1
|
Uzoigwe CE. Re: Thomas Robert, Ellie Tang, Jennifer Kervadec, Jeremy Zaworski, Michel Daudon, Emmanuel Letavernier. Kidney Injury and Hair-straightening Products Containing Glyoxylic Acid. N Engl J Med 2024;390:1147-9. Eur Urol 2025; 87:e37. [PMID: 39153926 DOI: 10.1016/j.eururo.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
|
2
|
Chen AL, Lin ZJ, Chang HY, Wang TSA. Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo. J Am Chem Soc 2025; 147:1518-1528. [PMID: 39730301 PMCID: PMC11744745 DOI: 10.1021/jacs.4c09727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization. We first designed native (light) and deuterated (heavy) probes to facilitate RCS metabolomic identification through distinct MS isotope patterns. This approach allowed us to capture and relatively quantify several endogenous RCS related to advanced lipoxidation/glycation end products (ALEs/AGEs). Second, we demonstrated that various endogenous RCS can trigger the in situ generation of acrylamide warheads of targeted covalent inhibitors (TCIs) with different substituents. These structural variations influence their protein binding profiles and consequently alter their cytotoxicity, which is beneficial for the development of inhibitor cocktails.
Collapse
Affiliation(s)
- Ai-Lin Chen
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Zih-Jheng Lin
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Hsiao-Yu Chang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing Carbohydrate Response Element-Binding Protein in the Pathogenesis of Diabetic Retinopathy. Cells 2025; 14:107. [PMID: 39851533 PMCID: PMC11763462 DOI: 10.3390/cells14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal functional testing, which was followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration, as we observed diminished scotopic ERG amplitudes in caChREBPRP mice at P35. The retinal proteomic landscape revealed a decline in the KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific caChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells exhibit a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprogramming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Assylbek Zhylkibayev
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | - Oleg Gorbatyuk
- Department of Translational Neuroscience, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | | | - James Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Maria B. Grant
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Marina Gorbatyuk
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| |
Collapse
|
4
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing ChREBP Protein in the Pathogenesis of Dia-betic Retinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626828. [PMID: 39677707 PMCID: PMC11643094 DOI: 10.1101/2024.12.04.626828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal function testing, followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration as we observed diminished scotopic ERG amplitudes detected in caChREB-PRP mice at P35. The retinal proteomic landscape indicated a decline in KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific ca-ChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells displayed a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprograming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | | | - Oleg Gorbatyuk
- Wake Forest University, School of Medicine, Department of Translational Neuroscience
| | | | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine
| | - Maria B. Grant
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry
| |
Collapse
|
5
|
Loos CMM, Zhao S, Li L, Li J, Han W, Vanzant ES, McLeod KR. Essential oil supplementation improves insulin sensitivity and modulates the plasma metabolome of hyperinsulinemic horses. Front Vet Sci 2024; 11:1444581. [PMID: 39687851 PMCID: PMC11648227 DOI: 10.3389/fvets.2024.1444581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to investigate the effect of essential oil (EO) supplementation on insulin sensitivity (IS) and the plasma metabolome in insulin dysregulated (ID) horses. Horses were blocked by degree of IS and assigned randomly to treatment: oral daily bolus (50 mL) of either a plant derived EO supplement or carrier (CON). Mares were housed in dry lots with ad libitum access to grass hay and supplemented individually twice daily with a concentrate to meet nutrient requirements for mature horses. Before and after 6 wks of treatment, mares underwent a combined glucose-insulin tolerance test (CGIT) and an oral sugar test (OST) on separate days. Global metabolome analysis was conducted on plasma samples before and after treatment. Although treatment did not affect (p > 0.4) AUC or glucose clearance during CGIT, there was a treatment*covariate interaction (p ≤ 0.08) for insulin concentrations at 75 min (INS75) and positive phase time (PT) with EO decreasing both INS75 (p ≤ 0.002) and PT (p = 0.05) in horses with more severe initial degree of ID. Similarly, EO treatment reduced (p ≤ 0.006) insulinemic response to the OST in horses exhibiting higher pre-treatment responses (treatment*covariate, p = 0.004). There were 702 metabolites identified that were uniquely changed with EO treatment. Pathway analysis and biomarkers showed EO-mediated changes in amino acid, linoleic acid, mesaconic acid, TCA-cyle intermediates and bile acid metabolism. The directional changes in these pathways or biomarkers are consistent with changes in inulin sensitivity in other models. These data show that EO shifted the plasma metabolome and improved insulin sensitivity in horses.
Collapse
Affiliation(s)
- Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Shuang Zhao
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Janet Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Wei Han
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Murmu N, Ghosh P, Namani A, Patra T. Glyoxylate supplementation ameliorates colitis associated colon cancer progression. J Cell Physiol 2024; 239:e31394. [PMID: 39238268 DOI: 10.1002/jcp.31394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Colon cancer is on the rise in younger adults. Despite multimodal treatment strategies, clinical outcomes in advanced stage colon cancer patients remain poor. Neoadjuvant/adjuvant chemotherapy efficacy is limited due to chemoresistance, toxicity, and negative side effects. Overwhelming evidence supporting the small-molecule metabolites derived from breakdown of food or microbial sources confer an extensive array of host benefits, including chemo-preventive role in colon cancer. Our previous study indicated that the introduction of glyoxylate (Glx), an intermediate product of microbial or plant metabolism, exerts a cytotoxic effect in colon cancer cells. This study was designed to evaluate the effects of Glx on colon cancer with molecular insights. For this, we established an AOM/DSS-induced colitis associated colon cancer model in mice. Supplementation of Glx in vivo reduced colitis associated tumor growth and altered the metabolic characteristics of tumor tissue in mice without initiating any severe liver or renal toxicity. More specifically, intake of glyoxylate accumulated glycine in the colon tissue by elevation of alanine-glyoxylate transferase (AGXT) activity. Glycine accumulation increased intracellular Ca2+ concentration via glycine receptor activation and dysregulation of Ca2+ homeostasis lead to induction of apoptosis that resulted in arresting tumor growth. Interestingly, elevation of AGXT activity or Glx related specific metabolic pathway provides better survival in colon cancer patients. Collectively, our exclusive findings support the exploration of Glx either as a preventive molecule or its inclusion in the treatment regimens for colon cancer.
Collapse
Affiliation(s)
- Nabendu Murmu
- Department of Signal Transduction & Biogenic Amine, Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Ghosh
- Department of Signal Transduction & Biogenic Amine, Chittaranjan National Cancer Institute, Kolkata, India
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Akhileshwar Namani
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Tapas Patra
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| |
Collapse
|
7
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
8
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
9
|
Yin WJ. A bacterial enzyme may correct 2-HG accumulation in human cancers. Front Oncol 2023; 13:1235191. [PMID: 37546420 PMCID: PMC10399246 DOI: 10.3389/fonc.2023.1235191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
A significant proportion of lower-grade glioma as well as many other types of human cancers are associated with neomorphic mutations in IDH1/2 genes (mIDH1/2). These mutations lead to an aberrant accumulation of 2-hydroxyglutarate (2-HG). Interestingly, even cancers without mIDH1/2 can exhibit increased levels of 2-HG due to factors like hypoxia and extracellular acidity. Mounting evidence demonstrates that 2-HG competitively inhibits α-ketoglutarate dependent enzymes, such as JmjC-domain-containing histone demethylases (JHDMs), ten-eleven translocation enzymes (TETs), and various dioxygenases (e.g., RNA m6A demethylases and prolyl hydroxylases). Consequently, the hypermethylation of DNA, RNA, and histones, and the abnormal activities of hypoxia-inducible factors (HIFs) have profound impacts on the establishment of cancer metabolism and microenvironment, which promote tumor progression. This connection between the oncometabolite 2-HG and glioma holds crucial implications for treatments targeting this disease. Here, I hypothesize that an ectopic introduction of a bacterial 2-hydroxyglutarate synthase (2-HG synthase) enzyme into cancer cells with 2-HG accumulation could serve as a promising enzyme therapy for glioma and other types of cancers. While absent in human metabolism, 2-HG synthase in bacterial species catalyzes the conversion of 2-HG into propionyl-CoA and glyoxylate, two metabolites that potentially possess anti-tumor effects. For a broad spectrum of human cancers with 2-HG accumulation, 2-HG synthase-based enzyme therapy holds the potential to not only correct 2-HG induced cancer metabolism but also transform an oncometabolite into metabolic challenges within cancer cells.
Collapse
Affiliation(s)
- William J. Yin
- Oconee County High School, Watkinsville, GA, United States
- Bio-Imaging Research Center, The University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Kim J, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Interactive effect of the empirical lifestyle index for insulin resistance with the common genetic susceptibility locus rs2423279 for colorectal cancer. Br J Nutr 2023; 129:1563-1573. [PMID: 35416135 DOI: 10.1017/s000711452200085x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study is to examine the empirical insulinemic potential consisting of dietary and lifestyle factors and the interactive effect with the common genetic susceptibility locus rs2423279 on the risk of colorectal cancer (CRC). This case-control study was conducted with 923 CRC patients and 1846 controls. The empirical measures for assessing the insulinemic potential, namely, the empirical dietary index for hyperinsulinemia (EDIH), for insulin resistance (EDIR), the empirical lifestyle index for hyperinsulinemia (ELIH), and for insulin resistance (ELIR), were calculated based on semiquantitative food frequency questionnaire and lifestyle questionnaire. A genetic variant of rs2423279 was genotyped. The CRC patients were more likely to score in the highest quartile for the ELIH (OR 2·90, Q4 v. Q1, 95 % CI (2·01, 4·19), Pfor trend < 0·001), EDIR (OR 3·32, Q4 v. Q1, 95 % CI (2·32, 4·74), P < 0·001) and ELIR (OR 2·79, Q4 v. Q1, 95 % CI (1·96, 3·97), P < 0·001) than the controls. The significant effect between the ELIR, which assesses dietary and lifestyle patterns related to insulin resistance, and C allele carriers of rs2423279 was stronger than that for homozygous T allele carriers (OR 2·50, 95 % CI (1·78, 3·51), Pfor interaction = 0·034). The empirical insulinemic potential for insulin resistance might have interactive effects with the rs2423279 polymorphism on the risk of CRC. The results of this study suggest the basis of the metabolic impact of the insulin response on colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Hee Jin Chang
- Division of Precision Medicine, Research Institute, Department of Pathology, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University, College of Medicine, Jongno-Gu, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Jongno-Gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-Si, Gyeonggi-Do, Goyang10408, South Korea
| |
Collapse
|
11
|
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GAS. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites 2023; 13:metabo13050605. [PMID: 37233646 DOI: 10.3390/metabo13050605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The assessment, management, and prognostication of spinal cord injury (SCI) mainly rely upon observer-based ordinal scales measures. 1H nuclear magnetic resonance (NMR) spectroscopy provides an effective approach for the discovery of objective biomarkers from biofluids. These biomarkers have the potential to aid in understanding recovery following SCI. This proof-of-principle study determined: (a) If temporal changes in blood metabolites reflect the extent of recovery following SCI; (b) whether changes in blood-derived metabolites serve as prognostic indicators of patient outcomes based on the spinal cord independence measure (SCIM); and (c) whether metabolic pathways involved in recovery processes may provide insights into mechanisms that mediate neural damage and repair. Morning blood samples were collected from male complete and incomplete SCI patients (n = 7) following injury and at 6 months post-injury. Multivariate analyses were used to identify changes in serum metabolic profiles and were correlated to clinical outcomes. Specifically, acetyl phosphate, 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid significantly related to SCIM scores. These preliminary findings suggest that specific metabolites may serve as proxy measures of the SCI phenotype and prognostic markers of recovery. Thus, serum metabolite analysis combined with machine learning holds promise in understanding the physiology of SCI and aiding in prognosticating outcomes following injury.
Collapse
Affiliation(s)
- Elani A Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamie N Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
12
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
13
|
Bebarta VS, Shi X, Zheng S, Hendry-Hofer TB, Severance CC, Behymer MM, Boss GR, Mahon S, Brenner M, Knipp GT, Davisson VJ, Peterson RT, MacRae CA, Rutter J, Gerszten RE, Nath AK. Intramuscular administration of glyoxylate rescues swine from lethal cyanide poisoning and ameliorates the biochemical sequalae of cyanide intoxication. Toxicol Sci 2023; 191:90-105. [PMID: 36326479 PMCID: PMC9887668 DOI: 10.1093/toxsci/kfac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanide-a fast-acting poison-is easy to obtain given its widespread use in manufacturing industries. It is a high-threat chemical agent that poses a risk of occupational exposure in addition to being a terrorist agent. FDA-approved cyanide antidotes must be given intravenously, which is not practical in a mass casualty setting due to the time and skill required to obtain intravenous access. Glyoxylate is an endogenous metabolite that binds cyanide and reverses cyanide-induced redox imbalances independent of chelation. Efficacy and biochemical mechanistic studies in an FDA-approved preclinical animal model have not been reported. Therefore, in a swine model of cyanide poisoning, we evaluated the efficacy of intramuscular glyoxylate on clinical, metabolic, and biochemical endpoints. Animals were instrumented for continuous hemodynamic monitoring and infused with potassium cyanide. Following cyanide-induced apnea, saline control or glyoxylate was administered intramuscularly. Throughout the study, serial blood samples were collected for pharmacokinetic, metabolite, and biochemical studies, in addition, vital signs, hemodynamic parameters, and laboratory values were measured. Survival in glyoxylate-treated animals was 83% compared with 12% in saline-treated control animals (p < .01). Glyoxylate treatment improved physiological parameters including pulse oximetry, arterial oxygenation, respiration, and pH. In addition, levels of citric acid cycle metabolites returned to baseline levels by the end of the study. Moreover, glyoxylate exerted distinct effects on redox balance as compared with a cyanide-chelating countermeasure. In our preclinical swine model of lethal cyanide poisoning, intramuscular administration of the endogenous metabolite glyoxylate improved survival and clinical outcomes, and ameliorated the biochemical effects of cyanide.
Collapse
Affiliation(s)
- Vik S Bebarta
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xu Shi
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Shunning Zheng
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Carter C Severance
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Matthew M Behymer
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Sari Mahon
- Department of Medicine, Beckman Laser Institute, University of California, Irvine, California 92697, USA
| | - Matthew Brenner
- Department of Medicine, Beckman Laser Institute, University of California, Irvine, California 92697, USA
| | - Gregory T Knipp
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vincent Jo Davisson
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Jared Rutter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Robert E Gerszten
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anjali K Nath
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
- Broad Institute, Cambridge, Massachusetts 02142, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Nuccio DA, Normann MC, Zhou H, Grippo AJ, Singh P. Microbiome and Metabolome Variation as Indicator of Social Stress in Female Prairie Voles. Int J Mol Sci 2023; 24:1677. [PMID: 36675193 PMCID: PMC9861106 DOI: 10.3390/ijms24021677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Social isolation is detrimental to the health of social mammals inducing neurochemical and hormonal changes related to depression and anxiety, as well as impairments of cardiovascular and immune functioning. Likewise, perceptions of loneliness are increasingly recognized as detrimental to human psychological well-being, cognitive functioning, and physical health. Few studies, however, have examined the impact of social isolation on the intestinal microbiome and metabolome. To better understand the impact of social isolation on these systems, intestinal microbiota, and the systemic impact via the gut-brain axis, we employed prairie voles. Physiological stress on female prairie voles (n = 22) either with a same-sex sibling (n = 11) or in isolation (n = 11) for four weeks demonstrated behavioral indicators of increased anxiety and depression in isolated voles (p ≤ 0.01). Bacterial DNA from fecal and colon samples, collected at five time points (T0-4), were sequenced for all nine hypervariable regions of the 16S rRNA gene. Microbiome analyses revealed several differences in gut communities of paired and isolated voles with greater differences at T4. Notably, several taxa associated with host health including Anaerostipes and Lactobacillaceae were more prevalent in paired voles, whereas several taxa associated with known pathogens (e.g., Staphylococcaceae and Enterococcus) or disease were elevated in isolated animals. Similarly, metabolome analyses suggested isolated voles, when compared to paired animals, exhibited differences in metabolites associated with diabetes and colitis. These findings further contribute to our understanding of the harmful effects of social isolation, which cause perturbations in the gut microbiome and serum metabolites.
Collapse
Affiliation(s)
- Daniel A. Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Marigny C. Normann
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Haiming Zhou
- Department of Statistics and Actuarial Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, IL 60115, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
15
|
Stroud JE, Gale MS, Zwart SR, Heer M, Smith SM, Montina T, Metz GAS. Longitudinal metabolomic profiles reveal sex-specific adjustments to long-duration spaceflight and return to Earth. Cell Mol Life Sci 2022; 79:578. [PMID: 36319708 PMCID: PMC11802984 DOI: 10.1007/s00018-022-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Spaceflight entails a variety of environmental and psychological stressors that may have long-term physiological and genomic consequences. Metabolomics, an approach that investigates the terminal metabolic outputs of complex physiological alterations, considers the dynamic state of the human body and allows the identification and quantification of down-stream metabolites linked to up-stream physiological and genomic regulation by stress. Employing a metabolomics-based approach, this study investigated longitudinal metabolic perturbations of male (n = 40) and female (n = 11) astronauts on 4-6-month missions to the International Space Station (ISS). Proton nuclear magnetic resonance (1H-NMR) spectroscopy followed by univariate, multivariate and machine learning analyses were used on blood serum to examine sex-specific metabolic changes at various time points throughout the astronauts' missions, and the metabolic effects of long-duration space travel. Space travel resulted in sex-specific changes in energy metabolism, bone mineral and muscle regulation, immunity, as well as macromolecule maintenance and synthesis. Additionally, metabolic signatures suggest differential metabolic responses-especially during the recovery period-with females requiring more time to adjust to return to Earth. These findings provide insight into the perturbations in glucose and amino acid metabolism and macromolecule biosynthesis that result from the stressors of long-duration spaceflight. Metabolomic biomarkers may provide a viable approach to predicting and diagnosing health risks associated with prolonged space travel and other physiological challenges on Earth.
Collapse
Affiliation(s)
- Julia E Stroud
- Department of Chemistry and Biochemistry, EP1274 Exploration Place, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
| | - Michael S Gale
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Martina Heer
- IU International University of Applied Sciences, University of Bonn, Bonn, Germany
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA.
| | - Tony Montina
- Department of Chemistry and Biochemistry, EP1274 Exploration Place, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
| | - Gerlinde A S Metz
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
16
|
Lucio-Gutiérrez JR, Cordero-Pérez P, Farías-Navarro IC, Tijerina-Marquez R, Sánchez-Martínez C, Ávila-Velázquez JL, García-Hernández PA, Náñez-Terreros H, Coello-Bonilla J, Pérez-Trujillo M, Parella T, Torres-González L, Waksman-Minsky NH, Saucedo AL. Using nuclear magnetic resonance urine metabolomics to develop a prediction model of early stages of renal disease in subjects with type 2 diabetes. J Pharm Biomed Anal 2022; 219:114885. [DOI: 10.1016/j.jpba.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
17
|
Bao D, Wang Y, Yu X, Zhao M. Acute oxalate nephropathy: A potential cause of acute kidney injury in diabetes mellitus—A case series from a single center. Front Med (Lausanne) 2022; 9:929880. [PMID: 36133577 PMCID: PMC9484473 DOI: 10.3389/fmed.2022.929880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAcute oxalate nephropathy (AON) is an uncommon condition that causes acute kidney injury (AKI), characterized by the massive deposition of calcium oxalate crystals in the renal parenchyma. In previous studies, urinary oxalate excretion has been found to be increased in patients with diabetes mellitus (DM). Here, we report a case series of diabetic patients with AKI with biopsy-proven AON, aiming to alert physicians to the potential of AON as a trigger of AKI in diabetic patients in clinical practice.Materials and methodsCases with pathological diagnosis of AON who presented with AKI clinically and had DM between January 2016 and December 2020 were retrospectively enrolled. Their clinical and pathological manifestations, treatment, and prognosis were collected.ResultsSix male patients with biopsy-proven AON out of a total of 5,883 native kidney biopsies were identified, aged 58.3 ± 9.1 years at the time of kidney biopsy. Only one patient who had received Roux-en-Y gastric bypass surgery took oxalate-rich food before the onset of the disease. None of them had clinical features of enteric malabsorption. Three patients were currently on renin-angiotensin system inhibitor treatment for hypertension, and 5 of them received non-steroidal anti-inflammatory drugs. Three patients presented with oliguria and 4 patients needed dialysis at the beginning with none requiring dialysis at discharge. Four patients received a course of corticosteroid treatment empirically. Among them, two patients had estimated glomerular filtration rate (eGFR) recovered to over 60 ml/min/1.73 m2, while the other two patients remained with kidney dysfunction at the last follow-up. In two patients without corticosteroid treatment, one patient fully recovered with eGFR over 90 ml/min/1.73 m2 and the other patient remained with kidney dysfunction at the last follow-up.ConclusionAON might be a rare but potentially trigger of AKI in patients with DM. A kidney biopsy could help physicians to make the correct diagnosis. The proper treatment to alleviate oxalate-induced injury needs to be further studied.
Collapse
Affiliation(s)
- Daorina Bao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- *Correspondence: Yu Wang,
| | - Xiaojuan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
18
|
Silva-Gaona OG, Guzmán-Flores JM, Hernández-Ortiz M, Vargas-Ortiz K, Ramírez-Emiliano J, Encarnación-Guevara S, Pérez-Vázquez V. Curcumin Reverts the Protein Differential Expression in the Liver of the Diabetic Obese db/db Mice. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210114112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In type 2 diabetic mouse liver, hyperglycemia, and insulin modify gene expression. Curcumin is a
powerful antioxidant and antidiabetic agent that regulates the gene expression of different signaling pathways through
various transcription factors. Therefore, we hypothesized that curcumin modifies the protein expression profile in the liver
of diabetic db/db mice.
Objective:
To determine the effects of curcumin on the liver protein profile of diabetic db/db mice.
Methods:
db/db and wild type (WT) male mice were allocated in four groups, and they were fed for eight weeks. Three WT
and three diabetic db/db mice received a standard diet (SD; WT and db/db groups, respectively); three WT and three
diabetic db/db mice received a SD supplemented with 0.75 % (w/w) curcumin (WT+C and db/db+C groups, respectively).
Liver proteins were separated by 2D electrophoresis. Differential protein expression analysis was performed on
ImageMaster 2D Platinum software, and selected proteins were identified by MALDI-TOF-MS and subjected to enrichment
analysis using STRING and DAVID databases.
Results:
Thirty-six proteins with differential expression due to the diabetic background and curcumin treatment were found;
these proteins participate in the metabolism of amino acids, carbohydrates, and lipids. Interestingly, the altered expression of
seven proteins was prevented in the liver of the diabetic mice that received curcumin.
Conclusions:
Among all differentially expressed proteins, curcumin reverted the altered expression of seven proteins. Thus,
although it was observed that curcumin did not affect the biochemical parameters, it does modify the expression of some
liver proteins in diabetic mice.
Collapse
Affiliation(s)
- Oscar Gerardo Silva-Gaona
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Juan Manuel Guzmán-Flores
- Depto. de Salud, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad
de Guadalajara, Tepatitlán, Jalisco, México
| | | | - Katya Vargas-Ortiz
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Joel Ramírez-Emiliano
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Sergio Encarnación-Guevara
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Victoriano Pérez-Vázquez
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| |
Collapse
|
19
|
Metabolomics reveals the impact of Type 2 diabetes on local muscle and vascular responses to ischemic stress. Clin Sci (Lond) 2021; 134:2369-2379. [PMID: 32880388 DOI: 10.1042/cs20191227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) reduces exercise capacity, but the mechanisms are incompletely understood. We probed the impact of ischemic stress on skeletal muscle metabolite signatures and T2DM-related vascular dysfunction. METHODS we recruited 38 subjects (18 healthy, 20 T2DM), placed an antecubital intravenous catheter, and performed ipsilateral brachial artery reactivity testing. Blood samples for plasma metabolite profiling were obtained at baseline and immediately upon cuff release after 5 min of ischemia. Brachial artery diameter was measured at baseline and 1 min after cuff release. RESULTS as expected, flow-mediated vasodilation was attenuated in subjects with T2DM (P<0.01). We confirmed known T2DM-associated baseline differences in plasma metabolites, including homocysteine, dimethylguanidino valeric acid and β-alanine (all P<0.05). Ischemia-induced metabolite changes that differed between groups included 5-hydroxyindoleacetic acid (healthy: -27%; DM +14%), orotic acid (healthy: +5%; DM -7%), trimethylamine-N-oxide (healthy: -51%; DM +0.2%), and glyoxylic acid (healthy: +19%; DM -6%) (all P<0.05). Levels of serine, betaine, β-aminoisobutyric acid and anthranilic acid were associated with vessel diameter at baseline, but only in T2DM (all P<0.05). Metabolite responses to ischemia were significantly associated with vasodilation extent, but primarily observed in T2DM, and included enrichment in phospholipid metabolism (P<0.05). CONCLUSIONS our study highlights impairments in muscle and vascular signaling at rest and during ischemic stress in T2DM. While metabolites change in both healthy and T2DM subjects in response to ischemia, the relationship between muscle metabolism and vascular function is modified in T2DM, suggesting that dysregulated muscle metabolism in T2DM may have direct effects on vascular function.
Collapse
|
20
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
21
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Efe O, Verma A, Waikar SS. Urinary oxalate as a potential mediator of kidney disease in diabetes mellitus and obesity. Curr Opin Nephrol Hypertens 2020; 28:316-320. [PMID: 31045662 DOI: 10.1097/mnh.0000000000000515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hyperoxaluria can cause kidney disease through multiple mechanisms, including tubular obstruction from calcium oxalate crystals, sterile inflammation, and tubular epithelial cell injury. Hyperoxaluria is also observed in individuals with diabetes mellitus and obesity, which are in turn risk factors for chronic kidney disease (CKD). Whether hyperoxaluria is a potential mediator of increased risk of CKD in diabetes mellitus and obesity is unknown. RECENT FINDINGS Individuals with diabetes have increased levels of plasma glyoxal (a protein glycation product) and glyoxylate, both of which are precursors for oxalate. Increased gut absorption of oxalate in obesity may be because of obesity-associated inflammation. A recent study in individuals with CKD found that higher 24 h urinary oxalate excretion was independently associated with increased risk of kidney disease progression, especially in individuals with diabetes and obesity. SUMMARY Both diabetes mellitus and obesity are associated with higher urinary oxalate excretion through distinct mechanisms. Hyperoxaluria could be a mechanism by which kidney disease develops in individuals with diabetes mellitus or obesity and could also contribute to progressive loss of renal function. Future research on pharmacologic or dietary measures to limit oxalate absorption or generation are required to test whether lowering urinary oxalate excretion is beneficial in preventing kidney disease development and progression in diabetes mellitus and obesity.
Collapse
Affiliation(s)
- Orhan Efe
- Department of Medicine, Saint Vincent Hospital, Worcester
| | - Ashish Verma
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Development of HPLC method for estimation of glyoxylic acid after pre-column fluorescence derivatization approach based on thiazine derivative formation: A new application in healthy and cardiovascular patients’ sera. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122054. [DOI: 10.1016/j.jchromb.2020.122054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/22/2022]
|
24
|
Martins J, Czamara D, Lange J, Dethloff F, Binder EB, Turck CW, Erhardt A. Exposure-induced changes of plasma metabolome and gene expression in patients with panic disorder. Depress Anxiety 2019; 36:1173-1181. [PMID: 31374578 DOI: 10.1002/da.22946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Anxiety disorders including panic disorder (PD) are the most prevalent psychiatric diseases leading to high disability and burden in the general population. Acute panic attacks are distinctive for PD but also frequent in other anxiety disorders. The neurobiology or specific molecular changes leading to and present during panic attacks are insufficiently known so far. METHODS In the present pilot study, we investigated dynamic metabolomic and gene expression changes in peripheral blood of patients with PD (n = 25) during two exposure-induced acute panic attacks. RESULTS The results show that the metabolite glyoxylate was dynamically regulated in peripheral blood. Additionally, glyoxylate levels were associated with basal anxiety levels and showed gender-related differences at baseline. As glyoxylate is part of the degradation circuit of cholecystokinin, this suggests that this neuropeptide might be directly involved in exposure-induced panic attacks. Only gene expression changes of very small magnitude were observed in this experimental setting. CONCLUSIONS From this first metabolome and gene expression study in exposure-induced acute panic attacks in PD we conclude that metabolites can potentially serve as dynamic markers for different anxiety states. However, these findings have to be replicated in cohorts with greater sample sizes.
Collapse
Affiliation(s)
- Jade Martins
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| | - Jennifer Lange
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Chris W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| | - Angelika Erhardt
- Department of Translational Research in Psychiatry, Max Planck Institute for Psychiatry, Munich, Germany
| |
Collapse
|
25
|
Meeting report of the "Symposium on kidney stones and mineral metabolism: calcium kidney stones in 2017". J Nephrol 2019; 32:681-698. [PMID: 30680550 DOI: 10.1007/s40620-019-00587-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
A symposium on kidney stones and mineral metabolism held on December 2017 in Brussels, Belgium was the first international multidisciplinary conference of the International Collaborative Network on Kidney Stones and Mineral Metabolism. This meeting addressed epidemiology, underlying pathophysiological mechanisms, genetics, pathological, as well as clinical and research topics. The participants included clinicians and recognized experts in the field from Europe and the United States interacted closely during the symposium which promoted a chance to explore new frontiers in the field of kidney stone disease. This manuscript summarizes some of the major highlights of the meeting.
Collapse
|
26
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
27
|
Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of Roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One 2018; 13:e0198156. [PMID: 29851973 PMCID: PMC5979615 DOI: 10.1371/journal.pone.0198156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) is an effective way to lose weight and reverse type 2 diabetes. We profiled the metabolome of 18 obese patients (nine euglycemic and nine diabetics) that underwent RYGB surgery and seven lean subjects. Plasma samples from the obese patients were collected before the surgery and one week and three months after the surgery. We analyzed the metabolome in association to five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and Resistin), four peptide hormones (GIP, Glucagon, GLP1, and PYY), and two cytokines (IL-6 and TNF). PCA showed samples cluster by surgery time and many microbially driven metabolites (indoles in particular) correlated with the three months after the surgery. Network analysis of metabolites revealed a connection between carbohydrate (mannosamine and glucosamine) and glyoxylate and confirms glyoxylate association to diabetes. Only leptin and IL-6 had a significant association with the measured metabolites. Leptin decreased immediately after RYGB (before significant weight loss), whereas IL-6 showed no consistent response to RYGB. Moreover, leptin associated with tryptophan in support of the possible role of leptin in the regulation of serotonin synthesis pathways in the gut. These results suggest a potential link between gastric leptin and microbial-derived metabolites in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Loqmane Seridi
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Gregory C. Leo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| | - G. Lynis Dohm
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Walter J. Pories
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - James Lenhard
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| |
Collapse
|
28
|
Patra T, Ghosh P, Alam N, Murmu N. Supra-physiological concentration of glyoxylate inhibits proliferation of human colon cancer cells through oxidative stress. Life Sci 2018; 207:80-89. [PMID: 29852189 DOI: 10.1016/j.lfs.2018.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 12/13/2022]
Abstract
AIMS The cytotoxic response of an intermediate metabolite glyoxylate (Glx) on colon carcinoma has been evaluated in vitro. MAIN METHODS The anti-proliferative effect of Glx was assessed on HT-29 and HCT-116 cells by performing MTT assay as well as beta-hexosaminidase assay. Evaluation of apoptotic event of Glx treated cells was measured by flow cytometry using annexin-V/PI staining. The mitochondrial membrane potential and level of ROS were estimated using DiOC6(3)/CCCP and DCFH-DA method, respectively. The assessment of catalase, LDH and IDH were performed. KEY FINDINGS The results of MTT assay indicated that treatment with Glx significantly inhibited the proliferation of HT-29 and HCT-116 cells. Beta-hexosaminidase assay also confirmed the inhibition of cellular viability. The dose-dependent Glx treatment indicated lowering the colony forming ability of HT-29 and HCT-116 cells. Flow cytometric data demonstrated the significant increment of late apoptotic event after Glx treatment. In addition, substantial LDH activity was noticed in both the colon cancer cells whereas the IDH activity was unaltered after extra-cellular addition of Glx. Further, dissipation of mitochondrial membrane potential and subsequently elevated ROS generation was also detected in the Glx treated colon cancer cells. However, gradual elevation of catalase activities indicated that Glx treatment on colon cancer cells exhibit oxidative stress. SIGNIFICANCE This study depicts that supra-physiological concentration of Glx inhibits the proliferation of colon cancer cells due to oxidative stress.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Paramita Ghosh
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute (CNCI), Kolkata 700026, India.
| |
Collapse
|
29
|
El-Maghrabey M, Mine M, Kishikawa N, Ohyama K, Kuroda N. A novel dual labeling approach enables converting fluorescence labeling reagents into fluorogenic ones via introduction of purification tags. Application to determination of glyoxylic acid in serum. Talanta 2018; 180:323-328. [DOI: 10.1016/j.talanta.2017.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
30
|
Hecker M, Wagner AH. Role of protein carbonylation in diabetes. J Inherit Metab Dis 2018; 41:29-38. [PMID: 29110177 DOI: 10.1007/s10545-017-0104-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by, among others, elevated blood glucose levels. Hyperglycaemia as well as enhanced levels of glucose-derived reactive metabolites contribute to the development of diabetic complications partly via increased generation of reactive oxygen species (ROS). ROS are not only part of signaling pathways themselves but also lead to carbonylation of particular amino acid side chains by direct metal-catalyzed oxidation. In addition, carbonyl groups can be introduced into proteins indirectly by non-oxidative covalent adduction of reactive carbonyl species generated by the oxidation of lipids or carbohydrates. Both direct and indirect carbonylation mechanisms may affect protein conformation, activity, and function. Herein we introduce the different mechanisms of the carbonylation reaction, discuss degradation mechanisms, and the fate of proteins modified this way and how the overall degree of carbonylation affects protein homeostasis and function differently. The role of protein carbonylation in metabolic control systems and cell signaling are also summarized. Finally, current diagnostic and antioxidant therapeutic options in diabetes are discussed.
Collapse
Affiliation(s)
- Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Lee KC, Kil DY, Sul WJ. Cecal microbiome divergence of broiler chickens by sex and body weight. J Microbiol 2017; 55:939-945. [DOI: 10.1007/s12275-017-7202-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023]
|
32
|
Schriewer A, Brink M, Gianmoena K, Cadenas C, Hayen H. Oxalic acid quantification in mouse urine and primary mouse hepatocyte cell culture samples by ion exclusion chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:239-244. [PMID: 29111333 DOI: 10.1016/j.jchromb.2017.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Due to medical relevance and a direct correlation with some diseases, accurate quantification of oxalic acid in different complex matrices is required. Effective chromatographic separation of this strong carboxylic acid was achieved by ion exclusion chromatography (IELC). Sensitive and selective detection was carried out by means of electrospray ionization-tandem mass spectrometry. Furthermore, it was shown that the isobaric interference of lactic acid is chromatographically resolved. Structurally similar compounds like glyoxylic acid and glycolic acid were baseline separated as well. The application of stable isotope dilution analysis with 13C2 oxalic acid facilitated precise quantification. The developed method was validated with a reference oxalate sample of human urine diluted to a range of 10-500μM. Finally, the applicability of this method was demonstrated on complex matrices, like mouse urine and supernatants of primary mouse hepatocyte cell cultures.
Collapse
Affiliation(s)
- Alexander Schriewer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 48149 Münster, Germany
| | - Moritz Brink
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 48149 Münster, Germany
| | - Kathrin Gianmoena
- Leibniz Research Centre for Working Environment and Human Factors at the University of Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors at the University of Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 48149 Münster, Germany.
| |
Collapse
|
33
|
Sheu C, Paramithiotis E. Towards a personalized assessment of pancreatic function in diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1385391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carey Sheu
- Caprion Biosciences Inc - Translational Research, Montreal, Canada
| | | |
Collapse
|
34
|
Zarei A, Brikis CJ, Bajwa VS, Chiu GZ, Simpson JP, DeEll JR, Bozzo GG, Shelp BJ. Plant Glyoxylate/Succinic Semialdehyde Reductases: Comparative Biochemical Properties, Function during Chilling Stress, and Subcellular Localization. FRONTIERS IN PLANT SCIENCE 2017; 8:1399. [PMID: 28855911 PMCID: PMC5558127 DOI: 10.3389/fpls.2017.01399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/27/2017] [Indexed: 05/18/2023]
Abstract
Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (cytosolic GLYR1 and plastidial/mitochondrial GLYR2) are considered to be of particular importance under abiotic stress conditions. Here, the apple (Malus × domestica Borkh.) and rice (Oryza sativa L.) GLYR1s and GLYR2s were characterized and their kinetic properties were compared to those of previously characterized GLYRs from Arabidopsis thaliana [L.] Heynh. The purified recombinant GLYRs had an affinity for glyoxylate and succinic semialdehyde, respectively, in the low micromolar and millimolar ranges, and were inhibited by NADP+. Comparison of the GLYR activity in cell-free extracts from wild-type Arabidopsis and a glyr1 knockout mutant revealed that approximately 85 and 15% of the cellular GLYR activity is cytosolic and plastidial/mitochondrial, respectively. Recovery of GLYR activity in purified mitochondria from the Arabidopsis glyr1 mutant, free from cytosolic GLYR1 or plastidial GLYR2 contamination, provided additional support for the targeting of GLYR2 to mitochondria, as well as plastids. The growth of plantlets or roots of various Arabidopsis lines with altered GLYR activity responded differentially to succinic semialdehyde or glyoxylate under chilling conditions. Taken together, these findings highlight the potential regulation of highly conserved plant GLYRs by NADPH/NADP+ ratios in planta, and their roles in the reduction of toxic aldehydes in plants subjected to chilling stress.
Collapse
Affiliation(s)
- Adel Zarei
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | | | - Greta Z. Chiu
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, SimcoeON, Canada
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| |
Collapse
|
35
|
Farag MA, Ammar NM, Kholeif TE, Metwally NS, El-Sheikh NM, Wessjohann LA, Abdel-Hamid AZ. Rats' urinary metabolomes reveal the potential roles of functional foods and exercise in obesity management. Food Funct 2017; 8:985-996. [PMID: 28197590 DOI: 10.1039/c6fo01753c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The complexity of the metabolic changes in obese individuals still presents a challenge for the understanding of obesity-related metabolic disruptions and for obesity management. In this study, a gas chromatography mass spectrometry (GC-MS) based metabolomics approach targeting urine metabolism has been applied to assess the potential roles of functional foods and exercise for obesity management in rats. Male albino rats diagnosed as obese via histopathology and biochemical assays were administered functional foods in common use for obesity management including pomegranate, grapefruit, and red cabbage juice extracts in parallel with swimming exercise. Urine samples were collected from these rats, and likewise from healthy control animals, for metabolite analysis using (GC-MS) coupled to multivariate data analysis. The results revealed a significant elevation in oxalate and phosphate levels in obese rat urine concurrent with lower lactate levels as compared to the control group. Furthermore, and to pinpoint the bioactive agents in the administered functional foods, ultra performance liquid chromatography (UPLC) coupled to high resolution time-of-flight mass spectrometry (TOF-MS) was employed for secondary metabolite profiling. The different phenolic classes found in the examined functional foods, viz. ellagitannins in pomegranate, flavanones in grapefruit and flavonols in red cabbage, are likely to mediate their anti-obesity effects. The results indicate that these functional foods and exercise were quite effective in reverting obesity-related metabolic disruptions back to normal status, as revealed by orthogonal partial least squares-discriminant analysis (OPLS-DA).
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - N M Ammar
- Therapeutic Chemistry Department, National Research Center, Cairo, Egypt
| | - T E Kholeif
- Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Egypt
| | - N S Metwally
- Therapeutic Chemistry Department, National Research Center, Cairo, Egypt
| | - N M El-Sheikh
- Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Egypt
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry, Dept. Bioorganic Chemistry, Weinberg 3, D-06120 Halle, Saale, Germany
| | - A Z Abdel-Hamid
- Therapeutic Chemistry Department, National Research Center, Cairo, Egypt
| |
Collapse
|
36
|
Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int J Mol Sci 2017; 18:ijms18050984. [PMID: 28475116 PMCID: PMC5454897 DOI: 10.3390/ijms18050984] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) are non-enzymatic protein and amino acid adducts as well as DNA adducts which form from dicarbonyls and glucose. AGE formation is enhanced in diabetes and is associated with the development of diabetic complications. In the current review, we discuss mechanisms that lead to enhanced AGE levels in the context of diabetes and diabetic complications. The methylglyoxal-detoxifying glyoxalase system as well as alternative pathways of AGE detoxification are summarized. Therapeutic approaches to interfere with different pathways of AGE formation are presented.
Collapse
|
37
|
Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma JX, Karamichos D. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res 2016; 153:90-100. [PMID: 27742548 DOI: 10.1016/j.exer.2016.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023]
Abstract
Prolonged hyperglycemia during diabetes mellitus can cause severe ophthalmic complications affecting both the anterior and posterior ocular segments leading to impaired vision or blindness. Diabetes-induced corneal pathologies are associated with decreased wound healing capacity, corneal edema, and altered epithelial basement membrane. The mechanism by which diabetes modulates structure and function within the corneal stroma are unknown. In our study, we characterized the effects of diabetes on extracellular matrix, lipid transport, and cellular metabolism by defining the entire metabolome and lipidome of Type 1 and Type 2 human diabetic corneal stroma. Significant increases in Collagen I and III were found in diabetic corneas suggesting that diabetes promotes defects in matrix structure leading to scarring. Furthermore, increased lipid content, including sphingosine-1-phosphate and dihydrosphingosine, in diabetic corneas compared to healthy controls were measured suggesting altered lipid retention. Metabolomics analysis identified elevated tryptophan metabolites, independent of glucose metabolism, which correlated with upregulation of the Kynurenine pathway in diabetic corneas. We also found significant upregulation of novel biomarkers aminoadipic acid, D,L-pipecolic acid, and dihydroorotate. Our study links aberrant tryptophan metabolism to end-stage pathologies associated with diabetes indicating the potential of the Kynurenine pathway as a therapeutic target for inhibiting diabetes-associated defects in the eye.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tina B McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jeremy Allegood
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; The VCU Johnson Center, Richmond, VA, USA; The VCU Massey Cancer Center, Richmond, VA, USA
| | - Charles Chalfant
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; The VCU Johnson Center, Richmond, VA, USA; The VCU Massey Cancer Center, Richmond, VA, USA
| | - Jian-Xing Ma
- Department of Physiology Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
38
|
Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S, Debelius J, Pallister T, Mangino M, Raes J, Knight R, Clark AG, Ley RE, Spector TD, Bell JT. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol 2016; 17:189. [PMID: 27666579 PMCID: PMC5036307 DOI: 10.1186/s13059-016-1052-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Variation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures. RESULTS We profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome and obesity. CONCLUSIONS Our results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with clear potential for prevention and novel therapies.
Collapse
Affiliation(s)
- Michelle Beaumont
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Julia K Goodrich
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew A Jackson
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Idil Yet
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- VIB lab for Bioinformatics and (eco-)systems biology, Leuven, Belgium
| | - Justine Debelius
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Present address: Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tess Pallister
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- VIB lab for Bioinformatics and (eco-)systems biology, Leuven, Belgium
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Howard Hughes Medical Institute, Boulder, CO, 80309, USA
- Present address: Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew G Clark
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruth E Ley
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK.
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK.
| |
Collapse
|
39
|
Carter TC, Rein D, Padberg I, Peter E, Rennefahrt U, David DE, McManus V, Stefanski E, Martin S, Schatz P, Schrodi SJ. Validation of a metabolite panel for early diagnosis of type 2 diabetes. Metabolism 2016; 65:1399-408. [PMID: 27506746 PMCID: PMC5518599 DOI: 10.1016/j.metabol.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Accurate, early diagnosis of type 2 diabetes (T2D) would enable more effective clinical management and a reduction in T2D complications. Therefore, we sought to identify plasma metabolite and protein biomarkers that, in combination with glucose, can better predict future T2D compared with glucose alone. METHODS In this case-control study, we used plasma samples from the Bavarian Red Cross Blood Transfusion Center study (61 T2D cases and 78 non-diabetic controls) for discovering T2D-associated metabolites, and plasma samples from the Personalized Medicine Research Project in Wisconsin (56 T2D cases and 445 non-diabetic controls) for validation. All samples were obtained before or at T2D diagnosis. We tested whether the T2D-associated metabolites could distinguish incident T2D cases from controls, as measured by the area under the receiver operating characteristic curve (AUC). Additionally, we tested six metabolic/pro-inflammatory proteins for their potential to augment the ability of the metabolites to distinguish cases from controls. RESULTS A panel of 10 metabolites discriminated better between T2D cases and controls than glucose alone (AUCs: 0.90 vs 0.87; p=2.08×10(-5)) in Bavarian samples, and associations between these metabolites and T2D were confirmed in Wisconsin samples. With use of either a Bayesian network classifier or ridge logistic regression, the metabolites, with or without the proteins, discriminated incident T2D cases from controls marginally better than glucose in the Wisconsin samples, although the difference in AUCs was not statistically significant. However, when the metabolites and proteins were added to two previously reported T2D prediction models, the AUCs were higher than those of each prediction model alone (AUCs: 0.92 vs 0.87; p=3.96×10(-2) and AUCs: 0.91 vs 0.71; p=1.03×10(-5), for each model, respectively). CONCLUSIONS Compared with glucose alone or with previously described T2D prediction models, a panel of plasma biomarkers showed promise for improved discrimination of incident T2D, but more investigation is needed to develop an early diagnostic marker.
Collapse
Affiliation(s)
- Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.
| | - Dietrich Rein
- Metanomics Health GmbH, Tegeler Weg 33, 10589, Berlin, Germany.
| | - Inken Padberg
- Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Erik Peter
- metanomics GmbH, Tegeler Weg 33, 10589, Berlin, Germany.
| | | | - Donna E David
- Integrated Research and Development Laboratory, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.
| | - Valerie McManus
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.
| | - Elisha Stefanski
- Integrated Research and Development Laboratory, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.
| | - Silke Martin
- Blutspendedienst des Bayerischen Roten Kreuzes Gemeinnützige GmbH, Herzog-Heinrich-Strasse 2, 80336, München, Germany.
| | - Philipp Schatz
- Metanomics Health GmbH, Tegeler Weg 33, 10589, Berlin, Germany.
| | - Steven J Schrodi
- Center for Human Genetics, Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.
| |
Collapse
|
40
|
Abstract
With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.
Collapse
Affiliation(s)
- Laura A Filla
- Saint Louis University Department of Chemistry, 3501 Laclede Ave. St. Louis, MO 63103, USA.
| | | |
Collapse
|
41
|
Giesbertz P, Padberg I, Rein D, Ecker J, Höfle AS, Spanier B, Daniel H. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia 2015; 58:2133-43. [PMID: 26058503 DOI: 10.1007/s00125-015-3656-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/15/2015] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.
Collapse
Affiliation(s)
- Pieter Giesbertz
- Department of Nutritional Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350, Freising, Germany,
| | | | | | | | | | | | | |
Collapse
|
42
|
Park S, Sadanala KC, Kim EK. A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes. Mol Cells 2015; 38:587-96. [PMID: 26072981 PMCID: PMC4507023 DOI: 10.14348/molcells.2015.0126] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022] Open
Abstract
Obesity and diabetes arise from an intricate interplay between both genetic and environmental factors. It is well recognized that obesity plays an important role in the development of insulin resistance and diabetes. Yet, the exact mechanism of the connection between obesity and diabetes is still not completely understood. Metabolomics is an analytical approach that aims to detect and quantify small metabolites. Recently, there has been an increased interest in the application of metabolomics to the identification of disease biomarkers, with a number of well-known biomarkers identified. Metabolomics is a potent approach to unravel the intricate relationships between metabolism, obesity and progression to diabetes and, at the same time, has potential as a clinical tool for risk evaluation and monitoring of disease. Moreover, metabolomics applications have revealed alterations in the levels of metabolites related to obesity-associated diabetes. This review focuses on the part that metabolomics has played in elucidating the roles of metabolites in the regulation of systemic metabolism relevant to obesity and diabetes. It also explains the possible metabolic relation and association between the two diseases. The metabolites with altered profiles in individual disorders and those that are specifically and similarly altered in both disorders are classified, categorized and summarized.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
| | - Krishna Chaitanya Sadanala
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
| | - Eun-Kyoung Kim
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873,
Korea
| |
Collapse
|