macrophage activation types in mice after femoral artery ligation (FAL). IL10 and anti-IL10 were administered before FAL and the arteriogenic response was measured by Laser-Doppler-Imaging perioperatively, after 3, 7, and 14 d. Reperfusion recovery was accelerated when treated with IL10 and impaired with anti-IL10. Furthermore, symptoms of ischemia on ligated hind-limbs had the highest incidence after application of anti-IL10. Perivascular macrophages were immunohistologically phenotyped using CD163 and CD68 in adductor muscle segments. The proportion of alternatively activated macrophages (CD163+/CD68+) in relation to classically activated macrophages (CD163−/CD68+) observed was the highest when treated with IL10 and suppressed with anti-IL10. This study underlines the proarteriogenic response with increased levels of IL10 and demonstrates an in-vivo alteration of macrophage activation types in the perivascular bed of growing collaterals.
Collapse
|
31
|
França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 2020; 679:108220. [PMID: 31812669 DOI: 10.1016/j.abb.2019.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.
Collapse
Affiliation(s)
- Karime C França
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Maiara L Prado
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Sze M Lo
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Beatriz E Borges
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | | | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
32
|
Sawicka D, Maciak S, Kozłowska H, Kasacka I, Kloza M, Sadowska A, Sokołowska E, Konarzewski M, Car H. Functional and structural changes in aorta of mice divergently selected for basal metabolic rate. J Comp Physiol B 2019; 190:101-112. [PMID: 31873784 DOI: 10.1007/s00360-019-01252-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases (CVD) are one of the most common causes of mortality likely genetically linked to the variation in basal metabolic rate (BMR). A robust test of the significance of such association may be provided by artificial selection experiments on animals selected for diversification of BMR. Here we asked whether genetically determined differences in BMR correlate with anatomical shift in endothelium structure and if so, the relaxation and contraction responses of the aorta in mice from two lines of Swiss-Webster laboratory mice (Mus musculus) divergently selected for high or low BMR (HBMR and LBMR lines, respectively). Functional and structural study of aorta showed that a selection for divergent BMR resulted in the between-line difference in diastolic aortic capacity. The relaxation was stronger in aorta of the HBMR mice, which may stem from greater flexibility of aorta mediated by higher activity of Ca2+-activated K+ channels. Structural examination also indicated that HBMR mice had significantly thicker aorta's middle layer compared to LBMR animals. Such changes may promote arterial stiffness predisposing to cardiovascular diseases. BMR-related differences in the structure and relaxation ability of aortas in studied animals may be reminiscent of potential risk factors in the development of CVD in humans.
Collapse
Affiliation(s)
- Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland.
| | - Sebastian Maciak
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, ul. Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, ul. Mickiewicza 2A, 15-089, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, ul. Mickiewicza 2C, 15-222, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, ul. Mickiewicza 2A, 15-089, Białystok, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland
| | - Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland
| | - Marek Konarzewski
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, ul. Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland
| |
Collapse
|
33
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
34
|
Fan Q, Yin X, Rababa'h A, Diaz Diaz A, Wijaya CS, Singh S, Suryavanshi SV, Vo HH, Saeed M, Zhang Y, McConnell BK. Absence of gravin-mediated signaling inhibits development of high-fat diet-induced hyperlipidemia and atherosclerosis. Am J Physiol Heart Circ Physiol 2019; 317:H793-H810. [PMID: 31441691 DOI: 10.1152/ajpheart.00215.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gravin, an A-kinase anchoring protein, is known to play a role in regulating key processes that lead to inflammation and atherosclerosis development, namely, cell migration, proliferation, and apoptosis. We investigated the role of gravin in the development of high-fat diet (HFD)-induced atherosclerosis and hyperlipidemia. Five-week-old male wild-type (WT) and gravin-t/t mice were fed a normal diet or an HFD for 16 wk. Gravin-t/t mice showed significantly lower liver-to-body-weight ratio, cholesterol, triglyceride, and very low-density lipoprotein levels in serum as compared with WT mice on HFD. Furthermore, there was less aortic plaque formation coupled with decreased lipid accumulation and liver damage, as the gravin-t/t mice had lower levels of serum alanine aminotransferase and aspartate aminotransferase. Additionally, gravin-t/t HFD-fed mice had decreased expression of liver 3-hydroxy-3-methyl-glutaryl-CoA reductase, an essential enzyme for cholesterol synthesis and lower fatty acid synthase expression. Gravin-t/t HFD-fed mice also exhibited inhibition of sterol regulatory element binding protein-2 (SREBP-2) expression, a liver transcription factor associated with the regulation of lipid transportation. In response to platelet-derived growth factor receptor treatment, gravin-t/t vascular smooth muscle cells exhibited lower intracellular calcium transients and decreased protein kinase A- and protein kinase C-dependent substrate phosphorylation, notably involving the Erk1/2 signaling pathway. Collectively, these results suggest the involvement of gravin-dependent regulation of lipid metabolism via the reduction of SREBP-2 expression. The absence of gravin-mediated signaling lowers blood pressure, reduces plaque formation in the aorta, and decreases lipid accumulation and damage in the liver of HFD mice. Through these processes, the absence of gravin-mediated signaling complex delays the HFD-induced hyperlipidemia and atherosclerosis.NEW & NOTEWORTHY The gravin scaffolding protein plays a key role in the multiple enzymatic pathways of lipid metabolism. We have shown for the first time the novel role of gravin in regulating the pathways related to the initiation and progression of atherosclerosis. Specifically, an absence of gravin-mediated signaling decreases the lipid levels (cholesterol, triglyceride, and VLDL) that are associated with sterol regulatory element binding protein-2 downregulation.
Collapse
Affiliation(s)
- Qiying Fan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xing Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Abeer Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Andrea Diaz Diaz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Sonal Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Henry Hiep Vo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Moawiz Saeed
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
35
|
Méndez-Barbero N, Gutierrez-Muñoz C, Madrigal-Matute J, Mínguez P, Egido J, Michel JB, Martín-Ventura JL, Esteban V, Blanco-Colio LM. A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine 2019; 46:274-289. [PMID: 31395500 PMCID: PMC6712059 DOI: 10.1016/j.ebiom.2019.07.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/04/2022] Open
Abstract
Background Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Tnfrsf12a; Fn14) participate in the inflammatory response associated with vascular remodeling. However, the functional effect of TWEAK on vascular smooth muscle cells (VSMCs) is not completely elucidated. Methods Next generation sequencing-based methods were performed to identify genes and pathways regulated by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwell migration assays were used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of TWEAK/Fn14 during neointimal hyperplasia. Findings TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment method, we found a functional module involved in cell proliferation defined as the minimal network connecting top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors (p15lNK4B) mRNA and protein expression. Downregulation of p15INK4B induced by TWEAK was mediated by mitogen-activated protein kinase ERK and Akt activation. Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15INK4B expression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohistochemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries. Interpretation Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for treating in-stent restenosis. Fund ISCiii-FEDER, CIBERCV and CIBERDEM.
Collapse
Affiliation(s)
| | | | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Pablo Mínguez
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Renal and Diabetes Research Lab, CIBERDEM, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jean-Baptiste Michel
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France
| | | | - Vanesa Esteban
- Department of Immunology and ARADyAL, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| | | |
Collapse
|
36
|
Govatati S, Pichavaram P, Janjanam J, Zhang B, Singh NK, Mani AM, Traylor JG, Orr AW, Rao GN. NFATc1-E2F1-LMCD1-Mediated IL-33 Expression by Thrombin Is Required for Injury-Induced Neointima Formation. Arterioscler Thromb Vasc Biol 2019; 39:1212-1226. [PMID: 31043075 PMCID: PMC6540998 DOI: 10.1161/atvbaha.119.312729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective- IL (interleukin)-33 has been shown to play a role in endothelial dysfunction, but its role in atherosclerosis is controversial. Therefore, the purpose of this study is to examine its role in vascular wall remodeling following injury. Approach and Results- Thrombin induced IL-33 expression in a time-dependent manner in human aortic smooth muscle cells and inhibition of its activity by its neutralizing antibody suppressed thrombin induced human aortic smooth muscle cell migration but not DNA synthesis. In exploring the mechanisms, we found that Par1 (protease-activated receptor 1), Gαq/11 (Gα protein q/11), PLCβ3 (phospholipase Cβ3), NFATc1 (nuclear factor of activated T cells), E2F1 (E2F transcription factor 1), and LMCD1 (LIM and cysteine-rich domains protein 1) are involved in thrombin-induced IL-33 expression and migration. Furthermore, we identified an NFAT-binding site at -100 nt that mediates thrombin-induced IL-33 promoter activity. Interestingly, we observed that NFATc1, E2F1, and LMCD1 bind to NFAT site in response to thrombin and found that LMCD1, while alone has no significant effect, enhanced either NFATc1 or E2F1-dependent IL-33 promoter activity. In addition, we found that guidewire injury induces IL-33 expression in SMC and its neutralizing antibodies substantially reduce SMC migration and neointimal growth in vivo. Increased expression of IL-33 was also observed in human atherosclerotic lesions as compared to arteries without any lesions. Conclusions- The above findings reveal for the first time that thrombin-induced human aortic smooth muscle cell migration and injury-induced neointimal growth require IL-33 expression. In addition, thrombin-induced IL-33 expression requires LMCD1 enhanced combinatorial activation of NFATc1 and E2F1.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Disease Models, Animal
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Femoral Artery/drug effects
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- HEK293 Cells
- Humans
- Interleukin-33/genetics
- Interleukin-33/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Neointima
- Promoter Regions, Genetic
- Signal Transduction
- Up-Regulation
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Baolin Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikhlesh K. Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James G. Traylor
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
37
|
Silva C, Sampaio-Pinto V, Andrade S, Rodrigues I, Costa R, Guerreiro S, Carvalho E, Pinto-do-Ó P, Nascimento DS, Soares R. Establishing a Link between Endothelial Cell Metabolism and Vascular Behaviour in a Type 1 Diabetes Mouse Model. Cell Physiol Biochem 2019; 52:503-516. [PMID: 30897318 PMCID: PMC7453785 DOI: 10.33594/000000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Vascular complications contribute significantly to the extensive morbidity and mortality rates observed in people with diabetes. Despite well known that the diabetic kidney and heart exhibit imbalanced angiogenesis, the mechanisms implicated in this angiogenic paradox remain unknown. In this study, we examined the angiogenic and metabolic gene expression profile (GEP) of endothelial cells (ECs) isolated from a mouse model with type1 diabetes mellitus (T1DM). METHODS ECs were isolated from kidneys and hearts of healthy and streptozocin (STZ)-treated mice. RNA was then extracted for molecular studies. GEP of 84 angiogenic and 84 AMP-activated Protein Kinase (AMPK)-dependent genes were examined by microarrays. Real time PCR confirmed the changes observed in significantly altered genes. Microvessel density (MVD) was analysed by immunohistochemistry, fibrosis was assessed by the Sirius red histological staining and connective tissue growth factor (CTGF) was quantified by ELISA. RESULTS The relative percentage of ECs and MVD were increased in the kidneys of T1DM animals whereas the opposite trend was observed in the hearts of diabetic mice. Accordingly, the majority of AMPK-associated genes were upregulated in kidneys and downregulated in hearts of these animals. Angiogenic GEP revealed significant differences in Tgfβ, Notch signaling and Timp2 in both diabetic organs. These findings were in agreement with the angiogenesis histological assays. Fibrosis was augmented in both organs in diabetic as compared to healthy animals. CONCLUSION Altogether, our findings indicate, for the first time, that T1DM heart and kidney ECs present opposite metabolic cues, which are accompanied by distinct angiogenic patterns. These findings enable the development of innovative organ-specific therapeutic strategies targeting diabetic-associated vascular disorders.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Vasco Sampaio-Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto Nacional de Engenharia Biomédica, Universidade de Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Andrade
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ilda Rodrigues
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Raquel Costa
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Susana Guerreiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Eugenia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,The Portuguese Diabetes Association, Lisbon, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Perpétua Pinto-do-Ó
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto Nacional de Engenharia Biomédica, Universidade de Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto Nacional de Engenharia Biomédica, Universidade de Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of the University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,
| |
Collapse
|
38
|
Metformin Inhibits the Expression of Biomarkers of Fibrosis of EPCs In Vitro. Stem Cells Int 2019; 2019:9019648. [PMID: 31011335 PMCID: PMC6442487 DOI: 10.1155/2019/9019648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of circulating cells with important functions in vascular repair and treatment of cardiovascular diseases. However, in patients with atrial fibrillation (AF), the number and function of EPCs reportedly are decreased. TGF-β is highly expressed in AF patients. In this study, we examined the effect of TGF-β1 on EPCs and the therapeutic outcome of metformin treatment on TGF-β1-induced EPCs. EPCs were induced with TGF-β1 at different concentrations (5 ng/ml, 10 ng/ml, and 20 ng/ml) for 48 h followed by western blot, qPCR, and immunofluorescence analyses to investigate changes in the levels of the fibrosis-related proteins, α-SMA, Col I, Col III, CTGF, and MMP-1. Live-dead cell staining was used to evaluate cell apoptosis. Compared with the control, TGF-β1 treatment significantly (p < 0.05) enhanced the levels of α-SMA, Col I, Col III, CTGF, and MMP-1 in a dose-dependent manner. The most effective concentration of TGF-β1 (20 ng/ml) was then used to induce fibrosis biomarker expression in EPCs, followed by treatment with metformin at different concentrations (0.5, 1, and 2 mmol/l). Metformin treatment suppressed TGF-β-induced expression of all above factors, with the effect at 2 mmol/l being significant (p < 0.05). Live-dead cell staining showed no difference among the control, TGF-β1-treated, and metformin-treated groups. In conclusion, our study showed that TGF-β1 induces the expression of fibrosis biomarkers in EPCs, which is attenuated by treatment with metformin. Thus, metformin may have therapeutic potential for improving EPC function in cardiovascular diseases.
Collapse
|
39
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
40
|
Song T, Zhao J, Jiang T, Jin X, Li Y, Liu X. Formononetin protects against balloon injury‑induced neointima formation in rats by regulating proliferation and migration of vascular smooth muscle cells via the TGF‑β1/Smad3 signaling pathway. Int J Mol Med 2018; 42:2155-2162. [PMID: 30066831 DOI: 10.3892/ijmm.2018.3784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of formononetin (FMN) against balloon injury‑induced neointima formation in vivo and platelet‑derived growth factor (PDGF)‑BB‑induced proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro, and explored the underlying mechanisms. A rat model of carotid artery injury was established, in order to examine the effects of FMN on balloon injury‑induced neointima formation. Histological observation of the carotid artery tissues was conducted by hematoxylin and eosin staining. VSMC proliferation during neointima formation was observed by proliferating cell nuclear antigen staining. Subsequently, rat aortic VSMCs were isolated, and the effects of FMN on PDGF‑BB‑induced VSMC proliferation and migration were determined using Cell Counting Kit‑8 and Transwell/wound healing assays, respectively. Immunohistochemical and immunocytochemical staining was applied to measure the expression of transforming growth factor (TGF)‑β in carotid artery tissues and VSMCs, respectively. SMAD family member 3 (Smad3)/phosphorylated (p)‑Smad3 expression was examined by western blotting. FMN treatment significantly inhibited the abnormal proliferation of smooth muscle cells in neointima, and alterations to the vascular structure were attenuated. In addition, pretreatment with FMN effectively inhibited the proliferation of PDGF‑BB‑stimulated VSMCs (P<0.05). FMN also reduced the number of cells that migrated to the lower surface of the Transwell chamber and decreased wound‑healing percentage (P<0.05). The expression levels of TGF‑β were decreased by FMN treatment in vivo and in vitro, and Smad3/p‑Smad3 expression was also markedly inhibited. In conclusion, FMN significantly protected against balloon injury‑induced neointima formation in the carotid artery of a rat model; this effect may be associated with the regulation of VSMC proliferation and migration through altered TGF‑β1/Smad3 signaling.
Collapse
Affiliation(s)
- Tao Song
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Jingdong Zhao
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Tongbai Jiang
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yubin Li
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xinrong Liu
- Hemodialysis Center, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
41
|
Aldeiri B, Roostalu U, Albertini A, Behnsen J, Wong J, Morabito A, Cossu G. Abrogation of TGF-beta signalling in TAGLN expressing cells recapitulates Pentalogy of Cantrell in the mouse. Sci Rep 2018; 8:3658. [PMID: 29483576 PMCID: PMC5826924 DOI: 10.1038/s41598-018-21948-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Pentalogy of Cantrell (PC) is a rare multi-organ congenital anomaly that impedes ventral body wall closure and results in diaphragmatic hernia, intra- and pericardial defects. The underlying cellular and molecular changes that lead to these severe developmental defects have remained unknown largely due to the lack of representative animal models. Here we provide in depth characterization of a mouse model with conditional ablation of TGFβRII in Transgelin (Tagln) expressing cells. We show that Tagln is transiently expressed in a variety of cells that participate in the embryonic development and patterning of ventral structures. Genetic ablation of TGFβRII in these cells leads to ventral midline closure defect, diaphragmatic hernia, dilated cardiac outflow tract and aberrant cardiac septation, providing a reliable model to study the morphological changes leading to PC. We show that myogenisis in the diaphragm is independent of TGFβ and the diaphragmatic hernia arises from fibroblast-specific migration defect. In the dorsal body wall Tagln expression is initiated after the closure process, revealing a remarkable difference between ventral and dorsal body walls development. Our study demonstrates the use of micro-CT scanning to obtain a 3-dimensional high-resolution overview of embryonic anomalies and provides the first mechanistic insight into the development of PC.
Collapse
Affiliation(s)
- Bashar Aldeiri
- Manchester Academic Health Science Centre, Division of cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Royal Manchester Children's Hospital, Manchester, UK.
| | - Urmas Roostalu
- Manchester Academic Health Science Centre, Division of cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS, San Raffaele Scientific Institute, Milan, Italy
| | - Julia Behnsen
- Henry Moseley X-Ray Imaging Facility, The University of Manchester, Manchester, UK
| | - Jason Wong
- Manchester Academic Health Science Centre, Division of cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester University Hospitals, Wythenshawe Hospital, Manchester, UK
| | - Antonino Morabito
- Manchester Academic Health Science Centre, Division of cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester, UK
| | - Giulio Cossu
- Manchester Academic Health Science Centre, Division of cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Janjanam J, Zhang B, Mani AM, Singh NK, Traylor JG, Orr AW, Rao GN. LIM and cysteine-rich domains 1 is required for thrombin-induced smooth muscle cell proliferation and promotes atherogenesis. J Biol Chem 2018; 293:3088-3103. [PMID: 29326163 DOI: 10.1074/jbc.ra117.000866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Indexed: 11/06/2022] Open
Abstract
Restenosis arises after vascular injury and is characterized by arterial wall thickening and decreased arterial lumen space. Vascular injury induces the production of thrombin, which in addition to its role in blood clotting acts as a mitogenic and chemotactic factor. In exploring the molecular mechanisms underlying restenosis, here we identified LMCD1 (LIM and cysteine-rich domains 1) as a gene highly responsive to thrombin in human aortic smooth muscle cells (HASMCs). Of note, LMCD1 depletion inhibited proliferation of human but not murine vascular smooth muscle cells. We also found that by physically interacting with E2F transcription factor 1, LMCD1 mediates thrombin-induced expression of the CDC6 (cell division cycle 6) gene in the stimulation of HASMC proliferation. Thrombin-induced LMCD1 and CDC6 expression exhibited a requirement for protease-activated receptor 1-mediated Gαq/11-dependent activation of phospholipase C β3. Moreover, the expression of LMCD1 was highly induced in smooth muscle cells located at human atherosclerotic lesions and correlated with CDC6 expression and that of the proliferation marker Ki67. Furthermore, the LMCD1- and SMCαactin-positive cells had higher cholesterol levels in the atherosclerotic lesions. In conclusion, these findings indicate that by acting as a co-activator with E2F transcription factor 1 in CDC6 expression, LMCD1 stimulates HASMC proliferation and thereby promotes human atherogenesis, suggesting an involvement of LMCD1 in restenosis.
Collapse
Affiliation(s)
- Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Baolin Zhang
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Arul M Mani
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - James G Traylor
- the Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103
| | - A Wayne Orr
- the Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
43
|
Chen YL, Tsai YT, Chao TT, Wu YN, Chen MC, Lin YH, Liao CH, Chou SSP, Chiang HS. DAPK and CIP2A are involved in GAS6/AXL-mediated Schwann cell proliferation in a rat model of bilateral cavernous nerve injury. Oncotarget 2018; 9:6402-6415. [PMID: 29464081 PMCID: PMC5814221 DOI: 10.18632/oncotarget.23978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Impotence is one of the major complications occurring in prostate cancer patients after radical prostectomy (RP). Self-repair of the injured nerve has been observed in animal models and in patients after RP. However, the downstream signalling is not well documented. Here, we found that the DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. Materials and Methods The 3 groups were a sham group, a 14-day post-bilateral cavernous nerve injury (BCNI) group and a 28-day post-BCNI group. Erectile function was assessed and immunohistochemistry was performed. The rat Schwann cell RSC96 line was chosen for gene knockdown, cell viability, western blot, immunofluorescence and co-immunoprecipitation assays. Results The intracavernosal pressure was low on the 14th day after BCNI and partially increased by the 28th day. GAS6 and p-AXL expression gradually increased in the cavernous nerve after BCNI. RSC96 cells incubated with a GAS6 ligand showed increased levels of p-ERK1/2 and p-AKT. Moreover, DAPK and CIP2A.p-AXL and p-DAPK and CIP2A complexes were identified by both immunoblotting and co-immunoprecipitation. Conclusion The DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. CIP2A inhibits PP2A activity, which results in p-DAPK(S308) maintenance and promotes Schwann cell proliferation. CIP2A is a potential target for the treatment of nerve injury after RP.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Pathology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Ting-Ting Chao
- Medical Research Center, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Yi-No Wu
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Meng-Chuan Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chun-Hou Liao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei, Taiwan.,Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei, Taiwan
| | | | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei, Taiwan.,Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei, Taiwan
| |
Collapse
|
44
|
Yue Y, Ma K, Li Z, Wang Z. Angiotensin II type 1 receptor-associated protein regulates carotid intimal hyperplasia through controlling apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun 2018; 495:2030-2037. [DOI: 10.1016/j.bbrc.2017.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
|
45
|
The Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Lung Architecture Remodeling. Antioxidants (Basel) 2017; 6:antiox6040104. [PMID: 29257052 PMCID: PMC5745514 DOI: 10.3390/antiox6040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic lung disorders, such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and neonatal bronchopulmonary dysplasia (BPD), are characterized by airway and/or vascular remodeling. Despite differences in the pathology, reactive oxygen species (ROS) have been highlighted as a critical contributor to the initiation and development of airway and vascular remodeling. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) appear to play a pivotal role in lung signaling, leading to marked changes in pulmonary airway and vascular cell phenotypes, including proliferation, hypertrophy and apoptosis. In this review, we summarized the current literature regarding the role of Nox in the airway and vascular remodeling.
Collapse
|
46
|
Mahajan S, Fender A, Meyer-Kirchrath J, Kurt M, Barth M, Sagban T, Fischer J, Schrör K, Hohlfeld T, Rauch B. A novel function of FoxO transcription factors in thrombin-stimulated vascular smooth muscle cell proliferation. Thromb Haemost 2017; 108:148-58. [DOI: 10.1160/th11-11-0756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
SummaryThrombin exerts coagulation-independent effects on the proliferation and migration of vascular smooth muscle cells (SMC). Forkhead box-O (FoxO) transcription factors regulate cell proliferation, apoptosis and cell cycle arrest, but a possible functional interaction between thrombin and FoxO factors has not been identified to date. In human cultured vascular SMC, thrombin induced a time-dependent phosphorylation of FoxO1 and FoxO3 but not FoxO4. This effect was mimicked by an activating-peptide (AP) for protease-activated receptor (PAR)-1, and abolished by a PAR-1 antagonist (SCH79797). APs for other PARs were without effect. FoxO1 and FoxO3 phosphorylation were prevented by the PI3 kinase (PI3K) inhibitor LY294002 while inhibitors of ERK1/2 (PD98059) or p38MAPK (SB203580) were ineffective. LY294002 moreover prevented thrombin-stimulated SMC mitogenesis and proliferation. FoxO1 and FoxO3 siRNA augmented basal DNA synthesis and proliferation of SMC. Nuclear content of FoxO proteins decreased time-dependently in response to thrombin, coincided with suppressed expression of the cell cycle regulating genes p21CIP1 and p27kip1 by thrombin. FoxO1 siRNA reduced basal p21CIP1 while FoxO3 siRNA attenuated p27kip1 expression; thrombin did not show additive effects. LY294002 restored p21CIP1 and p27kip1 protein expression. Immunohistochemistry revealed that human native and failed saphenous vein grafts were characterised by the cytosolic presence of p-FoxO factors in co-localisation of p21CIP1 and p27kip1 with SMC. In conclusion, thrombin and FoxO factors functionally interact through PI3K/Akt-dependent FoxO phosphorylation leading to expression of cell cycle regulating genes and ultimately SMC proliferation. This may contribute to remodelling and failure of saphenous vein bypass grafts.
Collapse
|
47
|
Tang FC, Wang HY, Ma MM, Guan TW, Pan L, Yao DC, Chen YL, Li SJ, Yang H, Zhu XQ, Tu YS. Simvastatin attenuated rat thoracic aorta remodeling by decreasing ROCK2‑mediated CyPA secretion and CD147‑ERK1/2‑cyclin pathway. Mol Med Rep 2017; 16:8123-8129. [PMID: 28983618 PMCID: PMC5779895 DOI: 10.3892/mmr.2017.7640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species-induced cyclophilin A (CyPA) release from vascular smooth muscle cells (VSMCs) may be inhibited by simvastatin in vitro. The present study aimed to further examine the effect of simvastatin on serum CyPA levels and the basigin (CD147)-extracellular signal-regulated kinase (ERK) 1/2-cyclin pathway during thoracic aorta remodeling. The mechanisms through which simvastatin may inhibit CyPA secretion from VSMCs were further investigated. Serum CyPA levels and the expression kinetics of CyPA-associated signaling pathways were examined following simvastatin treatment in rat thoracic aortas during hypertension. Cell lysates were prepared from middle layer of thoracic aortas at 1, 4, 8 and 12 weeks subsequent to surgery. ELISA analysis revealed that serum CyPA levels were gradually increased with the progression of thoracic aorta remodeling. Western blotting demonstrated that the expression of CD147, phosphorylated-ERK1/2, cyclin D1, cyclin A, and cyclin E were increased with the progression of thoracic aorta remodeling. Simvastatin administration for 4, 8 and 12 weeks diminished all these changes, as observed in the hypertensive group. VSMCs from simvastatin-treated rats secreted a decreased amount of CyPA compared with VSMCs from hypertensive rats. In addition, pretreatment with geranylgeraniol partly reversed the inhibitory effect of simvastatin on LY83583-induced CyPA secretion in cultured VSMCs, whereas GGTI-298 and KD025 [a selective Rho-associated protein kinase 2 (ROCK2) inhibitor] mimicked the inhibitory effect of simvastatin. The present study demonstrated that simvastatin alleviated thoracic aorta remodeling by reducing CyPA secretion and expression of the CD147-ERK1/2-cyclin signaling pathway. In addition, the results of the present study demonstrated that the Rho-ROCK2 pathway mediated CyPA secretion from VSMCs.
Collapse
Affiliation(s)
- Fu-Cai Tang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hong-Yan Wang
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian-Wang Guan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Long Pan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Dun-Chen Yao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ya-Lan Chen
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Jie Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hang Yang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Qin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yong-Sheng Tu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
48
|
Rebaї M, Kallel I, Abdelhedi R, kharrat N, Abdemoula Bouayed N, Abid L, Rebaї A. Association analysis of polymorphisms in EGFR , HER2 , ESR1 and THRA genes with coronary artery diseases. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
50
|
Singh NK, Janjanam J, Rao GN. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation. J Biol Chem 2017; 292:14080-14091. [PMID: 28655771 DOI: 10.1074/jbc.m117.777896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-Gi/o-Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| | - Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|