1
|
Changphasuk P, Inpad C, Horpaopan S, Khunchai S, Phimsen S, Surangkul D, Janvilisri T, Silsirivanit A, Kaewkong W. SRPK Inhibitors Reduce the Phosphorylation and Translocation of SR Protein Splicing Factors, thereby Correcting BIN1, MCL-1 and BCL2 Splicing Errors and Enabling Apoptosis of Cholangiocarcinoma Cells. Front Biosci (Schol Ed) 2024; 16:17. [PMID: 39344395 DOI: 10.31083/j.fbs1603017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium that is commonly found in the Thai population. CCA has poor prognosis and a low survival rate due to the lack of early diagnosis methods and the limited effectiveness of current treatments. A number of oncogenic spliced-transcripts resulting from mRNA splicing errors have been reported in CCA, and aberrant mRNA splicing is suspected to be a key driver of this cancer type. The hyperphosphorylation of serine/arginine rich-splicing factors (SRSFs) by serine/arginine protein kinases (SRPKs) causes them to translocate to the nucleus where they facilitate gene splicing errors that generate cancer-related mRNA/protein isoforms. METHODS The correlation between SRPK expression and the survival of CCA patients was analyzed using data from The Cancer Genome Atlas (TCGA) dataset. The effect of SRPK inhibitors (SRPIN340 and SPHINX31) on two CCA cell lines (KKU-213A and TFK-1) was also investigated. The induction of cell death was studied by Calcein-AM/PI staining, AnnexinV/7AAD staining, immunofluorescence (IF), and Western blotting (WB). The phosphorylation and nuclear translocation of SRSFs was tracked by WB and IF, and the repair of splicing errors was examined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS High levels of SRPK1 and SRPK2 transcripts, and in particular SRPK1, correlated with shorter survival in CCA patients. SRPIN340 and SPHINX31 increased the number of dead and apoptotic cells in a dose-dependent manner. CCA also showed diffuse expression of cytoplasmic cytochrome C and upregulation of cleaved caspase-3. Moreover, SRSFs showed low levels of phosphorylation, resulting in the accumulation of cytoplasmic SRSF1. To link these phenotypes with aberrant gene splicing, the apoptosis-associated genes Bridging Integrator 1 (BIN1), Myeloid cell leukemia factor 1 (MCL-1) and B-cell lymphoma 2 (BCL2) were selected for further investigation. Treatment with SRPIN340 and SPHINX31 decreased anti-apoptotic BIN1+12A and increased pro-apoptotic MCL-1S and BCL-xS. CONCLUSIONS The SRPK inhibitors SRPIN340 and SPHINX31 can suppress the phosphorylation of SRSFs and their nuclear translocation, thereby producing BIN1, MCL-1 and BCL2 isoforms that favor apoptosis and facilitate CCA cell death.
Collapse
Affiliation(s)
- Preenapan Changphasuk
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Chaturong Inpad
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Sukanya Horpaopan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Sasiprapa Khunchai
- Department of Anatomy, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 4002 Khon Kaen, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| |
Collapse
|
2
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
3
|
Abdulghani M, Razavian NB, Burdick JT, Domingo E, Cheung VG, Humphrey TC. Isoform Switching Regulates the Response to Ionizing Radiation Through SRSF1. Int J Radiat Oncol Biol Phys 2024; 119:1517-1529. [PMID: 38447610 DOI: 10.1016/j.ijrobp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity. METHODS AND MATERIALS Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing. We examined RNA binding protein motifs within the sequences of IR-responsive isoforms and validated the serine/arginine-rich splicing factor 1 (SRSF1) as a predominant mediator through RNA immunoprecipitation. We further investigated the effects of SRSF1 on radiosensitivity by RNA interference and by analyzing publicly available data on patients with cancer. RESULTS We identified ∼1900 radiation-responsive alternatively spliced isoforms. Many isoforms were differentially expressed without changes in their overall gene expression. Over a third of these transcripts underwent exon skipping, while others used proximal last exons. These IR-responsive isoforms tended to be shorter transcripts missing vital domains for preventing apoptosis and promoting cell division but retaining those necessary for DNA repair. Our combined computational, genetic, and molecular analyses identified the proto-oncogene SRSF1 as a mediator of these radiation-induced isoform-switching events that promote apoptosis. After exposure to DNA double-strand break-inducing agents, SRSF1 expression decreased. A reduction in SRSF1 increased radiosensitivity in vitro and among patients with cancer. CONCLUSIONS We establish a pivotal role for isoform switching in the cellular response to IR and propose SRSF1 as a promising biomarker for assessing radiation therapy effectiveness.
Collapse
Affiliation(s)
- Majd Abdulghani
- Rhodes Trust and; Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Niema B Razavian
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Joshua T Burdick
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Vivian G Cheung
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.
| | - Timothy C Humphrey
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, United Kingdom.
| |
Collapse
|
4
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J, Yang Y. ANGPTL4 Stabilizes Bone Morphogenetic Protein 7 Through Deubiquitination and Promotes HCC Proliferation via the SMAD/MAPK Pathway. DNA Cell Biol 2024; 43:395-400. [PMID: 38829105 DOI: 10.1089/dna.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This study aimed to determine the function of angiopoietin-related protein 4 (ANGPTL4) and bone morphogenetic protein 7 (BMP7) on hepatocellular carcinoma (HCC). Overexpressing plasmids were cotransfected into HepG2 cells to determine the interaction between ANGPTL4 and BMP7. The effect of ANGPTL4 on the stability of BMP7 is examined by detecting the expression and ubiquitination levels. In vitro and in vivo experiments of knocking down ANGPTL4 while overexpressing BMP7 were performed to investigate whether the effects of ANGPTL4 on HCC proliferation, migration, and downstream signaling pathways were dependent on BMP7. ANGPTL4 is able to interact with BMP7, and knockdown of ANGPTL4 increased BMP7 expression and ubiquitination. Overexpression of BMP7 reversed the inhibition of HCC proliferation and migration as well as the decrease in the expression levels of Smad1/5/8 and MAPK14 caused by knockdown of ANGPTL4. ANGPTL4 promotes the proliferation and migration of HCC by inhibiting the ubiquitination degradation of BMP7 and the Smad/MAPK pathway, providing a novel mechanism and a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Cui
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoke Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meiqi Wei
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanying Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guo
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Sanjuan-Sanjuan A, Alors-Perez E, Sanchez-Frías M, Monserrat-Barbudo JA, Falguera Uceda M, Heredero-Jung S, Luque RM. Splicing Machinery Is Impaired in Oral Squamous Cell Carcinomas and Linked to Key Pathophysiological Features. Int J Mol Sci 2024; 25:6929. [PMID: 39000035 PMCID: PMC11240936 DOI: 10.3390/ijms25136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Alternative splicing dysregulation is an emerging cancer hallmark, potentially serving as a source of novel diagnostic, prognostic, or therapeutic tools. Inhibitors of the activity of the splicing machinery can exert antitumoral effects in cancer cells. We aimed to characterize the splicing machinery (SM) components in oral squamous cell carcinoma (OSCC) and to evaluate the direct impact of the inhibition of SM-activity on OSCC-cells. The expression of 59 SM-components was assessed using a prospective case-control study of tumor and healthy samples from 37 OSCC patients, and the relationship with clinical and histopathological features was assessed. The direct effect of pladienolide-B (SM-inhibitor) on the proliferation rate of primary OSCC cell cultures was evaluated. A significant dysregulation in several SM components was found in OSCC vs. adjacent-healthy tissues [i.e., 12 out of 59 (20%)], and their expression was associated with clinical and histopathological features of less aggressiveness and overall survival. Pladienolide-B treatment significantly decreased OSCC-cell proliferation. Our data reveal a significantly altered expression of several SM-components and link it to pathophysiological features, reinforcing a potential clinical and pathophysiological relevance of the SM dysregulation in OSCC. The inhibition of SM-activity might be a therapeutic avenue in OSCC, offering a clinically relevant opportunity to be explored.
Collapse
Affiliation(s)
- Alba Sanjuan-Sanjuan
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, CAMC Hospital, Charleston, WV 25301, USA
| | - Emilia Alors-Perez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Marina Sanchez-Frías
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, IMIBIC/HURS, 14004 Cordoba, Spain
| | - José A Monserrat-Barbudo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Mabel Falguera Uceda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Susana Heredero-Jung
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
6
|
Kansara S, Sawant P, Kaur T, Garg M, Pandey AK. LncRNA-mediated orchestrations of alternative splicing in the landscape of breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195017. [PMID: 38341138 DOI: 10.1016/j.bbagrm.2024.195017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Alternative splicing (AS) is a fundamental post-transcriptional process in eukaryotes, enabling a single gene to generate diverse mRNA transcripts, thereby enhancing protein variability. This process involves the excision of introns and the joining of exons in pre-mRNA(s) to form mature mRNA. The resulting mature mRNAs exhibit various combinations of exons, contributing to functional diversity. Dysregulation of AS can substantially modulate protein functions, impacting the onset and progression of numerous diseases, including cancer. Non-coding RNAs (ncRNAs) are distinct from protein-coding RNAs and consist of short and long types. Long non-coding RNAs (lncRNAs) play an important role in regulating several cellular processes, particularly alternative splicing, according to new research. This review provides insight into the latest discoveries concerning how lncRNAs influence alternative splicing within the realm of breast cancer. Additionally, it explores potential therapeutic strategies focused on targeting lncRNAs.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Prajwali Sawant
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Taranjeet Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
7
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J, Yang Y. Angiopoietin-Related Protein 4-Transcript 3 Increases the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma Cells and Inhibits Apoptosis. DNA Cell Biol 2024; 43:175-184. [PMID: 38466955 DOI: 10.1089/dna.2023.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
To investigate the functional differences of angiopoietin-related protein 4 (ANGPTL4) transcripts in hepatocellular carcinoma (HCC) cells. By transfecting ANGPTL4-Transcript 1 and ANGPTL4-Transcript 3 overexpression vectors into HepG2 and Huh7 cell lines with ANGPTL4 knockdown, the effects of overexpression of two transcripts on cell viability, invasion, migration, and apoptosis were analyzed. The expression of two transcripts was compared in human liver cancer tissue, and their effects on tumor development were validated in vivo experiments in mice. Compared with control, the overexpression of ANGPTL4-Transcript 1 had no significant effect on viability, invasion, healing, and apoptosis of HepG2 and Huh7 cells. However, these two cell lines overexpressing ANGPTL4-Transcript 3 showed remarkably enhanced cell viability, invasive and healing ability, and decreased apoptosis ability. Furthermore, the mRNA level of ANGPTL4-Transcript 3 was significantly increased in human HCC tissues and promoted tumor growth compared with Transcript 1. Different transcripts of gene ANGPTL4 have distinct effects on HCC. The abnormally elevated Transcript 3 with the specific ability of promoting HCC proliferation, infiltration, and migration is expected to become a new biological marker and more precise intervention target for HCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Cui
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoke Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meiqi Wei
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanying Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guo
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Salib A, Jayatilleke N, Seneviratne JA, Mayoh C, De Preter K, Speleman F, Cheung BB, Carter DR, Marshall GM. MYCN and SNRPD3 cooperate to maintain a balance of alternative splicing events that drives neuroblastoma progression. Oncogene 2024; 43:363-377. [PMID: 38049564 PMCID: PMC10824661 DOI: 10.1038/s41388-023-02897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
Many of the pro-tumorigenic functions of the oncogene MYCN are attributed to its regulation of global gene expression programs. Alternative splicing is another important regulator of gene expression and has been implicated in neuroblastoma development, however, the molecular mechanisms remain unknown. We found that MYCN up-regulated the expression of the core spliceosomal protein, SNRPD3, in models of neuroblastoma initiation and progression. High mRNA expression of SNRPD3 in human neuroblastoma tissues was a strong, independent prognostic factor for poor patient outcome. Repression of SNRPD3 expression correlated with loss of colony formation in vitro and reduced tumorigenicity in vivo. The effect of SNRPD3 on cell viability was in part dependent on MYCN as an oncogenic co-factor. RNA-sequencing revealed a global increase in the number of genes being differentially spliced when MYCN was overexpressed. Surprisingly, depletion of SNRPD3 in the presence of overexpressed MYCN further increased differential splicing, particularly of cell cycle regulators, such as BIRC5 and CDK10. MYCN directly bound SNRPD3, and the protein arginine methyltransferase, PRMT5, consequently increasing SNRPD3 methylation. Indeed, the PRMT5 inhibitor, JNJ-64619178, reduced cell viability and SNRPD3 methylation in neuroblastoma cells with high SNRPD3 and MYCN expression. Our findings demonstrate a functional relationship between MYCN and SNRPD3, which maintains the fidelity of MYCN-driven alternative splicing in the narrow range required for neuroblastoma cell growth. SNRPD3 methylation and its protein-protein interface with MYCN represent novel therapeutic targets. Hypothetical model for SNRPD3 as a co-factor for MYCN oncogenesis. SNRPD3 and MYCN participate in a regulatory loop to balance splicing fidelity in neuroblastoma cells. First MYCN transactivates SNRPD3 to lead to high-level expression. Second, SNRPD3 and MYCN form a protein complex involving PRMT5. Third, this leads to balanced alterative splicing (AS) activitiy that is favorable to neuroblastoma. Together this forms as a therapeutic vulnerability where SNRPD3 perturbation or PRMT5 inhibitors are selectively toxic to neuroblastoma by conditionally disturbing splicing activity.
Collapse
Affiliation(s)
- Alice Salib
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia.
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, 2052, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
9
|
Mou Z, Spencer J, McGrath JS, Harries LW. Comprehensive analysis of alternative splicing across multiple transcriptomic cohorts reveals prognostic signatures in prostate cancer. Hum Genomics 2023; 17:97. [PMID: 37924098 PMCID: PMC10623736 DOI: 10.1186/s40246-023-00545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) plays a crucial role in transcriptomic diversity and is a hallmark of cancer that profoundly influences the development and progression of prostate cancer (PCa), a prevalent and potentially life-limiting cancer among men. Accumulating evidence has highlighted the association between AS dysregulation and the onset and progression of PCa. However, a comprehensive and integrative analysis of AS profiles at the event level, utilising data from multiple high-throughput cohorts and evaluating the prognosis of PCa progression, remains lacking and calls for thorough exploration. RESULTS We identified a differentially expressed retained intron event in ZWINT across three distinct cohorts, encompassing an original array-based dataset profiled by us previously and two RNA sequencing (RNA-seq) datasets. Subsequent in-depth analyses of these RNA-seq datasets revealed 141 altered events, of which 21 demonstrated a significant association with patients' biochemical recurrence-free survival (BCRFS). We formulated an AS event-based prognostic signature, capturing six pivotal events in genes CYP4F12, NFATC4, PIGO, CYP3A5, ALS2CL, and FXYD3. This signature effectively differentiated high-risk patients diagnosed with PCa, who experienced shorter BCRFS, from their low-risk counterparts. Notably, the signature's predictive power surpassed traditional clinicopathological markers in forecasting 5-year BCRFS, demonstrating robust performance in both internal and external validation sets. Lastly, we constructed a novel nomogram that integrates patients' Gleason scores with pathological tumour stages, demonstrating improved prognostication of BCRFS. CONCLUSIONS Prediction of clinical progression remains elusive in PCa. This research uncovers novel splicing events associated with BCRFS, augmenting existing prognostic tools, thus potentially refining clinical decision-making.
Collapse
Affiliation(s)
- Zhuofan Mou
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, UK
| | - John S McGrath
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
- Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
10
|
Xie D, Wang Z, Sun B, Qu L, Zeng M, Feng L, Guo M, Wang G, Hao J, Zhou G. High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17:907-923. [PMID: 37682378 DOI: 10.1007/s11684-023-1009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 09/09/2023]
Abstract
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Collapse
Affiliation(s)
- Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Beibei Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liwei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Feng
- Department of Gastroenterology & Hepatology and Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology and Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Guizhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
12
|
Tiek D, Wells CI, Schröder M, Song X, Alamillo-Ferrer C, Goenka A, Iglesia R, Lu M, Hu B, Kwarcinski F, Sintha P, de Silva C, Hossain MA, Picado A, Zuercher W, Zutshi R, Knapp S, Riggins RB, Cheng SY, Drewry DH. SGC-CLK-1: A chemical probe for the Cdc2-like kinases CLK1, CLK2, and CLK4. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2023; 3:100045. [PMID: 38009092 PMCID: PMC10673624 DOI: 10.1016/j.crchbi.2023.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Martin Schröder
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alfredo Picado
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Reena Zutshi
- Luceome Biotechnologies LLC, Tucson, AZ, 85719, USA
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Nasiri-Aghdam M, Garcia-Chagollan M, Pereira-Suarez AL, Aguilar-Lemarroy A, Jave-Suarez LF. Splicing Characterization and Isoform Switch Events in Human Keratinocytes Carrying Oncogenes from High-Risk HPV-16 and Low-Risk HPV-84. Int J Mol Sci 2023; 24:ijms24098347. [PMID: 37176052 PMCID: PMC10179494 DOI: 10.3390/ijms24098347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Infection of epithelial cells with high-risk HPV (HR-HPV) types, followed by expression of virus oncogenic proteins (E5, E6, and E7), leads to genomic imbalance, suppression of tumor inhibitors, and induction of oncogenes. Low-risk HPV (LR-HPV) may slow the rate at which cervical cancer spreads to an invasive stage since co-infection with LR-HPV is linked to a decreased risk of future invasive cancer than infection with HR-HPV alone. We then propose that cancer-progressing changes may be distinguished through identifying the functional differences between LR-HPV and HR-HPV. Lentiviral strategies were followed to establish HaCaT cells with constitutive expression of HPV oncogenes. RNAseq experiments were designed to analyze the transcriptome modulations caused by each of the E5, E6, and E7 oncogenes of HPV-16 and HPV-84 in HaCaT cells. We identified enhanced RNA degradation, spliceosome, and RNA polymerase pathways related to mRNA processing. ATTS (alternative transcription termination site) was discovered to be more prevalent in cells with HPV-16E5 than HPV-84E5. In HPV-16E6-infected cells, ATTS gain was significantly higher than ATTS loss. Cells with HPV-16E7 had more isoforms with intron retention (IR) than those with HPV-84E7. We identified switches in ADAM10, CLSPN, and RNPS1 that led to greater expression of the coding isoforms in HR-HPV. The results of this work highlight differences between LR-HPV and HR-HPV in mRNA processing. Moreover, crucial cervical cancer-related switch events were detected.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mariel Garcia-Chagollan
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Ana Laura Pereira-Suarez
- Department of Microbiology and Pathology, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
15
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
16
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
17
|
Jiménez-Vacas JM, Montero-Hidalgo AJ, Gómez-Gómez E, Sáez-Martínez P, Fuentes-Fayos AC, Closa A, González-Serrano T, Martínez-López A, Sánchez-Sánchez R, López-Casas PP, Sarmento-Cabral A, Olmos D, Eyras E, Castaño JP, Gahete MD, Luque RM. Tumor suppressor role of RBM22 in prostate cancer acting as a dual-factor regulating alternative splicing and transcription of key oncogenic genes. Transl Res 2023; 253:68-79. [PMID: 36089245 DOI: 10.1016/j.trsl.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adrià Closa
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Ana Martínez-López
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia; Catalan Institution for Research and Advanced Studies. Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
18
|
Pedraza-Arevalo S, Alors-Pérez E, Blázquez-Encinas R, Herrera-Martínez AD, Jiménez-Vacas JM, Fuentes-Fayos AC, Reyes Ó, Ventura S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, Gálvez-Moreno MA, Gahete MD, Ibáñez-Costa A, Luque RM, Castaño JP. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl Res 2023; 251:63-73. [PMID: 35882361 DOI: 10.1016/j.trsl.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/09/2023]
Abstract
Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.
Collapse
Affiliation(s)
- Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Óscar Reyes
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| |
Collapse
|
19
|
Fu Y, Bai C, Wang S, Chen D, Zhang P, Wei H, Rong F, Zhang C, Chen S, Wang Z. AKT1 phosphorylates RBM17 to promote Sox2 transcription by modulating alternative splicing of FOXM1 to enhance cancer stem cell properties in colorectal cancer cells. FASEB J 2023; 37:e22707. [PMID: 36520054 DOI: 10.1096/fj.202201255r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The existence of cancer stem cells (CSC) causes tumor relapses, metastasis, and resistance to conventional therapy. Alternative splicing has been shown to affect physiological and pathological processes. Accumulating evidence has confirmed that targeting alternative splicing could be an effective strategy to treat CRC. Currently, the role of alternative splicing in the regulation of CSC properties in CRC has not been elucidated. Here, we show that RBM17 displays oncogenic roles in CRC cells. RBM17 enhances cell proliferation and reduces chemotherapeutic-induced apoptosis in CRC cells. Besides, RBM17 increases CD133 positive and ALDEFLUOR positive populations and promotes sphere formation in CRC cells. In mechanism studies, we found that FOXM1 is critical for RBM17 enhanced CSC properties. Moreover, FOXM1 alternative splicing is essential for RBM17 enhanced CSC properties in CRC cells. Additionally, RBM17 enhances CSC characteristics by controlling FOXM1 expression to promote Sox2 expression. Furthermore, AKT1 works as an upstream kinase to control RBM17-mediated FOXM1 alternative splicing and enhancement of CSC properties in CRC cells. Our study reveals that AKT1-RBM17-FOXM1-Sox2 axis could be a potential target for modulating alternative splicing to reduce CSC properties in CRC cells.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Center for Evidence Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chen Bai
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shengsheng Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Denggang Chen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hailang Wei
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Rong
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Zhang
- Center for Evidence Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shaojuan Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Chen S, Li QH, Chen X, Bao HJ, Wu W, Shen F, Lu BF, Jiang RQ, Zong ZH, Zhao Y. SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. J Cell Mol Med 2022; 26:5150-5164. [PMID: 36056690 PMCID: PMC9575132 DOI: 10.1111/jcmm.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
The present study demonstrated for the first time that SNORA70E, which belongs to box H/ACA small nucleolar noncoding RNAs (snoRNAs) who could bind and induce pseudouridylation of RNAs, was significantly elevated in ovarian cancer tissues and was an unfavourable prognostic factor of ovarian cancer. The over‐expression of SNORA70E showed increased cell proliferation, invasion and migration in vitro and induced tumour growth in vivo. Further research found that SNORA70E regulates RAS‐Related Protein 1B (RAP1B) mRNA through pseudouracil modification by combing with the pyrimidine synthase Dyskerin Pseudouridine Synthase 1 (DKC1) and increase RAP1B protein level. What's more, the silencing of DKC1/RAP1B in SNORA70E overexpression cells both inhibited cell proliferation, migration and invasion through reducing β‐catenin, PI3K, AKT1, mTOR, and MMP9 protein levels. Besides, RNA‐Seq results revealed that SNORA70E regulates the alternative splicing of PARP‐1 binding protein (PARPBP), leading to the 4th exon‐skipping in PARPBP‐88, forming a new transcript PARPBP‐15, which promoted cell invasion, migration and proliferation. Finally, ASO‐mediated silencing of SNORA70E could inhibit ovarian cancer cell proliferation, invasion, migration ability in vitro and inhibit tumorigenicity in vivo. In conclusion, SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. Our results demonstrated that SNORA70E may be a new diagnostic and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Shen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Feng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ru-Qi Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Hong Zong
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Lu X, Zhong J, Liu L, Zhang W, Zhao S, Chen L, Wei Y, Zhang H, Wu J, Chen W, Ge F. The function and regulatory mechanism of RNA-binding proteins in breast cancer and their future clinical treatment prospects. Front Oncol 2022; 12:929037. [PMID: 36052258 PMCID: PMC9424610 DOI: 10.3389/fonc.2022.929037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common female malignancy, but the mechanisms regulating gene expression leading to its development are complex. In recent years, as epigenetic research has intensified, RNA-binding proteins (RBPs) have been identified as a class of posttranscriptional regulators that can participate in regulating gene expression through the regulation of RNA stabilization and degradation, intracellular localization, alternative splicing and alternative polyadenylation, and translational control. RBPs play an important role in the development of normal mammary glands and breast cancer. Functional inactivation or abnormal expression of RBPs may be closely associated with breast cancer development. In this review, we focus on the function and regulatory mechanisms of RBPs in breast cancer, as well as the advantages and challenges of RBPs as potential diagnostic and therapeutic targets in breast cancer, and discuss the potential of RBPs in clinical treatment.
Collapse
Affiliation(s)
- Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jian Zhong
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jingxuan Wu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| |
Collapse
|
22
|
Mou Z, Spencer J, Knight B, John J, McCullagh P, McGrath JS, Harries LW. Gene expression analysis reveals a 5-gene signature for progression-free survival in prostate cancer. Front Oncol 2022; 12:914078. [PMID: 36033512 PMCID: PMC9413154 DOI: 10.3389/fonc.2022.914078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide, but effective biomarkers for the presence or progression risk of disease are currently elusive. In a series of nine matched histologically confirmed PCa and benign samples, we carried out an integrated transcriptome-wide gene expression analysis, including differential gene expression analysis and weighted gene co-expression network analysis (WGCNA), which identified a set of potential gene markers highly associated with tumour status (malignant vs. benign). We then used these genes to establish a minimal progression-free survival (PFS)-associated gene signature (GS) (PCBP1, PABPN1, PTPRF, DANCR, and MYC) using least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses from The Cancer Genome Atlas prostate adenocarcinoma (TCGA-PRAD) dataset. Our signature was able to predict PFS over 1, 3, and 5 years in TCGA-PRAD dataset, with area under the curve (AUC) of 0.64–0.78, and our signature remained as a prognostic factor independent of age, Gleason score, and pathological T and N stages. A nomogram combining the signature and Gleason score demonstrated improved predictive capability for PFS (AUC: 0.71–0.85) and was superior to the Cambridge Prognostic Group (CPG) model alone and some conventionally used clinicopathological factors in predicting PFS. In conclusion, we have identified and validated a novel five-gene signature and established a nomogram that effectively predicted PFS in patients with PCa. Findings may improve current prognosis tools for PFS and contribute to clinical decision-making in PCa treatment.
Collapse
Affiliation(s)
- Zhuofan Mou
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Bridget Knight
- National Institute for Health and Care Research (NIHR) Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Joseph John
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - John S. McGrath
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- *Correspondence: Lorna W. Harries,
| |
Collapse
|
23
|
Peng L, Liu Y, Chen J, Cheng M, Wu Y, Chen M, Zhong Y, Shen D, Chen L, Ye X. APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Med Genomics 2022; 15:147. [PMID: 35780128 PMCID: PMC9250739 DOI: 10.1186/s12920-022-01290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. Previous studies have shown that apurinic-apyrimidinic endonuclease-1 (APEX1) is involved in tumor progression. It is unknown whether APEX1 functions in tumor progression by regulation of AS. It is also unknown whether APEX1 can regulate non-small-cell lung cancer (NSCLC) proliferation and apoptosis. We analyzed APEX1 expression levels in 517 lung NSCLC samples from the TCGA (Cancer Genome Atlas) database. The impact of APEX1 over expression on A549 cell proliferation and apoptosis was detected by the methyl thiazolyl tetrazolium assay and by flow cytometry. The transcriptome of A549 cells with and without APEX1 over expression was determined by Illumina sequencing, followed by analysis of AS. RT-qPCR validated expression of APEX1-related genes in A549 cells. We have successfully applied RNA-seq technology to demonstrate APEX1 regulation of AS. RESULTS APEX1 expression was shown to be upregulated in NSCLC samples and to reduce cell proliferation and induce apoptosis of A549 cells. In addition, APEX1 regulated AS of key tumorigenesis genes involved in cancer proliferation and apoptosis within MAPK and Wnt signaling pathways. Each of these pathways are involved in lung cancer progression. Furthermore, validated AS events regulated by APEX1 were in key tumorigenesis genes; AXIN1 (axis inhibition protein 1), GCNT2 (N-acetyl glucosaminyl transferase 2), and SMAD3 (SMAD Family Member 3). These genes encode signaling pathway transcription regulatory factors. CONCLUSIONS We found that increased expression of APEX1 was an independent prognostic factor related to NSCLC progression. Therefore, APEX1 regulation of AS may serve as a molecular marker or therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Li Peng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.,Department of Cardiology, Zhongnan Hosipital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Mengxin Cheng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ying Wu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ya Zhong
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Dan Shen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
24
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
25
|
Zhao Y, Sun H, Zhao Y, Liu Q, Liu Y, Hou Y, Jin W. NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene 2022; 41:3409-3422. [PMID: 35568738 DOI: 10.1038/s41388-022-02349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing of mRNA precursors allows cancer cells to create different protein isoforms that promote growth and survival. Compared to normal cells, cancer cells frequently exhibit a higher diversity of their transcriptomes. A comprehensive understanding of splicing regulation is required to correct the splicing alterations for the future precision oncology. A quantitative proteomic screen was performed to identify the regulators associated the metastasis in triple-negative breast cancer. Multiple in vitro and in vivo functional analyses were used to study the effects of NSrp70 on breast cancer metastasis. Next, transcriptomic sequencing (RNA-seq) and alternative splicing bioinformatics analysis was applied to screen the potential targets of NSrp70. Moreover, in vitro splicing assays, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the specific binding between NSrp70 and downstream target genes. Furthermore, the prognostic value of NSrp70 was analyzed in a cohort of patients by performing IHC. We uncovered NSrp70 as a novel suppressor of breast cancer metastasis. We discovered that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of transforming growth factor receptor 1 through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with a better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 serves as a metastasis suppressor.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Ji R, Shi Q, Cao Y, Zhang J, Zhao C, Zhao H, Sayyed Y, Fu L, Li LY. Alternative splicing of the human rhomboid family-1 gene RHBDF1 inhibits epidermal growth factor receptor activation. J Biol Chem 2022; 298:102033. [PMID: 35595096 PMCID: PMC9190019 DOI: 10.1016/j.jbc.2022.102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022] Open
Abstract
The human rhomboid-5 homolog-1 (RHBDF1) is a multi-transmembrane protein present mainly on the endoplasmic reticulum. RHBDF1 has been implicated in the activation of epidermal growth factor receptor (EGFR)–derived cell growth signals and other activities critical to cellular responses to stressful conditions, but details of this activation mechanism are unclear. Here, we report a RHBDF1 mRNA transcript alternative splicing variant X6 (RHBDF1 X6 or RHX6) that antagonizes RHBDF1 activities. We found that while the RHBDF1 gene is marginally expressed in breast tumor-adjacent normal tissues, it is markedly elevated in the tumor tissues. In sharp contrast, the RHX6 mRNA represents the primary RHBDF1 variant in normal breast epithelial cells and tumor-adjacent normal tissues but is diminished in breast cancer cells and tumors. We demonstrate that, functionally, RHX6 acts as an inhibitor of RHBDF1 activities. We show that artificially overexpressing RHX6 in breast cancer cells leads to retarded proliferation, migration, and decreased production of epithelial–mesenchymal transition-related adhesion molecules. Mechanically, RHX6 is able to inhibit the maturation of TACE, a protease that processes pro-TGFα, a pro-ligand of EGFR, and to prevent intracellular transportation of pro-TGFα to the cell surface. Additionally, we show that the production of RHX6 is under the control of the alternative splicing regulator RNA binding motif protein-4 (RBM4). Our findings suggest that differential splicing of the RHBDF1 gene transcript may have a regulatory role in the development of epithelial cell cancers.
Collapse
Affiliation(s)
- Renpeng Ji
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qianqian Shi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical university, Tianjin, 300060, China
| | - Yixin Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jingyue Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical university, Tianjin, 300060, China
| | - Cancan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Huanyu Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yasra Sayyed
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical university, Tianjin, 300060, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Lei Y, Xiao J, Zhao W, Liu F, Sui Y, Wang K, Liu Y. Myc pathway-guided alternative splicing events predict the overall survival of lung squamous cell carcinoma. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2043449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Youming Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Wei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Fanghao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yi Sui
- Department of IVD Medical Marketing, 3D Medicine Inc., Shanghai, People’s Republic of China
| | - Kun Wang
- Department of Thoracic Surgery, Anning First People’s Hospital (Kunming Fourth People’s Hospital), Seventh Affiliated Hospital of Dali University, Kunming, People’s Republic of China
| | - Yinqiang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
28
|
Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int J Mol Sci 2022; 23:ijms23031143. [PMID: 35163067 PMCID: PMC8835306 DOI: 10.3390/ijms23031143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-β), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.
Collapse
|
29
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
30
|
Brehmer D, Beke L, Wu T, Millar HJ, Moy C, Sun W, Mannens G, Pande V, Boeckx A, van Heerde E, Nys T, Gustin EM, Verbist B, Zhou L, Fan Y, Bhargava V, Safabakhsh P, Vinken P, Verhulst T, Gilbert A, Rai S, Graubert TA, Pastore F, Fiore D, Gu J, Johnson A, Philippar U, Morschhäuser B, Walker D, De Lange D, Keersmaekers V, Viellevoye M, Diels G, Schepens W, Thuring JW, Meerpoel L, Packman K, Lorenzi MV, Laquerre S. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small-Molecule Inhibitor of PRMT5 with Potent Antitumor Activity. Mol Cancer Ther 2021; 20:2317-2328. [PMID: 34583982 PMCID: PMC9398174 DOI: 10.1158/1535-7163.mct-21-0367] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.
Collapse
Affiliation(s)
- Dirk Brehmer
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Lijs Beke
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tongfei Wu
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Christopher Moy
- Janssen Research and Development, Spring House, Pennsylvania
| | - Weimei Sun
- Janssen Research and Development, Spring House, Pennsylvania
| | - Geert Mannens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Vineet Pande
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - An Boeckx
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Thomas Nys
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | - Bie Verbist
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Longen Zhou
- Janssen Research and Development, Shanghai, China
| | - Yue Fan
- Janssen Research and Development, Shanghai, China
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Petra Vinken
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Tinne Verhulst
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Angelique Gilbert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Sumit Rai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | | - Danilo Fiore
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Junchen Gu
- Janssen Research and Development, Spring House, Pennsylvania
| | - Amy Johnson
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | - David Walker
- Janssen Research and Development, Spring House, Pennsylvania
| | | | | | | | - Gaston Diels
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | - Wim Schepens
- Janssen Research and Development, Beerse, Antwerp, Belgium
| | | | | | - Kathryn Packman
- Janssen Research and Development, Spring House, Pennsylvania
| | | | - Sylvie Laquerre
- Janssen Research and Development, Spring House, Pennsylvania.
| |
Collapse
|
31
|
Song J, Liu J, Lv D, Meng X, Li X. Analysis of Genome-Wide Alternative Splicing Profiling and Development of Potential Drugs in Lung Adenocarcinoma. Front Genet 2021; 12:767259. [PMID: 34737768 PMCID: PMC8560713 DOI: 10.3389/fgene.2021.767259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Alternative splicing (AS) is significantly related to tumor development as well as a patient’s clinical characteristics. This study was designed to systematically analyze the survival-associated AS signatures in Lung adenocarcinoma (LUAD). Among 30,735 AS events in 9,635 genes, we found that there were 1,429 AS in 1,125 genes which were conspicuously related to the overall survival of LUAD patients. Then, according to the seven types of AS events, we established AS signatures and constructed a new combined prognostic model. The Kaplan-Meier curve results showed that seven types of AS signatures and the combined prognostic model could divide patients into distinct prognoses. The ROC curve shows that all eight AS signatures had powerful predictive properties with different AUCs ranging from 0.708 to 0.849. Additionally, the elevated risk scores were positively related to higher TNM stage and metastasis. Interestingly, AS events and splicing factors (SFs) network shed light on a meaningful connection between prognostic AS genes and corresponding SFs. Moreover, we found that the combined prognostic model signature has a higher predictive ability than the mRNA signature. Furthermore, tumors at high risk might evade immune recognition by decreasing the expression of antigen presentation genes. Finally, we predicted the three most significant small molecule drugs to inhibit LUAD. Among them, NVP-AUY922 had the lowest IC50 value and might become a potential drug to prolong a patient’s survival. In conclusion, our study established a potential prognostic signature for LUAD patients, revealed a splicing network between AS and SFs and possible immune escape mechanism, and provided several small-molecule drugs to inhibit tumorigenesis.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, Qinzhou First People's Hospital, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Jia Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuan Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Liu M, Khushbu RA, Chen P, Hu HY, Tang N, Ou-Yang DJ, Wei B, Zhao YX, Huang P, Chang S. Comprehensive Analysis of Prognostic Alternative Splicing Signature Reveals Recurrence Predictor for Papillary Thyroid Cancer. Front Oncol 2021; 11:705929. [PMID: 34722250 PMCID: PMC8548661 DOI: 10.3389/fonc.2021.705929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background Alternative splicing (AS) plays a key role in the diversity of proteins and is closely associated with tumorigenicity. The aim of this study was to systemically analyze RNA alternative splicing (AS) and identify its prognostic value for papillary thyroid cancer (PTC). Methods AS percent-splice-in (PSI) data of 430 patients with PTC were downloaded from the TCGA SpliceSeq database. We successfully identified recurrence-free survival (RFS)-associated AS events through univariate Cox regression, LASSO regression and multivariate regression and then constructed different types of prognostic prediction models. Gene function enrichment analysis revealed the relevant signaling pathways involved in RFS-related AS events. Simultaneously, a regulatory network diagram of AS and splicing factors (SFs) was established. Results We identified 1397 RFS-related AS events which could be used as the potential prognostic biomarkers for PTC. Based on these RFS-related AS events, we constructed a ten-AS event prognostic prediction signature that could distinguish high-and low-risk patients and was highly capable of predicting PTC patient prognosis. ROC curve analysis revealed the excellent predictive ability of the ten-AS events model, with an area under the curve (AUC) value of 0.889; the highest prediction intensity for one-year RFS was 0.923, indicating that the model could be used as a prognostic biomarker for PTC. In addition, the nomogram constructed by the risk score of the ten-AS model also showed high predictive efficiency for the prognosis of PTC patients. Finally, the constructed SF-AS network diagram revealed the regulatory role of SFs in PTC. Conclusion Through the limited analysis, AS events could be regarded as reliable prognostic biomarkers for PTC. The splicing correlation network also provided new insight into the potential molecular mechanisms of PTC.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Rooh Afza Khushbu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Neng Tang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Ya-Xin Zhao
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China.,Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China.,Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
33
|
Cid E, Yamamoto M, Yamamoto F. Mixed-Up Sugars: Glycosyltransferase Cross-Reactivity in Cancerous Tissues and Their Therapeutic Targeting. Chembiochem 2021; 23:e202100460. [PMID: 34726327 DOI: 10.1002/cbic.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Indexed: 11/11/2022]
Abstract
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.
Collapse
Affiliation(s)
- Emili Cid
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Miyako Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Fumiichiro Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| |
Collapse
|
34
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|
35
|
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:713661. [PMID: 34616729 PMCID: PMC8489685 DOI: 10.3389/fcell.2021.713661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | - Sanjay Gupta
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
36
|
Adamopoulos PG, Athanasopoulou K, Tsiakanikas P, Scorilas A. A comprehensive nanopore sequencing methodology deciphers the complete transcriptional landscape of cyclin-dependent kinase 4 (CDK4) in human malignancies. FEBS J 2021; 289:712-729. [PMID: 34535948 DOI: 10.1111/febs.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase 4 (CDK4) is a member of the cyclin-dependent kinases, a family of protein kinases with outstanding roles in signaling pathways, transcription regulation, and cell division. Defective or overactivated CDK4/cyclin D1 pathway leads to enhanced cellular proliferation, thus being implicated in human cancers. Although the biological role of CDK4 has been extensively studied, its pre-mRNA processing mechanism under normal or pathological conditions is neglected. Thus, the identification of novel CDK4 mRNA transcripts, especially protein-coding ones, could lead to the identification of new diagnostic and/or prognostic biomarkers or new therapeutic targets. In the present study, instead of using the 'gold standard' direct RNA sequencing application, we designed and employed a targeted nanopore sequencing approach, which offers higher sequencing depth and enables the thorough investigation of new mRNAs of any target gene. Our study elucidates for the first time the complex transcriptional landscape of the human CDK4 gene, highlighting the existence of previously unknown CDK4 transcripts with new alternative splicing events and protein-coding capacities. The relative expression levels of each novel CDK4 transcript in human malignancies were elucidated with custom qPCR-based assays. The presented wide spectrum of CDK4 transcripts (CDK4 v.2-v.42) is only the first step to distinguish and assemble the missing pieces regarding the exact functions and implications of this fundamental kinase in cellular homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Luo C, Xu X, Liu C, He S, Chen J, Feng Y, Liu S, Peng W, Zhou Y, Liu Y, Wei P, Li B, Mai H, Xia X, Bei J. RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004852. [PMID: 34180133 PMCID: PMC8373120 DOI: 10.1002/advs.202004852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/29/2021] [Indexed: 05/05/2023]
Abstract
20-30% of patients with nasopharyngeal carcinoma (NPC) develop distant metastasis or recurrence leading to poor survival, of which the underlying key molecular events have yet to be addressed. Here alternative splicing events in 85 NPC samples are profiled using transcriptome analysis and it is revealed that the long isoform of GOLIM4 (-L) with exon-7 is highly expressed in NPC and associated with poor prognosis. Lines of evidence demonstrate the pro-tumorigenic function of GOLIM4-L in NPC cells. It is further revealed that RBFOX2 binds to a GGAA motif in exon-7 and promotes its inclusion forming GOLIM4-L. RBFOX2 knockdown suppresses the tumorigenesis of NPC cells, phenocopying GOLIM4-L knockdown, which is significantly rescued by GOLIM4-L overexpression. High expression of RBFOX2 is correlated with the exon-7 inclusion of GOLIM4 in NPC biopsies and associated with worse prognosis. It is observed that RBFOX2 and GOLIM4 can influence vesicle-mediated transport through maintaining the organization of Golgi apparatus. Finally, it is revealed that RAB26 interacts with GOLIM4 and mediates its tumorigenic potentials in NPC cells. Taken together, the findings provide insights into how alternative splicing contributes to NPC development, by highlighting a functional link between GOLIM4-L and its splicing regulator RBFOX2 activating vesicle-mediated transport involving RAB26.
Collapse
Affiliation(s)
- Chun‐Ling Luo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Xiao‐Chen Xu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Chu‐Jun Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Shuai He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Jie‐Rong Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Yan‐Chun Feng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Shu‐Qiang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Wan Peng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Ya‐Qing Zhou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Yu‐Xiang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Pan‐Pan Wei
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Bo Li
- Department of Biochemistry and Molecular BiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Hai‐Qiang Mai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Xiao‐Jun Xia
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jin‐Xin Bei
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Medical OncologyNational Cancer Centre of SingaporeSingapore169610Singapore
| |
Collapse
|
38
|
Bellanger A, Le DT, Vendrell J, Wierinckx A, Pongor LS, Solassol J, Lachuer J, Clezardin P, Győrffy B, Cohen PA. Exploring the Significance of the Exon 4-Skipping Isoform of the ZNF217 Oncogene in Breast Cancer. Front Oncol 2021; 11:647269. [PMID: 34277402 PMCID: PMC8283766 DOI: 10.3389/fonc.2021.647269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Oncogene alternative splicing events can create distinct functional transcripts that offer new candidate prognostic biomarkers for breast cancer. ZNF217 is a well-established oncogene but its exon 4-skipping isoform (ZNF217-ΔE4) has never been investigated in terms of clinical or biological relevance. Using in silico RNA-seq and RT-qPCR analyses, we demonstrated for the first time the existence of ZNF217-ΔE4 transcripts in primary breast tumors, and a positive correlation between ZNF217-ΔE4 mRNA levels and those of the wild-type oncogene (ZNF217-WT). A pilot retrospective analysis revealed that, in the Luminal subclass, the combination of the two ZNF217 variants (the ZNF217-ΔE4-WT gene-expression signature) provided more information than the mRNA expression levels of each isoform alone. Ectopic overexpression of ZNF217-ΔE4 in breast cancer cells promoted an aggressive phenotype and an increase in ZNF217-WT expression levels that was inversely correlated with DNA methylation of the ZNF217 gene. This study provides new insights into the possible role of the ZNF217-ΔE4 splice variant in breast cancer and suggests a close interplay between the ZNF217-WT and ZNF217-ΔE4 isoforms. Our data suggest that a dual signature combining the expression levels of these two isoforms may serve as a novel prognostic biomarker allowing better stratification of breast cancers with good prognosis and aiding clinicians in therapeutic decisions.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | - Diep T Le
- Université Lyon 1, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| | - Julie Vendrell
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Univ. Montpellier, Montpellier, France
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Lőrinc S Pongor
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,TTK "TermészetTudományi Kutatóközpont" Momentum Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Jérôme Solassol
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Univ. Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Montpellier, France
| | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,TTK "TermészetTudományi Kutatóközpont" Momentum Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| |
Collapse
|
39
|
Oh J, Pradella D, Kim Y, Shao C, Li H, Choi N, Ha J, Di Matteo A, Fu XD, Zheng X, Ghigna C, Shen H. Global Alternative Splicing Defects in Human Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13123071. [PMID: 34202984 PMCID: PMC8235023 DOI: 10.3390/cancers13123071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Aberrant alternative splicing (AS) regulation plays a pivotal role in breast cancer development, progression, and resistance to therapeutical interventions. Indeed, cancer cells can adapt their own transcriptome by changing different AS programs, thus generating cancer-specific AS isoforms involved in every hallmark of cancer. Here, we investigated global AS errors occurring in human breast cancer cells by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing. Our results identified several dysregulated AS events potentially relevant for breast cancer-related biological processes and that provide a better comprehension of the molecular mechanisms that orchestrate the malignant transformation. Abstract Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.
Collapse
Affiliation(s)
- Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Davide Pradella
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Yoonseong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Anna Di Matteo
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Claudia Ghigna
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| |
Collapse
|
40
|
Deng Y, Zhao H, Ye L, Hu Z, Fang K, Wang J. Correlations Between the Characteristics of Alternative Splicing Events, Prognosis, and the Immune Microenvironment in Breast Cancer. Front Genet 2021; 12:686298. [PMID: 34194482 PMCID: PMC8236959 DOI: 10.3389/fgene.2021.686298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Alternative splicing (AS) is the mechanism by which a few genes encode numerous proteins, and it redefines the concept of gene expression regulation. Recent studies showed that dysregulation of AS was an important cause of tumorigenesis and microenvironment formation. Therefore, we performed a systematic analysis to examine the role of AS in breast cancer (Breast Cancer, BrCa) progression. Methods The present study included 993 BrCa patients from The Cancer Genome Atlas (TCGA) database in the genome-wide analysis of AS events. We used differential and prognostic analyses and found differentially expressed alternative splicing (DEAS) events and independent prognostic factors related to patients' overall survival (OS) and disease-free survival (DFS). We divided the patients into two groups based on these AS events and analyzed their clinical features, molecular subtyping and immune characteristics. We also constructed a splicing factor (SF) regulation network for key AS events and verified the existence of AS events in tissue samples using real-time quantitative PCR. Results A total of 678 AS events were identified as differentially expressed, of which 13 and 10 AS events were independent prognostic factors of patients' OS and DFS, respectively. Unsupervised clustering analysis based on these prognostic factors indicated that the Cluster 1 group had a better prognosis and more immune cell infiltration. SFs were significantly related to the expression of AS events, and AA-RPS21 was significantly upregulated in tumors. Conclusion Alternative splicing expands the mechanism of breast cancer progression from a new perspective. Notably, alternative splicing may affect the patient's prognosis by affecting the infiltration of immune cells. Our research provides important guidance for subsequent studies of AS in breast cancer.
Collapse
Affiliation(s)
- Youyuan Deng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Hongjun Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Lifen Ye
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Zhiya Hu
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Jianguo Wang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
41
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
42
|
Systematic Identification of Survival-Associated Alternative Splicing Events in Kidney Renal Clear Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5576933. [PMID: 33959190 PMCID: PMC8075682 DOI: 10.1155/2021/5576933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022]
Abstract
There is growing evidence that aberrant alternative splicing (AS) is highly correlated with driving tumorigenesis, but its function in kidney renal clear cell carcinoma (KIRC) remains to be discovered. In this study, we obtained the level-3 RNA sequencing and clinical data of KIRC from The Cancer Genome Atlas (TGCA). Combining with the splicing event detail information from TGCA SpliceSeq database, we established the independent prognosis signatures for KIRC with the univariate and multivariate Cox regression analyses. Then, we used the Kaplan-Meier analysis and receiver operating characteristic curves (ROCs) to assess the accuracy of prognosis signatures. We also constructed the regulatory network of splicing factors (SFs) and AS events. Our results showed that a total of 12029 survival-associated AS events of 5761 genes were found in 524 KIRC patients. All types of prognosis signatures displayed a satisfactory ability to reliably predict, especially in exon skip model which the area under curve of ROC was 0.802. Moreover, 18 splicing factors (SFs) highly correlated to AS events were identified. With the construction of the SF-AS interactive network, we found that SF powerfully promotes the occurrence of abnormal AS and may have a profound role in KIRC. Collectively, we screened survival-associated AS events and established prognosis signatures for KIRC, coupling with the SF-AS interactive network, which might provide a key perspective to clarify the potential mechanism of AS in KIRC.
Collapse
|
43
|
Uzor S, Porazinski SR, Li L, Clark B, Ajiro M, Iida K, Hagiwara M, Alqasem AA, Perks CM, Wilson ID, Oltean S, Ladomery MR. CDC2-like (CLK) protein kinase inhibition as a novel targeted therapeutic strategy in prostate cancer. Sci Rep 2021; 11:7963. [PMID: 33846420 PMCID: PMC8041776 DOI: 10.1038/s41598-021-86908-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulation of alternative splicing is a feature of cancer, both in aetiology and progression. It occurs because of mutations in splice sites or sites that regulate splicing, or because of the altered expression and activity of splice factors and of splice factor kinases that regulate splice factor activity. Recently the CDC2-like kinases (CLKs) have attracted attention due to their increasing involvement in cancer. We measured the effect of the CLK inhibitor, the benzothiazole TG003, on two prostate cancer cell lines. TG003 reduced cell proliferation and increased apoptosis in PC3 and DU145 cells. Conversely, the overexpression of CLK1 in PC3 cells prevented TG003 from reducing cell proliferation. TG003 slowed scratch closure and reduced cell migration and invasion in a transwell assay. TG003 decisively inhibited the growth of a PC3 cell line xenograft in nude mice. We performed a transcriptomic analysis of cells treated with TG003. We report widespread and consistent changes in alternative splicing of cancer-associated genes including CENPE, ESCO2, CKAP2, MELK, ASPH and CD164 in both HeLa and PC3 cells. Together these findings suggest that targeting CLKs will provide novel therapeutic opportunities in prostate cancer.
Collapse
Affiliation(s)
- Simon Uzor
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
- Department of Medical Laboratory Science, Ebonyi State University, P.M.B. 53, Abakaliki, Nigeria
| | - Sean R Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ling Li
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
| | - Bethany Clark
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Iida
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Abdullah A Alqasem
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Ian D Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
| | - Michael R Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
44
|
MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis 2021; 12:370. [PMID: 33824311 PMCID: PMC8024338 DOI: 10.1038/s41419-021-03661-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with the worst prognosis and the highest metastatic and recurrence potential, which represents 15–20% of all breast cancers in Chinese females, and the 5-year overall survival rate is about 80% in Chinese women. Recently, emerging evidence suggested that aberrant alternative splicing (AS) plays a crucial role in tumorigenesis and progression. AS is generally controlled by AS-associated RNA binding proteins (RBPs). Monocyte chemotactic protein induced protein 1 (MCPIP1), a zinc finger RBP, functions as a tumor suppressor in many cancers. Here, we showed that MCPIP1 was downregulated in 80 TNBC tissues and five TNBC cell lines compared to adjacent paracancerous tissues and one human immortalized breast epithelial cell line, while its high expression levels were associated with increased overall survival in TNBC patients. We demonstrated that MCPIP1 overexpression dramatically suppressed cell cycle progression and proliferation of TNBC cells in vitro and repressed tumor growth in vivo. Mechanistically, MCPIP1 was first demonstrated to act as a splicing factor to regulate AS in TNBC cells. Furthermore, we demonstrated that MCPIP1 modulated NFIC AS to promote CTF5 synthesis, which acted as a negative regulator in TNBC cells. Subsequently, we showed that CTF5 participated in MCPIP1-mediated antiproliferative effect by transcriptionally repressing cyclin D1 expression, as well as downregulating its downstream signaling targets p-Rb and E2F1. Conclusively, our findings provided novel insights into the anti-oncogenic mechanism of MCPIP1, suggesting that MCPIP1 could serve as an alternative treatment target in TNBC.
Collapse
|
45
|
Tang M, Bolderson E, O’Byrne KJ, Richard DJ. Tumor Hypoxia Drives Genomic Instability. Front Cell Dev Biol 2021; 9:626229. [PMID: 33796526 PMCID: PMC8007910 DOI: 10.3389/fcell.2021.626229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a leading cause of death worldwide. As a common characteristic of cancer, hypoxia is associated with poor prognosis due to enhanced tumor malignancy and therapeutic resistance. The enhanced tumor aggressiveness stems at least partially from hypoxia-induced genomic instability. Therefore, a clear understanding of how tumor hypoxia induces genomic instability is crucial for the improvement of cancer therapeutics. This review summarizes recent developments highlighting the association of tumor hypoxia with genomic instability and the mechanisms by which tumor hypoxia drives genomic instability, followed by how hypoxic tumors can be specifically targeted to maximize efficacy.
Collapse
Affiliation(s)
- Ming Tang
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Revised Exon Structure of l-DOPA Decarboxylase ( DDC) Reveals Novel Splice Variants Associated with Colorectal Cancer Progression. Int J Mol Sci 2020; 21:ijms21228568. [PMID: 33202911 PMCID: PMC7697000 DOI: 10.3390/ijms21228568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is a highly heterogenous malignancy with an increased mortality rate. Aberrant splicing is a typical characteristic of CRC, and several studies support the prognostic value of particular transcripts in this malignancy. l-DOPA decarboxylase (DDC) and its derivative neurotransmitters play a multifaceted role in physiological and pathological states. Our recent data support the existence of 6 DDC novel exons. In this study, we investigated the existence of additional DDC novel exons and transcripts, and their potential value as biomarkers in CRC. Next-generation sequencing (NGS) in 55 human cell lines coupled with Sanger sequencing uncovered 3 additional DDC novel exons and 20 splice variants, 7 of which likely encode new protein isoforms. Eight of these transcripts were detected in CRC. An in-house qPCR assay was developed and performed in TNM II and III CRC samples for the quantification of transcripts bearing novel exons. Extensive biostatistical analysis uncovered the prognostic value of specific DDC novel exons for patients’ disease-free and overall survival. The revised DDC exon structure, the putative protein isoforms with distinct functions, and the prognostic value of novel exons highlight the pivotal role of DDC in CRC progression, indicating its potential utility as a molecular biomarker in CRC.
Collapse
|
47
|
Makhafola TJ, Mbele M, Yacqub-Usman K, Hendren A, Haigh DB, Blackley Z, Meyer M, Mongan NP, Bates DO, Dlamini Z. Apoptosis in Cancer Cells Is Induced by Alternative Splicing of hnRNPA2/B1 Through Splicing of Bcl-x, a Mechanism that Can Be Stimulated by an Extract of the South African Medicinal Plant, Cotyledon orbiculata. Front Oncol 2020; 10:547392. [PMID: 33163396 PMCID: PMC7580256 DOI: 10.3389/fonc.2020.547392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing is deregulated in cancer and alternatively spliced products can be linked to cancer hallmarks. Targeting alternative splicing could offer novel effective cancer treatments. We investigated the effects of the crude extract of a South African medicinal plant, Cotyledon orbiculata, on cell survival of colon (HCT116) and esophageal (OE33 and KYSE70) cancer cell lines. Using RNASeq, we discovered that the extract interfered with mRNA regulatory pathways. The extract caused hnRNPA2B1 to splice from the hnRNPB1 to the hnRNPA2 isoform, resulting in a switch in the BCL2L1 gene from Bcl-xL to Bcl-xS causing activation of caspase-3-cleavage and apoptosis. Similar splicing effects were induced by the known anti-cancer splicing modulator pladienolide B. Knockdown of hnRNPB1 using siRNA resulted in decreased cell viability and increased caspase-3-cleavage, and over-expression of hnRNPB1 prevented the effect of C. orbiculata extract on apoptosis and cell survival. The effect of the hnRNPA2/B1 splicing switch by the C. orbiculata extract increased hnRNPA2B1 binding to Bcl-xl/s, BCL2, MDM2, cMYC, CD44, CDK6, and cJUN mRNA. These findings suggest that apoptosis in HCT116, OE33, and KYSE cancer cells is controlled by switched splicing of hnRNPA2B1 and BCL2L1, providing evidence that hnRNPB1 regulates apoptosis. Inhibiting this splicing could have therapeutic potential for colon and esophageal cancers. Targeting hnRNPA2B1 splicing in colon cancer regulates splicing of BCL2L1 to induce apoptosis. This approach could be a useful therapeutic strategy to induce apoptosis and restrain cancer cell proliferation and tumor progression. Here, we found that the extract of Cotyledon orbiculata, a South African medicinal plant, had an anti-proliferative effect in cancer cells, mediated by apoptosis induced by alternative splicing of hnRNPA2B1 and BCL2L1.
Collapse
Affiliation(s)
- Tshepiso Jan Makhafola
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa.,Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mzwandile Mbele
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa.,Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kiren Yacqub-Usman
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Amy Hendren
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Belle Haigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Blackley
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mervin Meyer
- Biolabels Unit, Department of Biotechnology, Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre (NIC), University of the Western Cape, Bellville, South Africa
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - David Owen Bates
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zodwa Dlamini
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Dong S, Lu LJ. An alternative splicing signature model for predicting hepatocellular carcinoma-specific survival. J Gastrointest Oncol 2020; 11:1054-1064. [PMID: 33209497 PMCID: PMC7657838 DOI: 10.21037/jgo-20-377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a transcriptional regulation mechanism, which can expand the coding ability of genome and contribute to the occurrence and development of cancer. A systematic analysis of AS in hepatocellular carcinoma (HCC) is lacking and urgently needed. METHODS Univariate and multivariate Cox regression analyses were used to distinguish survival-related AS events and to calculate the risk score. Kaplan-Meier analysis and receiver operating characteristic (ROC) curves were used to evaluate the AS events' clinical significance to build a risk model in HCC. RESULTS Data of AS events was obtained from the Splice-Seq database. The corresponding clinical information of HCC was downloaded from The Cancer Genome Atlas (TCGA) data portal. We analyzed 78,878 AS events from 13,045 genes in HCC patients. A total of 2,440 and 2,888 AS events were significantly related to HCC patients' disease-free survival (DFS) and overall survival (OS). The two prognostic models (DFS and OS) were constructed based on a total of seven AS types from survival-related AS events above. The area under the curve (AUC) of the ROC curves was 0.769 in the DFS cohort and 0.886 in the OS cohort. CONCLUSIONS The prognostic model constructed by AS events can be used to predict the prognosis of HCC patients and provide potential therapeutic targets for further validation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Surgery, Wuxi No.9 People's Hospital affiliated to Soochow University, Wuxi, China
| | - Li-Jun Lu
- Department of Surgery, Wuxi No.9 People's Hospital affiliated to Soochow University, Wuxi, China
| |
Collapse
|
49
|
Liu Y, Jia W, Li J, Zhu H, Yu J. Identification of Survival-Associated Alternative Splicing Signatures in Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:587343. [PMID: 33117720 PMCID: PMC7561379 DOI: 10.3389/fonc.2020.587343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose: Alternative splicing (AS) is a post-transcriptional process that plays a significant role in enhancing the diversity of transcription and protein. Accumulating evidences have demonstrated that dysregulation of AS is associated with oncogenic processes. However, AS signature specifically in lung squamous cell carcinoma (LUSC) remains unknown. This study aimed to evaluate the prognostic values of AS events in LUSC patients. Methods: The RNA-seq data, AS events data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was performed to identify survival-related AS events and survival-related parent genes were subjected to Gene Ontology enrichment analysis and gene network analysis. The least absolute shrinkage and selection operator (LASSO) method and multivariate Cox regression analysis were used to construct prognostic prediction models, and their predictive values were assessed by Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. Then a nomogram was established to predict the survival of LUSC patients. And the interaction network of splicing factors (SFs) and survival-related AS events was constructed by Spearman correlation analysis and visualized by Cytoscape. Results: Totally, 467 LUSC patients were included in this study and 1,991 survival-related AS events within 1,433 genes were identified. SMAD4, FOS, POLR2L, and RNPS1 were the hub genes in the gene interaction network. Eight prognostic prediction models (seven types of AS and all AS) were constructed and all exhibited high efficiency in distinguishing good or poor survival of LUSC patients. The final integrated prediction model including all types of AS events exhibited the best prognostic power with the maximum AUC values of 0.778, 0.816, 0.814 in 1, 3, 5 years ROC curves, respectively. Meanwhile, the nomogram performed well in predicting the 1-, 3-, and 5-year survival of LUSC patients. In addition, the SF-AS regulatory network uncovered a significant correlation between SFs and survival-related AS events. Conclusion: This is the first comprehensive study to analyze the role of AS events in LUSC specifically, which improves our understanding of the prognostic value of survival-related AS events for LUSC. And these survival-related AS events might serve as novel prognostic biomarkers and drug therapeutic targets for LUSC.
Collapse
Affiliation(s)
- Yang Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
50
|
Hesham D, El-Naggar S. Transcriptomic Analysis Revealed an Emerging Role of Alternative Splicing in Embryonal Tumor with Multilayered Rosettes. Genes (Basel) 2020; 11:genes11091108. [PMID: 32971786 PMCID: PMC7563716 DOI: 10.3390/genes11091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Embryonal tumor with multilayered rosettes (ETMR) is an aggressive and rare pediatric embryonal brain tumor. Amplification of C19MC microRNA cluster and expression of LIN28 are distinctive features of ETMR. Despite the increasing efforts to decipher ETMR, the biology remains poorly understood. To date, the role of aberrant alternative splicing in ETMR has not been thoroughly investigated. In the current study, a comprehensive analysis was performed on published unprocessed RNA-seq reads of tissue-matched ETMR and fetal controls datasets. Gene expression was quantified in samples using Kallisto/sleuth pipeline. For the alternative splicing analysis, STAR, SplAdder and rMATS were used. Functional enrichment analysis was subsequently performed using Metascape. The expression analysis identified a total of 3622 differentially expressed genes (DEGs) between ETMR and fetal controls while 1627 genes showed differential alternative splicing patterns. Interestingly, genes with significant alternative splicing events in ETMR were identified to be involved in signaling pathways such as ErbB, mTOR and MAPK pathways as well as ubiquitin-mediated proteolysis, cell cycle and autophagy. Moreover, up-regulated DEGs with alternative splicing events were involved in important biological processes including nuclear transport, regulation of cell cycle and regulation of Wnt signaling pathway. These findings highlight the role of aberrant alternative splicing in shaping the ETMR tumor landscape, and the identified pathways constitute potential therapeutic targets.
Collapse
|