1
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Heesom KJ, Watkins WJ, Kotecha S. Evidence of abnormality in glutathione metabolism in the airways of preterm born children with a history of bronchopulmonary dysplasia. Sci Rep 2023; 13:19465. [PMID: 37945650 PMCID: PMC10636015 DOI: 10.1038/s41598-023-46499-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Preterm-born children are at risk of long-term pulmonary deficits, including those who developed bronchopulmonary dysplasia (BPD) in infancy, however the underlying mechanisms remain poorly understood. We characterised the exhaled breath condensate (EBC) metabolome from preterm-born children, both with and without BPD. Following spirometry, EBC from children aged 7-12 years, from the Respiratory Health Outcomes in Neonates study, were analysed using Time-of-Flight Mass Spectrometry. Metabolite Set Enrichment Analysis (MSEA) linked significantly altered metabolites to biological processes. Linear regression models examined relationships between metabolites of interest and participant demographics. EBC was analysed from 214 children, 144 were born preterm, including 34 with BPD. 235 metabolites were detected, with 38 above the detection limit in every sample. Alanine and pyroglutamic acid were significantly reduced in the BPD group when compared to preterm controls. MSEA demonstrated a reduction in glutathione metabolism. Reduced quantities of alanine, ornithine and urea in the BPD group were linked with alteration of the urea cycle. Linear regression revealed significant associations with BPD when other characteristics were considered, but not with current lung function parameters. In this exploratory study of the airway metabolome, preterm-born children with a history of BPD had changes consistent with reduced antioxidant mechanisms suggesting oxidative stress.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kate J Heesom
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Rodrigues M, de Castro Mendes F, Padrão P, Delgado L, Paciência I, Barros R, Rufo JC, Silva D, Moreira A, Moreira P. Mediterranean Diet and Airway Inflammation in School-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1305. [PMID: 37628304 PMCID: PMC10453938 DOI: 10.3390/children10081305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
There seems to exist an intricate relationship between airway inflammation, body mass index (BMI), and diet. The intake of specific foods or food groups has been suggested to suppress the oxidative stress and inflammatory processes that characterize airway inflammation, but little is known about dietary patterns and their complex interplay with BMI and airway inflammation. Therefore, this cross-sectional study aimed to explore the association between adherence to the Mediterranean diet (MD), a characteristic European diet, and levels of airway inflammation in school-aged children, taking into account their BMI. This cross-sectional analysis comprised 660 children: 49.1% females, 7-12 years old. Adherence to the MD was assessed through the alternate Mediterranean score (aMED). Higher scores represent a healthier diet (0-8). Airway inflammation was assessed measuring exhaled fractional nitric oxide (eNO). Two categories of BMI were considered: non-overweight/non-obese (p < 85th) and overweight/obese (p ≥ 85th). The associations between diet and airway inflammation were estimated using logistic regression models. Higher scores of the aMED were associated with decreased odds of having eNO ≥ 35 ppb, but only in non-overweight/non-obese children (OR = 0.77; 95% CI, 0.61-0.97). For overweight/obese children, the previous association was not significant (OR = 1.57, 95% CI, 0.88-2.79). Our findings suggest that adherence to the MD is associated with lower levels of airway inflammation among non-overweight/non-obese children.
Collapse
Affiliation(s)
- Mónica Rodrigues
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal; (M.R.); (R.B.); (A.M.); (P.M.)
| | - Francisca de Castro Mendes
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.d.C.M.); (L.D.); (D.S.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| | - Patrícia Padrão
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal; (M.R.); (R.B.); (A.M.); (P.M.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| | - Luís Delgado
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.d.C.M.); (L.D.); (D.S.)
- Immuno-Allergology Department, Centro Hospitalar São João, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS@RISE) , Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Inês Paciência
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, 90014 Oulu, Finland;
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Renata Barros
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal; (M.R.); (R.B.); (A.M.); (P.M.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| | - João Cavaleiro Rufo
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| | - Diana Silva
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.d.C.M.); (L.D.); (D.S.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| | - André Moreira
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal; (M.R.); (R.B.); (A.M.); (P.M.)
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.d.C.M.); (L.D.); (D.S.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
- Immuno-Allergology Department, Centro Hospitalar São João, 4200-319 Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal; (M.R.); (R.B.); (A.M.); (P.M.)
- Epidemiology Research Unit, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal;
| |
Collapse
|
3
|
Althoff MD, Peterson R, McGrath M, Jin Y, Grasemann H, Sharma S, Federman A, Wisnivesky JP, Holguin F. Phenotypic characteristics of asthma and morbidity are associated with distinct longitudinal changes in L-arginine metabolism. BMJ Open Respir Res 2023; 10:e001683. [PMID: 37270184 PMCID: PMC10254613 DOI: 10.1136/bmjresp-2023-001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The L-arginine metabolome is dysregulated in asthma, though it is not understood how longitudinal changes in L-arginine metabolism differ among asthma phenotypes and relate to disease outcomes. OBJECTIVES To determine the longitudinal associations between phenotypic characteristics with L-arginine metabolites and their relationships with asthma morbidity. METHODS This is a prospective cohort study of 321 patients with asthma followed semiannually for over 18 months with assessments of plasma L-arginine metabolites, asthma control, spirometry, quality of life and exacerbations. Metabolite concentrations and ratios were transformed using the natural logarithm. RESULTS There were many differences in L-arginine metabolism among asthma phenotypes in the adjusted models. Increasing body mass index was associated with increased asymmetric dimethylarginine (ADMA) and depleted L-citrulline. Latinx was associated with increased metabolism via arginase, with higher L-ornithine, proline and L-ornithine/L-citrulline levels, and was found to have higher L-arginine availability compared with white race. With respect to asthma outcomes, increasing L-citrulline was associated with improved asthma control and increasing L-arginine and L-arginine/ADMA were associated with improved quality of life. Increased variability in L-arginine, L-arginine/ADMA, L-arginine/L-ornithine and L-arginine availability index over 12 months were associated with increased exacerbations, OR 4.70 (95% CI 1.35 to 16.37), OR 8.69 (95% CI 1.98 to 38.08), OR 4.17 (95% CI 1.40 to 12.41) and OR 4.95 (95% CI 1.42 to 17.16), respectively. CONCLUSIONS Our findings suggest that L-arginine metabolism is associated with multiple measures of asthma control and may explain, in part, the relationship between age, race/ethnicity and obesity with asthma outcomes.
Collapse
Affiliation(s)
- Meghan Dolan Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Peterson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Max McGrath
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ying Jin
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Hartmut Grasemann
- Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Pablo Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Yu T, Wu H, Huang Q, Dong F, Li X, Zhang Y, Duan R, Niu H, Yang T. Outdoor particulate matter exposure affects metabolome in chronic obstructive pulmonary disease: Preliminary study. Front Public Health 2023; 11:1069906. [PMID: 37026137 PMCID: PMC10070744 DOI: 10.3389/fpubh.2023.1069906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction The metabolomic changes caused by airborne fine particulate matter (PM2.5) exposure in patients with chronic obstructive pulmonary disease (COPD) remain unclear. The aim of this study was to determine whether it is possible to predict PM2.5-induced acute exacerbation of COPD (AECOPD) using metabolic markers. Methods Thirty-eight patients with COPD diagnosed by the 2018 Global Initiative for Obstructive Lung Disease were selected and divided into high exposure and low exposure groups. Questionnaire data, clinical data, and peripheral blood data were collected from the patients. Targeted metabolomics using liquid chromatography-tandem mass spectrometry was performed on the plasma samples to investigate the metabolic differences between the two groups and its correlation with the risk of acute exacerbation. Results Metabolomic analysis identified 311 metabolites in the plasma of patients with COPD, among which 21 metabolites showed significant changes between the two groups, involving seven pathways, including glycerophospholipid, alanine, aspartate, and glutamate metabolism. Among the 21 metabolites, arginine and glycochenodeoxycholic acid were positively associated with AECOPD during the three months of follow-up, with an area under the curve of 72.50% and 67.14%, respectively. Discussion PM2.5 exposure can lead to changes in multiple metabolic pathways that contribute to the development of AECOPD, and arginine is a bridge between PM2.5 exposure and AECOPD.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanna Wu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Fen Dong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xuexin Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yushi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Hongtao Niu
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- *Correspondence: Ting Yang
| |
Collapse
|
6
|
Althoff MD, Jimenez G, Peterson R, Jin Y, Grasemann H, Sharma S, Federman AD, Wisnivesky JP, Holguin F. Differences in L-arginine metabolism and asthma morbidity among asthma patients with and without obstructive sleep apnea. Respir Res 2022; 23:230. [PMID: 36064404 PMCID: PMC9442950 DOI: 10.1186/s12931-022-02157-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Imbalance in L-arginine and nitric oxide (NO) metabolism has been implicated in the pathophysiology of asthma and obstructive sleep apnea (OSA), and both diseases impact the other's morbidity. We sought to determine whether L-arginine/NO metabolism differs between adults with asthma with or without comorbid OSA, and its association with asthma morbidity. METHODS This is a cross-sectional study of 322 adults with asthma recruited in Denver, CO and New York City, NY. Data were collected on OSA status, spirometry, and metrics of asthma control and morbidity. L-Arginine metabolites were quantified in patient serum. Bivariate analyses and multiple regression were performed to determine differences between L-arginine metabolism, OSA and association with asthma morbidity. RESULTS Among the 322 participants, 92 (28.5%) had OSA. The cohort was 81.6% female, 23.4% identified as Black and 30.6% as Latino. Patients with asthma and OSA had significantly higher serum concentrations of NO synthase inhibitor asymmetric dimethylarginine (ADMA) (p-value = 0.019), lower L-arginine to ornithine ratios (p-value = 0.003), and increased ornithine (p-value = 0.001) and proline levels (p-value < 0.001) compared to those without OSA. In adjusted models, OSA was associated with worse asthma control, adjusted mean difference in asthma control questionnaire of 0.36 (95% confidence interval [CI]: 0.06 to 0.65), and asthma quality of life questionnaire, adjusted mean difference: - 0.53 (95% CI: - 0.85 to - 0.21), after adjusting for relevant covariates including body mass index and L-arginine metabolites. CONCLUSIONS Adults with asthma and OSA had increased ADMA, an inhibitor of nitric oxide synthase, and greater metabolism of L-arginine via the arginase pathway compared to those with asthma alone, indicating a possible shared pathophysiological mechanism of these diseases.
Collapse
Affiliation(s)
- Meghan D Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz School of Medicine, 12700 East 19th Avenue, 9C03, Aurora, CO, 80045, USA
| | - Guillermo Jimenez
- Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Ryan Peterson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Ying Jin
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz School of Medicine, 12700 East 19th Avenue, 9C03, Aurora, CO, 80045, USA
| | - Alex D Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan P Wisnivesky
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz School of Medicine, 12700 East 19th Avenue, 9C03, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy 2022; 15:673-689. [PMID: 35611328 PMCID: PMC9124473 DOI: 10.2147/jaa.s285738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
The rates of asthma and obesity are increasing concurrently in the United States. Epidemiologic studies demonstrate that the incidence of asthma increases with obesity. Furthermore, obese individuals have asthma that is more severe, harder to control, and resistant to standard medications. In fact, specific asthma-obesity phenotypes have been identified. Various pathophysiologic mechanisms, including mechanical, inflammatory, metabolic and microbiome-associated, are at play in promulgating the obese-asthma phenotypes. While standard asthma medications, such as inhaled corticosteroids and biologics, are currently used to treat obese asthmatics, they may have limited effectiveness. Targeting the underlying aberrant processes, such as addressing steroid resistance, microbiome, metabolic and weight loss approaches, may be helpful.
Collapse
Affiliation(s)
- Sherry Farzan
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Correspondence: Sherry Farzan, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, 865 Northern Blvd, Suite 101, Great Neck, NY, 11021, USA, Tel +1 516-622-5070, Fax +1 516-622-5060, Email
| | - Tyrone Coyle
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Gina Coscia
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Andre Rebaza
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| | - Maria Santiago
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| |
Collapse
|
8
|
Althoff MD, Ghincea A, Wood LG, Holguin F, Sharma S. Asthma and Three Colinear Comorbidities: Obesity, OSA, and GERD. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3877-3884. [PMID: 34506967 DOI: 10.1016/j.jaip.2021.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Asthma is a complex disease with heterogeneous phenotypes and endotypes that are incompletely understood. Obesity, obstructive sleep apnea, and gastroesophageal reflux disease co-occur in patients with asthma at higher rates than in those without asthma. Although these diseases share risk factors, there are some data suggesting that these comorbidities have shared inflammatory pathways, drive the development of asthma, or worsen asthma control. This review discusses the epidemiology, pathophysiology, management recommendations, and key knowledge gaps of these common comorbidities.
Collapse
Affiliation(s)
- Meghan D Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, Colo
| | - Alexander Ghincea
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, Colo
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, Colo.
| |
Collapse
|
9
|
McCarty MF, DiNicolantonio JJ, Lerner A. Review - Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J Asthma Allergy 2021; 14:685-701. [PMID: 34163181 PMCID: PMC8214517 DOI: 10.2147/jaa.s307549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Activation of various isoforms of NADPH oxidase contributes to the pathogenesis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating allergen-induced mast cell activation. Free bilirubin, which functions physiologically within cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromophore phycocyanobilin (PhyCB), a homolog of bilirubin’s precursor biliverdin, can mimic the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina’s versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB-enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of glutathione and increasing the expression and activity of various antioxidant enzymes – as by supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc – may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin may mimic and possibly potentiate NO’s activating impact on soluble guanylate cyclase, and NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several of these agents may have utility as nutraceutical adjuvants to standard clinical management of asthma.
Collapse
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, MO, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel
| |
Collapse
|
10
|
L-Arginine Improves Endurance to High-Intensity Interval Exercises in Overweight Men. Int J Sport Nutr Exerc Metab 2020; 31:46-54. [PMID: 33260139 DOI: 10.1123/ijsnem.2020-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
The effects of acute consumption of L-Arginine (L-Arg) in healthy young individuals are not clearly defined, and no studies on the effects of L-Arg in individuals with abnormal body mass index undertaking strenuous exercise exist. Thus, we examined whether supplementation with L-Arg diminishes cardiopulmonary exercise testing responses, such as ventilation (VE), VE/VCO2, oxygen uptake (VO2), and heart rate, in response to an acute session of high-intensity interval exercise (HIIE) in overweight men. A double-blind, randomized crossover design was used to study 30 overweight men (age, 26.5 ± 2.2 years; body weight, 88.2 ± 5.3 kilogram; body mass index, 28.0 ± 1.4 kg/m2). Participants first completed a ramped-treadmill exercise protocol to determine VO2max velocity (vVO2max), after which they participated in two sessions of HIIE. Participants were randomly assigned to receive either 6 g of L-Arg or placebo supplements. The HIIE treadmill running protocol consisted of 12 trials, including exercise at 100% of vVO2max for 1 min interspersed with recovery intervals of 40% of vVO2max for 2 min. Measurements of VO2 (ml·kg-1·min-1), VE (L/min), heart rate (beat per min), and VE/VCO2 were obtained. Supplementation with L-Arg significantly decreased all cardiorespiratory responses during HIIE (placebo+HIIE vs. L-Arg+HIIE for each measurement: VE [80.9 ± 4.3 L/min vs. 74.6 ± 3.5 L/min, p < .05, ES = 1.61], VE/VCO2 [26.4 ± 1.3 vs. 24.4 ± 1.0, p < .05, ES = 1.8], VO2 [26.4 ± 0.8 ml·kg-1·min-1 vs. 24.4 ± 0.9 ml·kg-1·min-1, p < .05, ES = 2.2], and heart rate [159.7 ± 6.3 beats/min vs. 155.0 ± 3.7 beats/min, p < .05, d = 0.89]). The authors conclude consuming L-Arg before HIIE can alleviate the excessive physiological strain resulting from HIIE and help to increase exercise tolerance in participants with a higher body mass index who may need to exercise on a regular basis for extended periods to improve their health.
Collapse
|
11
|
Papamichael MM, Katsardis C, Tsoukalas D, Erbas B, Itsiopoulos C. Weight Status and Respiratory Health in Asthmatic Children. Lung 2019; 197:777-782. [PMID: 31522248 DOI: 10.1007/s00408-019-00273-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 01/23/2023]
Abstract
In this study,we explored the effect of adiposity as measured by BMI on lung function in 72 asthmatic school children (5-12 years) using baseline data from the Mediterranean diet enriched with fatty fish intervention study. Bronchial function was assessed using spirometry and fractional exhaled nitric oxide (FeNO). BMI categories were classified as normal and overweight/obese based on International Obesity Task Force cut-offs. Weak correlations were observed between BMI and FVC (p = 0.013) and FEV1 (p = 0.026). Median FeNO was lower in the overweight/obese as compared to normal weight group (p = 0.027). Linear regression showed an increment in FEF25-75% in the overweight/obese group as compared to normal weight after controlling for confounders namely age, height, sex, regular physical activity, medication and KIDMED score (p = 0.043; β = 11.65 units, 95% CI 0.36-22.94), although with no effect on FeNO. In conclusion, the findings of this study suggest that excess body weight could impact pulmonary dynamics in childhood asthma.
Collapse
Affiliation(s)
- Maria Michelle Papamichael
- Department of Dietetics, Human Nutrition & Sport, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Australia.
| | | | | | - Bircan Erbas
- Department of Public Health, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Catherine Itsiopoulos
- Department of Dietetics, Human Nutrition & Sport, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
12
|
Abstract
Because the pathophysiology of asthma has diverse characteristics, to manage the disease effectively, it is important for clinicians to distinguish among the clinical phenotypes. Among them, adult-onset asthma, that is, late-onset asthma (LOA), is increasing because of the aging of the population. The phenotype of LOA is largely divided into two types according to the presence or absence of eosinophilic inflammation, T-helper (Th)2- and non-Th2-associated LOA. Especially in Th2 LOA related to rhinosinusitis, as pulmonary function at onset is poor and asthma exacerbations occur frequently, it is important to detect this phenotype in the early phase by using a biomarker of Th2-type inflammation such as fractional exhaled nitric oxide (FENO). As non-Th2-LOA is often resistant to corticosteroids, this phenotype often requires another treatment strategy such as macrolide, diet, or smoking cessation. We often struggle with the management of LOA patients due to a lack of evidence; therefore, the elucidation of the mechanism of LOA contributes to increased efficiency of diagnosis and treatment of LOA. Age-related immune system and structural changes are thought to be associated with the pathophysiology of LOA. In the former case, changes in inflammatory cell function such as variations in the innate immune response and acquisition of autoimmunity or upregulation of oxidative stress are thought to be involved in the mechanism. Meanwhile, the latter can also become triggers or exacerbating factors of LOA via enhancement of airway hyperresponsiveness, decline in lung function, increased air trapping, and reduction in chest wall compliance. Therefore, appropriate individualized management in LOA may be possible through precisely assessing the pathophysiology based on age-related functional changes, including the immune and structural system.
Collapse
Affiliation(s)
- Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
13
|
Nguyen DV, Linderholm A, Haczku A, Kenyon N. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther 2017; 180:139-143. [PMID: 28648831 PMCID: PMC5677567 DOI: 10.1016/j.pharmthera.2017.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma.
Collapse
Affiliation(s)
- Dan-Vinh Nguyen
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States.
| | - Angela Linderholm
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Angela Haczku
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Nicholas Kenyon
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| |
Collapse
|
14
|
Guo Y, Ma J, Lu W, He J, Zhang R, Yuan J, Chen W. Associations of Exhaled Carbon Monoxide and Fractional Exhaled Nitric Oxide with Metabolic Syndrome: A Cohort Study. Sci Rep 2016; 6:24532. [PMID: 27076211 PMCID: PMC4830973 DOI: 10.1038/srep24532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Exhaled carbon monoxide (eCO) and fractional exhaled nitric oxide (FeNO) could reflect underlying inflammatory and oxidative stresses, which play important roles in pathogenetic pathways of metabolic syndrome (MetS). However, epidemiologic evidence was limited. We conducted a study in Wuhan-Zhuhai (WHZH) cohort of 3649 community participants to investigate the association between eCO, FeNO and MetS in both cross-sectional and prospective ways. The results showed that higher eCO and FeNO were associated cross-sectionally with a higher prevalence of MetS. The multivariable-adjusted odds ratios for MetS at baseline were 1.22 (95% confidence interval [CI]: 1.11 to 1.35) associated with per log eCO and 1.14 (95% CI: 1.00 to 1.30) associated with per log FeNO. During a follow-up of 3 years, 358/2181 new developed MetS cases were identified. Compared with lowest quartile of eCO and FeNO, the multivariable-adjusted risk ratios (95% CI) for MetS were 1.48 (1.06 to 2.06) related to the highest quartile of eCO. These findings remained consistent across sex but not smoking status, eCO was only associated with MetS in non-smokers when stratified by smoking status. In conclusion, our study demonstrated that eCO and FeNO were independently and positively associated with the prevalence of MetS cross-sectionally, while only eCO was positively related with the incidence of MetS prospectively.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintong He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runbo Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health in Ministry of Education &Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Singh VP, Aggarwal R, Singh S, Banik A, Ahmad T, Patnaik BR, Nappanveettil G, Singh KP, Aggarwal ML, Ghosh B, Agrawal A. Metabolic Syndrome Is Associated with Increased Oxo-Nitrative Stress and Asthma-Like Changes in Lungs. PLoS One 2015; 10:e0129850. [PMID: 26098111 PMCID: PMC4476757 DOI: 10.1371/journal.pone.0129850] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.
Collapse
Affiliation(s)
- Vijay Pal Singh
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| | - Rangoli Aggarwal
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Suchita Singh
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Arpita Banik
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Tanveer Ahmad
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Bijay Ranjan Patnaik
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Giridharan Nappanveettil
- National Centre for Laboratory Animal Sciences, National Institute of Nutrition, Tarnaka, Hyderabad, AP, India
| | - Kunal Pratap Singh
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Balaram Ghosh
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
16
|
Xie Z, Xia S, Qiao Y, Shi Y, Le G. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet. J Anim Physiol Anim Nutr (Berl) 2014; 99:492-500. [DOI: 10.1111/jpn.12254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 08/18/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Z.X. Xie
- The State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - S.F. Xia
- The State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Y. Qiao
- The State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Y.H. Shi
- The State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - G.W. Le
- The State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| |
Collapse
|