1
|
Marshall Moscon S, Neely E, Proctor E, Connor J. A common variant in the iron regulatory gene (Hfe) alters the metabolic and transcriptional landscape in brain regions vulnerable to neurodegeneration. J Neurochem 2024; 168:3132-3153. [PMID: 39072788 DOI: 10.1111/jnc.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.
Collapse
Affiliation(s)
- Savannah Marshall Moscon
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Neely
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Proctor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Lakhani DA, Agarwal AK, Middlebrooks EH. Ultra-high-field 7-Tesla magnetic resonance imaging in fragile X tremor/ataxia syndrome (FXTAS). Neuroradiol J 2024:19714009241247464. [PMID: 38644331 DOI: 10.1177/19714009241247464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Fragile X tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder characterized by premutation expansion of fragile X mental retardation 1 (FMR1) gene. It is a common single-gene cause of tremor, ataxia, and cognitive decline in adults. FXTAS affects the central, peripheral and autonomic nervous systems, leading to a range of neurological symptoms from dementia to dysautonomia. A characteristic imaging feature of FXTAS is symmetric T2 hyperintensity in the deep white matter of the cerebellar hemispheres and middle cerebral peduncle. However, recent studies have reported additional findings on diffusion weighted images (DWI), such as a symmetric high-intensity band-like signal at the cerebral corticomedullary junction. These findings, along with the characteristic cerebellar signal alterations, overlap with imaging findings seen in adult-onset neuronal intranuclear inclusion disease (NIID). Importantly, recent pathology studies have shown that both FXTAS and NIID can manifest intranuclear inclusion bodies, posing a diagnostic challenge and potential for misdiagnosis. We describe a 58-year-old man with FXTAS who received an erroneous diagnosis based on imaging and histopathology results. We emphasize the potential pitfalls in distinguishing NIID from FXTAS and stress the importance of genetic analysis in all cases with suspected NIID and FXTAS for confirmation. Additionally, we present the 7T MRI brain findings of FXTAS.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- Department of Radiology, Mayo Clinic, USA
| | | | | |
Collapse
|
3
|
Urati A, Angati A, Singh Gautam A, Dey M, Pandey SK, Singh RK. Neuroprotective responses of quercetin in regulation of biochemical, structural, and neurobehavioral effects in 28-day oral exposure of iron in rats. Toxicol Mech Methods 2024; 34:57-71. [PMID: 37680063 DOI: 10.1080/15376516.2023.2256840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Iron is one of the essential metals that functions as a cofactor in various biological cascades in the brain. However, excessive iron accumulation in the brain may lead to neurodegeneration and may show toxic effects. Quercetin, a pigment flavonoid compound, has been proven to be a potent antioxidant and anti-inflammatory that can inhibit lipid peroxidation during metal-induced neurotoxicity. Although iron-induced neuroinflammation and neurodegeneration have been reported in many studies, but the proof for its exact mechanisms needs to be explored. PURPOSE The key target of the study was to explore the neuroprotective effect of quercetin after oral exposure of iron in rats and explore its underlying molecular mechanisms. RESULTS The outcomes of the study have shown that oral exposure to ferrous sulfate may modulate behavioral paradigms such as locomotor activity, neuromuscular coordination, and increased anxiety level. The pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), apoptotic protein (caspase 3), beta-amyloid and phosphorylated tau were found to be increased on iron exposure. Also, the expressions of ferritin heavy and light chain, BACE-1 and GFAP expressions were altered. These behavioral, structural, and biochemical alterations in the brain were significantly and dose-dependently reversed by treatment with quercetin. CONCLUSION The current study provides a fundamental understanding of molecular signaling pathways, and structural proteins implicated in iron-induced neurotoxicity along with the ameliorative effects of quercetin.
Collapse
Affiliation(s)
- Anuradha Urati
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Anok Angati
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
An JR, Wang QF, Sun GY, Su JN, Liu JT, Zhang C, Wang L, Teng D, Yang YF, Shi Y. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. Diabetes Metab Syndr Obes 2023; 16:3235-3247. [PMID: 37872972 PMCID: PMC10590583 DOI: 10.2147/dmso.s432858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
It is well documented that diabetes mellitus (DM) is strongly associated with cognitive decline and structural damage to the brain. Cognitive deficits appear early in DM and continue to worsen as the disease progresses, possibly due to different underlying mechanisms. Normal iron metabolism is necessary to maintain normal physiological functions of the brain, but iron deposition is one of the causes of some neurodegenerative diseases. Increasing evidence shows that iron overload not only increases the risk of DM, but also contributes to the development of cognitive impairment. The current review highlights the role of iron overload in diabetic cognitive impairment (DCI), including the specific location and regulation mechanism of iron deposition in the diabetic brain, the factors that trigger iron deposition, and the consequences of iron deposition. Finally, we also discuss possible therapies to improve DCI and brain iron deposition.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Li Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dan Teng
- He University, Shenyang, 110163, People’s Republic of China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
5
|
An JR, Liu JT, Gao XM, Wang QF, Sun GY, Su JN, Zhang C, Yu JX, Yang YF, Shi Y. Effects of liraglutide on astrocyte polarization and neuroinflammation in db/db mice: focus on iron overload and oxidative stress. Front Cell Neurosci 2023; 17:1136070. [PMID: 37323581 PMCID: PMC10267480 DOI: 10.3389/fncel.2023.1136070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroinflammation plays a crucial role in the occurrence and development of cognitive impairment in type 2 diabetes mellitus (T2DM), but the specific injury mechanism is not fully understood. Astrocyte polarization has attracted new attention and has been shown to be directly and indirectly involved in neuroinflammation. Liraglutide has been shown to have beneficial effects on neurons and astrocytes. However, the specific protection mechanism still needs to be clarified. In this study, we assessed the levels of neuroinflammation and A1/A2-responsive astrocytes in the hippocampus of db/db mice and examined their relationships with iron overload and oxidative stress. First, in db/db mice, liraglutide alleviated the disturbance of glucose and lipid metabolism, increased the postsynaptic density, regulated the expression of NeuN and BDNF, and partially restored impaired cognitive function. Second, liraglutide upregulated the expression of S100A10 and downregulated the expression of GFAP and C3, and decreased the secretion of IL-1β, IL-18, and TNF-α, which may confirm that it regulates the proliferation of reactive astrocytes and A1/A2 phenotypes polarize and attenuate neuroinflammation. In addition, liraglutide reduced iron deposition in the hippocampus by reducing the expression of TfR1 and DMT1 and increasing the expression of FPN1; at the same time, liraglutide by up-regulating the levels of SOD, GSH, and SOD2 expression, as well as downregulation of MDA levels and NOX2 and NOX4 expression to reduce oxidative stress and lipid peroxidation. The above may attenuate A1 astrocyte activation. This study preliminarily explored the effect of liraglutide on the activation of different astrocyte phenotypes and neuroinflammation in the hippocampus of a T2DM model and further revealed its intervention effect on cognitive impairment in diabetes. Focusing on the pathological consequences of astrocytes may have important implications for the treatment of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiao-Meng Gao
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jia-Xiang Yu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
6
|
Pap R, Pandur E, Jánosa G, Sipos K, Nagy T, Agócs A, Deli J. Lutein Decreases Inflammation and Oxidative Stress and Prevents Iron Accumulation and Lipid Peroxidation at Glutamate-Induced Neurotoxicity. Antioxidants (Basel) 2022; 11:2269. [PMID: 36421455 PMCID: PMC9687421 DOI: 10.3390/antiox11112269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The xanthophyll carotenoid lutein has been widely used as supplementation due to its protective effects in light-induced oxidative stress. Its antioxidant and anti-inflammatory features suggest that it has a neuroprotective role as well. Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), which plays a key role in regulating brain function. Excess accumulation of intracellular glutamate accelerates an increase in the concentration of reactive oxygen species (ROS) in neurons leading to glutamate neurotoxicity. In this study, we focused on the effects of glutamate on SH-SY5Y neuroblastoma cells to identify the possible alterations in oxidative stress, inflammation, and iron metabolism that affect the neurological function itself and in the presence of antioxidant lutein. First, ROS measurements were performed, and then catalase (CAT) and Superoxide Dismutase (SOD) enzyme activity were determined by enzyme activity assay kits. The ELISA technique was used to detect proinflammatory TNFα, IL-6, and IL-8 cytokine secretions. Alterations in iron uptake, storage, and release were followed by gene expression measurements and Western blotting. Total iron level detections were performed by a ferrozine-based iron detection method, and a heme assay kit was used for heme measurements. The gene expression toward lipid-peroxidation was determined by RT-PCR. Our results show glutamate changes ROS, inflammation, and antioxidant enzyme activity, modulate iron accumulation, and may initiate lipid peroxidation in SH-SY5Y cells. Meanwhile, lutein attenuates the glutamate-induced effects on ROS, inflammation, iron metabolism, and lipid peroxidation. According to our findings, lutein could be a beneficial, supportive treatment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5124553. [PMID: 36120592 PMCID: PMC9473912 DOI: 10.1155/2022/5124553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.
Collapse
|
9
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
10
|
Urati A, Dey M, Gautam AS, Singh RK. Iron-induced cellular in vitro neurotoxic responses in rat C6 cell line. ENVIRONMENTAL TOXICOLOGY 2022; 37:1968-1978. [PMID: 35446454 DOI: 10.1002/tox.23543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Iron is an essential metal critical for normal cellular and biochemical function and it is used as a cofactor in many vital biological pathways within the brain. However, accumulation of excess iron in brain is commonly associated with several neurodegenerative and neurotoxic adverse effects. Chronic exposure of iron leads to an increased risk for several neurodegenerative diseases. The exact mechanism of iron-induced neurotoxicity is still unclear. Therefore, our study aimed to investigate the mechanism of neurotoxic and neurodegenerative effects through in vitro exposure of ferrous sulphate in rat C6 cell line. The findings of our study have indicated that ferrous sulphate exposure may lead to induction of molecular markers of neuronal inflammation, apoptotic neuronal cell death, amyloid-beta and hyperphosphorylated tau levels. This study provides a basic mechanistic understanding of signaling pathway and biomarkers involved during iron-induced neurotoxicity.
Collapse
Affiliation(s)
- Anuradha Urati
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Fortier-Lebel O, Jobin B, Lécuyer-Giguère F, Gaubert M, Giguère JF, Gagnon JF, Boller B, Frasnelli J. Verbal Episodic Memory Alterations and Hippocampal Atrophy in Acute Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:1506-1514. [PMID: 33724054 DOI: 10.1089/neu.2020.7475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Episodic memory deficit is a symptom frequently observed after a mild traumatic brain injury (mTBI). However, few studies have investigated the impact of a single and acute mTBI on episodic memory and structural cerebral changes. To do so, we conducted two experiments. In the first, we evaluated verbal episodic memory by using a word recall test, in 52 patients with mTBI (mean age 33.1 [12.2] years) 2-4 weeks after a first mTBI, compared with 54 healthy controls (31.3 [9.2] years) and followed both groups up for 6 months. In the second, we measured hippocampal volume in a subset of 40 participants (20 patients with mTBI, 20 controls) from Experiment 1 using magnetic resonance imaging (MRI; T1-weighted images) and correlated memory performance scores to hippocampal volume. Experiment 1 showed significantly reduced verbal episodic memory within the first month after an mTBI and a tendency for a reduction 6 months later, more pronounced for men. In Experiment 2, patients with mTBI exhibited a generally reduced hippocampal volume; however, we did not observe any linear correlation between hippocampal volume and memory scores. These results suggest that one single mTBI is associated with both episodic memory alteration and reduced volume of the hippocampus in the acute phase. Future studies are needed to elucidate the link between both measures.
Collapse
Affiliation(s)
- Olivier Fortier-Lebel
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Benoît Jobin
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Fanny Lécuyer-Giguère
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Malo Gaubert
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Jean-François Gagnon
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Benjamin Boller
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
13
|
Wu Q, Hao Q, Li H, Wang B, Wang P, Jin X, Yu P, Gao G, Chang Y. Brain iron deficiency and affected contextual fear memory in mice with conditional Ferroportin1 ablation in the brain. FASEB J 2020; 35:e21174. [DOI: 10.1096/fj.202000167rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Wu
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
- College of Basic Medicine Hebei University of Chinese Medicine Shijiazhuang China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular Disease Shijiazhuang China
| | - Qian Hao
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Haiyan Li
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Bo Wang
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Xiaofang Jin
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism College of Life Science Hebei Normal University Shijiazhuang China
| |
Collapse
|
14
|
Malar DS, Prasanth MI, Brimson JM, Sharika R, Sivamaruthi BS, Chaiyasut C, Tencomnao T. Neuroprotective Properties of Green Tea ( Camellia sinensis) in Parkinson's Disease: A Review. Molecules 2020; 25:E3926. [PMID: 32867388 PMCID: PMC7504552 DOI: 10.3390/molecules25173926] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative disease is a collective term given for the clinical condition, which results in progressive degeneration of neurons and the loss of functions associated with the affected brain region. Apart from the increase in age, neurodegenerative diseases are also partly affected by diet and lifestyle practices. Parkinson's disease (PD) is a slow onset neurodegenerative disorder and the second most common neurodegenerative disease, which affects the motor system. Although there is no prescribed treatment method to prevent and cure PD, clinical procedures help manage the disease symptoms. Green tea polyphenols are known for several health benefits, including antioxidant, anti-inflammatory, and neuroprotective activity. The current manuscript summarizes the possible mechanisms of neuroprotective potential of green tea with a special focus on PD. Studies have suggested that the consumption of green tea protects against free-radicals, inflammation, and neuro-damages. Several in vivo studies aid in understanding the overall mechanism of green tea. However, the same dose may not be sufficient in humans to elicit similar effects due to complex physiological, social, and cultural development. Future research focused on more clinical trials could identify an optimum dose that could impart maximum health benefits to impart neuroprotection in PD.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (D.S.M.); (M.I.P.); (J.M.B.)
| | - Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (D.S.M.); (M.I.P.); (J.M.B.)
| | - James Michael Brimson
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (D.S.M.); (M.I.P.); (J.M.B.)
| | - Rajasekharan Sharika
- 309, Vrinda, 10th Cross, Railway Layout, Vijayanagar 2nd Stage, Mysuru, Karnataka 570016, India;
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.S.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.S.S.); (C.C.)
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (D.S.M.); (M.I.P.); (J.M.B.)
| |
Collapse
|
15
|
Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R. Targeting Iron Dyshomeostasis for Treatment of Neurodegenerative Disorders. CNS Drugs 2019; 33:1073-1086. [PMID: 31556017 PMCID: PMC6854324 DOI: 10.1007/s40263-019-00668-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While iron has an important role in the normal functioning of the brain owing to its involvement in several physiological processes, dyshomeostasis has been found in many neurodegenerative disorders, as evidenced by both histopathological and imaging studies. Although the exact causes have remained elusive, the fact that altered iron levels have been found in disparate diseases suggests that iron may contribute to their development and/or progression. As such, the processes involved in iron dyshomeostasis may represent novel therapeutic targets. There are, however, many questions about the exact interplay between neurodegeneration and altered iron homeostasis. Some insight can be gained by considering the parallels with respect to what occurs in healthy aging, which is also characterized by increased iron throughout many regions in the brain along with progressive neurodegeneration. Nevertheless, the exact mechanisms of iron-mediated damage are likely disease specific to a certain degree, given that iron plays a crucial role in many disparate biological processes, which are not always affected in the same way across different neurodegenerative disorders. Moreover, it is not even entirely clear yet whether iron actually has a causative role in all of the diseases where altered iron levels have been noted. For example, there is strong evidence of iron dyshomeostasis leading to neurodegeneration in Parkinson's disease, but there is still some question as to whether changes in iron levels are merely an epiphenomenon in multiple sclerosis. Recent advances in neuroimaging now offer the possibility to detect and monitor iron levels in vivo, which allows for an improved understanding of both the temporal and spatial dynamics of iron changes and associated neurodegeneration compared to post-mortem studies. In this regard, iron-based imaging will likely play an important role in the development of therapeutic approaches aimed at addressing altered iron dynamics in neurodegenerative diseases. Currently, the bulk of such therapies have focused on chelating excess iron. Although there is some evidence that these treatment options may yield some benefit, they are not without their own limitations. They are generally effective at reducing brain iron levels, as assessed by imaging, but clinical benefits are more modest. New drugs that specifically target iron-related pathological processes may offer the possibility to prevent, or at the least, slow down irreversible neurodegeneration, which represents an unmet therapeutic target.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
16
|
Reinert A, Morawski M, Seeger J, Arendt T, Reinert T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci 2019; 20:25. [PMID: 31142282 PMCID: PMC6542065 DOI: 10.1186/s12868-019-0507-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. RESULTS Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between [Formula: see text] and [Formula: see text]. The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73% of the total iron, the nucleolus-although a hot spot for iron-due to its small volume only 6% of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating [Formula: see text] ferritin molecules per [Formula: see text] in rat neurons. CONCLUSION Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain.
Collapse
Affiliation(s)
- Anja Reinert
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute, Liebigstr. 58, 04103 Leipzig, Germany
| | - Johannes Seeger
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute, Liebigstr. 58, 04103 Leipzig, Germany
| | - Tilo Reinert
- Max Planck Institute, Stephanstr. 1A, 04103 Leipzig, Germany
- Felix Bloch Institute, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Assessment of the role of α-lipoic acid against the oxidative stress of induced iron overload. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
19
|
Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:791-805. [PMID: 29353798 DOI: 10.1016/j.envpol.2017.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Collapse
Affiliation(s)
- C Pellacani
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
| | - L G Costa
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy; Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol 2017; 158:1-14. [DOI: 10.1016/j.pneurobio.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
|
21
|
Rogers H, Ariza J, Monterrubio A, Hagerman P, Martínez-Cerdeño V. Cerebellar Mild Iron Accumulation in a Subset of FMR1 Premutation Carriers with FXTAS. THE CEREBELLUM 2017; 15:641-4. [PMID: 27259564 DOI: 10.1007/s12311-016-0798-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Iron is essential for many facets of cell metabolism in the brain but when altered is likely to contribute to the development of neurodegenerative diseases. We previously reported that iron accumulates in the choroid plexus and the putamen in FXTAS and that the level and distribution of key iron-binding proteins are also altered, suggesting a potential alteration of iron metabolism in the brain. Here, we hypothesize that iron metabolism is also altered in the FXTAS cerebellum. To test this hypothesis, we used cerebellum samples collected from FXTAS and control subjects and measured the amount of iron contained within the cerebellar cortex and dentate nucleus. We found that the number of iron deposits increased in the cerebellum only in a subset of cases of FXTAS. This accumulation is likely to be mediated by factors other than or in addition to CGG-repeat coupled pathology. Thus, iron deposition in the cerebellum cannot be used as a hallmark of FXTAS pathogenesis.
Collapse
Affiliation(s)
- Hailee Rogers
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Angela Monterrubio
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA. .,MIND Institute, UC Davis Medical Center, Sacramento, CA, USA.
| |
Collapse
|
22
|
Sheelakumari R, Kesavadas C, Varghese T, Sreedharan RM, Thomas B, Verghese J, Mathuranath PS. Assessment of Iron Deposition in the Brain in Frontotemporal Dementia and Its Correlation with Behavioral Traits. AJNR Am J Neuroradiol 2017; 38:1953-1958. [PMID: 28838910 DOI: 10.3174/ajnr.a5339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Brain iron deposition has been implicated as a major culprit in the pathophysiology of neurodegeneration. However, the quantitative assessment of iron in behavioral variant frontotemporal dementia and primary progressive aphasia brains has not been performed, to our knowledge. The aim of our study was to investigate the characteristic iron levels in the frontotemporal dementia subtypes using susceptibility-weighted imaging and report its association with behavioral profiles. MATERIALS AND METHODS This prospective study included 46 patients with frontotemporal dementia (34 with behavioral variant frontotemporal dementia and 12 with primary progressive aphasia) and 34 age-matched healthy controls. We performed behavioral and neuropsychological assessment in all the subjects. The quantitative iron load was determined on SWI in the superior frontal gyrus and temporal pole, precentral gyrus, basal ganglia, anterior cingulate, frontal white matter, head and body of the hippocampus, red nucleus, substantia nigra, insula, and dentate nucleus. A linear regression analysis was performed to correlate iron content and behavioral scores in patients. RESULTS The iron content of the bilateral superior frontal and temporal gyri, anterior cingulate, putamen, right hemispheric precentral gyrus, insula, hippocampus, and red nucleus was higher in patients with behavioral variant frontotemporal dementia than in controls. Patients with primary progressive aphasia had increased iron levels in the left superior temporal gyrus. In addition, right superior frontal gyrus iron deposition discriminated behavioral variant frontotemporal dementia from primary progressive aphasia. A strong positive association was found between apathy and iron content in the superior frontal gyrus and disinhibition and iron content in the putamen. CONCLUSIONS Quantitative assessment of iron deposition with SWI may serve as a new biomarker in the diagnostic work-up of frontotemporal dementia and help distinguish frontotemporal dementia subtypes.
Collapse
Affiliation(s)
- R Sheelakumari
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.)
| | - C Kesavadas
- Department of Imaging Sciences and Interventional Radiology (C.K., B.T.), Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - T Varghese
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.)
| | - R M Sreedharan
- Department of Radiodiagnostics (R.M.S.), Medical College, Trivandrum, Kerala, India
| | - B Thomas
- Department of Imaging Sciences and Interventional Radiology (C.K., B.T.), Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - J Verghese
- Integrated Divisions of Cognitive and Motor Aging (Neurology) and Geriatrics (Medicine) (J.V.), Albert Einstein College of Medicine, Bronx, New York
| | - P S Mathuranath
- From the Cognition and Behavioural Neurology Section, Department of Neurology (R.S., T.V., P.S.M.) .,Department of Neurology (P.S.M.), National Institute of Mental Health and Neurosciences, Banglore, Karnataka, India
| |
Collapse
|
23
|
Ariza J, Rogers H, Hartvigsen A, Snell M, Dill M, Judd D, Hagerman P, Martínez-Cerdeño V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017; 32:585-591. [PMID: 28233916 DOI: 10.1002/mds.26902] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. METHODS We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. RESULTS We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. CONCLUSIONS Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Hailee Rogers
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Anna Hartvigsen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Melissa Snell
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Michael Dill
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Derek Judd
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California.,MIND Institute, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
24
|
Healy S, McMahon J, Owens P, FitzGerald U. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Sci Rep 2016; 6:36410. [PMID: 27808258 PMCID: PMC5093415 DOI: 10.1038/srep36410] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading.
Collapse
Affiliation(s)
- Sinead Healy
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jill McMahon
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Peter Owens
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Sarkar SK, De SK. Electron microscope based X-ray microanalysis on bioaccumulation of heavy metals and neural degeneration in mudskipper [ Pseudapocryptes lanceolatus]. J Microsc Ultrastruct 2016; 4:211-221. [PMID: 30023229 PMCID: PMC6014251 DOI: 10.1016/j.jmau.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
The bioaccumulation of heavy metals and its probable cytological consequences in ciliated olfactory sensory receptor neuron (OSN) of two different groups of Pseudapocryptes lanceolatus has been studied using X-ray microanalysis in transmission electron microscopy (TEM-EDX) [i.e., Group I, collected near Kanchrapara (22.56°N 88.26°E) and Group II, collected near Tribeni (22.99°N 88.40°E) of West Bengal, India]. The ciliated OSN is a bipolar neuron and possesses a prolonged dendron with four to six cilia at the olfactory knob, perikaryon, and axon. Excess accumulation of copper (94.50%) and iron (83.81%) was noted under TEM-EDX in the cytoplasm of the olfactory knob as well as nucleoplasm of ciliated OSNs in P. lanceolatus (Group II). The degenerating ciliated OSNs show distinct features of lysis of the plasma membrane at the olfactory knob, disintegration of cytoskeletal structures in perinuclear cytoplasm and axoplasm, and fragmented chromatin fibers with granules (diameter, 20-30 nm) in the nucleoplasm. Crowding of acetylcholinesterase-positive vesicles (diameter:, 30-40 nm) at the terminal part of the axoplasm was related to accumulation of heavy metals in degenerating ciliated OSNs of P. lanceolatus (Group II). The recorded concentrations of heavy metals in the same organ among different groups of P. lanceolatus in varying geographical areas indicates the stress of concerned environmental health. This ultrastructural interpretation on the fish ciliated OSN is a prerequisite for monitoring environmental health as well as metallobiology of several neurodegenerative disorders in fish caused by bioaccumulation of heavy metals.
Collapse
Affiliation(s)
- Swaraj K. Sarkar
- Ultrastructure and Fish Biology Research Unit, Department of Zoology, Vidyasagar University, Midnapore (West) – 721 102, West Bengal, India
| | - Subrata K. De
- Ultrastructure and Fish Biology Research Unit, Department of Zoology, Vidyasagar University, Midnapore (West) – 721 102, West Bengal, India
- Corresponding author. Tel.: (0091) 9432093473; fax: (0091) 03222-275329 E-mail address: (S.K. De)
| |
Collapse
|
26
|
Pan K, Li X, Chen Y, Zhu D, Li Y, Tao G, Zuo Z. Deferoxamine pre-treatment protects against postoperative cognitive dysfunction of aged rats by depressing microglial activation via ameliorating iron accumulation in hippocampus. Neuropharmacology 2016; 111:180-194. [PMID: 27608977 DOI: 10.1016/j.neuropharm.2016.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/08/2016] [Accepted: 09/04/2016] [Indexed: 12/31/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of elderly patients after surgery. The mechanisms of POCD have not been clarified. Iron accumulation is a feature of neurodegeneration. Recent reports showed that iron content was increased with impaired cognition induced by surgery. We sought to investigate whether iron chelation would attenuate POCD. In this study, male aged (18 months) Sprague-Dawley rats received 100 mg/kg deferoxamine or saline solution (0.9%) for 6 days before exploratory laparotomy. Cognition was evaluated by Morris water maze before and after surgery. Additional rats received deferoxamine or saline were used to determine hippocampal iron content, iron transport-related proteins (transferrin receptor, divalent metal transporter 1, ferroportin 1 and hepcidin), oxidative stress, microglial activation and brain cell apoptosis. It was found that deferoxamine improved postoperative spatial memory in aged rats. Deferoxamine significantly reduced hippocampal iron concentration and ferritin. Surgery increased divalent metal transporter 1 and hepcidin, decreased transferrin receptor and ferroportin 1, and enhanced ferroportin 1 mRNA. However, deferoxamine reversed the changes of these proteins. Furthermore, deferoxamine sharply reduced the hippocampal reactive oxygen species, malondialdehyde concentration and OX-42 that is a marker of microglia, which might reduce postoperative brain cell apoptosis. This study showed that deferoxamine may improve postoperative cognition of aged rats by ameliorating oxidative stress induced by hippocampal iron accumulation, microglial activation and brain cell apoptosis. This study suggests a potential therapeutic method for reducing POCD.
Collapse
Affiliation(s)
- Ke Pan
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China; Department of Anesthesiology, No. 281 Hospital of People's Liberation Army, Hebei, China
| | - Xiaojun Li
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yan Chen
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Dan Zhu
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yuping Li
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guocai Tao
- Department of Anesthesiology, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Sun Y, Pham AN, Waite TD. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines. J Neurochem 2016; 137:955-68. [PMID: 26991725 PMCID: PMC6191651 DOI: 10.1111/jnc.13615] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The non-enzymatically catalyzed oxidation of dopamine (DA) and the resultant formation of powerful oxidants such as the hydroxyl radical ((•) OH) through 'Fenton chemistry' in the presence of iron within dopaminergic neurons are thought to contribute to the damage of cells or even lead to neuronal degenerative diseases such as Parkinson's disease. An understanding of DA oxidation as well as the transformation of the intermediates that are formed in the presence of iron under physiological conditions is critical to understanding the mechanism of DA and iron induced oxidative stress. In this study, the generation of H2 O2 through the autoxidation and iron-catalyzed oxidation of DA, the formation of the dominant complex via the direct reaction with Fe(II) and Fe(III) in both oxygen saturated and deoxygenated conditions and the oxidation of Fe(II) in the presence of DA at physiological pH 7.4 were investigated. The oxidation of DA resulted in the generation of significant amounts of H2 O2 with this process accelerated significantly in the presence of Fe(II) and Fe(III). At high DA:Fe(II) ratios, the results from this study suggest that DA plays a protective role by complexing Fe(II) and preventing it from reacting with the generated H2 O2 . However, the accumulation of H2 O2 may result in cellular damage as high intracellular H2 O2 concentrations will result in the oxidation of remaining Fe(II) mainly through the peroxidation pathway. At low DA:Fe(II) ratios however, it is likely that DA will act as a pro-oxidant by generating H2 O2 which, in the presence of Fe(II), will result in the production of strongly oxidizing (•) OH radicals. Powerful oxidants such as the hydroxyl radical ((•) OH) have previously been thought to be generated through the interplay between dopamine (DA) and iron, contributing to damage to cells and, potentially, leading to neuronal degenerative diseases such as Parkinson's disease. Our results suggest that DA plays a dual role as high DA/Fe(II) ratios prevent Fe(II) from reacting with the generated H2 O2 thereby reducing (•) OH generation, whereas low DA/Fe(II) ratios enhance (•) OH generation as a result of reaction of unbound Fe(II) and H2 O2 produced via both autoxidation and iron-catalyzed oxidation of DA.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - A. Ninh Pham
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - T. David Waite
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
28
|
Association of Serum Ferritin and Kidney Function with Age-Related Macular Degeneration in the General Population. PLoS One 2016; 11:e0153624. [PMID: 27096155 PMCID: PMC4838228 DOI: 10.1371/journal.pone.0153624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
Ferritin is considered to be a marker of the body's iron stores and has a potential relationship with the systemic manifestations of inflammatory reactions. Data on the association between increased levels of serum ferritin and ocular problems are limited, particularly in relation to age-related macular degeneration (AMD). Serum ferritin levels, as a possible clinical parameter for predicting AMD, were analyzed in anthropometric, biochemical, and ophthalmologic data from a nation-wide, population-based, case-control study (KNHNES IV and V). All native Koreans aged ≥ 20 years and who had no medical illness were eligible to participate. Among them, 2.9% had AMD, and its prevalence was found to increase in the higher ferritin quintile groups (Ptrend < 0.0001). In multiple linear regression analysis, serum ferritin level was closely related to conventional risk factors for AMD. Comparison of early AMD with a control group showed that serum ferritin levels were closely associated with AMD (OR = 1.004, 95% CI = 1.002-1.006), and further adjustment for age, gender, serum iron, and kidney function did not reduce this association (OR = 1.003, 95% CI = 1.001-1.006). Furthermore, the relationship between ferritin quintile and early AMD was dose-dependent. Thus, an increased level of serum ferritin in a healthy person may be a useful indicator of neurodegenerative change in the macula. A large population-based prospective clinical study is needed to confirm these findings.
Collapse
|
29
|
Bettencourt C, Forabosco P, Wiethoff S, Heidari M, Johnstone DM, Botía JA, Collingwood JF, Hardy J, Milward EA, Ryten M, Houlden H. Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiol Dis 2016; 87:59-68. [PMID: 26707700 PMCID: PMC4731015 DOI: 10.1016/j.nbd.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica CNR, Cagliari, Italy
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Moones Heidari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Daniel M Johnstone
- Bosch Institute and Discipline of Physiology, University of Sydney, NSW, Australia
| | - Juan A Botía
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
30
|
Zhang Z, Miah M, Culbreth M, Aschner M. Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochem Res 2016; 41:409-22. [PMID: 26869037 DOI: 10.1007/s11064-016-1844-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Autophagy generally refers to cell catabolic and recycling process in which cytoplasmic components are delivered to lysosomes for degradation. During the last two decades, autophagy research has experienced a recent boom because of a newfound connection between this process and many human diseases. Autophagy plays a significant role in maintaining cellular homeostasis and protects cells from varying insults, including misfolded and aggregated proteins and damaged organelles, which is particularly crucial in neuronal survival. Mounting evidence has implicated autophagic dysfunction in the pathogenesis of several major neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. In addition, autophagy has also been found to affect neurotoxicity induced by exposure to essential metals, such as manganese, copper, and iron, and other heavy metals, such as cadmium, lead, and methylmercury. This review examines current literature on the role of autophagy in the mechanisms of disease pathogenesis amongst common neurodegenerative disorders and of metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Mahfuzur Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 209, Bronx, NY, 10461, USA.
| |
Collapse
|
31
|
Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:618631. [PMID: 26146528 PMCID: PMC4469843 DOI: 10.1155/2015/618631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/23/2023]
Abstract
Although mounting evidence suggests that ceruloplasmin (CP) deficiency and iron deposition are pivotal factors responsible for exacerbating demise of dopaminergic neurons in the substantia nigra (SN) of the Parkinsonism and neural stem cells (NSCs) are believed to be excellent candidates for compensating the lost dopaminergic neurons, there are few researches to explore the change of CP expression and of iron deposition in the pathological microenvironment of SN after NSCs transplantation and the ability of grafted NSCs to differentiate directionally into dopaminergic neurons under the changed homeostasis. With substantia nigral stereotaxic technique and NSCs transplantation, we found that tyrosine hydroxylase and CP expression decreased and iron deposition increased in the lesioned SN after 6-OHDA administration compared with control, while tyrosine hydroxylase and CP expression increased and iron deposition decreased after NSCs transplantation compared to 6-OHDA administration alone. Only a small number of embedding NSCs are able to differentiate into dopaminergic neurons. These results suggest that grafted NSCs have an influence on improving the content of CP expression, which may play a neuroprotective role by decreasing iron deposition and ameliorating damage of dopaminergic neurons and possibly underline the iron-related common mechanism of Parkinson's disease and Wilson's disease.
Collapse
|
32
|
Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu Rev Genomics Hum Genet 2015; 16:257-79. [PMID: 25973518 DOI: 10.1146/annurev-genom-090314-025011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive disorders with the common feature of excessive iron deposition in the brain. Over the last decade, advances in sequencing technologies have greatly facilitated rapid gene discovery, and several single-gene disorders are now included in this group. Identification of the genetic bases of the NBIA disorders has advanced our understanding of the disease processes caused by reduced coenzyme A synthesis, impaired lipid metabolism, mitochondrial dysfunction, and defective autophagy. The contribution of iron to disease pathophysiology remains uncertain, as does the identity of a putative final common pathway by which the iron accumulates. Ongoing elucidation of the pathogenesis of each NBIA disorder will have significant implications for the identification and design of novel therapies to treat patients with these disorders.
Collapse
Affiliation(s)
- Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; ,
| | | | | |
Collapse
|
33
|
Effects of diet on brain iron levels among healthy individuals: an MRI pilot study. Neurobiol Aging 2015; 36:1678-1685. [DOI: 10.1016/j.neurobiolaging.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
|
34
|
Ariza J, Steward C, Rueckert F, Widdison M, Coffman R, Afjei A, Noctor SC, Hagerman R, Hagerman P, Martínez-Cerdeño V. Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res 2015; 1598:88-96. [PMID: 25498860 PMCID: PMC4340768 DOI: 10.1016/j.brainres.2014.11.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/25/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA
| | - Craig Steward
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Flora Rueckert
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Matt Widdison
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Robert Coffman
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Atiyeh Afjei
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Stephen C Noctor
- Department of Psychiatry, University of California, Davis, 2805 50th St., Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Pediatrics, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Paul Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, One Shields Avenue, CA 95616, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA.
| |
Collapse
|
35
|
Virel A, Faergemann E, Orädd G, Strömberg I. Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson's disease. PLoS One 2014; 9:e112941. [PMID: 25398088 PMCID: PMC4232582 DOI: 10.1371/journal.pone.0112941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI). The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.
Collapse
Affiliation(s)
- Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Erik Faergemann
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
36
|
Goswami D, Machini MT, Silvestre DM, Nomura CS, Esposito BP. Cell penetrating peptide (CPP)-conjugated desferrioxamine for enhanced neuroprotection: synthesis and in vitro evaluation. Bioconjug Chem 2014; 25:2067-80. [PMID: 25299707 DOI: 10.1021/bc5004197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron overload causes progressive and sometimes irreversible damage due to accelerated production of reactive oxygen species. Desferrioxamine (DFO), a siderophore, has been used clinically to remove excess iron. However, the applications of DFO are limited because of its inability to access intracellular labile iron. Cell penetrating peptides (CPPs) have become an efficient delivery vector for the enhanced internalization of drugs into the cytosol. We describe, herein, an efficient method for covalently conjugating DFO to the CPPs TAT(47-57) and Penetratin. Both conjugates suppressed the redox activity of labile plasma iron in buffered solutions and in iron-overloaded sera. Enhanced access to intracellular labile iron compared to the parent siderophore was achieved in HeLa and RBE4 (a model of blood-brain-barrier) cell lines. Iron complexes of both conjugates also had better permeability in both cell models. DFO antioxidant and iron binding properties were preserved and its bioavailability was increased upon CPP conjugation, which opens new therapeutic possibilities for neurodegenerative processes associated with brain iron overload.
Collapse
Affiliation(s)
- Dibakar Goswami
- Departamentos de Química Fundamental e de ‡Bioquímica, Instituto de Química, Universidade de São Paulo , Av. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
37
|
The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res 2014; 1592:73-81. [PMID: 25285892 DOI: 10.1016/j.brainres.2014.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage.
Collapse
|
38
|
|
39
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
40
|
De Reuck JL, Deramecourt V, Auger F, Durieux N, Cordonnier C, Devos D, Defebvre L, Moreau C, Caparros-Lefebvre D, Leys D, Maurage CA, Pasquier F, Bordet R. Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study. Eur J Neurol 2014; 21:1026-31. [PMID: 24698410 DOI: 10.1111/ene.12432] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. METHODS One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. RESULTS The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. CONCLUSIONS Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity.
Collapse
Affiliation(s)
- J L De Reuck
- Université Lille Nord de France, UDSL, EA 1046, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Long Z, Jiang YM, Li XR, Fadel W, Xu J, Yeh CL, Long LL, Luo HL, Harezlak J, Murdoch JB, Zheng W, Dydak U. Vulnerability of welders to manganese exposure--a neuroimaging study. Neurotoxicology 2014; 45:285-92. [PMID: 24680838 DOI: 10.1016/j.neuro.2014.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/01/2014] [Accepted: 03/19/2014] [Indexed: 01/19/2023]
Abstract
Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and route of exposure play an important role in the extent of Mn-induced toxic effects on the brain.
Collapse
Affiliation(s)
- Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yue-Ming Jiang
- Department of Health Toxicology, Guangxi Medical University, Nanning, China.
| | - Xiang-Rong Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - William Fadel
- Department of Biostatistics, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Jun Xu
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Lan Luo
- Department of Health Toxicology, Guangxi Medical University, Nanning, China
| | - Jaroslaw Harezlak
- Department of Biostatistics, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James B Murdoch
- Toshiba Medical Research Institute USA, Mayfield Village, OH, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
42
|
Nisenbaum EJ, Novikov DS, Lui YW. The presence and role of iron in mild traumatic brain injury: an imaging perspective. J Neurotrauma 2014; 31:301-7. [PMID: 24295521 DOI: 10.1089/neu.2013.3102] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mild traumatic brain injury (mTBI), although often presenting without the gross structural abnormalities seen in more severe forms of brain trauma, can nonetheless result in lingering cognitive and behavioral problems along with subtle alterations in brain structure and function. Repeated injuries are associated with brain atrophy and dementia in the form of chronic traumatic encephalopathy (CTE). The mechanisms underlying these dysfunctions are poorly understood. There is a growing body of evidence that brain iron is abnormal after TBI, and brain iron has also been implicated in a host of neurodegenerative disorders. The purpose of this article is to review evidence about the function of iron in the pathophysiology of mTBI and the role that advanced imaging modalities can play in further elucidating said function. MRI techniques sensitive to field inhomogeneities provide supporting evidence for both deep gray matter non-heme iron accumulation as well as focal microhemorrhage resulting from mTBI. In addition, there is evidence that iron may contribute to pathology after mTBI through a number of mechanisms, including generation of reactive oxygen species (ROS), exacerbation of oxidative stress from other sources, and encouragement of tau phosphorylation and the formation of neurofibrillary tangles. Finally, recent animal studies suggest that iron may serve as a therapeutic target in mitigating the effects of mTBI. However, research on the presence and role of iron in mTBI and CTE is still relatively sparse, and further work is necessary to elucidate issues such as the sources of increased iron and the chain of secondary injury.
Collapse
Affiliation(s)
- Eric J Nisenbaum
- Department of Radiology, NYU Langone Medical Center , New York, New York
| | | | | |
Collapse
|
43
|
Piloni NE, Fermandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology 2013; 314:174-82. [PMID: 24120471 DOI: 10.1016/j.tox.2013.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload. This information has potential clinical relevance, as it could be the key to understand specific brain damage occurring in conditions of Fe overload.
Collapse
Affiliation(s)
- Natacha E Piloni
- Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Mitochondrial ferritin in neurodegenerative diseases. Neurosci Res 2013; 77:1-7. [PMID: 23916831 DOI: 10.1016/j.neures.2013.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial ferritin (FtMt) is a novel protein encoded by an intronless gene mapped to chromosome 5q23.1. Ferritin is ubiquitously expressed; however, FtMt expression is restricted to specific tissues such as the testis and the brain. The distribution pattern of FtMt suggests a functional role for this protein in the brain; however, data concerning the roles of FtMt in neurodegenerative diseases remain scarce. In the human cerebral cortex, FtMt expression was increased in Alzheimer's disease patients compared to control cases. Cultured neuroblastoma cells showed low-level expression of FtMt, which was increased by H2O2 treatment. FtMt overexpression showed a neuroprotective effect against H2O2-induced oxidative stress and Aβ-induced neurotoxicity in neuroblastoma cells. FtMt expression was also detected in dopaminergic neurons in the substantia nigra and was increased in patients with restless legs syndrome, while FtMt had a protective effect against cell death in a neuroblastoma cell line model of Parkinson's disease. FtMt is involved in other neurodegenerative diseases such as age-related macular degeneration (AMD), with an FtMt gene mutation identified in AMD patients, and Friedreich's ataxia, which is caused by a deficiency in frataxin. FtMt overexpression in frataxin-deficient cells increased cell resistance to H2O2 damage. These results implicate a neuroprotective role of FtMt in neurodegenerative diseases.
Collapse
|
45
|
Karányi Z, Holb I, Hornok L, Pócsi I, Miskei M. FSRD: fungal stress response database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat037. [PMID: 23757396 PMCID: PMC3678302 DOI: 10.1093/database/bat037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptation to different types of environmental stress is a common part of life for today's fungi. A deeper understanding of the organization, regulation and evolution of fungal stress response systems may lead to the development of novel antifungal drugs and technologies or the engineering of industrial strains with elevated stress tolerance. Here we present the Fungal Stress Response Database (http://internal.med.unideb.hu/fsrd) aimed to stimulate further research on stress biology of fungi. The database incorporates 1985 fungal stress response proteins with verified physiological function(s) and their orthologs identified and annotated in 28 species including human and plant pathogens, as well as important industrial fungi. The database will be extended continuously to cover other fully sequenced fungal species. Our database, as a starting point for future stress research, facilitates the analysis of literature data on stress and the identification of ortholog groups of stress response proteins in newly sequenced fungal genomes. Database URL: http://internal.med.unideb.hu/fsrd
Collapse
Affiliation(s)
- Zsolt Karányi
- Department of Medicine, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | | | | | | | | |
Collapse
|
46
|
Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. Neurotoxicology 2013; 38:9-16. [PMID: 23727075 DOI: 10.1016/j.neuro.2013.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/21/2023]
Abstract
The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.
Collapse
|
47
|
Litwin T, Gromadzka G, Szpak GM, Jabłonka-Salach K, Bulska E, Członkowska A. Brain metal accumulation in Wilson's disease. J Neurol Sci 2013; 329:55-8. [PMID: 23597670 DOI: 10.1016/j.jns.2013.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Brain metal accumulation is suggested in the pathogenesis of numerous neurodegenerative disorders. In Wilson's disease (WD), only copper has been examined. The aim of the present study was to evaluate the copper, iron, manganese, and zinc concentrations in autopsy tissue samples from the brains of WD patients. METHODS The study material consisted of 17 brains (12 WD patients, 5 controls) obtained at autopsy. Samples were taken from four different regions of each brain: frontal cortex, putamen, pons, and nucleus dentatus. The copper, manganese, and zinc content were determined using inductively coupled plasma mass spectrometry, and iron was assessed using flame atomic absorption spectroscopy. The results were analyzed according to select clinical variables. RESULTS Copper content was increased homogenously in all investigated structures of the WD brains compared to controls (41.0 ± 18.6 μg/g vs.5.4 ± 1.8 μg/g; P<0.01). The mean concentrations of iron, manganese, and zinc were similar in WD and controls, but the iron level in the nucleus dentatus was higher in WD compared to controls (56.8 ± 14.1 μg/g vs. 32.6 ± 6.0 μg/g; P<0.05). Gender, age, and type and duration of WD treatment did not impact brain metals storage, but some correlations between the duration of the disease and copper and iron accumulation were observed. CONCLUSIONS During the course of WD, copper accumulates equally in different parts of the brain. Zinc and manganese do not seem to be involved in WD pathology, but increased levels of iron were found in the nucleus dentatus. Thus, additional studies of brain iron accumulation in WD are needed.
Collapse
Affiliation(s)
- T Litwin
- II Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
48
|
Parker SJ, Koistinaho J, White AR, Kanninen KM. Biometals in rare neurodegenerative disorders of childhood. Front Aging Neurosci 2013; 5:14. [PMID: 23531702 PMCID: PMC3607070 DOI: 10.3389/fnagi.2013.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 01/01/2023] Open
Abstract
Copper, iron, and zinc are just three of the main biometals critical for correct functioning of the central nervous system (CNS). They have diverse roles in many functional processes including but not limited to enzyme catalysis, protein stabilization, and energy production. The range of metal concentrations within the body is tightly regulated and when the balance is perturbed, debilitating effects ensue. Homeostasis of brain biometals is mainly controlled by various metal transporters and metal sequestering proteins. The biological roles of biometals are vastly reviewed in the literature with a large focus on the connection to neurological conditions associated with ageing. Biometals are also implicated in a variety of debilitating inherited childhood disorders, some of which arise soon following birth or as the child progresses into early adulthood. This review acts to highlight what we know about biometals in childhood neurological disorders such as Wilson's disease (WD), Menkes disease (MD), neuronal ceroid lipofuscinoses (NCLs), and neurodegeneration with brain iron accumulation (NBIA). Also discussed are some of the animal models available to determine the pathological mechanisms in these childhood disorders, which we hope will aid in our understanding of the role of biometals in disease and in attaining possible therapeutics in the future.
Collapse
Affiliation(s)
- Sarah J Parker
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | | | | | | |
Collapse
|
49
|
Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 2013; 8:961-70. [PMID: 23494517 PMCID: PMC3593762 DOI: 10.2147/ijn.s39048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results No toxicity was observed in bEnd.3 cells at concentrations up to 200 μg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 μg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. Conclusion Both IONP compositions were nontoxic at concentrations below 100 μg/mL in all cell types examined. At doses above 100 μg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:729-41. [PMID: 23429074 DOI: 10.1016/j.bbadis.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/12/2022]
Abstract
Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases.
Collapse
|