1
|
Nerush MO, Shevyrin VA, Golushko NI, Moskalenko AM, Rosemberg DB, De Abreu MS, Yang LE, Galstyan DS, Lim LW, Demin KA, Kalueff AV. Classics in Chemical Neuroscience: Deliriant Antihistaminic Drugs. ACS Chem Neurosci 2024; 15:3848-3862. [PMID: 39404616 DOI: 10.1021/acschemneuro.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Antihistaminic drugs are widely used clinically and have long been primarily known for their use to treat severe allergic conditions caused by histamine release. Antihistaminic drugs also exert central nervous system (CNS) effects, acting as anxiolytics, hypnotics, and neuroleptics. However, these drugs also have multiple serious neuropharmacological side-effects, inducing delirium, hyperarousal, disorganized behavior, and hallucinations. Due to their robust CNS effects, antihistamines are also increasingly abused, with occasional overdoses and life-threatening toxicity. Here, we discuss chemical and neuropharmacological aspects of antihistaminic drugs in both human and animal (experimental) models and outline their current societal and mental health importance as neuroactive substances.
Collapse
Affiliation(s)
- Maria O Nerush
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | | | - Nikita I Golushko
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
- Western Caspian University, Baku 1001, Azerbaijan
| | - Long-En Yang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| | - David S Galstyan
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | - Lee Wei Lim
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| | - Konstantin A Demin
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg 199034, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215000, P. R. China
| |
Collapse
|
2
|
Miranda MI, Alcalá A. Histamine H3 receptor activation in the insular cortex during taste memory conditioning decreases appetitive response but accelerates aversive memory extinction under an ad libitum liquid regimen. Neuroscience 2024; 559:1-7. [PMID: 39128699 DOI: 10.1016/j.neuroscience.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Conditioned taste aversion (CTA) is a robust associative learning; liquid deprivation during this conditioning allows researchers to obtain readable measures of associative learning. Recent research suggests that thirst could be a crucial motivator that modulates conditioning and memory extinction processes, highlighting the importance of the body's internal state during learning. Furthermore, the histaminergic system is one of the major modulatory systems controlling several behavioral and neurobiological functions, such as feeding, water intake, and nociception. Therefore, this research aimed to assess the effect of H3 histaminergic receptor activation in the insular cortex (IC) during CTA. For this, we conditioned adult male Wistar rats under two regimens: water deprivation and water ad libitum. A classical CTA protocol was used for water deprivation. Before CTA acquisition, 10 μM R-α-methylhistamine (RAMH), an H3 receptor agonist, was injected into the IC. Results showed that RAMH injections decreased CTA in water-deprived rats without affecting the significant aversion conditioning in rats that were given water ad libitum. Moreover, RAMH accelerated the process of aversive memory extinction under ad libitum water conditions. According to our findings, the degree of liquid satiety differentially affected taste-aversive memory formation, and H3 histamine receptors were more involved under water deprivation conditions during acquisition. However, these receptors modulated the strength of aversive conditioning by altering the rate of aversive memory extinction in the absence of deprivation. In conclusion, histaminergic activity in the IC may influence taste memory dynamics through different mechanisms depending on the degree of liquid satiety or deprivation during conditioning.
Collapse
Affiliation(s)
- María-Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, Mexico.
| | - Alejandra Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, Mexico
| |
Collapse
|
3
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Philippu A. Brain mapping: topography of neurons and their transmitters involved in various brain functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02523-4. [PMID: 37184687 DOI: 10.1007/s00210-023-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Use of the demanding techniques microdialysis or push-pull superfusion makes it possible to identify neurons in distinct brain areas involved in central control of peripheral functions, thus enabling brain mapping. Investigations with the push-pull superfusion technique have shown that mainly catecholaminergic neurons of the posterior and anterior hypothalamus, the locus coeruleus, and the nucleus of the solitary tract are of crucial importance for blood pressure regulation. Experimentally induced blood pressure changes also modify the release of histamine, glutamate, and taurine in the posterior hypothalamus and of serotonin in the locus coeruleus. Furthermore, histaminergic neurons of the nucleus accumbens are involved in memory, serotonergic neurons of the locus coeruleus in response to noxious stimuli, while nitric oxide of striatum has been implicated in neurotoxicity elicited by amphetamines. The involvement of several neurons in one brain function is discussed.
Collapse
Affiliation(s)
- Athineos Philippu
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Kranebitter Allee 26, A-6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Patel R, Agrawal S, Jain NS. Stimulation of dorsal hippocampal histaminergic transmission mitigates the expression of ethanol withdrawal-induced despair in mice. Alcohol 2021; 96:1-14. [PMID: 34228989 DOI: 10.1016/j.alcohol.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Garnered literature points toward the role of the dorsal hippocampus (CA1) in ethanol withdrawal-induced responses, wherein a strong presence of the histaminergic system is also reported. Therefore, the present study investigated the effect of an enhanced CA1 histaminergic transmission on the expression of chronic ethanol withdrawal-induced despair in mice on the tail suspension test (TST). The results revealed that mice who were on an ethanol-fed diet (5.96%, v/v) for 8 days exhibited maximum immobility time on the TST, and decreased locomotion at 24 h post-ethanol withdrawal (10th day), indicating ethanol withdrawal-induced despair. Enhancement of CA1 histaminergic activity achieved by the treatment of intra-CA1 microinjection of histaminergic agents such as histamine (0.1, 10 μg/mouse, bilateral), the histamine precursor l-histidine (1, 10 μg/mouse, bilateral), the histamine neuronal releaser/H3 receptor antagonist thioperamide (2, 10 μg/mouse, bilateral), the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, bilateral), or the H2 receptor agonist amthamine (0.1, 0.5 μg/mouse, bilateral) to ethanol-withdrawn mice, 10 min before the 24-h post-ethanol withdrawal time point, significantly alleviated the expression of ethanol withdrawal-induced despair in mice on the TST. On the other hand, only the pre-treatment of the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, intra-CA1 bilateral) reversed the reduction in locomotor activity induced in ethanol-withdrawn mice, whereas other employed histaminergic agents were devoid of any effect on this behavior. Therefore, our findings indicate that an enhanced CA1 histaminergic transmission, probably via stimulation of CA1 postsynaptic histamine H1 or H2 receptor, could preclude the behavioral despair, while H1 stimulation affects motor deficit expressed after ethanol withdrawal.
Collapse
|
6
|
Nomura H, Shimizume R, Ikegaya Y. Histamine: A Key Neuromodulator of Memory Consolidation and Retrieval. Curr Top Behav Neurosci 2021; 59:329-353. [PMID: 34435342 DOI: 10.1007/7854_2021_253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pharmacological studies conducted on animals over the last four decades, histamine was determined to be a strong modulator of learning and memory. Activation of histamine signaling enhances memory consolidation and retrieval. Even long after learning and forgetting, it can still restore the retrieval of forgotten memories. These findings based on animal studies led to human clinical trials with histamine H3 receptor antagonists/inverse agonists, which revealed their positive effects on learning and memory. Therefore, histamine signaling is a promising therapeutic target for improving cognitive impairments in patients with various neuropsychiatric disorders, including Alzheimer's disease. While the memory-modulatory effects of histamine receptor agonists and antagonists have been confirmed by several research groups, the underlying mechanisms remain to be elucidated. This review summarizes how the activation and inhibition of histamine signaling influence memory processes, introduces the cellular and circuit mechanisms, and discusses the relationship between the human histaminergic system and learning and memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Rintaro Shimizume
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Lopes FB, Aranha CMSQ, Fernandes JPS. Histamine H 3 receptor and cholinesterases as synergistic targets for cognitive decline: Strategies to the rational design of multitarget ligands. Chem Biol Drug Des 2021; 98:212-225. [PMID: 33991182 DOI: 10.1111/cbdd.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
The role of histamine and acetylcholine in cognitive functions suggests that compounds able to increase both histaminergic and cholinergic neurotransmissions in the brain should be considered as promising therapeutic options. For this purpose, dual inhibitors of histamine H3 receptors (H3 R) and cholinesterases (ChEs) have been designed and assessed. In this context, this paper reviews the strategies used to obtain dual H3 R/ChEs ligands using multitarget design approaches. Hybrid compounds designed by linking tacrine or flavonoid motifs to H3 R antagonists were obtained with high affinity for both targets, and compounds designed by merging the H3 R antagonist pharmacophore with known anticholinesterase molecules were also reported. These reports strongly suggest that key modifications in the lipophilic region (including a second basic group) seem to be a strategy to reach novel compounds, allied with longer linker groups to a basic region. Some compounds have already demonstrated efficacy in memory models, although the pharmacokinetic and toxicity profile should be considered when designing further compounds. In conclusion, the key features to be considered when designing novel H3 R/ChEs inhibitors with improved pharmacological profile were herein summarized.
Collapse
Affiliation(s)
- Flávia B Lopes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecília M S Q Aranha
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S. Histamine Receptors Regulate the Activity, Surface Expression, and Phosphorylation of Serotonin Transporters. ACS Chem Neurosci 2020; 11:466-476. [PMID: 31916747 DOI: 10.1021/acschemneuro.9b00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reuptake and clearance of released serotonin (5-HT) are critical in serotonergic neurotransmission. Serotonin transporter (SERT) is mainly responsible for clearing the extracellular 5-HT. Controlled trafficking, phosphorylation, and protein stability have been attributed to robust SERT activity. H3 histamine receptors (H3Rs) act in conjunction and regulate 5-HT release. H3Rs are expressed in the nervous system and located at the serotonergic terminals, where they act as heteroreceptors. Although histaminergic and serotonergic neurotransmissions are thought to be two separate events, whether H3Rs influence SERT in the CNS to control 5-HT reuptake has never been addressed. With a priori knowledge gained from our studies, we explored the possibility of using rat hippocampal synaptosomal preparations. We found that treatment with H3R/H4R-agonists immepip and (R)-(-)-α-methyl-histamine indeed resulted in a time- and concentration-dependent decrease in 5-HT transport. On the other hand, treatment with H3R/H4R-inverse agonist thioperamide caused a moderate increase in 5-HT uptake while blocking the inhibitory effect of H3R/H4R agonists. When investigated further, immepip treatment reduced the level of SERT on the plasma membrane and its phosphorylation. Likewise, CaMKII inhibitor KN93 or calcineurin inhibitor cyclosporine A also inhibited SERT function; however, an additive effect with immepip was not seen. High-speed in vivo chronoamperometry demonstrated that immepip delayed 5-HT clearance while thioperamide accelerated 5-HT clearance from the extracellular space. Immepip selectively inhibited SERT activity in the hippocampus and cortex but not in the striatum, midbrain, and brain stem. Thus, we report here a novel mechanism of regulating SERT activity by H3R-mediated CaMKII/calcineurin pathway in a brain-region-specific manner and perhaps synaptic 5-HT in the CNS that controls 5-HT clearance.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
10
|
c-Fos expression in the ascending arousal system induced by physical exercise in rats: Implication for memory performance. Brain Res 2019; 1723:146376. [PMID: 31408622 DOI: 10.1016/j.brainres.2019.146376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022]
Abstract
During exercise, multiple sensory information such as visual outflow, proprioception, and vestibular information promote an increase in arousal state, which may convey positive effects on cognitive abilities such as memory. Nevertheless, which of the components of the ascending arousal system (AAS) are engaged during physical activity and which of them are critical for cognitive enhancement, induced by exercise is still unclear. Two experiments were conducted, to answer these questions: in the first one, the neuronal activity of different components of the AAS was evaluated by c-Fos immunoreactivity (Fos-ir) in running rats exposed to a lock or unlock running wheel. We found a specific Fos-ir increase in the tuberomammillary nucleus (TMN) associated with physical exercise. In the second experiment sedentary and exercised rats were challenged to conduct an object recognition memory task, and the activity of the AAS after learning was evaluated by c-Fos immunoreactivity. The exercised group showed a higher performance in the object recognition memory task which gets correlated with an increase on Fos-ir in the TMN, but not with the other components of the AAS, suggesting that the increase on TMN activity induced by exercise may be the foremost contributor of the AAS to memory enhancement observed in exercised animals.
Collapse
|
11
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Chauveau F, De Job E, Poly-Thomasson B, Cavroy R, Thomasson J, Fromage D, Beracochea D. Procognitive impact of ciproxifan (a histaminergic H 3 receptor antagonist) on contextual memory retrieval after acute stress. CNS Neurosci Ther 2019; 25:832-841. [PMID: 31094061 PMCID: PMC6630007 DOI: 10.1111/cns.13113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
AIM Although cognitive deficits commonly co-occur with stress-related emotional disorders, effect of procognitive drugs such as histaminergic H3 receptor antagonists are scarcely studied on memory retrieval in stress condition. METHODS Experiment 1. Memory of two successive spatial discriminations (D1 then D2) 24 hours after learning was studied in a four-hole board in mice. H3 receptor antagonist ciproxifan (ip 3 mg/kg) and acute stress (three electric footshocks; 0.9 mA; 15 ms) were administered 30 and 15 minutes respectively before memory retrieval test. Fos immunostaining was performed to evaluate the neural activity of several brain areas. Experiment 2. Effects of ciproxifan and acute stress were evaluated on anxiety-like behavior in the elevated plus maze and glucocorticoid activity using plasma corticosterone assay. RESULTS Experiment 1. Ciproxifan increased memory retrieval of D2 in nonstress condition and of D1 in stress one. Ciproxifan mitigated the stress-induced increase of Fos expression in the prelimbic and infralimbic cortex, the central and basolateral amygdala and the CA1 of dorsal hippocampus. Experiment 2. Ciproxifan dampened the stress-induced anxiety-like behavior and plasma corticosterone increase. CONCLUSION Ciproxifan improved contextual memory retrieval both in stress and nonstress conditions without exacerbating behavioral and endocrine responses to stress. Overall, these data suggest potential usefulness of H3 receptor antagonists as cognitive enhancer both in nonstress and stress conditions.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Elodie De Job
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Betty Poly-Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Raphaël Cavroy
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Julien Thomasson
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Dominique Fromage
- IRBA (Institut de Recherche Biomédicale des Armées) BP73, Bretigny-sur-Orge Cedex, France
| | - Daniel Beracochea
- INCIA (Institut de Neurosciences Cognitives et Intégratives d'Aquitaine), UMR CNRS 5287, Université de Bordeaux, Pessac, France
| |
Collapse
|
13
|
Hackelberg S, Oliver D. Metabotropic Acetylcholine and Glutamate Receptors Mediate PI(4,5)P 2 Depletion and Oscillations in Hippocampal CA1 Pyramidal Neurons in situ. Sci Rep 2018; 8:12987. [PMID: 30154490 PMCID: PMC6113233 DOI: 10.1038/s41598-018-31322-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/17/2018] [Indexed: 01/24/2023] Open
Abstract
The sensitivity of many ion channels to phosphatidylinositol-4,5-bisphosphate (PIP2) levels in the cell membrane suggests that PIP2 fluctuations are important and general signals modulating neuronal excitability. Yet the PIP2 dynamics of central neurons in their native environment remained largely unexplored. Here, we examined the behavior of PIP2 concentrations in response to activation of Gq-coupled neurotransmitter receptors in rat CA1 hippocampal neurons in situ in acute brain slices. Confocal microscopy of the PIP2-selective molecular sensors tubbyCT-GFP and PLCδ1-PH-GFP showed that pharmacological activation of muscarinic acetylcholine (mAChR) or group I metabotropic glutamate (mGluRI) receptors induces transient depletion of PIP2 in the soma as well as in the dendritic tree. The observed PIP2 dynamics were receptor-specific, with mAChR activation inducing stronger PIP2 depletion than mGluRI, whereas agonists of other Gαq-coupled receptors expressed in CA1 neurons did not induce measureable PIP2 depletion. Furthermore, the data show for the first time neuronal receptor-induced oscillations of membrane PIP2 concentrations. Oscillatory behavior indicated that neurons can rapidly restore PIP2 levels during persistent activation of Gq and PLC. Electrophysiological responses to receptor activation resembled PIP2 dynamics in terms of time course and receptor specificity. Our findings support a physiological function of PIP2 in regulating electrical activity.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Marburg and Giessen, Germany.
| |
Collapse
|
14
|
Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2016; 151:237-253. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/18/2016] [Accepted: 09/10/2016] [Indexed: 01/18/2023]
Abstract
Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain.
Collapse
|
15
|
|
16
|
Zhou X, Li Y, Shi X, Ma C. An overview on therapeutics attenuating amyloid β level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am J Transl Res 2016; 8:246-69. [PMID: 27158324 PMCID: PMC4846881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, "amyloid hypothesis" is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the need for novel screening approaches towards identifying drugs that may prevent or at least limit the progression of this devastating disease.
Collapse
Affiliation(s)
- Xiaoling Zhou
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun, China
| | - Yifei Li
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun, China
| | - Xiaozhe Shi
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun, China
| | - Chun Ma
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun, China
| |
Collapse
|
17
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
18
|
|
19
|
Kraus MM, Philippu A. Use of Push-Pull Superfusion Technique for Identifying Neurotransmitters Involved in Brain Functions: Achievements and Perspectives. Curr Neuropharmacol 2015; 13:819-29. [PMID: 26630960 PMCID: PMC4759321 DOI: 10.2174/1570159x13666150722233149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022] Open
Abstract
The push-pull superfusion technique (PPST) is a procedure for in vivo examination of transmitter release in distinct brain areas. This technique allows to investigate dynamics of transmitter release both under normal and experimentally evoked conditions. The PPST can be modified so that it is possible to determine release of endogenous transmitters simultaneously with electroencephalogram (EEG) recordings, recordings of evoked potentials or the on-line determination of endogenous nitric oxide (NO) released into the synaptic cleft. Because of the good time resolution, the method provides further the possibility to modify the collection periods of superfusates depending on the neuronal function that is analyzed. For instance, investigation of central cardiovascular control, behavioral tasks or mnemonic processes requires very short collection periods, because changes in transmitter release occur within seconds. Even more important is the time resolution when rates of transmitter release are correlated with evoked extracellular potentials or EEG recordings. This review provides an overview of the different devices which might be combined with the PPST and perspectives for future work.
Collapse
Affiliation(s)
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Innrain 80-82, 6020 Innsbruck Austria.
| |
Collapse
|
20
|
Hutson PH, Heins MS, Folgering JH. Effects of lisdexamfetamine alone and in combination with s-citalopram on acetylcholine and histamine efflux in the rat pre-frontal cortex and ventral hippocampus. J Neurochem 2015; 134:693-703. [DOI: 10.1111/jnc.13157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/27/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
|
21
|
Musilli C, De Siena G, Manni ME, Logli A, Landucci E, Zucchi R, Saba A, Donzelli R, Passani MB, Provensi G, Raimondi L. Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br J Pharmacol 2015; 171:3476-84. [PMID: 24641572 DOI: 10.1111/bph.12697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/23/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE 3-Iodothyroacetic acid (TA1) is an end product of thyroid hormone metabolism. So far, it is not known if TA1 is present in mouse brain and if it has any pharmacological effects. EXPERIMENTAL APPROACH TA1 levels in mouse brain were measured by HPLC coupled to mass spectrometry. After i.c.v. administration of exogenous TA1 (0.4, 1.32 and 4 μg·kg(-1) ) to mice, memory acquisition-retention (passive avoidance paradigm with a light-dark box), pain threshold to thermal stimulus (51.5°C; hot plate test) and plasma glucose (glucorefractometer) were evaluated. Similar assays were performed in mice pretreated with s.c. injections of the histamine H1 receptor antagonist pyrilamine (10 mg·kg(-1) ) or the H2 receptor antagonist zolantidine (5 mg·kg(-1) ). TA1 (1.32 and 4 μg·kg(-1) ) was also given i.c.v. to mice lacking histidine decarboxylase (HDC(-/-) ) and the corresponding WT strain. KEY RESULTS TA1 was found in the brain of CD1 but not of HDC mice. Exogenous TA1 induced amnesia (at 0.4 μg·kg(-1) ), stimulation of learning (1.32 and 4 μg·kg(-1) ), hyperalgesia (0.4, 1.32 and 4 μg·kg(-1) ) and hyperglycaemia (1.32 and 4 μg·kg(-1) ). All these effects were modulated by pyrilamine and zolantidine. In HDC(-/-) mice, TA1 (1.32 and 4 μg·kg(-1) ) did not increase plasma glucose or induce hyperalgesia. CONCLUSIONS AND IMPLICATIONS Behavioural and metabolic effects of TA1 disclosed interactions between the thyroid and histaminergic systems.
Collapse
Affiliation(s)
- Claudia Musilli
- Department of Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Laurino A, De Siena G, Resta F, Masi A, Musilli C, Zucchi R, Raimondi L. 3-iodothyroacetic acid, a metabolite of thyroid hormone, induces itch and reduces threshold to noxious and to painful heat stimuli in mice. Br J Pharmacol 2015; 172:1859-68. [PMID: 25439265 DOI: 10.1111/bph.13032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Itch is associated with increased sensitization to nociceptive stimuli. We investigated whether 3-iodothyroacetic acid (TA1), by releasing histamine, induces itch and increases sensitization to noxious and painful heat stimuli. EXPERIMENTAL APPROACH Itch was evaluated after s.c. administration of TA1 (0.4, 1.32 and 4 μg·kg(-1) ). Mice threshold to noxious (NHT) and to painful heat stimuli were evaluated by the increasing-temperature hot plate (from 45.5 to 49.5°C) or by the hot plate (51.5°C) test, respectively, 15 min after i.p. injection of TA1 (0.4, 1.32 and 4 μg·kg(-1) ). Itch, NHT and pain threshold evaluation were repeated in mice pretreated with pyrilamine. Itch and NHT were also measured in HDC(+/+) and HDC(-/-) following injection of saline or TA1 (1.32, 4 and 11 μg·kg(-1) ; s.c. and i.p.). pERK1/2 levels were determined by Western blot in dorsal root ganglia (DRG) isolated from CD1 mice 15 min after they received (i.p.): saline, saline and noxious heat stimulus (46.5°C), TA1 (0.1, 0.4, 1.32, 4 μg·kg(-1) ) or TA1 1.32 μg·kg(-1) and noxious heat stimulus. KEY RESULTS TA1 0.4 and 1.32 μg·kg(-1) induced itch and reduced NHT; pyrilamine pretreatment prevented both of these effects. TA1 4 μg·kg(-1) (i.p.) reduced pain threshold without inducing itch or modifying NHT. In HDC(-/-) mice, TA1 failed to induce itch and to reduce NHT. In DRG, pERK1/2 levels were significantly increased by noxious heat stimuli and by TA1 0.1, 0.4 and 1.32 μg·kg(-1) ; i.p. CONCLUSIONS AND IMPLICATIONS Increased TA1 levels induce itch and an enhanced sensitivity to noxious heat stimuli suggesting that TA1 might represent a potential cause of itch in thyroid diseases.
Collapse
Affiliation(s)
- Annunziatina Laurino
- Department of NEUROFARBA, Section of Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Abad VC, Guilleminault C. Pharmacological treatment of sleep disorders and its relationship with neuroplasticity. Curr Top Behav Neurosci 2015; 25:503-53. [PMID: 25585962 DOI: 10.1007/7854_2014_365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Collapse
Affiliation(s)
- Vivien C Abad
- Psychiatry and Behavioral Science-Division of Sleep Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
24
|
Gianlorenço ACL, Riboldi AM, Silva-Marques B, Mattioli R. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice. Neurosci Lett 2014; 587:57-61. [PMID: 25524412 DOI: 10.1016/j.neulet.2014.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/02/2014] [Accepted: 12/11/2014] [Indexed: 01/17/2023]
Abstract
Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice.
Collapse
Affiliation(s)
- A C L Gianlorenço
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, 13565-905, Sao Carlos, Brazil.
| | - A M Riboldi
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, 13565-905, Sao Carlos, Brazil.
| | - B Silva-Marques
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, 13565-905, Sao Carlos, Brazil.
| | - R Mattioli
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, 13565-905, Sao Carlos, Brazil.
| |
Collapse
|
25
|
Taati M, Moghaddasi M, Esmaeili M, Pourkhodadad S, Nayebzadeh H. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats. Brain Res 2014; 1587:112-8. [DOI: 10.1016/j.brainres.2014.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/02/2014] [Accepted: 08/23/2014] [Indexed: 01/09/2023]
|
26
|
Kraus MM, Prast H, Philippu A. Facilitation of short-term memory by histaminergic neurons in the nucleus accumbens is independent of cholinergic and glutamatergic transmission. Br J Pharmacol 2014; 170:214-21. [PMID: 23750549 DOI: 10.1111/bph.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/23/2013] [Accepted: 06/02/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Here, we have investigated whether learning and/or short-term memory was associated with release of ACh and glutamate in the rat nucleus accumbens (NAc). Additionally, neurotransmitter release in the NAc was assessed during facilitation of cognitive processes by antagonists of inhibitory histamine autoreceptors. EXPERIMENTAL APPROACH The olfactory, social memory test was used in combination with push-pull superfusion of the NAc. A male, juvenile rat was exposed twice to an adult male rat at intervals of 60 or 90 min, and release of ACh and glutamate was determined in the NAc of the conscious adult rat. Histamine receptor antagonists were applied i.c.v. KEY RESULTS First exposure of a juvenile rat to an adult rat increased ACh and glutamate release in the NAc of the adult rat. Repetition of exposure after 60 min did not change release of ACh and glutamate, while contact time to recognition (CTR) was shortened. Repetition of exposure after an interval of 90 min prolonged CTR and enhanced accumbal ACh and glutamate release rates. Injection (i.c.v.) of thioperamide (histamine H3 receptor antagonist) together with famotidine (H₂ receptor antagonist), 80 min prior to second exposure, diminished CTR and abolished ACh and glutamate release when second exposure was carried out 90 min after the first one. CONCLUSIONS AND IMPLICATIONS Histaminergic neurons per se facilitated short-term memory, without activation of cholinergic and/or glutamatergic neurons in the NAc of rats. Cholinergic and glutamatergic neurons within the NAc contributed to learning but not to recall of memory.
Collapse
Affiliation(s)
- M M Kraus
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | |
Collapse
|
27
|
Ciproxifan improves working memory through increased prefrontal cortex neural activity in sleep-restricted mice. Neuropharmacology 2014; 85:349-56. [PMID: 24796256 DOI: 10.1016/j.neuropharm.2014.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/23/2022]
Abstract
Histamine receptor type 3 (H3) antagonists are promising awakening drugs for treatment of sleep disorders. However, few works have tried to identify their cognitive effects after sleep restriction and their impact on associated neural networks. To that aim, Bl/6J male mice were submitted to acute sleep restriction in a shaker apparatus that prevents sleep by transient (20-40 ms) up and down movements. Number of stimulations (2-4), and delay between 2 stimulations (100-200 ms) were randomized. Each sequence of stimulation was also randomly administered (10-30 s interval) for 20 consecutive hours during light (8 h) and dark (12 h) phases. Immediately after 20 h-sleep restriction, mice were injected with H3 antagonist (ciproxifan 3 mg/kg ip) and submitted 30-min later to a working memory (WM) task using spatial spontaneous alternation behaviour. After behavioural testing, brains were perfused for Fos immunohistochemistry to assess neuronal brain activation in the dorsal dentate gyrus (dDG) and the prefrontal cortex. Results showed that sleep restriction decreased slow wave sleep (from 35.8±1.4% to 9.2±2.7%, p<0.001) and was followed by sleep rebound (58.2±5.9%, p<0.05). Sleep restriction did not modify anxiety-like reactivity and significantly decreased WM at long (30 s) but not short (5 s) inter-trial intervals. Whereas sleep restriction failed to significantly modify immunopositive cells in vehicles, ciproxifan administration prevented WM deficits in sleep restricted mice through significant increases of Fos labelling in prelimbic, infralimbic and cingulate 2 cortex. In conclusion, ciproxifan at 3 mg/kg enhanced WM in sleep restricted mice through specific modulation of prefrontal cortex areas.
Collapse
|
28
|
Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neurosci Biobehav Rev 2014; 42:252-66. [DOI: 10.1016/j.neubiorev.2014.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
|
29
|
Hippocampal α-adrenoceptors involve in the effect of histamine on spatial learning. Physiol Behav 2014; 129:17-24. [DOI: 10.1016/j.physbeh.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
30
|
Gianlorenço ACL, Serafim KR, Canto-de-Souza A, Mattioli R. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice. Braz J Med Biol Res 2014; 47:135-43. [PMID: 24519129 PMCID: PMC4051186 DOI: 10.1590/1414-431x20133429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022] Open
Abstract
This study investigated the effects of histamine H1 or H2 receptor antagonists on
emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The
cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide.
Three days after recovery, behavioral tests were performed in the EPM on 2
consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals
received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA;
0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist
ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours
later, mice were reexposed to the EPM (T2) under the same experimental conditions but
they did not receive any injection. Data were analyzed using one-way ANOVA and the
Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the
open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and
there was no difference among groups. The results of Experiment 2 demonstrated that
the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were
microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were
microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and
%OAT. These results demonstrate that CPA did not affect behavior at the doses used in
this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in
the EPM.
Collapse
Affiliation(s)
- A C L Gianlorenço
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São CarlosSP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - K R Serafim
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São CarlosSP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - A Canto-de-Souza
- Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São CarlosSP, Brasil, Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - R Mattioli
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São CarlosSP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
31
|
Costa J, Serafim KR, Gianlorenço ACL, Mattioli R. Low-dose thioperamide injected into the cerebellar vermis of mice immediately after exposure to the elevated plus-maze impairs their avoidance behavior on re-exposure to the apparatus. Braz J Med Biol Res 2013; 46:943-948. [PMID: 24270913 PMCID: PMC3854336 DOI: 10.1590/1414-431x20133179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of thioperamide (THIO), an H3 histaminergic receptor antagonist, microinjected into the cerebellar vermis on emotional memory consolidation in male Swiss albino mice re-exposed to the elevated plus-maze (EPM). We implanted a guide cannula into the cerebellar vermis using stereotactic surgery. On the third day after surgery, we performed behavioral tests for two consecutive days. On the first day (exposure), the mice (n=10/group) were exposed to the EPM and received THIO (0.06, 0.3, or 1.5 ng/0.1 µL) immediately after the end of the session. Twenty-four hours later, the mice were re-exposed to the EPM under the same experimental conditions, but without drug injection. A reduction in the exploration of the open arms upon re-exposure to the EPM (percentage of number of entries and time spent in open arms) compared with the initial exposure was used as an indicator of learning and memory. One-way analysis of variance (ANOVA) followed by the Duncan post hoc test was used to analyze the data. Upon re-exposure, exploratory activity in the open arms was reduced in the control group, and with the two highest THIO doses: 0.3 and 1.5 ng/0.1 µL. No reduction was seen with the lowest THIO dose (0.06 ng/0.1 µL), indicating inhibition of the consolidation of emotional memory. None of the doses interfered with the animals' locomotor activity. We conclude that THIO at the lowest dose (0.06 ng/0.1 µL) microinjected into the cerebellum impaired emotional memory consolidation in mice.
Collapse
Affiliation(s)
- J Costa
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos,SP, Brasil
| | | | | | | |
Collapse
|
32
|
Gianlorenço ACL, Canto-de-Souza A, Mattioli R. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors. Neurosci Lett 2013; 557 Pt B:159-64. [PMID: 24161893 DOI: 10.1016/j.neulet.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 10/06/2013] [Indexed: 11/15/2022]
Abstract
Studies have demonstrated the relationship between the histaminergic system and the cerebellum, and we intend to investigate the role of the cerebellar histaminergic system on memory consolidation. This study investigated the effect of intra-cerebellar microinjection of histamine on memory retention of inhibitory avoidance in mice, and the role of H1 and H2 receptors in it. The cerebellar vermis of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of histaminergic drugs: in the experiment 1, saline (SAL) or histamine (HA 0.54, 1.36, 2.72 or 4.07 nmol); experiment 2, SAL or 1.36 nmol HA 5 min after a pretreatment with 0.16 nmol chlorpheniramine (CPA) or SAL; and experiment 3, SAL or 1.36 nmol HA 5 min after a pretreatment with 2.85 nmol ranitidine (RA) or SAL. Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. In experiment 1, animals microinjected with 1.36 nmol HA showed a higher latency to cross to the dark compartment compared to controls and to 2.72 and 4.07 nmol HA groups. In experiment 2, the combined infusions revealed difference between control (SAL+SAL) and SAL+HA and CPA+HA; while in the experiment 3 the analysis indicated differences in retention latency between mice injected with SAL+SAL and SAL+HA. The groups that received the H2 antagonist RA did not show difference compared to control. These results indicate that 1.36 nmol HA enhances memory consolidation of inhibitory avoidance learning in mice and that the pretreatment with H2 antagonist RA was able to prevent this effect.
Collapse
Affiliation(s)
- A C L Gianlorenço
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, 13565-905, Sao Carlos, Brazil.
| | | | | |
Collapse
|
33
|
Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. Int J Neuropsychopharmacol 2013; 16:1539-45. [PMID: 23308396 DOI: 10.1017/s1461145712001514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The role of the basolateral amygdala (BLA) in the consolidation of aversive memory is well established. Here we investigate the involvement of the histaminergic system in BLA on this variable. Rats were chronically implanted with bilateral cannulae in the BLA and after recovery were trained in a one-trial step-down inhibitory avoidance task. Immediately after training histaminergic compounds either alone or in combination were infused through the cannulae. Memory was assessed in test sessions carried out 24 h after the training session. Post-training histamine (1-10 nmol; 0.5 μl/side) enhanced consolidation and the histamine H₃ receptor antagonist thioperamide (50 nmol; 0.5 μl/side) impaired memory consolidation. The effect was shared by the histamine N-methyltransferase inhibitor SKF-91844 (50 nmol; 0.5 μl/side) as well as by the H₃ receptor agonist imetit (10 nmol; 0.5 μl/side). The promnesic action of histamine was unaffected by the H₁ receptor antagonist pyrilamine (50 nmol; 0.5 μl/side). The H1 receptor agonist pyridylethylamine (10 nmol; 0.5 μl/side), the H₂ agonist dimaprit (10 nmol; 0.5 μl/side) and the H₂ antagonist ranitidine (50 nmol; 0.5 μl/side) were ineffective. Histaminergic compounds infused into the BLA had no effect on open-field or elevated plus-maze behaviour. The data show that histamine induces a dose-dependent mnemonic effect in rats and indicate that this reflects a role of endogenous histamine in the BLA mediated by H₃ receptors.
Collapse
|
34
|
The prototypical histamine H3 receptor inverse agonist thioperamide improves multiple aspects of memory processing in an inhibitory avoidance task. Behav Brain Res 2013; 253:121-7. [PMID: 23867149 DOI: 10.1016/j.bbr.2013.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
Abstract
Numerous studies have found that histamine plays a major role in memory and that the histamine H3 receptor (H3R) inverse agonist thioperamide improves cognitive performance in various animal models. However, little is known about the stages of memory that are specifically affected by thioperamide. The purpose of the present study was to investigate the effects of thioperamide on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in female C57BL/6J mice. In addition, potential state-dependency effects were studied by injecting thioperamide before the training and the test sessions in order to induce similar physiological states during acquisition and retrieval. Our results indicate that post-training systemic administration of thioperamide facilitated consolidation. Moreover, the administration of thioperamide before the training session had no effect on latency to enter the black compartment during training but enhanced memory during the retention test. The administration of thioperamide before the retention test also increased performance, which indicates that this compound ameliorates memory retrieval. Finally, when animals received thioperamide before the training session and before the retention test, the cognitive enhancing effects of thioperamide were not significantly changed. Together, our results show that thioperamide improves cognitive performance in an inhibitory avoidance task through actions on different memory stages. Furthermore, inducing a similar physiological state with thioperamide during acquisition and retrieval do not significantly affect cognitive enhancement. Our results suggest that the blockade of H3R can be helpful for the treatment of neuropsychiatric conditions characterized by deficits affecting several stages of memory processing.
Collapse
|
35
|
Boess FG, de Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Schnizler K, van der Staay FJ, van Kampen M, Wiese WB, König G. Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology (Berl) 2013; 227:1-17. [PMID: 23241647 DOI: 10.1007/s00213-012-2933-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVE Agonists of α7 nicotinic acetylcholine receptors (nAChRs) may have therapeutic potential for the treatment of cognitive deficits. This study describes the in vitro pharmacology of the novel α7 nAChR agonist/serotonin 5-HT3 receptor (5-HT3R) antagonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141) and its behavioral effects. RESULTS EVP-5141 bound to α7 nAChRs in rat brain membranes (K i = 270 nM) and to recombinant human serotonin 5-HT3Rs (K i = 880 nM) but had low affinity for α4β2 nAChRs (K i > 100 μM). EVP-5141 was a potent agonist at recombinant rat and human α7 nAChRs expressed in Xenopus oocytes. EVP-5141 acted as 5-HT3R antagonist but did not block α3β4, α4β2, and muscle nAChRs. Rats trained to discriminate nicotine from vehicle did not generalize to EVP-5141 (0.3-30 mg kg(-1), p.o.), suggesting that the nicotine cue is not mediated by the α7 nAChR and that EVP-5141 may not share the abuse liability of nicotine. EVP-5141 (0.3-3 mg kg(-1)) improved performance in the rat social recognition test. EVP-5141 (0.3 mg kg(-1), p.o.) ameliorated scopolamine-induced retention deficits in the passive avoidance task in rats. EVP-5141 (1 mg kg(-1), i.p.) improved spatial working memory of aged (26- to 32-month-old) rats in a water maze repeated acquisition task. In addition, EVP-5141 improved both object and social recognition memory in mice (0.3 mg kg(-1), p.o.). CONCLUSIONS EVP-5141 improved performance in several learning and memory tests in both rats and mice, supporting the hypothesis that α7 nAChR agonists may provide a novel therapeutic strategy for the treatment of cognitive deficits in Alzheimer's disease or schizophrenia.
Collapse
Affiliation(s)
- Frank G Boess
- Pharma Research CNS, Bayer Healthcare AG, 42096, Wuppertal, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mørk A, Montezinho LP, Miller S, Trippodi-Murphy C, Plath N, Li Y, Gulinello M, Sanchez C. Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav 2013; 105:41-50. [PMID: 23380522 DOI: 10.1016/j.pbb.2013.01.019] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 12/20/2022]
Abstract
The serotonergic system plays an important role in cognitive functions via various 5-HT receptors. Vortioxetine (Lu AA21004) in development as a novel multimodal antidepressant is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (5-HTT) inhibitor in vitro. Preclinical studies suggest that 5-HT3 and 5-HT7 receptor antagonism as well as 5-HT1A receptor agonism may have a positive impact on cognitive functions including memory. Thus vortioxetine may potentially enhance memory. We investigated preclinical effects of vortioxetine (1-10mg/kg administered subcutaneously [s.c.]) on memory in behavioral tests, and on cortical neurotransmitter levels considered important in rat memory function. Contextual fear conditioning and novel object recognition tests were applied to assess memory in rats. Microdialysis studies were conducted to measure extracellular neurotransmitter levels in the rat medial prefrontal cortex. Vortioxetine administered 1h before or immediately after acquisition of contextual fear conditioning led to an increase in freezing time during the retention test. This mnemonic effect was not related to changes in pain sensitivity as measured in the hotplate test. Rats treated with vortioxetine 1h before training spent more time exploring the novel object in the novel object recognition test. In microdialysis studies of the rat medial prefrontal cortex, vortioxetine increased extracellular levels of acetylcholine and histamine. In conclusion, vortioxetine enhanced contextual and episodic memory in rat behavioral models. Further demonstration of its potential effect on memory functions in clinical settings is warranted.
Collapse
Affiliation(s)
- Arne Mørk
- Department of Synaptic Transmission 1, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ji W, Suga N. Histaminergic modulation of nonspecific plasticity of the auditory system and differential gating. J Neurophysiol 2012; 109:792-802. [PMID: 23136340 DOI: 10.1152/jn.00930.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the auditory system of the big brown bat (Eptesicus fuscus), paired conditioned tonal (CS) and unconditioned leg stimuli (US) for auditory fear conditioning elicit tone-specific plasticity represented by best-frequency (BF) shifts that are augmented by acetylcholine, whereas unpaired CS and US for pseudoconditioning elicit a small BF shift and prominent nonspecific plasticity at the same time. The latter represents the nonspecific augmentations of auditory responses accompanied by the broadening of frequency tuning and decrease in threshold. It is unknown which neuromodulators are important in evoking the nonspecific plasticity. We found that histamine (HA) and an HA3 receptor (HA3R) agonist (α-methyl-HA) decreased, but an HA3R antagonist (thioperamide) increased, cortical auditory responses; that the HA3R agonist applied to the primary auditory cortex before pseudoconditioning abolished the nonspecific augmentation in the cortex without affecting the small cortical BF shift; and that antagonists of acetylcholine, norepinephrine, dopamine, and serotonin receptors did not abolish the nonspecific augmentation elicited by pseudoconditioning. The histaminergic system plays an important role in eliciting the arousal and defensive behavior, possibly through nonspecific augmentation. Thus HA modulates the nonspecific augmentation, whereas acetylcholine amplifies the BF shifts. These two neuromodulators may mediate differential gating of cortical plasticity.
Collapse
Affiliation(s)
- Weiqing Ji
- Dept. of Biology, Washington Univ, St. Louis, MO 63130, USA.
| | | |
Collapse
|
38
|
Gianlorenço ACL, Serafim KR, Canto-de-Souza A, Mattioli R. Emotional memory consolidation impairment induced by histamine is mediated by H1 but not H2 receptors. Brain Res Bull 2012; 89:197-202. [PMID: 22986235 DOI: 10.1016/j.brainresbull.2012.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/02/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have high density in the vermis and flocculus. Evidence indicates that the cerebellar vermis is involved in memory consolidation. Recently, we demonstrated that when histamine is microinjected into the cerebellar vermis it results in impaired emotional memory consolidation in mice that are submitted to the elevated plus maze (EPM). This study investigated whether histamine impairment was mediated by the H(1) or H(2) receptors. The cerebellar vermis of male mice (Swiss Albino) were implanted using a guide cannula. Three days after recovery, behavioral tests were performed in the EPM on two consecutive days (Trial 1 and Trial 2). Immediately after exposure to the EPM (Trial 1), animals received a microinjection of histaminergic drugs. In Experiment 1, saline (SAL) or histamine (HA, 4.07 nmol/0.1 μl) was microinjected 5 min after pretreatment with the H(1) antagonist chlorpheniramine (CPA, 0.16 nmol/0.1μl) or SAL. In Experiment 2, SAL or HA was microinjected into the mice 5 min after pretreatment with the H(2) antagonist ranitidine (RA, 2.85 nmol/0.1 μl) or SAL. Twenty-four hours later, the mice were re-exposed to the EPM (Trial 2) under the same experimental conditions but did not receive an injection. On both days, the test sessions were recorded to enable analysis of the behavioral measures. The decrease in open arm exploration (% entries and % time spent in the open arms) in Trial 2 relative to Trial 1 was used as a measure of learning and memory. The data were analyzed using the two-way analysis of variance (ANOVA) and Duncan's tests. In Experiment 1, the Duncan's test indicated that the mice entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in Trial 2 after being microinjected with SAL+SAL, SAL+CPA and CPA+HA. However, the animals that received SAL+HA did not enter the open arms less frequently or spend less time in them, which was significantly different from the CPA+HA group. The results of Experiment 2 demonstrated that the %OAE and %OAT in Trial 2 were different from Trial 1 for the groups that were microinjected with SAL+SAL and SAL+RA. The animals that were microinjected with RA+HA or with SAL+HA did not show a reduction in %OAE. These results demonstrate that the animals treated with HA did not avoid the open arms less on retesting and indicated that CPA did not alter the behavior parameters but did revert the histamine-induced impairment of memory consolidation. Furthermore, the H(2) antagonist RA, at the dose used in this study, did not affect memory consolidation and failed to revert histamine-induced impairment.
Collapse
Affiliation(s)
- A C L Gianlorenço
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences, and Health, Federal University of São Carlos, Rodovia Washington Luís, São Carlos, Brazil
| | | | | | | |
Collapse
|
39
|
GABAergic neuron specification in the spinal cord, the cerebellum, and the cochlear nucleus. Neural Plast 2012; 2012:921732. [PMID: 22830054 PMCID: PMC3395262 DOI: 10.1155/2012/921732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
In the nervous system, there are a wide variety of neuronal cell types that have morphologically, physiologically, and histochemically different characteristics. These various types of neurons can be classified into two groups: excitatory and inhibitory neurons. The elaborate balance of the activities of the two types is very important to elicit higher brain function, because its imbalance may cause neurological disorders, such as epilepsy and hyperalgesia. In the central nervous system, inhibitory neurons are mainly represented by GABAergic ones with some exceptions such as glycinergic. Although the machinery to specify GABAergic neurons was first studied in the telencephalon, identification of key molecules, such as pancreatic transcription factor 1a (Ptf1a), as well as recently developed genetic lineage-tracing methods led to the better understanding of GABAergic specification in other brain regions, such as the spinal cord, the cerebellum, and the cochlear nucleus.
Collapse
|
40
|
Moura DS, Sultan S, Georgin-Lavialle S, Barete S, Lortholary O, Gaillard R, Hermine O. Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression. PLoS One 2012; 7:e39468. [PMID: 22745762 PMCID: PMC3379977 DOI: 10.1371/journal.pone.0039468] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/21/2012] [Indexed: 12/28/2022] Open
Abstract
Mastocytosis is a heterogeneous disease characterized by mast cells accumulation in one or more organs. We have reported that depression is frequent in mastocytosis, but although it was already described, little is known about the prevalence and features of cognitive impairment. Our objective was to describe the prevalence and features of cognitive impairment in a large cohort of patients with this rare disease (n = 57; mean age = 45) and to explore the relations between memory impairment and depression. Objective memory impairment was evaluated using the 3(rd) edition of the Clinical Memory scale of Wechsler. Depression symptoms were evaluated using the Hamilton Depression Rating Scale. Age and education levels were controlled for all patients. Patients with mastocytosis presented high levels of cognitive impairment (memory and/or attention) (n = 22; 38.6%). Cognitive impairment was moderate in 59% of the cases, concerned immediate auditory (41%) and working memory (73%) and was not associated to depression (p≥0.717). In conclusion, immediate auditory memory and attention impairment in mastocytosis are frequent, even in young individuals, and are not consecutive to depression. In mastocytosis, cognitive complaints call for complex neuropsychological assessment. Mild-moderate cognitive impairment and depression constitute two specific but somewhat independent syndromes in mastocytosis. These results suggest differential effects of mast-cell activity in the brain, on systems involved in emotionality and in cognition.
Collapse
Affiliation(s)
- Daniela Silva Moura
- Centre de référence des mastocytoses, Hôpital Necker Enfants malades, Fondation Imagine Paris, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
- Université Paris Descartes, Sorbonne, Paris Cité, Laboratoire de Psychopathologie et Processus de Santé EA 4057, IUPDP Institut de Psychologie, Paris, France
| | - Serge Sultan
- Université de Montréal, Québec, Canada
- Centre de Recherche du CHU Sainte-Justine, Montréal, Québec, Canada
| | - Sophie Georgin-Lavialle
- Centre de référence des mastocytoses, Hôpital Necker Enfants malades, Fondation Imagine Paris, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
- CNRS UMR 8147, Hôpital Necker Enfants malades, Paris, France
- Service de Médecine Interne, Hôpital Européen Georges Pompidou, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
| | - Stéphane Barete
- Centre de référence des mastocytoses, Hôpital Necker Enfants malades, Fondation Imagine Paris, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
- CNRS UMR 8147, Hôpital Necker Enfants malades, Paris, France
- Département de dermatologie, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Olivier Lortholary
- Centre de référence des mastocytoses, Hôpital Necker Enfants malades, Fondation Imagine Paris, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
- Université Paris Descartes, Sorbonne, Paris Cité, Service de maladies infectieuses et tropicales, Hôpital Necker Enfants malades, Paris, France
| | - Raphael Gaillard
- INSERM; Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Physiopathologie des maladies Psychiatriques, Centre de Psychiatrie et Neurosciences U894, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - Olivier Hermine
- Centre de référence des mastocytoses, Hôpital Necker Enfants malades, Fondation Imagine Paris, Université Paris Descartes, Sorbonne, Paris Cité, Paris, France
- CNRS UMR 8147, Hôpital Necker Enfants malades, Paris, France
- Université Paris Descartes, Sorbonne, Paris Cité, Service d’hématologie adulte, Hôpital Necker-Enfants malades, Paris, France
- Fondation Imagine, IHU Hôpital Necker-Enfants malades, Paris, France
| |
Collapse
|
41
|
Wright KP, Lowry CA, LeBourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 2012; 5:50. [PMID: 22529774 PMCID: PMC3328852 DOI: 10.3389/fnmol.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/27/2012] [Indexed: 11/13/2022] Open
Abstract
Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.
Collapse
Affiliation(s)
- Kenneth P. Wright
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, BoulderCO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Behavioral Neuroendocrinology Laboratory, University of Colorado, BoulderCO, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, Sleep and Development Laboratory, University of Colorado, BoulderCO, USA
| |
Collapse
|
42
|
Fiorenza NG, Rosa J, Izquierdo I, Myskiw JC. Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behav Brain Res 2012; 232:210-6. [PMID: 22525015 DOI: 10.1016/j.bbr.2012.04.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 11/30/2022]
Abstract
The hippocampus, basolateral amygdala and ventromedial prefrontal cortex participate in the extinction of inhibitory avoidance and contextual fear conditioning. We studied the effect of drugs acting on receptors involved in synaptic modulation on extinction of both tasks. The drugs were given bilaterally right after the first of two sessions of extinction in each task through cannulae implanted into the mentioned areas. The doses used are known to influence memory consolidation of the original tasks. Their effects were evaluated on a second extinction session 24h later, and assumed to result from influences on the consolidation of extinction. The glutamate NMDA receptor stimulant d-serine (50 μg/side) and the histamine methyl-transferase inhibitor SKF9188 (12.5 μg/side) enhanced, and the NMDA antagonist amino-phosphonopentanoate (5 μg/side) and the H2 histamine receptor antagonist ranitidine (17.5 μg/side) inhibited, extinction of both tasks regardless of the region into which they were administered. Thus, glutamate NMDA receptors are involved in the consolidation of extinction of both tasks, and histamine H2 receptors modulate that process in all areas studied. Norepinephrine (1 μg/side), the β-adrenoceptor antagonist timolol (1 μg/side), the D1 dopamine receptor agonist SKF38393 (12.5 μg/side) and the D1 antagonist SCH23390 (1.5 μg/side) also affected extinction of both tasks, but their effects varied with the task and with the site of infusion, suggesting that extinction modulation by β- and D1 receptors is more complex. In conclusion, extinction of two different aversive tasks is modulatable by various systems, which bears upon the behavioral and pharmacological treatment of fear-motivated brain disorders.
Collapse
Affiliation(s)
- Natalia Gindri Fiorenza
- Centro de Memoria, Instituto do Cerebro, Pontifical Catholic University of Rio Grande do Sul, and Instituto Nacional de Neurociência Translacional, Conselho Nacional de Desenvolvimento Científico e Tecnológico, 90610-000 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
43
|
Ransome MI, Hannan AJ. Behavioural state differentially engages septohippocampal cholinergic and GABAergic neurons in R6/1 Huntington’s disease mice. Neurobiol Learn Mem 2012; 97:261-70. [DOI: 10.1016/j.nlm.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/18/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022]
|