1
|
Fan Y, Cui C, Liu Y, Wu K, Du Z, Jiang X, Zhao F, Zhang R, Wang J, Mei H, Zhang H. Physiological and Transcriptional Responses of Sesame ( Sesamum indicum L.) to Waterlogging Stress. Int J Mol Sci 2025; 26:2603. [PMID: 40141245 PMCID: PMC11942034 DOI: 10.3390/ijms26062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Waterlogging stress significantly impacts the growth and productivity of crops. As a traditional oil crop, sesame (Sesamum indicum L.) suffers substantial damage due to waterlogging stress. However, the mechanism underlying waterlogging stress in sesame is still unclear. In this study, we investigated the physiological indicators of two sesame genotypes under waterlogging stress. The results revealed that the activity of antioxidant enzymes in sesame was affected, with the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) significantly increased. Additionally, transcriptional analysis identified a total of 15,143 differentially expressed genes (DEGs). Among them, 759 DEGs exhibited consistent differential expression across all time points, representing the core waterlogging-responsive genes. Gene Ontology (GO) enrichment analysis indicated that the DEGs were primarily associated with hypoxia, stimulus response, and oxidoreductase enzyme activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were mainly enriched in the metabolic and biosynthesis of secondary metabolites, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, MAPK signaling pathway-plant, carbon fixation by Calvin cycle, plant hormone signal transduction, and plant-pathogen interaction pathways. Furthermore, transcription factors (TFs) such as AP2/ERF, bHLH, bZIP, and WRKY may play key roles in the transcriptional changes induced by waterlogging stress. Combined with weighted gene co-expression network analysis (WGCNA) analysis and K-means clustering, a total of 5 hub genes and 56 genes were identified, including F-box protein (Sin09950 and Sin12912), bZIP (Sin04465, Sin00091), WRKY (Sin01376, Sin06113), and so on. In brief, this study explored the regulatory network involved in waterlogging stress in sesame at the transcriptome level, providing valuable insights into unraveling the molecular mechanisms of waterlogging stress and facilitating the breeding of improved waterlogging-tolerant sesame varieties.
Collapse
Affiliation(s)
- Yadong Fan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Fengli Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ruping Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jingjing Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.F.); (C.C.); (Y.L.); (K.W.); (Z.D.); (X.J.); (F.Z.); (R.Z.); (J.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
2
|
Zhang Y, Chen X, Geng S, Zhang X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. FRONTIERS IN PLANT SCIENCE 2025; 16:1545912. [PMID: 40017819 PMCID: PMC11866847 DOI: 10.3389/fpls.2025.1545912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
Waterlogging is a major abiotic stress affecting plant growth and productivity. Regardless of rainfall or irrigated environments, plants frequently face waterlogging, which may range from short-term to prolonged durations. Excessive precipitation and soil moisture disrupt crop growth, not because of the water itself but due to oxygen deficiency caused by water saturation. This lack of oxygen triggers a cascade of detrimental effects. Once the soil becomes saturated, oxygen depletion leads to anaerobic respiration in plant roots, weakening their respiratory processes. Waterlogging impacts plant morphology, growth, and metabolism, often increasing ethylene production and impairing vital physiological functions. Plants respond to waterlogging stress by altering their morphological structures, energy metabolism, hormone synthesis, and signal transduction pathways. This paper synthesizes findings from previous studies to systematically analyze the effects of waterlogging on plant yield, hormone regulation, signal transduction, and adaptive responses while exploring the mechanisms underlying plant tolerance to waterlogging. For instance, waterlogging reduces crop yield and disrupts key physiological and biochemical processes, such as hormone synthesis and nutrient absorption, leading to deficiencies of essential nutrients like potassium and calcium. Under waterlogged conditions, plants exhibit morphological changes, including the formation of adventitious roots and the development of aeration tissues to enhance oxygen transport. This review also highlighted effective strategies to improve plant tolerance to waterlogging. Examples include strengthening field management practices, applying exogenous hormones such as 6-benzylaminopurine (6-BA) and γ-aminobutyric acid (GABA), overexpressing specific genes (e.g., ZmEREB180, HvERF2.11, and RAP2.6L), and modifying root architecture. Lastly, we discuss future challenges and propose directions for advancing research in this field.
Collapse
Affiliation(s)
- Yusen Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiaojuan Chen
- Inner Mongolia University of Bryophyte Resources and Conservation Laboratory, Inner Mongolia University, Hohhot, China
| | - Shiying Geng
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| |
Collapse
|
3
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
4
|
Ramlal A, Lal SK, Sathuvalli V. Editorial: Advances in breeding for waterlogging tolerance in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1284730. [PMID: 37794926 PMCID: PMC10545854 DOI: 10.3389/fpls.2023.1284730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Ayyagari Ramlal
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Malaysia
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S. K. Lal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vidyasagar Sathuvalli
- Department of Crop and Soil Science, Oregon State University, Hermiston, OR, United States
| |
Collapse
|
5
|
Karunarathne S, Walker E, Sharma D, Li C, Han Y. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. J Zhejiang Univ Sci B 2023; 24:1069-1092. [PMID: 38057266 PMCID: PMC10710907 DOI: 10.1631/jzus.b2200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 07/11/2023]
Abstract
Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.
Collapse
Affiliation(s)
- Sakura Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| |
Collapse
|
6
|
A framework for multi-sensor satellite data to evaluate crop production losses: the case study of 2022 Pakistan floods. Sci Rep 2023; 13:4240. [PMID: 36918608 PMCID: PMC10015072 DOI: 10.1038/s41598-023-30347-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In August 2022, one of the most severe floods in the history of Pakistan was triggered due to the exceptionally high monsoon rainfall. It has affected ~ 33 million people across the country. The agricultural losses in the most productive Indus plains aggravated the risk of food insecurity in the country. As part of the loss and damage (L&D) assessment methodologies, we developed an approach for evaluating crop-specific post-disaster production losses based on multi-sensor satellite data. An integrated assessment was performed using various indicators derived from pre- and post-flood images of Sentinel-1 (flood extent mapping), Sentinel-2 (crop cover), and GPM (rainfall intensity measurements) to evaluate crop-specific losses. The results showed that 2.5 million ha (18% of Sindh's total area) was inundated out of which 1.1 million ha was cropland. The remainder of crop damage came from the extreme rainfall downpour, flash floods and management deficiencies. Thus approximately 57% (2.8 million ha) of the cropland was affected out of the 4.9 million ha of agricultural area in Sindh. The analysis indicated expected production losses of 88% (3.1 million bales), 80% (1.8 million tons), and 61% (10.5 million tons) for cotton, rice, and sugarcane. This assessment provided useful tools to evaluate the L&D of agricultural production and to develop evidence-based policies enabling post-flood recovery, rehabilitation of people and restoration of livelihood.
Collapse
|
7
|
Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 2023; 65:162-180. [PMID: 35119645 DOI: 10.1007/s12033-022-00456-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
Abstract
Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Evan McCoy
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, USA
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Center for Desert Agriculture and Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| |
Collapse
|
8
|
He L, Yan J, Ding X, Jin H, Zhang H, Cui J, Zhou Q, Yu J. Integrated analysis of transcriptome and microRNAs associated with exogenous calcium-mediated enhancement of hypoxic tolerance in cucumber seedlings ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 13:994268. [PMID: 36684729 PMCID: PMC9846352 DOI: 10.3389/fpls.2022.994268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Plants often suffer from hypoxic stress due to flooding caused by extreme weather. Hypoxia usually leads to restricted oxygen supply and alters metabolic patterns from aerobic to anaerobic. Cucumber roots are fragile and highly sensitive to damage from hypoxic stress. The purpose of this study was to investigate the regulatory mechanism of exogenous calcium alleviating hypoxic stress in cucumber through transcriptome and small RNAs analysis. Three treatments were performed in this paper, including untreated-control (CK), hypoxic stress (H), and hypoxic stress + exogenous calcium treatment (H + Ca2+). A large number of differentially expressed genes (DEGs) were identified, 1,463 DEGs between CK vs H, 3,399 DEGs between H vs H + Ca2+, and 5,072 DEGs between CK vs H + Ca2+, respectively. KEGG analysis of DEGs showed that exogenous calcium could activate hormone signaling pathways (ethylene, ABA, IAA and cytokinin), transcription factors (MYB, MYB-related, bHLH, bZIP, and WRKY), calcium signaling and glycolysis pathway to mitigating hypoxic stress in cucumber seedlings. Additionally, miRNA and their target genes were detected and predicted between treatments. The target genes of these miRNAs revealed that auxin, cellulose synthase, and mitochondrial ribosomal related genes (Csa2G315390, Csa6G141390, Csa4G053280, and Csa6G310480) probably play in the improvement of the hypoxic tolerance of cucumber seedlings through exogenous calcium application. In short, our data adds new information to the mechanism of exogenous calcium mitigation of hypoxic stress injury in cucumber seedlings at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Yan
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiawei Cui
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
9
|
Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010088. [PMID: 36676037 PMCID: PMC9867252 DOI: 10.3390/life13010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Globally, abiotic stresses, such as temperature (heat or cold), water (drought and flooding), and salinity, cause significant losses in crop production and have adverse effects on plant growth and development. A variety of DNA-based molecular markers, such as SSRs, RFLPs, AFLPs, SNPs, etc., have been used to screen germplasms for stress tolerance and the QTL mapping of stress-related genes. Such molecular-marker-assisted selection strategies can quicken the development of tolerant/resistant cultivars to withstand abiotic stresses. Oilseeds such as rapeseed, mustard, peanuts, soybeans, sunflower, safflower, sesame, flaxseed, and castor are the most important source of edible oil worldwide. Although oilseed crops are known for their capacity to withstand abiotic challenges, there is a significant difference between actual and potential yields due to the adaptation and tolerance to severe abiotic pressures. This review summarizes the applications of molecular markers to date to achieve abiotic stress tolerance in major oilseed crops. The molecular markers that have been reported for genetic diversity studies and the mapping and tagging of genes/QTLs for drought, heavy metal stress, salinity, flooding, cold and heat stress, and their application in the MAS are presented.
Collapse
|
10
|
Li H, Zhang H, Yang Y, Fu G, Tao L, Xiong J. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157484. [PMID: 35868402 DOI: 10.1016/j.scitotenv.2022.157484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Irrigation has been considered an effective approach for decreasing cadmium (Cd) uptake and accumulation in rice (Oryza sativa), but increasing evidence shows that the effects of different water management strategies on Cd accumulation in rice are contradictory in different studies, and the detailed regulatory mechanisms remain unconfirmed. Most previous studies have shown that irrigation regulates Cd accumulation in rice mainly by affecting Cd bioavailability, pH and redox potential (Eh) in soil, and few reports have focused on the function of oxygen (O2) in regulating the physiological mechanisms of rice on Cd tolerance or accumulation. Here, we concluded that irrigation affects Cd bioavailability, pH and Eh in soil mainly by regulating O2 content. In addition, recent studies have also shown that irrigation-regulated O2 also affects Cd accumulation in rice by affecting iron plaque (IP), the radial oxygen loss (ROL) barrier, the cell wall and mass flow in rice roots. All these results indicate that O2 is the key factor in irrigation-regulated Cd accumulation in rice, and dramatic result variations from different irrigation experiments are due to the different rhizosphere O2 conditions. This review will help clarify the effects and regulatory mechanisms of irrigation on Cd accumulation in rice and reveal the roles of O2 in this process.
Collapse
Affiliation(s)
- Hubo Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Huiquan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Yongjie Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
11
|
Identification of Functional Genetic Variations Underlying Flooding Tolerance in Brazilian Soybean Genotypes. Int J Mol Sci 2022; 23:ijms231810611. [PMID: 36142529 PMCID: PMC9502317 DOI: 10.3390/ijms231810611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Flooding is a frequent environmental stress that reduces soybean (Glycine max) growth and grain yield in many producing areas in the world, such as, e.g., in the United States, Southeast Asia and Southern Brazil. In these regions, soybean is frequently cultivated in lowland areas by rotating with rice (Oryza sativa), which provides numerous technical, economic and environmental benefits. Given these realities, this work aimed to characterize physiological responses, identify genes differentially expressed under flooding stress in Brazilian soybean genotypes with contrasting flooding tolerance, and select SNPs with potential use for marker-assisted selection. Soybean cultivars TECIRGA 6070 (flooding tolerant) and FUNDACEP 62 (flooding sensitive) were grown up to the V6 growth stage and then flooding stress was imposed. Total RNA was extracted from leaves 24 h after the stress was imposed and sequenced. In total, 421 induced and 291 repressed genes were identified in both genotypes. TECIRGA 6070 presented 284 and 460 genes up- and down-regulated, respectively, under flooding conditions. Of those, 100 and 148 genes were exclusively up- and down-regulated, respectively, in the tolerant genotype. Based on the RNA sequencing data, SNPs in differentially expressed genes in response to flooding stress were identified. Finally, 38 SNPs, located in genes with functional annotation for response to abiotic stresses, were found in TECIRGA 6070 and absent in FUNDACEP 62. To validate them, 22 SNPs were selected for designing KASP assays that were used to genotype a panel of 11 contrasting genotypes with known phenotypes. In addition, the phenotypic and grain yield impacts were analyzed in four field experiments using a panel of 166 Brazilian soybean genotypes. Five SNPs possibly related to flooding tolerance in Brazilian soybean genotypes were identified. The information generated from this research will be useful to develop soybean genotypes adapted to poorly drained soils or areas subject to flooding.
Collapse
|
12
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
13
|
Mishra V, Singh A, Gandhi N, Sarkar Das S, Yadav S, Kumar A, Sarkar AK. A unique miR775- GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022; 149:274011. [DOI: 10.1242/dev.199974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| | - Nidhi Gandhi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal 721104, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K. Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| |
Collapse
|
14
|
Maranna S, Nataraj V, Kumawat G, Chandra S, Rajesh V, Ramteke R, Patel RM, Ratnaparkhe MB, Husain SM, Gupta S, Khandekar N. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Sci Rep 2021; 11:22853. [PMID: 34819529 PMCID: PMC8613251 DOI: 10.1038/s41598-021-02064-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Breeding for higher yield and wider adaptability are major objectives of soybean crop improvement. In the present study, 68 advanced breeding lines along with seven best checks were evaluated for yield and attributing traits by following group balanced block design. Three blocks were constituted based on the maturity duration of the breeding lines. High genetic variability for the twelve quantitative traits was found within and across the three blocks. Several genotypes were found to outperform check varieties for yield and attributing traits. During the same crop season, one of the promising entries, NRC 128,was evaluated across seven locations for its wider adaptability and it has shown stable performance in Northern plain Zone with > 20% higher yield superiority over best check PS 1347. However, it produced 9.8% yield superiority over best check in Eastern Zone. Screening for waterlogging tolerance under artificial conditions revealed that NRC 128 was on par with the tolerant variety JS 97-52. Based on the yield superiority, wider adaptability and waterlogging tolerance, NRC 128 was released and notified by Central Varietal Release Committee (CVRC) of India, for its cultivation across Eastern and Northern Plain Zones of India.
Collapse
Affiliation(s)
| | | | - Giriraj Kumawat
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | - Subhash Chandra
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | - Vangala Rajesh
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | - Rajkumar Ramteke
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | | | | | - S M Husain
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| | - Nita Khandekar
- ICAR-Indian Institute of Soybean Research, Indore, 452001, India
| |
Collapse
|
15
|
Verma V, Vishal B, Kohli A, Kumar PP. Systems-based rice improvement approaches for sustainable food and nutritional security. PLANT CELL REPORTS 2021; 40:2021-2036. [PMID: 34591154 DOI: 10.1007/s00299-021-02790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value. With hunger and malnutrition rampant among the poor, rice research for development is unique in global food and nutrition security. A systems-based, sustainable increase in rice quantity and quality is imperative for environmental and biodiversity benefits. Upstream 'discovery' through biotechnology, midstream 'development' through breeding and agronomy, downstream 'dissemination and deployment' must be 'demand-driven' for 'distinct socio-economic transformational impacts'. Local agro-ecology and livelihood nexus must drive the research agenda for targeted benefits. This necessitates sustained long-term investments by government, non-government and private sectors to secure the future food, nutrition, environment, prosperity and equity status.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Ajay Kohli
- Strategic Innovation Platform, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
16
|
Tong C, Hill CB, Zhou G, Zhang XQ, Jia Y, Li C. Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081560. [PMID: 34451605 PMCID: PMC8401455 DOI: 10.3390/plants10081560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 05/22/2023]
Abstract
Waterlogging occurs when soil is saturated with water, leading to anaerobic conditions in the root zone of plants. Climate change is increasing the frequency of waterlogging events, resulting in considerable crop losses. Plants respond to waterlogging stress by adventitious root growth, aerenchyma formation, energy metabolism, and phytohormone signalling. Genotypes differ in biomass reduction, photosynthesis rate, adventitious roots development, and aerenchyma formation in response to waterlogging. We reviewed the detrimental effects of waterlogging on physiological and genetic mechanisms in four major cereal crops (rice, maize, wheat, and barley). The review covers current knowledge on waterlogging tolerance mechanism, genes, and quantitative trait loci (QTL) associated with waterlogging tolerance-related traits, the conventional and modern breeding methods used in developing waterlogging tolerant germplasm. Lastly, we describe candidate genes controlling waterlogging tolerance identified in model plants Arabidopsis and rice to identify homologous genes in the less waterlogging-tolerant maize, wheat, and barley.
Collapse
Affiliation(s)
- Cen Tong
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Camilla Beate Hill
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Gaofeng Zhou
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Xiao-Qi Zhang
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Jia
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (C.T.); (C.B.H.); (G.Z.); (X.-Q.Z.); (Y.J.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
- Correspondence: ; Tel.: +61-893-607-519
| |
Collapse
|
17
|
Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis. Mol Biol Rep 2021; 48:2453-2462. [PMID: 33755850 DOI: 10.1007/s11033-021-06279-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Sorghum is an essential food crop for millions of people in the semi-arid regions of the world, where its production is severely limited by drought stress. Drought in the early stages of crop growth and development irreversibly interferes, which leads to poor yield. The effect of drought stress in sorghum was studied at physiological, biochemical, and molecular levels in a set of two genotypes differing in their tolerance to drought. Drought stress was imposed by restraining water for 10 days on 25 days old seedlings. A significant influence of water stress was observed on the considered morpho-physiological and biochemical traits. The genotype DRT1019 exhibited physiological and biochemical indicators of drought avoidance through delayed leaf rolling, osmotic adjustment, ideal gas-exchange system, solute accumulation, an increased level of enzyme synthesis and root trait expression as compared to the ICSV95022 genotype. Furthermore, differences in the metabolite changes viz. total carbohydrate, total amides, and lipids were found between the two genotypes under drought stress. In addition, transcript profiling of potential candidate drought genes such as SbTIP3-1, SbDHN1, SbTPS, and SbDREB1A revealed up-regulation in DRT1019, which corresponded with other important physiological and biochemical parameters exhibited in the genotype. In conclusion, this study provides an improved understanding of whole plant response to drought stress in sorghum. Additionally, our results provide promising candidate genes for drought tolerance in sorghum that can be used as potential markers for drought tolerance breeding programs.
Collapse
|
18
|
Lai MC, Lai ZY, Jhan LH, Lai YS, Kao CF. Prioritization and Evaluation of Flooding Tolerance Genes in Soybean [ Glycine max (L.) Merr.]. Front Genet 2021; 11:612131. [PMID: 33584812 PMCID: PMC7873447 DOI: 10.3389/fgene.2020.612131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important legume crops abundant in edible protein and oil in the world. In recent years there has been increasingly more drastic weather caused by climate change, with flooding, drought, and unevenly distributed rainfall gradually increasing in terms of the frequency and intensity worldwide. Severe flooding has caused extensive losses to soybean production and there is an urgent need to breed strong soybean seeds with high flooding tolerance. The present study demonstrates bioinformatics big data mining and integration, meta-analysis, gene mapping, gene prioritization, and systems biology for identifying prioritized genes of flooding tolerance in soybean. A total of 83 flooding tolerance genes (FTgenes), according to the appropriate cut-off point, were prioritized from 36,705 test genes collected from multidimensional genomic features linking to soybean flooding tolerance. Several validation results using independent samples from SoyNet, genome-wide association study, SoyBase, GO database, and transcriptome databases all exhibited excellent agreement, suggesting these 83 FTgenes were significantly superior to others. These results provide valuable information and contribution to research on the varieties selection of soybean.
Collapse
Affiliation(s)
- Mu-Chien Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Wang J, Hou W, Christensen MJ, Li X, Xia C, Li C, Nan Z. Role of Epichloë Endophytes in Improving Host Grass Resistance Ability and Soil Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6944-6955. [PMID: 32551564 DOI: 10.1021/acs.jafc.0c01396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The past decade has witnessed significant advances in understanding the interaction between grasses and systemic fungal endophytes of the genus Epichloë, with evidence that plants have evolved multiple strategies to cope with abiotic stresses by reprogramming physiological responses. Soil nutrients directly affect plant growth, while soil microbes are also closely connected to plant growth and health. Epichloë endophytes could affect soil fertility by modifying soil nutrient contents and soil microbial diversity. Therefore, we analyze recent advances in our understanding of the role of Epichloë endophytes under the various abiotic stresses and the role of grass-Epichloë symbiosis on soil fertility. Various cool-season grasses are infected by Epichloë species, which contribute to health, growth, persistence, and seed survival of host grasses by regulating key systems, including photosynthesis, osmotic regulation, and antioxidants and activity of key enzymes of host physiology processes under abiotic stresses. The Epichloë endophyte offers significant prospects to magnify the crop yield, plant resistance, and food safety in ecological systems by modulating soil physiochemical properties and soil microbes. The enhancing resistance of host grasses to abiotic stresses by an Epichloë endophyte is a complex manifestation of different physiological and biochemical events through regulating soil properties and soil microbes by the fungal endophyte. The Epichloë-mediated mechanisms underlying regulation of abiotic stress responses are involved in osmotic adjustment, antioxidant machinery, photosynthetic system, and activity of key enzymes critical in developing plant adaptation strategies to abiotic stress. Therefore, the Epichloë endophytes are an attractive choice in increasing resistance of plants to abiotic stresses and are also a good candidate for improving soil fertility and regulating microbial diversity to improve plant growth.
Collapse
Affiliation(s)
- Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Michael J Christensen
- Grasslands Research Centre, AgResearch, Private Bag 11-008, Palmerston North 4442, New Zealand
| | - Xiuzhang Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| |
Collapse
|
20
|
Liu W, Zhang Y, Li W, Lin Y, Wang C, Xu R, Zhang L. Genome-wide characterization and expression analysis of soybean trihelix gene family. PeerJ 2020; 8:e8753. [PMID: 32206450 PMCID: PMC7075366 DOI: 10.7717/peerj.8753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Trihelix transcription factors play multiple roles in plant growth, development and various stress responses. In this study, we identified 71 trihelix family genes in the soybean genome. These trihelix genes were located at 19 out of 20 soybean chromosomes unevenly and were classified into six distinct subfamilies: GT-1, GT-2, GTγ, SIP1, SH4 and GTδ. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Thirteen segmental duplicated gene pairs were identified and all of them experienced a strong purifying selective pressure during evolution. Various stress-responsive cis-elements presented in the promoters of soybean trihelix genes, suggesting that the trihelix genes might respond to the environmental stresses in soybean. The expression analysis suggests that trihelix genes are involved in diverse functions during soybean development, flood or salinity tolerance, and plant immunity. Our results provide genomic information of the soybean trihelix genes and a basis for further characterizing their roles in response to environmental stresses.
Collapse
Affiliation(s)
- Wei Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.,Shandong Engineering Laboratory of Featured Crops, Jinan, China
| |
Collapse
|
21
|
Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. SUSTAINABILITY 2020. [DOI: 10.3390/su12041632] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flooding or submergence is one of the major environmental stressors affecting many man-made and natural ecosystems worldwide. The increase in the frequency and duration of heavy rainfall due to climate change has negatively affected plant growth and development, which eventually causes the death of plants if it persists for days. Most crops, especially rice, being a semi-aquatic plant, are greatly affected by flooding, leading to yield losses each year. Genetic variability in the plant response to flooding includes the quiescence scheme, which allows underwater endurance of a prolonged period, escape strategy through stem elongation, and alterations in plant architecture and metabolism. Investigating the mechanism for flooding survival in wild species and modern rice has yielded significant insight into developmental, physiological, and molecular strategies for submergence and waterlogging survival. Significant progress in the breeding of submergence tolerant rice varieties has been made during the last decade following the successful identification and mapping of a quantitative trait locus for submergence tolerance, designated as SUBMERGENCE 1 (SUB1) from the FR13A landrace. Using marker-assisted backcrossing, the SUB1 QTL (quantitative trait locus) has been incorporated into many elite varieties within a short time and with high precision as compared with conventional breeding methods. Despite the advancement in submergence tolerance, for future studies, there is a need for practical approaches exploring genome-wide association studies (GWA) and QTL in combination with specific tolerance traits, such as drought, salinity, disease and insect resistance.
Collapse
|
22
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
23
|
Cao W, Zhou J, Yuan Y, Ye H, Nguyen HT, Chen J, Zhou J. Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2682. [PMID: 31200576 PMCID: PMC6630946 DOI: 10.3390/s19122682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
Abstract
Flood has an important effect on plant growth by affecting their physiologic and biochemical properties. Soybean is one of the main cultivated crops in the world and the United States is one of the largest soybean producers. However, soybean plant is sensitive to flood stress that may cause slow growth, low yield, small crop production and result in significant economic loss. Therefore, it is critical to develop soybean cultivars that are tolerant to flood. One of the current bottlenecks in developing new crop cultivars is slow and inaccurate plant phenotyping that limits the genetic gain. This study aimed to develop a low-cost 3D imaging system to quantify the variation in the growth and biomass of soybean due to flood at its early growth stages. Two cultivars of soybeans, i.e. flood tolerant and flood sensitive, were planted in plant pots in a controlled greenhouse. A low-cost 3D imaging system was developed to take measurements of plant architecture including plant height, plant canopy width, petiole length, and petiole angle. It was found that the measurement error of the 3D imaging system was 5.8% in length and 5.0% in angle, which was sufficiently accurate and useful in plant phenotyping. Collected data were used to monitor the development of soybean after flood treatment. Dry biomass of soybean plant was measured at the end of the vegetative stage (two months after emergence). Results show that four groups had a significant difference in plant height, plant canopy width, petiole length, and petiole angle. Flood stress at early stages of soybean accelerated the growth of the flood-resistant plants in height and the petiole angle, however, restrained the development in plant canopy width and the petiole length of flood-sensitive plants. The dry biomass of flood-sensitive plants was near two to three times lower than that of resistant plants at the end of the vegetative stage. The results indicate that the developed low-cost 3D imaging system has the potential for accurate measurements in plant architecture and dry biomass that may be used to improve the accuracy of plant phenotyping.
Collapse
Affiliation(s)
- Wenyi Cao
- Institute Laser Engineering, Beijing University of Technology, Beijing 100124, China.
- Research Center of 3D Printing Engineering Technology, Beijing University of Technology, Beijing 100124, China.
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Jing Zhou
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Yanping Yuan
- Institute Laser Engineering, Beijing University of Technology, Beijing 100124, China.
- Research Center of 3D Printing Engineering Technology, Beijing University of Technology, Beijing 100124, China.
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jimin Chen
- Institute Laser Engineering, Beijing University of Technology, Beijing 100124, China.
- Research Center of 3D Printing Engineering Technology, Beijing University of Technology, Beijing 100124, China.
| | - Jianfeng Zhou
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
25
|
Nair RM, Pandey AK, War AR, Hanumantharao B, Shwe T, Alam AKMM, Pratap A, Malik SR, Karimi R, Mbeyagala EK, Douglas CA, Rane J, Schafleitner R. Biotic and Abiotic Constraints in Mungbean Production-Progress in Genetic Improvement. FRONTIERS IN PLANT SCIENCE 2019; 10:1340. [PMID: 31736995 PMCID: PMC6829579 DOI: 10.3389/fpls.2019.01340] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/25/2019] [Indexed: 05/22/2023]
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important food and cash legume crop in Asia. Development of short duration varieties has paved the way for the expansion of mungbean into other regions such as Sub-Saharan Africa and South America. Mungbean productivity is constrained by biotic and abiotic factors. Bruchids, whitefly, thrips, stem fly, aphids, and pod borers are the major insect-pests. The major diseases of mungbean are yellow mosaic, anthracnose, powdery mildew, Cercospora leaf spot, halo blight, bacterial leaf spot, and tan spot. Key abiotic stresses affecting mungbean production are drought, waterlogging, salinity, and heat stress. Mungbean breeding has been critical in developing varieties with resistance to biotic and abiotic factors, but there are many constraints still to address that include the precise and accurate identification of resistance source(s) for some of the traits and the traits conferred by multi genes. Latest technologies in phenotyping, genomics, proteomics, and metabolomics could be of great help to understand insect/pathogen-plant, plant-environment interactions and the key components responsible for resistance to biotic and abiotic stresses. This review discusses current biotic and abiotic constraints in mungbean production and the challenges in genetic improvement.
Collapse
Affiliation(s)
- Ramakrishnan M. Nair
- World Vegetable Center, South Asia, Hyderabad, India
- *Correspondence: Ramakrishnan M. Nair,
| | | | - Abdul R. War
- World Vegetable Center, South Asia, Hyderabad, India
| | | | - Tun Shwe
- Myanmar Department of Agricultural Research, Nay Pyi Taw, Myanmar
| | - AKMM Alam
- Pulses Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Aditya Pratap
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Rael Karimi
- Kenya Agricultural and Livestock Research Organization (KALRO), Katumani, Kenya
| | - Emmanuel K. Mbeyagala
- National Agricultural Research Organization-National Semi-Arid Resources Research Institute (NARO-NaSARRI), Soroti, Uganda
| | - Colin A. Douglas
- Agri-Science Queensland, Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati, India
| | | |
Collapse
|
26
|
Proteomic Analysis of Rapeseed Root Response to Waterlogging Stress. PLANTS 2018; 7:plants7030071. [PMID: 30205432 PMCID: PMC6160990 DOI: 10.3390/plants7030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
The overall health of a plant is constantly affected by the changing and hostile environment. Due to climate change and the farming pattern of rice (Oryza sativa) and rapeseed (Brassica napus L.), stress from waterlogging poses a serious threat to productivity assurance and the yield of rapeseed in China's Yangtze River basin. In order to improve our understanding of the complex mechanisms behind waterlogging stress and identify waterlogging-responsive proteins, we firstly conducted iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic analysis of rapeseed roots under waterlogging treatments, for both a tolerant cultivar ZS9 and sensitive cultivar GH01. A total of 7736 proteins were identified by iTRAQ, of which several hundred showed different expression levels, including 233, 365, and 326 after waterlogging stress for 4H, 8H, and 12H in ZS9, respectively, and 143, 175, and 374 after waterlogging stress for 4H, 8H, and 12H in GH01, respectively. For proteins repeatedly identified at different time points, gene ontology (GO) cluster analysis suggested that the responsive proteins of the two cultivars were both enriched in the biological process of DNA-dependent transcription and the oxidation⁻reduction process, and response to various stress and hormone stimulus, while different distribution frequencies in the two cultivars was investigated. Moreover, overlap proteins with similar or opposite tendencies of fold change between ZS9 and GH01 were observed and clustered based on the different expression ratios, suggesting the two genotype cultivars exhibited diversiform molecular mechanisms or regulation pathways in their waterlogging stress response. The following qRT-PCR (quantitative real-time polymerase chain reaction) results verified the candidate proteins at transcription levels, which were prepared for further research. In conclusion, proteins detected in this study might perform different functions in waterlogging responses and would provide information conducive to better understanding adaptive mechanisms under environmental stresses.
Collapse
|
27
|
Ramadoss N, Gupta D, Vaidya BN, Joshee N, Basu C. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance. Biochem Biophys Res Commun 2018; 503:365-370. [PMID: 29894687 DOI: 10.1016/j.bbrc.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/15/2022]
Abstract
Ethylene is a phytohormone that has gained importance through its role in stress tolerance and fruit ripening. In our study we evaluated the functional potential of the enzyme involved in ethylene biosynthesis of plants called ACC (aminocyclopropane-1-carboxylic acid) oxidase which converts precursor ACC to ethylene. Studies on ethylene have proven that it is effective in improving the flood tolerance in plants. Thus our goal was to understand the potential of ACC oxidase gene overexpression in providing flood tolerance in transgenic plants. ACC oxidase gene was PCR amplified and inserted into the pBINmgfp5-er vector, under the control of a constitutive Cauliflower Mosaic Virus promoter. GV101 strain of Agrobacterium tumefaciens containing recombinant pBINmgfp5-er vector (referred herein as pBIN-ACC) was used for plant transformation by the 'floral dip' method. The transformants were identified through kanamycin selection and grown till T3 (third transgenic) generation. The flood tolerance was assessed by placing both control and transgenic plants on deep plastic trays filled with tap water that covered the soil surface. Our result shows that wild-type Arabidopsis could not survive more than 20 days under flooding while the transgenic lines survived 35 days, suggesting development of flood tolerance with overexpression of ACC oxidase. Further molecular studies should be done to elucidate the role and pathways of ACC oxidase and other phytohormones involved in the development of flood adaptation.
Collapse
Affiliation(s)
- Niveditha Ramadoss
- Department of Biology, California State University, Northridge, CA, 91330, USA
| | - Dinesh Gupta
- Department of Biology, California State University, Northridge, CA, 91330, USA
| | - Brajesh N Vaidya
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, 31030, USA
| | - Nirmal Joshee
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, 31030, USA
| | - Chhandak Basu
- Department of Biology, California State University, Northridge, CA, 91330, USA.
| |
Collapse
|
28
|
Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1835-1849. [PMID: 27927997 DOI: 10.1093/jxb/erw433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and its interaction with high temperature are the major abiotic stress factors affecting soybean yield and production stability. Ongoing climate changes are anticipated to intensify drought events, which will further impact crop production and food security. However, excessive water also limits soybean production. The success of soybean breeding programmes for crop improvement is dependent on the extent of genetic variation present in the germplasm base. Screening for natural genetic variation in drought- and flooding tolerance-related traits, including root system architecture, water and nitrogen-fixation efficiency, and yield performance indices, has helped to identify the best resources for genetic studies in soybean. Genomic resources, including whole-genome sequences of diverse germplasms, millions of single-nucleotide polymorphisms, and high-throughput marker genotyping platforms, have expedited gene and marker discovery for translational genomics in soybean. This review highlights the current knowledge of the genetic diversity and quantitative trait loci associated with root system architecture, canopy wilting, nitrogen-fixation ability, and flooding tolerance that contributes to the understanding of drought- and flooding-tolerance mechanisms in soybean. Next-generation mapping approaches and high-throughput phenotyping will facilitate a better understanding of phenotype-genotype associations and help to formulate genomic-assisted breeding strategies, including genomic selection, in soybean for tolerance to drought and flooding stress.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Heng Ye
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - Li Song
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - MacKensie Murphy
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri-Fisher Delta Research Center, Portageville, MO 63873, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Jitsuyama Y. Hypoxia-Responsive Root Hydraulic Conductivity Influences Soybean Cultivar-Specific Waterlogging Tolerance. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.84054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
31
|
Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT. Identification and Comparative Analysis of Differential Gene Expression in Soybean Leaf Tissue under Drought and Flooding Stress Revealed by RNA-Seq. FRONTIERS IN PLANT SCIENCE 2016; 7:1044. [PMID: 27486466 PMCID: PMC4950259 DOI: 10.3389/fpls.2016.01044] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Drought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes (DEGs) under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling. A total of 2724 and 3498 DEGs were identified under drought and flooding treatments, respectively. These genes comprise 289 Transcription Factors (TFs) representing Basic Helix-loop Helix (bHLH), Ethylene Response Factors (ERFs), myeloblastosis (MYB), No apical meristem (NAC), and WRKY amino acid motif (WRKY) type major families known to be involved in the mechanism of stress tolerance. The expression of photosynthesis and chlorophyll synthesis related genes were significantly reduced under both types of stresses, which limit the metabolic processes and thus help prolong survival under extreme conditions. However, cell wall synthesis related genes were up-regulated under drought stress and down-regulated under flooding stress. Transcript profiles involved in the starch and sugar metabolism pathways were also affected under both stress conditions. The changes in expression of genes involved in regulating the flux of cell wall precursors and starch/sugar content can serve as an adaptive mechanism for soybean survival under stress conditions. This study has revealed the involvement of TFs, transporters, and photosynthetic genes, and has also given a glimpse of hormonal cross talk under the extreme water regimes, which will aid as an important resource for soybean crop improvement.
Collapse
Affiliation(s)
- Wei Chen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Qiuming Yao
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gunvant B. Patil
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Gaurav Agarwal
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | - Li Lin
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Biao Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Legume Biotechnology Laboratory, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yongqin Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Silvas J. Prince
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Li Song
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Dong Xu
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yongqiang C. An
- Plant Genetics Research Unit, Donald Danforth Plant Science Center, US Department of Agriculture, Agricultural Research Service, Midwest AreaSt. Louis, MO, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Henry T. Nguyen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- *Correspondence: Henry T. Nguyen
| |
Collapse
|
32
|
Song M, Li X, Saikkonen K, Li C, Nan Z. An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:714. [PMID: 26442028 PMCID: PMC4585003 DOI: 10.3389/fpls.2015.00714] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/26/2015] [Indexed: 05/20/2023]
Abstract
Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL.
Collapse
Affiliation(s)
- Yoon-Ha Kim
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Sun-Joo Hwang
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Waqas
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Department of Agriculture, Government of Khyber PakhtunkhwaPakistan
| | - Abdul L. Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Joon-Hee Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Jeong-Dong Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- *Correspondence: In-Jung Lee, Crop Physiology Laboratory, Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
34
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
35
|
Meisrimler CN, Buck F, Lüthje S. Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress. Proteomes 2014; 2:303-322. [PMID: 28250383 PMCID: PMC5302756 DOI: 10.3390/proteomes2030303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022] Open
Abstract
Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30-58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| | - Friedrich Buck
- University Hospital Eppendorf, Institute of Clinical Chemistry, Campus Science, Martinistraße 52, D-20246 Hamburg, Germany.
| | - Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| |
Collapse
|
36
|
A mixed method to evaluate burden of malaria due to flooding and waterlogging in Mengcheng County, China: a case study. PLoS One 2014; 9:e97520. [PMID: 24830808 PMCID: PMC4022516 DOI: 10.1371/journal.pone.0097520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China. Methods A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study. Results A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR) = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively. Conclusion Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters.
Collapse
|
37
|
Zou X, Hu C, Zeng L, Cheng Y, Xu M, Zhang X. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS One 2014; 9:e89731. [PMID: 24594687 PMCID: PMC3940661 DOI: 10.1371/journal.pone.0089731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Waterlogging tolerance is typically evaluated at a specific development stage, with an implicit assumption that differences in waterlogging tolerance expressed in these systems will result in improved yield performance in fields. It is necessary to examine these criteria in fields. In the present study, three experiments were conducted to screen waterlogging tolerance in 25 rapeseed (Brassica napus L.) varieties at different developmental stages, such as seedling establishment stage and seedling stage at controlled environment, and maturity stage in the fields. The assessments for physiological parameters at three growth stages suggest that there were difference of waterlogging tolerance at all the development stages, providing an important basis for further development of breeding more tolerant materials. The results indicated that flash waterlogging restricts plant growth and growth is still restored after removal of the stress. Correlation analysis between waterlogging tolerance coefficient (WTC) of yield and other traits revealed that there was consistency in waterlogging tolerance of the genotypes until maturity, and good tolerance at seedling establishment stage and seedling stage can guarantee tolerance in later stages. The waterlogging-tolerant plants could be selected using some specific traits at any stage, and selections would be more effective at the seedling establishment stage. Thus, our study provides a method for screening waterlogging tolerance, which would enable the suitable basis for initial selection of a large number of germplasm or breeding populations for waterlogging tolerance and help for verifying their potential utility in crop-improvement.
Collapse
Affiliation(s)
- Xiling Zou
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chengwei Hu
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Liu Zeng
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yong Cheng
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Mingyue Xu
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xuekun Zhang
- Key Laboratory of Oil Crop Biology and Genetic Improvement of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
38
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
39
|
Screening for Barley Waterlogging Tolerance in Nordic Barley Cultivars (Hordeum vulgare L.) Using Chlorophyll Fluorescence on Hydroponically-Grown Plants. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3020376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|