1
|
Aghamohamadi E, Asri N, Odak A, Rostami-Nejad M, Chaleshi V, Hajinabi Y, Eslami M, Mohammadian Haftcheshmeh S, Gholam-Mostafaei FS, Asadzadeh-Aghdaei H, Masotti A, Zali MR. Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol Biol Rep 2022; 49:6085-6091. [PMID: 35526253 DOI: 10.1007/s11033-022-07397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Celiac disease (CeD) and inflammatory bowel disease (IBD) are accompanied by impaired immune responses. To study the immune regulation of these diseases, we evaluated the expression levels of pro-inflammatory (IL-8 and IL-17 A) and anti-inflammatory (IL-10) cytokines in intestinal biopsy specimens of CeD and IBD patients in comparison to healthy subjects. METHODS AND RESULTS Intestinal biopsies were collected from 33 patients with IBD, 47 patients with CeD, and 20 healthy individuals. Total RNA was extracted and mRNA expression levels of IL-8, IL-17 A and IL-10 were assessed by qPCR. P-value < 0.05 was considered statistically significant. The expression levels of IL-8 and IL-17 A were higher in biopsies of IBD (UC and CD) and CeD patients compared to the control group (P < 0.05). IBD patients (UC and CD) had higher IL-8 intestinal level than CeD patients (P < 0.0001 and P = 0.0007, respectively). The expression of IL-10 was significantly down-regulated in intestinal biopsies of CeD and IBD patients compared with controls (P < 0.001). In addition, the expression level of this cytokine was significantly lower in IBD patients (P < 0.001 for UC patients and P < 0.0001 for CD patients) than CeD group. CONCLUSIONS The three selected pro- and anti-inflammatory cytokines showed a similar expression pattern in both IBD and CeD patients. As IBD and CeD are immune-mediated disorders and are accompanied by inflammatory events, the understanding of the similarities and differences among them can help researchers to find out useful candidate therapeutic protocols. We suggest that larger cohort studies be organized to achieve more insights into this regulation.
Collapse
Affiliation(s)
- Elham Aghamohamadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aylin Odak
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahid Chaleshi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Hajinabi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Eslami
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran
| | | | - Fahimeh Sadat Gholam-Mostafaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, V.le San Paolo 15, 00146, Rome, Italy.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Khalkhal E, Rezaei-Tavirani M, Asri N, Nobakht F, Jahani-Sherafat S, Haidari MH, Rostami-Nejad M. Introducing New Potential Biomarkers for Celiac Disease among the Genes Extracted from General Databases. Middle East J Dig Dis 2022; 14:192-199. [PMID: 36619141 PMCID: PMC9489306 DOI: 10.34172/mejdd.2022.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/09/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Inflammatory cytokines play roles in the pathogenesis of celiac disease. To introduce new diagnostic markers in patients with celiac disease for easy, fast, low cost, and non-invasive diagnosis, we evaluated the peripheral blood expression levels of interleukin-15 (IL-15), interleukin-17A (IL-17A), interleukin23A (IL-23A), granzyme B (GzmB), T-box transcription factor 21 (TBX21), and tumor necrosis factor alpha-induced protein 3 (TNFAIP3) of patients compared with the healthy controls, which were extracted from public databases organized in a protein-protein interaction network, in this group. METHODS: Peripheral blood mononuclear cells were collected from 30 patients with celiac disease and 30 healthy subjects. Total RNA was extracted, and mRNA expression levels of targeted genes were investigated by the quantitative real-time polymerase chain reaction (PCR) method. SPSS software was used for statistical analysis. Receiver operating characteristic (ROC) curve analysis was performed to characterize the diagnostic ability of the studied genes. RESULTS: The expression of IL-15, IL-17A, IL-23A, GzmB, TBX21, and TNFAIP3 genes in peripheral blood mononuclear cells of patients with celiac disease showed a significant increase compared with the control group. Among them, TNFAIP3, IL23A, and GzmB have better resolution and diagnostic value in differentiating patients with celiac disease from healthy controls. CONCLUSION: Our results suggest that TNFAIP3, IL23A, and GzmB could be useful and sensible markers in differentiating patients with celiac disease from healthy controls. However, the diagnostic relevance of other genes recognized by pathway analysis needs to be further investigated.
Collapse
Affiliation(s)
- Ensieh Khalkhal
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nobakht
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosain Haidari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding Author: Mohammad Rostami-Nejad, PhD Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel:+ 98 21 22432525 Fax:+ 98 21 22432517
| |
Collapse
|
3
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
4
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
Zhu J, Zhou Y, Wang L, Hao J, Chen R, Liu L, Li J. CXCL5/CXCL8 is a promising potential prognostic and tumor microenvironment-related cluster in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1364-1380. [PMID: 33457007 DOI: 10.21037/jgo-20-556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Immune checkpoint blockers (ICBs) are increasingly applied to treat patients with advanced HCC. However, the overall survival (OS) of HCC patients is still unsatisfactory, and there is no confirmed immune-related and prognostic gene to identify patients who could clinically benefit from this treatment. The tumor microenvironment (TME) is known to be closely related to immunotherapy and plays a pivotal role in the recurrence and progression of HCC. Our aim is to explore TME-related genes and identify the prognostic value in HCC patients. Methods ESTIMATE, immune, and stromal scores were calculated for HCC patients based on RNA expression data from The Cancer Genome Atlas database. Differential expression analysis was performed to screen the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network was constructed to identify the key DEGs. Univariate and multivariate Cox analyses were adopted to validate hub DEGs associated with clinical prognosis, and a single-sample gene set enrichment analysis (ssGSEA) algorithm was used to dissect the landscape of tumor-infiltrating cells (TIC) in HCC. Finally, the relationship between hub immune-related genes and TIC was explored through difference and correlation analyses. Results ESTIMATE, immune and stromal scores were all found to be associated with the OS of patients (P<0.05). A total of 1,112 DEGs were identified by comparing low and high score groups of immune and stromal scores. Most of DEGs were enriched in immune-related gene sets by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, the top 34 genes were included in the protein-protein interaction (PPI) network, and univariate Cox analysis focus on a novel prognosis-related gene cluster CXCL5/CXCL8 (P<0.001). Regarding the immune landscape of HCC, univariable Cox regression analysis showed six immune cells to be associated with OS. Finally, 21 immune cells were commonly determined between high and low expression of CXCL5/CXCL8, suggesting there is a close relationship between expression of CXCL5 and CXCL8 . Conclusions Our study has revealed that the immune-related gene cluster of CXCL5 /CXCL8 could be a promising prognostic indicator for HCC and a potential novel biomarker to guide the selection of HCC patients for ICB immunotherapy.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yifan Zhou
- Department of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Chen
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Pereira LMS, da Silva Madureira MW, de Castro RBH, Abreu IN, da Silva Conde SRS, Demachki S, de Sousa MS, Queiroz MAF, Rangel da Silva ANM, Lima SS, de Oliveira Guimarães Ishak M, Ishak R, Vallinoto ACR. Sex and FOXP3 gene rs2232365 polymorphism may be associated with the clinical and pathological aspects of chronic viral diseases. BMC Immunol 2020; 21:60. [PMID: 33213373 PMCID: PMC7678194 DOI: 10.1186/s12865-020-00387-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background The forkhead box protein 3 (FOXP3) transcription factor is one of the main markers of immunological suppression in different pathological profiles, and the presence of polymorphic variants may alter the gene expression of this factor. Despite descriptions of an association between the presence of the rs2232365 polymorphism and chronic diseases, the role of the sex variant in this context has not yet been elucidated, as the FOXP3 gene is located on the human sex chromosome X. Results To contribute to this topic, 323 women and 373 men were enrolled in the study, of which 101 were diagnosed with chronic viral liver diseases (39 women and 62 men), 67 with HTLV-1 infection (44 women and 23 men), 230 with coronary artery disease (91 women and 139 men) and 298 healthy and uninfected blood donors (149 women and men). They were genotyped for the rs2232365 polymorphism. The rs2232365 polymorphism was associated with clinical and pathological aspects and biomarkers of viral infections only in men, with functional differences between different infections. Conclusions A relationship is suggested between sex and FOXP3 rs2232365 polymorphism, resulting in different biological repercussions.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - Max Willy da Silva Madureira
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - Renata Bezerra Hermes de Castro
- Hematology and Hemotherapy Center Foundation of the State of Pará (Fundação Centro de Hematologia e Hemoterapia do Estado do Pará), Belém, Brazil
| | - Isabella Nogueira Abreu
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | | | - Sâmia Demachki
- Medical School, Biological Sciences Institute, UFPA, Belém, Brazil
| | | | - Maria Alice Freitas Queiroz
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - Andrea Nazaré M Rangel da Silva
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - Sandra Souza Lima
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | | | - Ricardo Ishak
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Biological Sciences Institute, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil.
| |
Collapse
|
7
|
Hotez PJ, Bottazzi ME, Corry DB. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes Infect 2020; 22:165-167. [PMID: 32305501 PMCID: PMC7162764 DOI: 10.1016/j.micinf.2020.04.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
Increasing evidence points to host Th17 inflammatory responses as contributing to the severe lung pathology and mortality of lower respiratory tract infections from coronaviruses. This includes host inflammatory and cytokine responses to COVID-19 caused by the SARS-2 coronavirus (SARS CoV2). From studies conducted in laboratory animals, there are additional concerns about immune enhancement and the role of potential host immunopathology resulting from experimental human COVID-19 vaccines. Here we summarize evidence suggesting there may be partial overlap between the underlying immunopathologic processes linked to both coronavirus infection and vaccination, and a role for Th17 in immune enhancement and eosinophilic pulmonary immunopathology. Such findings help explain the link between viral-vectored coronavirus vaccines and immune enhancement and its reduction through alum adjuvants. Additional research may also clarify links between COVID-19 pulmonary immunopathology and heart disease.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; Hagler Institute of Advanced Study at Texas A&M University, College Station, TX, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA.
| | - David B Corry
- Biology of Inflammation Center, Department of Medicine and Pathology & Immunology, The Michael E. DeBakey Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
O'Brien MB, McLoughlin RM, Meade KG. Application of the TruCulture® whole blood stimulation system for immune response profiling in cattle. Vet Immunol Immunopathol 2020; 221:110025. [PMID: 32086040 DOI: 10.1016/j.vetimm.2020.110025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
Abstract
Capturing the phenotypic variation in immune responses holds enormous promise for the development of targeted treatments for disease as well as tailored vaccination schedules. However, accurate detection of true biological variation can be obscured by the lack of standardised immune assays. The TruCulture® whole blood stimulation system has now been extensively used to detect basal and induced immune responses to a range of pathogen-associated molecular patterns (PAMPs) in human peripheral blood. This study demonstrates the optimisation of this commercially available assay for systemic immune phenotyping in cattle. The early immune response in Holstein-Friesian bull calves (n = 10) was assessed by haematology, flow cytometry and cytokine expression profiling after 24 h ex-vivo PAMP (LPS, poly (I:C) and zymosan) stimulation in TruCulture® tubes. A comparative analysis was also performed with a traditional whole blood stimulation assay and cell viability using both systems was also evaluated. Results: Supernatant collected from TruCulture® tubes showed a significant increase in IL-1β and IL-8 expression compared to null stimulated tubes in response to both LPS and zymosan. In contrast, a detectable immune response was not apparent at the standard concentration of poly (I:C). Conventional whole blood cultures yielded similar response profiles, although the magnitude of the response was higher to both LPS and zymosan, which may be attributed to prokaryotic strain-specificity or batch of the stimulant used. Despite being a closed system, HIF1A expression - used as a measure of hypoxia was not increased, suggesting the TruCulture® assay did not negatively affect cell viability. This represents the first reported use of this novel standardised assay in cattle, and indicates that the concentration of poly (I:C) immunogenic in humans is insufficient to induce cytokine responses in cattle. We conclude that the low blood volume and minimally invasive TruCulture® assay system offers a practical and informative technique to assess basal and induced systemic immune responses in cattle.
Collapse
Affiliation(s)
- Megan B O'Brien
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland; Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland.
| |
Collapse
|
9
|
Chapuy L, Bsat M, Rubio M, Sarkizova S, Therrien A, Bouin M, Orlicka K, Weber A, Soucy G, Villani AC, Sarfati M. IL-12 and Mucosal CD14+ Monocyte-Like Cells Induce IL-8 in Colonic Memory CD4+ T Cells of Patients With Ulcerative Colitis but not Crohn's Disease. J Crohns Colitis 2020; 14:79-95. [PMID: 31206576 PMCID: PMC6930004 DOI: 10.1093/ecco-jcc/jjz115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS CD14+ mononuclear phagocytes [MNPs] and T cells infiltrate colon in ulcerative colitis [UC]. Here we investigated how CD14+ MNPs and the cytokines they produce shape the colonic effector T cell profile. METHODS Colonic or mesenteric lymph node [mLNs] CD4+ T cells isolated from UC or Crohn's disease [CD] patients were stimulated with cytokines or autologous CD14+ MNPs. Cytokine expression was assessed by intracytoplasmic staining and multiplex ELISA. Unsupervised phenotypic multicolour analysis of colonic CD14+ MNPs was performed using the FlowSOM algorithm. RESULTS Among CD14+CD64+HLA-DR+SIRPα + MNPs, only the pro-inflammatory cytokine-producing CD163- subpopulation accumulated in inflamed UC colon and promoted mucosal IL-1β-dependent Th17, Th17/Th1, Th17/Th22 but not Th1 responses. Unsupervised phenotypic analysis of CD14+CD64+ MNPs segregated CD163- monocyte-like cells and CD163+ macrophages. Unexpectedly, IL-12, IL-1β and CD163-, but not CD163+, cells induced IL-8 expression in colonic CD4+ T cells, which co-expressed IFN-γ and/or IL-17 in UC and not CD. The CD163- monocyte-like cells increased the frequency of IL-8+IL-17+/-IFN-γ +/- T cells through IL-1β and IL-12. Finally, colonic IL-8+ T cells co-expressing GM-CSF, TNF-α and IL-6 were detected ex vivo and, promoted by IL-12 in the mucosa and mLNs in UC only. CONCLUSIONS Our findings established a link between monocyte-like CD163- MNPs, IL-12, IL-1β and the detection of colonic memory IL-8-producing CD4+ T cells, which might all contribute to the pathogenesis of UC.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Sisi Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amélie Therrien
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Katarzina Orlicka
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Audrey Weber
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Geneviève Soucy
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Corresponding author: Marika Sarfati, Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin Nutr 2019; 38:2408-2416. [DOI: 10.1016/j.clnu.2018.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
|
11
|
Costa RT, Araújo ORD, Brunialti MKC, Assunção MSC, Azevedo LCP, Freitas F, Salomão R. T helper type cytokines in sepsis: time-shared variance and correlation with organ dysfunction and hospital mortality. Braz J Infect Dis 2019; 23:79-85. [PMID: 31112675 PMCID: PMC9425672 DOI: 10.1016/j.bjid.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 01/02/2023] Open
Abstract
Objective We evaluated the kinetics of cytokines belonging to the T helper1 (Th1), Th2, and Th17 profiles in septic patients, and their correlations with organ dysfunction and hospital mortality. Methods This was a prospective observational study in a cohort of septic patients admitted to the intensive care units (ICU) of three Brazilian general hospitals. A total of 104 septic patients and 53 health volunteers (controls) were included. Plasma samples were collected within the first 48 h of organ dysfunction or septic shock (0D), after seven (D7) and 14 days (D14) of follow-up. The following cytokines were measured by flow cytometry: Interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-10, IL-12/23p40, IL-17, IL-21, tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF). Results IL-6, IL-8, G-CSF and IL-10 concentrations were higher in septic patients than in controls (p < 0.001), while IL-12/23p40 presented higher levels in the controls (p = 0.003). IL-6, IL-8 and IL-17 correlated with Sequential [Sepsis-related] Organ Failure Assessment (SOFA) D0, D1 and D3 (except for IL-6 at D0). IL-8 was associated with renal and cardiovascular dysfunction. In a mixed model analysis, IL-10 estimated means were lower in survivors than in deceased (p = 0.014), while IL-21 had an estimated mean of 195.8 pg/mL for survivors and 98.5 for deceased (p = 0.03). Cytokines were grouped in four factors according to their kinetics over the three dosages (D0, D7, D14). Group 1 encompassed IL-6, IL-8, IL-10, IL-1β, and G-CSF while Group 3 encompassed IL-17 and IL-12/23p40. Both correlated with SOFA (D0) (p = 0.039 and p = 0.003, respectively). IL-21 (Group 4) was higher in those who survived. IL-2, TNF-α and GM-CSF (Group 2) showed no correlation with outcomes. Conclusion Inflammatory and anti-inflammatory cytokines shared co-variance in septic patients and were related to organ dysfunctions and hospital mortality.
Collapse
Affiliation(s)
- Ramon Teixeira Costa
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departmento de Medicina, São Paulo, SP, Brazil; AC Camargo Cancer Center, Unidade de Cuidados Intensivos, São Paulo, SP, Brazil
| | - Orlei Ribeiro de Araújo
- Instituto de Oncologia Pediátrica (IOP), Grupo de Apoio ao Adolescente e a Criança com Cancer (GRAACC), São Paulo, SP, Brazil
| | | | | | | | - Flávio Freitas
- Universidade Federal de São Paulo, Hospital São Paulo, Unidade de Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Reinaldo Salomão
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departmento de Medicina, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Li Y, Xie HQ, Zhang W, Wei Y, Sha R, Xu L, Zhang J, Jiang Y, Guo TL, Zhao B. Type 3 innate lymphoid cells are altered in colons of C57BL/6 mice with dioxin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:639-645. [PMID: 30703721 DOI: 10.1016/j.scitotenv.2019.01.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are distributed in the gut and regulate inflammation by secreting cytokines, including interferon (IFN)-γ and interleukin (IL)-17. The maintenance and function of ILC3s involve the activity of aryl hydrocarbon receptor (AhR), a potent ligand of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic dioxin congeners. Thus, TCDD exposure might affect ILC3s. To obtain in vivo evidence supporting this notion, we exposed female C57BL/6 mice orally to TCDD (low/high doses: 0.1/10 μg/kg body weight) during pregnancy and lactation periods, and after the exposure, evaluated the mothers and offspring for alterations in ILC3 differentiation and function in the colon. ILC3 frequency among colonic lamina propria lymphocytes was preferentially diminished in the offspring, and, in parallel, the median fluorescence intensity (MFI) of retinoic acid receptor-related orphan receptor (ROR)γt, which is associated with ILC3 differentiation, was also decreased in ILC3s. Conversely, the percentages of two subsets of the cells, one positive for natural cytotoxicity receptor NKp46 and the other for IL-17a, were increased in TCDD-exposed mothers and offspring. Moreover, the percentage of IFN-γ+ ILC3s was increased specifically in the mothers, but this was in conjunction with a significant decrease in the MFI of IFN-γ, which suggests that the IFN-γ+ ILC3 subset was functionally altered. In conclusion, maternal exposure to TCDD suppresses ILC3 differentiation in the offspring and influences ILC3 function in distinct manners in the mother and offspring. Our study provides new insights into the intergenerational interference of dioxins in colonic ILC3s.
Collapse
Affiliation(s)
- Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Righetti RF, Dos Santos TM, Camargo LDN, Aristóteles LRCRB, Fukuzaki S, de Souza FCR, Santana FPR, de Agrela MVR, Cruz MM, Alonso-Vale MIC, Genaro IS, Saraiva-Romanholo BM, Leick EA, Martins MDA, Prado CM, Tibério IDFLC. Protective Effects of Anti-IL17 on Acute Lung Injury Induced by LPS in Mice. Front Pharmacol 2018; 9:1021. [PMID: 30337870 PMCID: PMC6180195 DOI: 10.3389/fphar.2018.01021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction: T helper 17 (Th17) has been implicated in a variety of inflammatory lung and immune system diseases. However, little is known about the expression and biological role of IL-17 in acute lung injury (ALI). We investigated the mechanisms involved in the effect of anti-IL17 in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Methods: Mice were pre-treated with anti-IL17, 1h before saline/LPS intratracheal administration alongside non-treated controls and levels of exhaled nitric oxide (eNO), cytokine expression, extracellular matrix remodeling and oxidative stress, as well as immune cell counts in bronchoalveolar lavage fluid (BALF), and respiratory mechanics were assessed in lung tissue. Results: LPS instillation led to an increase in multiple cytokines, proteases, nuclear factor-κB, and Forkhead box P3 (FOXP3), eNO and regulators of the actomyosin cytoskeleton, the number of CD4+ and iNOS-positive cells as well as the number of neutrophils and macrophages in BALF, resistance and elastance of the respiratory system, ARG-1 gene expression, collagen fibers, and actin and 8-iso-PGF2α volume fractions. Pre-treatment with anti-IL17 led to a significant reduction in the level of all assessed factors. Conclusions: Anti-IL17 can protect the lungs from the inflammatory effects of LPS-induced ALI, primarily mediated by the reduced expression of cytokines and oxidative stress. This suggests that further studies using anti-IL17 in a treatment regime would be highly worthwhile.
Collapse
Affiliation(s)
- Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tabata Maruyama Dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Maysa Mariana Cruz
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Diadema, São Paulo, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Diadema, São Paulo, Brazil
| | - Isabella Santos Genaro
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Public Employee of São Paulo Hospital (IAMSPE), São Paulo, Brazil
| | | | | | | | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | |
Collapse
|
14
|
Koh YQ, Mitchell MD, Almughlliq FB, Vaswani K, Peiris HN. Regulation of inflammatory mediator expression in bovine endometrial cells: effects of lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Physiol Rep 2018; 6:e13676. [PMID: 29707922 PMCID: PMC5925570 DOI: 10.14814/phy2.13676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
An abnormal uterine environment can influence maternal-fetal communication, conception rate and disrupt normal embryo development, thereby affecting fertility and the reproductive performance of dairy cows. Animal variability means that development of endometrial cell lines with appropriate characteristic are required. We evaluated the effect of an infectious agent (i.e., bacterial lipopolysaccharide; LPS) and proinflammatory mediators (i.e., Interleukin 1 beta; IL-1β, and tumor necrosis factor alpha; TNFα) on inflammatory mediator gene expression and production by bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. Expression of CXCL8/IL8, IL1A, IL1B, and IL6 cytokine genes was significantly upregulated in both epithelial and stromal cells when treated with LPS and IL-1β. LPS treatment of epithelial cells (compared with treatment by IL-1β and TNFα) exhibited greater CXCL8/IL8, IL1A, IL1B, and IL6 cytokine gene expression. Whereas, in stromal cells, IL-1β treatment (compared with LPS and TNFα) exhibited greater CXCL8/IL8, IL1A, IL1B, and IL6 cytokine gene expression. Interestingly, bEEL and bCSC cells treated with IL-1β increased IL1B gene expression, suggesting that IL-1β may act unusually in an autocrine-positive feedback loop. Cytokine production was stimulated by these agents in both cell types. We suggest that the characteristics of these two cell lines make them excellent tools for the study of intrauterine environment.
Collapse
Affiliation(s)
- Yong Qin Koh
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Murray D. Mitchell
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fatema B. Almughlliq
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Kanchan Vaswani
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hassendrini N. Peiris
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
15
|
Ke LQ, Wang FM, Luo YC. [Effects of vasoactive intestinal peptide on airway inflammation and Th17/Treg balance in asthmatic mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:699-704. [PMID: 28606240 PMCID: PMC7390301 DOI: 10.7499/j.issn.1008-8830.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effects of vasoactive intestinal peptide (VIP) on the airway inflammation and its regulatory effect on Th17/Treg imbalance in asthmatic mice. METHODS A total of 30 BALB/c mice were equally and randomly divided into three groups: control, asthma, and VIP. An acute asthmatic mouse model was established by sensitization and challenge with ovalbumin (OVA). The control group received normal saline instead of OVA. Before the challenge with OVA, the VIP group was administered VIP (20 μg/mL) by aerosol inhalation for 30 minutes. The bronchoalveolar lavage fluid (BALF) and the lung tissue were collected from mice. The pathological changes in the lung tissue were observed by hematoxylin and eosin staining. The levels of Th17/Treg-related cytokines in BALF were measured by enzyme-linked immunosorbent assay. The expression of retinoid-related orphan receptor gamma t (RORγt) and forkhead box P3 (Foxp3) were measured by real-time fluorescence quantitative PCR and immunohistochemistry. RESULTS The histopathological results showed that the VIP group had milder symptoms of airway inflammation than the asthma group. The level of IL-17 in BALF in the asthma group was significantly higher than that in the control group and the VIP group (P<0.01), but the level of IL-17 in the control group was significantly lower than that in the VIP group (P<0.01). The level of IL-10 in BALF in the asthma group was significantly lower than that in the control group and the VIP group (P<0.01, but the level of IL-10 in the VIP group was significantly higher than that in the control group (P<0.01). The asthma group showed significantly higher expression levels of RORγt mRNA and protein in the lung tissue and significantly lower expression levels of Foxp3 mRNA and protein than the control group (P<0.01). The VIP group had significantly lower expression levels of RORγt mRNA and protein in the lung tissue and significantly higher expression levels of Foxp3 mRNA and protein than the asthma group (P<0.05). CONCLUSIONS The Th17/Treg imbalance may be closely related to the airway inflammation in asthmatic mice. VIP can improve airway inflammation by regulating the Th17/Treg imbalance in asthmatic mice.
Collapse
Affiliation(s)
- Li-Qin Ke
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | |
Collapse
|
16
|
Jagannathan L, Jose CC, Tanwar VS, Bhattacharya S, Cuddapah S. Identification of a unique gene expression signature in mercury and 2,3,7,8-tetrachlorodibenzo- p-dioxin co-exposed cells. Toxicol Res (Camb) 2017; 6:312-323. [PMID: 29057067 DOI: 10.1039/c6tx00432f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mercury (Hg) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are major environmental contaminants that commonly co-occur in the environment. Both Hg and TCDD are associated with a number of human diseases including cancers. While the individual toxicological effects of Hg and TCDD have been extensively investigated, studies on co-exposure are limited to a few genes and pathways. Therefore, a significant knowledge gap exists in the understanding of the deleterious effects of co-exposure to Hg and TCDD. Due to the prevalence of Hg and TCDD co-contamination in the environment and the major human health hazards they pose, it is important to obtain a fuller understanding of genome-wide effects of Hg and TCDD co-exposure. In this study, by performing a comprehensive transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) exposed to Hg and TCDD individually and in combination, we have uncovered a subset of genes with altered expression only in the co-exposed cells. We also identified the additive as well as antagonistic effects of Hg and TCDD on gene expression. Moreover, we found that co-exposure impacted several biological and disease processes not affected by Hg or TCDD individually. Our studies show that the consequences of Hg and TCDD co-exposure on the transcriptional program and biological processes could be substantially different from single exposures, thus providing new insights into the co-exposure-specific pathogenic processes.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Vinay Singh Tanwar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| |
Collapse
|
17
|
Systems analysis uncovers inflammatory Th/Tc17-driven modules during acute GVHD in monkey and human T cells. Blood 2016; 128:2568-2579. [PMID: 27758873 DOI: 10.1182/blood-2016-07-726547] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/22/2016] [Indexed: 01/30/2023] Open
Abstract
One of the central challenges of transplantation is the development of alloreactivity despite the use of multiagent immunoprophylaxis. Effective control of this immune suppression-resistant T-cell activation represents one of the key unmet needs in the fields of both solid-organ and hematopoietic stem cell transplant (HCT). To address this unmet need, we have used a highly translational nonhuman primate (NHP) model to interrogate the transcriptional signature of T cells during breakthrough acute graft-versus-host disease (GVHD) that occurs in the setting of clinically relevant immune suppression and compared this to the hyperacute GVHD, which develops in unprophylaxed or suboptimally prophylaxed transplant recipients. Our results demonstrate the complex character of the alloreactivity that develops during ongoing immunoprophylaxis and identify 3 key transcriptional hallmarks of breakthrough acute GVHD that are not observed in hyperacute GVHD: (1) T-cell persistence rather than proliferation, (2) evidence for highly inflammatory transcriptional programming, and (3) skewing toward a T helper (Th)/T cytotoxic (Tc)17 transcriptional program. Importantly, the gene coexpression profiles from human HCT recipients who developed GVHD while on immunosuppressive prophylactic agents recapitulated the patterns observed in NHP, and demonstrated an evolution toward a more inflammatory signature as time posttransplant progressed. These results strongly implicate the evolution of both inflammatory and interleukin 17-based immune pathogenesis in GVHD, and provide the first map of this evolving process in primates in the setting of clinically relevant immunomodulation. This map represents a novel transcriptomic resource for further systems-based efforts to study the breakthrough alloresponse that occurs posttransplant despite immunoprophylaxis and to develop evidence-based strategies for effective treatment of this disease.
Collapse
|
18
|
Pathak S, Stern C, Vambutas A. N-Acetylcysteine attenuates tumor necrosis factor alpha levels in autoimmune inner ear disease patients. Immunol Res 2016; 63:236-45. [PMID: 26392121 DOI: 10.1007/s12026-015-8696-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune inner ear disease (AIED) is a poorly understood disease marked by bilateral, rapidly progressive hearing loss triggered by unknown stimuli, which is corticosteroid responsive in 60 % of patients. Although the mechanism of the disease is not precisely understood, a complex interaction of cytokines is believed to contribute toward the inflammatory disease process and hearing loss. Previously, we showed the role of TNF-α in steroid-sensitive and IL-1β in steroid-resistant immune-mediated hearing loss. N-Acetylcysteine (NAC), a broad spectrum antioxidant, has been effective in other autoimmune disorders. Other studies have shown NAC to have a protective adjunct role in human idiopathic sudden hearing loss, where the addition of NAC resulted in better hearing recovery than with steroids alone, although the mechanism of this protection was not elucidated. In the present study, we observed PBMCs from AIED patients exhibited higher baseline TNF-α and MPO levels compared with normal healthy controls. NAC effectively abrogates LPS-mediated TNF-α release from PBMC of both AIED patients and controls. We demonstrated that in AIED patients, the TNF-α downstream signaling pathway appears aberrantly regulated, influencing both MPO and IL-8 expression. Given that NAC effectively abrogated LPS-mediated TNF-α release and exerted minimal effects on the downstream targets of this pathway, we feel NAC may be a rational adjunct therapy for this enigmatic disease, worthy of clinical exploration.
Collapse
Affiliation(s)
- Shresh Pathak
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Corey Stern
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Andrea Vambutas
- The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- The Apelian Cochlear Implant Center, Department of Otolaryngology, North Shore-LIJ Health System, New Hyde Park, NY, USA.
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Schütze N, Trojandt S, Kuhn S, Tomm JM, von Bergen M, Simon JC, Polte T. Allergen-Induced IL-6 Regulates IL-9/IL-17A Balance in CD4+ T Cells in Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2653-64. [PMID: 27574298 DOI: 10.4049/jimmunol.1501599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
IL-9-secreting Th9 cells have been considered to play a pivotal role in the pathogenesis of atopic diseases. To what extent IL-9-producing cells are induced or regulated by sensitization with naturally occurring allergens is not yet clear. Naturally occurring allergens are capable of inducing IL-6 production in dendritic cells (DCs). Whether allergen-induced IL-6 supports a Th9 subtype by increasing IL-9 production, as observed in in vitro studies, or rather favors Th17 differentiation is not finally resolved. Therefore, in the present study we have investigated the impact of IL-6 on the Th9/Th17 balance depending on the predominant cytokine milieu and, additionally, in vivo using a DC-driven murine asthma model. In vitro, IL-6 increases Th9 cells under strong IL-4 and TGF-β activation, whereas under moderate IL-4 and TGF-β activation the presence of IL-6 shifts naive CD4(+) cells to Th17 cells. To induce allergic airway inflammation, OVA-pulsed DCs from IL-6-deficient or wild-type donors were adoptively transferred into BALB/c mice. Recipients receiving IL-6-producing wild-type DCs showed a significant decrease of Th9- and IL-4-producing Th2 cells but an increase of Th17 cells in lung tissue in comparison with recipients sensitized with IL-6-deficient DCs. Our data suggest that the IL-6-mediated reduction of Th2-related IL-4 leads to a decline of the Th9 immune response and allows Th17 differentiation.
Collapse
Affiliation(s)
- Nicole Schütze
- Leipzig Research Center for Civilization Diseases, Junior Research Group on Pathogenesis of New Allergies, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Stefanie Trojandt
- Leipzig Research Center for Civilization Diseases, Junior Research Group on Pathogenesis of New Allergies, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Stephanie Kuhn
- Department of Environmental Immunology, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Janina M Tomm
- Department of Proteomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany; Department of Metabolomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany; and Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Tobias Polte
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Environmental Immunology, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Rautava S, Walker WA, Lu L. Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure. Am J Physiol Gastrointest Liver Physiol 2016; 310:G920-9. [PMID: 27056727 PMCID: PMC4935478 DOI: 10.1152/ajpgi.00457.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
The immature human gut has a propensity to exaggerated inflammatory responses that are thought to play a role in the pathogenesis of necrotizing enterocolitis (NEC). Prenatal exposure to corticosteroids has been reported to reduce the risk of NEC, while postnatal dexamethasone treatment is associated with adverse neurodevelopmental outcomes in preterm infants. The aim of this study was to investigate the direct role of hydrocortisone in gene expression patterns and inflammatory responses in immature human enterocytes. Time-dependent hydrocortisone effects in nontransformed primary human fetal intestinal epithelial cell line H4 were investigated by cDNA microarray. Fetal intestinal organ culture and cell culture experiments were conducted. Inflammatory responses were induced by stimulation with IL-1β and TNF-α with and without hydrocortisone. IL-8 and IL-6 expression and secretion were measured as functional readout. Here we report time-dependent hydrocortisone-induced changes in gene expression patterns detected by cDNA microarray. Hydrocortisone significantly attenuated IL-1β-induced inflammatory responses in the immature human gut when administered at the time of the proinflammatory insult: IL-1β-induced IL-8 and IL-6 secretion in the fetal ileum as well as H4 cells were significantly reduced. Hydrocortisone also inhibited IL-8 secretion in response to TNF-α. In contrast, TNF-α-induced IL-8 secretion was not reduced in cells treated with hydrocortisone for 48 h before stimulation. Our observations provide a physiological basis for understanding the differential clinical effects of corticosteroids in the immature human gut depending on the timing of treatment.
Collapse
Affiliation(s)
- Samuli Rautava
- 1Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; ,2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - W. Allan Walker
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - Lei Lu
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and ,3Section of Neonatology, Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Leber A, Viladomiu M, Hontecillas R, Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera J. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection. PLoS One 2015; 10:e0134849. [PMID: 26230099 PMCID: PMC4521955 DOI: 10.1371/journal.pone.0134849] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.
Collapse
Affiliation(s)
- Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Casandra Philipson
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stefan Hoops
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brad Howard
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Fan H, Xu M, Tang Q. Aryl hydrocarbon receptor and its ligands for regulation of Th17/Treg cell differentiation in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:3101-3108. [DOI: 10.11569/wcjd.v23.i19.3101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific intestinal mucosal inflammatory disease, and its pathogenesis is related to the imbalance of Th17/Treg. The aryl hydrocarbon receptor (AhR) is a cytoplasmic transcription factor, which is involved in the regulation of drug metabolism, cell growth and differentiation, and is closely related to the occurrence of autoimmune disease and inflammatory disease. Recent studies have found that activation of AhR can regulate the differentiation of Th17/Treg in UC patients. This paper reviews the structure and function of AhR and its effect on differentiation of Th17/Treg in UC.
Collapse
|