1
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Wang J, Fan W, Liu B, Pu N, Wu H, Xue R, Li S, Song Z, Tao Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol Res 2024; 203:107159. [PMID: 38554790 DOI: 10.1016/j.phrs.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).
Collapse
Affiliation(s)
- Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Liu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Rongyue Xue
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| |
Collapse
|
3
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Jamali E, Hashemnejad MA, Askari A, Shomali H, Eslami S, Akbari Dilmaghani N, Sharifi G, Bahranian A, Ghafouri-Fard S. A bioinformatics-based approach and expression assay for identification of dysregulated genes in pituitary adenoma. Pathol Res Pract 2024; 253:155006. [PMID: 38056134 DOI: 10.1016/j.prp.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Non-functioning pituitary adenomas (NFPAs) are a group of pituitary neuroendocrine tumors that are associated with morbidity. The exact pathophysiological process leading to this pathology is not known. Nerve growth factor (NGF) is a neurotropic factor that might be involved in this process. We used bioinformatics tools to analyze expression of genes in NFPA samples. Our analyses led to identification of NGF-related genes, namely ARC, ID1, and SH3GL3 - as well as one long non-coding RNA (lncRNA) called myocardial infarction associated transcript (MIAT). Then, we assessed their expression in NFPAs and their adjacent non-cancerous samples. While expression levels of SH3GL3 and MIAT were different between NFPA samples and control samples, expressions of ARC and ID1 were not meaningfully different between these two groups of specimens. SH3GL3 was over-expressed in NFPA samples compared with control samples (expression ratio (95% CI)= 8.22 (1.51-44.6), P value= 0.03). Similarly, expression of MIAT was higher in NFPAs compared with controls (expression ratio (95% CI)= 7.7 (1.7-33.6), P value= 0.009). Taken together, we validated the bioinformatics results regarding the expression of SH3GL3 and MIAT. This study provides a deeper understanding of the involvement of these genes in the pituitary tumorigenesis.
Collapse
Affiliation(s)
- Elena Jamali
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Amin Hashemnejad
- Clinical Research Developmental Unit (CRDU) of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Shomali
- Department of Biomedical Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefe Bahranian
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
6
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
7
|
Amato R, Canovai A, Melecchi A, Maci S, Quintela F, Fonseca BA, Cammalleri M, Dal Monte M. Efficacy of a Spearmint (Mentha spicata L.) Extract as Nutritional Support in a Rat Model of Hypertensive Glaucoma. Transl Vis Sci Technol 2023; 12:6. [PMID: 37917085 PMCID: PMC10627303 DOI: 10.1167/tvst.12.11.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Glaucoma is an eye-brain axis disorder characterized by loss of retinal ganglion cells (RGCs). Although the role of intraocular pressure (IOP) elevation in glaucoma has been established, the reduction of oxidative stress and inflammation has emerged as a promising target for neuronal tissue-supporting glaucoma management. Therefore, we evaluated the effect of a proprietary spearmint extract (SPE) on RGC density, activity, and neuronal health markers in a rat model of hypertensive glaucoma. Methods Animals were divided in four groups: untreated healthy control and three glaucomatous groups receiving orally administered vehicle, SPE-low dose, or SPE-high dose for 28 days. Ocular hypertension was induced through intracameral injection of methylcellulose at day 15. At day 29, rats underwent electroretinogram (ERG) recordings, and retinas were analyzed for RGC density and markers of neural trophism, oxidative stress, and inflammation. Results SPE exerted dose-dependent response benefits on all markers except for IOP elevation. SPE significantly improved RGC-related ERG responses, cell density, neurotrophins, oxidative stress, and inflammation markers. Also, in SPE-high rats, most of the parameters were not statistically different from those of healthy controls. Conclusions SPE, a plant-based, polyphenolic extract, could be an effective nutritional support for neuronal tissues. Translational Relevance These results suggest that SPE not only may be a complementary approach in support to hypotensive treatments for the management of glaucoma but may also serve as nutritional support in other ocular conditions where antioxidant, anti-inflammatory, and neuroprotective mechanism are often disrupted.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Samanta Maci
- Kemin Human Nutrition and Health, a Division of Kemin Foods L.C., Lisbon, Portugal
| | - Filipa Quintela
- Kemin Human Nutrition and Health, a Division of Kemin Foods L.C., Lisbon, Portugal
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health,” University of Pisa, Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health,” University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma. Int J Mol Sci 2023; 24:12592. [PMID: 37628770 PMCID: PMC10454042 DOI: 10.3390/ijms241612592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time.
Collapse
Affiliation(s)
| | | | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| |
Collapse
|
9
|
Pourzand P, Tabasi F, Fayazbakhsh F, Sarhadi S, Bahari G, Mohammadi M, Jomepour S, Nafeli M, Mosayebi F, Heravi M, Taheri M, Hashemi M, Ghavami S. The Reticulon-4 3-bp Deletion/Insertion Polymorphism Is Associated with Structural mRNA Changes and the Risk of Breast Cancer: A Population-Based Case-Control Study with Bioinformatics Analysis. Life (Basel) 2023; 13:1549. [PMID: 37511924 PMCID: PMC10381770 DOI: 10.3390/life13071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.
Collapse
Affiliation(s)
- Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Fariba Fayazbakhsh
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Shamim Sarhadi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Mohammadi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Sahar Jomepour
- Department of Cardiology, Cardiovascular Research Center, School of Medicine, Hormozgan University of Medical Science, Bandar Abbas 7916613885, Iran
| | - Mohammad Nafeli
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Fatemeh Mosayebi
- Tehran Heart Center, Tehran University of Medical Science, Tehran 1416634793, Iran
| | - Mehrdad Heravi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Walsh J, Palandra J, Goihberg E, Deng S, Hurst S, Neubert H. Analysis of β-nerve growth factor and its precursor during human pregnancy by immunoaffinity-liquid chromatography tandem mass spectrometry. Sci Rep 2023; 13:9180. [PMID: 37280257 DOI: 10.1038/s41598-023-34695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
β-Nerve growth factor (NGF) is a neurotrophin that plays a critical role in fetal development during gestation. ProNGF is the precursor form of NGF with a distinct biological profile. In order to investigate the role of NGF and proNGF in pregnant human females, a sensitive and selective immunoaffinity liquid chromatography-tandem mass spectrometry assay was developed and qualified to simultaneously measure the levels of total NGF (tNGF; sum of mature and proNGF) and proNGF using full and relative quantification strategies, respectively. The assay was used to determine serum tNGF and proNGF levels in the three gestational trimesters of pregnancy and in non-pregnant female controls. Mean tNGF ± SD were 44.6 ± 12.3, 42.6 ± 9.3, 65.4 ± 17.6 and 77.0 ± 17.8 pg/mL for non-pregnant, first, second, and third trimesters, respectively, demonstrating no significant increase in circulating tNGF between the control and the first trimester, and a moderate yet significant 1.7-fold increase through gestation. proNGF levels during the first trimester were unchanged compared to control. In contrast to tNGF, however, proNGF levels during gestation remained stable without significant changes. The development of this sensitive, novel immunoaffinity duplexed assay for both tNGF and proNGF is expected to enable further elucidation of the roles these neurotrophins play in human pregnancy as well as other models.
Collapse
Affiliation(s)
- Jason Walsh
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Joe Palandra
- Pfizer Inc., 1 Burtt Road, Andover, MA, 01810, USA
| | | | - Shibing Deng
- Pfizer Inc., 10777 Science Center Drive, San Diego, CA, 92121, USA
| | - Susan Hurst
- Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, USA
| | | |
Collapse
|
11
|
Malan L, van Wyk R, von Känel R, Ziemssen T, Vilser W, Nilsson PM, Magnusson M, Jujic A, Mak D, Steyn F, Malan NT. The chronic stress risk phenotype mirrored in the human retina as a neurodegenerative condition. Stress 2023:1-43. [PMID: 37154816 DOI: 10.1080/10253890.2023.2210687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A 3-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disc ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and 3-yr changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase 3-like-1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal-barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal-barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Collapse
Affiliation(s)
- Leoné Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| | - Roelof van Wyk
- Surgical Ophthalmologist; 85 Peter Mokaba Street, Potchefstroom, South Africa
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus; Technische Universität Dresden, Germany
| | - Walthard Vilser
- Institute of Biomedical Engineering and informatics; Technical University Ilmenau, Germany
- Department of Pediatrics and Adolescent Medicine, Section Neonatalogy; University Hospital, Jena, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
- Hypertension in Africa Research Team (HART); North-West University, Potchefstroom, South Africa
- Department of Cardiology; Skåne University Hospital, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Malmö Sweden
| | - Amra Jujic
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Daniel Mak
- Centre for Regenerative Medicine and Health; Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, People's Republic of China
| | - Faans Steyn
- Statistical Consultation Services; North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
12
|
Sugiaman VK, Djuanda R, Pranata N, Naliani S, Demolsky WL. Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers (Basel) 2022; 14:polym14183712. [PMID: 36145860 PMCID: PMC9503223 DOI: 10.3390/polym14183712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Maintaining dental pulp vitality and preventing tooth loss are two challenges in endodontic treatment. A tooth lacking a viable pulp loses its defense mechanism and regenerative ability, making it more vulnerable to severe damage and eventually necessitating extraction. The tissue engineering approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules are triad components of this approach. Stem cells from human exfoliated deciduous teeth (SHED) are a promising, noninvasive source of stem cells for tissue regeneration. Not only can SHEDs regenerate dentin-pulp tissues (comprised of fibroblasts, odontoblasts, endothelial cells, and nerve cells), but SHEDs also possess immunomodulatory and immunosuppressive properties. The collagen matrix is a material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp tissue differentiation. Growth factors regulate cell proliferation, migration, and differentiation into specific phenotypes via signal-transduction pathways. This review provides current concepts and applications of the tissue engineering approach, especially SHEDs, in endodontic treatment.
Collapse
Affiliation(s)
- Vinna K Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Wayan L Demolsky
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| |
Collapse
|
13
|
Taylor MF, Black MA, Hampton MB, Ledgerwood EC. Insights into H 2O 2-induced signaling in Jurkat cells from analysis of gene expression. Free Radic Res 2022; 56:666-676. [PMID: 36630571 DOI: 10.1080/10715762.2023.2165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous oxidant produced in a regulated manner by various enzymes in mammalian cells. H2O2 reversibly oxidizes thiol groups of cysteine residues to mediate intracellular signaling. While examples of H2O2-dependent signaling have been reported, the exact molecular mechanism(s) of signaling and the pathways affected are not well understood. Here, the transcriptomic response of Jurkat T cells to H2O2 was investigated to determine global effects on gene expression. With a low H2O2 concentration (10 µM) that did not induce an oxidative stress response or cell death, extensive changes in gene expression occurred after 4 h (6803 differentially expressed genes). Of the genes with a greater then 2-fold change in expression, 85% were upregulated suggesting that in a physiological setting H2O2 predominantly activates gene expression. Pathway analysis identified gene expression signatures associated with FOXO and NTRK signaling. These signatures were associated with an overlapping set of transcriptional regulators. Overall, our results provide a snapshot of gene expression changes in response to H2O2, which, along with further studies, will lead to new insights into the specific pathways that are activated in response to endogenous production of H2O2, and the molecular mechanisms of H2O2 signaling.
Collapse
Affiliation(s)
- Megan F Taylor
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand
| | - Elizabeth C Ledgerwood
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Zeng F, Liao S, Kuang Z, Zhu Q, Wei H, Shi J, Zheng E, Xu Z, Huang S, Hong L, Gu T, Yang J, Yang H, Cai G, Moisyadi S, Urschitz J, Li Z, Wu Z. Genetically Engineered Pigs as Efficient Salivary Gland Bioreactors for Production of Therapeutically Valuable Human Nerve Growth Factor. Cells 2022; 11:cells11152378. [PMID: 35954224 PMCID: PMC9368069 DOI: 10.3390/cells11152378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Farm animal salivary glands hold great potential as efficient bioreactors for production of human therapeutic proteins. Nerve growth factor (NGF) is naturally expressed in animal salivary glands and has been approved for human clinical treatment. This study aims to employ transgenic (TG) pig salivary gland as bioreactors for efficient synthesis of human NGF (hNGF). hNGF-TG pigs were generated by cloning in combination with piggyBac transposon-mediated gene transfer. These hNGF-TG pigs specifically expressed hNGF protein in their salivary glands and secreted it at high levels into saliva. Surgical and nonsurgical approaches were developed to efficiently collect saliva from hNGF-TG pigs. hNGF protein was successfully purified from collected saliva and was verified to be biologically active. In an additional step, the double-transgenic pigs, where the endogenous porcine NGF (pNGF) gene was replaced by another copy of hNGF transgene, were created by cloning combined with CRISPR/Cas9-mediated homologous recombination. These double-transgenic pigs expressed hNGF but not pNGF, thus avoiding possible "contamination" of hNGF with pNGF protein during purification. In conclusion, TG pig salivary glands can be used as robust bioreactors for a large-scale synthesis of functional hNGF or other valuable proteins. This new animal pharming method will benefit both human health and biomedicine.
Collapse
Affiliation(s)
- Fang Zeng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Department of Aquaculture, College of Marine Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sha Liao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Kuang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qingchun Zhu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China;
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.M.); (J.U.)
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.M.); (J.U.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-2085284985 (Z.L.); +86-2085280369 (Z.W.)
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-2085284985 (Z.L.); +86-2085280369 (Z.W.)
| |
Collapse
|
15
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
16
|
Cocchiaro P, Di Donato V, Rubbini D, Mastropasqua R, Allegretti M, Mantelli F, Aramini A, Brandolini L. Intravitreal Administration of rhNGF Enhances Regenerative Processes in a Zebrafish Model of Retinal Degeneration. Front Pharmacol 2022; 13:822359. [PMID: 35330834 PMCID: PMC8940169 DOI: 10.3389/fphar.2022.822359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Nerve growth factor (NGF) is the best characterized neurotrophin, and it is known to play an important role in ocular homeostasis. Here, we demonstrated the expression of NGF receptors in adult zebrafish retina and optimized a light-induced retina degeneration (LID) zebrafish model that mimics human cone-rod disorders, demonstrating that intravitreal (IV) administration of rhNGF can boost zebrafish retinal regeneration in this model. Adult zebrafish retinae exposed to 60 h of light irradiation (60 h LID) displayed evident reduction of outer nuclear layer (ONL) thickness and cell number with presence of apoptotic cells. Retinal histologic evaluation at different time points showed that IV therapeutic injection of rhNGF resulted in an increase of ONL thickness and cell number at late time points after damage (14 and 21 days post injury), ultimately accelerating retinal tissue recovery by driving retinal cell proliferation. At a molecular level, rhNGF activated the ERK1/2 pathway and enhanced the regenerative potential of Müller glia gfap- and vim-expressing cells by stimulating at early time points the expression of the photoreceptor regeneration factor Drgal1-L2. Our results demonstrate the highly conserved nature of NGF canonical pathway in zebrafish and thus support the use of zebrafish models for testing new compounds with potential retinal regenerative properties. Moreover, the pro-regenerative effects of IV-injected NGF that we observed pave the way to further studies aimed at evaluating its effects also in mammals, in order to expedite the development of novel rhNGF-based therapeutic approaches for ophthalmological disorders.
Collapse
Affiliation(s)
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| | - Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Laura Brandolini
- Dompé Farmaceutici SpA, Napoli, Italy
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| |
Collapse
|
17
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
18
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Aloe L, Rocco ML, Balzamino BO, Esposito G, Micera A. Retrobulbar administration of purified anti-nerve growth factor in developing rats induces structural and biochemical changes in the retina and cornea. Int J Ophthalmol 2021; 14:209-216. [PMID: 33614448 DOI: 10.18240/ijo.2021.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
AIM To develop an experimental model of endogenous nerve growth factor (NGF) deprivation by retrobulbar administration of purified neutralizing anti-NGF antibodies in young Sprague-Dawley rats and provide further information on NGF expression in the retina and cornea. METHODS Sixty old pathogen-free Sprague Dawley rats (p14, post-natal days) were treated with repeated retrobulbar injections of neutralizing anti-NGF (2 µL, 100 µg/mL, every 3d). After 2wk (p28), retinal and corneal tissues were investigated for morphological, biochemical, and molecular expression of trkANGFR by using Western blotting or immunofluorescence. Rhodopsin as well as protein profile expression were also investigated. RESULTS Chronic retrobulbar neutralizing anti-NGF antibodies changed the distribution of trkANGFR immunoreactivity at retinal level, while no changes were detected for global trkANGFR protein expression. By contrary, the treatment resulted in the increase of corneal trkANGFR expression. Retinal tissues showed a decreased rhodopsin expression as well as reduced number of both rhodopsin expressing and total retinal cells, as observed after single cell extraction. A decreased expression of ICAM-1, IL-17 and IL-13 as well as an increased expression of IL-21 typified retinal extracts. No significant changes were observed for corneal tissues. CONCLUSION The reduced availability of endogenous NGF, as produced by chronic retrobulbar anti-NGF administration, produce a quick response from retinal tissues, with respect to corneal ones, suggesting the presence of early compensatory mechanisms to protect retinal networking.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Lazio 00143, Rome, Italy.,Fondazione IRET, Ozzano Emilia, Bologna 40064, Italy
| | - Maria Luisa Rocco
- Fondazione IRET, Ozzano Emilia, Bologna 40064, Italy.,Institute of Translational Pharmacology, CNR, Lazio 00133, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| |
Collapse
|
21
|
Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205:108506. [PMID: 33609512 DOI: 10.1016/j.exer.2021.108506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
22
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
24
|
Abdullah MAA, Amini N, Yang L, Paluh JL, Wang J. Multiplexed analysis of neural cytokine signaling by a novel neural cell-cell interaction microchip. LAB ON A CHIP 2020; 20:3980-3995. [PMID: 32945325 PMCID: PMC7606659 DOI: 10.1039/d0lc00401d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multipotent neural stem cells (NSCs) are widely applied in pre-clinical and clinical trials as a cell source to promote tissue regeneration in neurodegenerative diseases. Frequently delivered as dissociated cells, aggregates or self-organized rosettes, it is unknown whether disruption of the NSC rosette morphology or method of formation affect signaling profiles of these cells that may impact uniformity of outcomes in cell therapies. Here we generate a neural cell-cell interaction microchip (NCCIM) as an in vitro platform to simultaneously track an informed panel of cytokines and co-evaluate cell morphology and biomarker expression coupled to a sandwich ELISA platform. We apply multiplex in situ tagging technology (MIST) to evaluate ten cytokines (PDGF-AA, GDNF, BDNF, IGF-1, FGF-2, IL-6, BMP-4, CNTF, β-NGF, NT-3) on microchips for EB-derived rosettes, single cell dissociated rosettes and reformed rosette neurospheres. Of the cytokines evaluated, EB-derived rosettes secrete PDGF-AA, GDNF and FGF-2 prominently, whereas this profile is temporarily lost upon dissociation to single cells and in reformed neurospheres two additional cytokines, BDNF and β-NGF, are also secreted. This study on NSC rosettes demonstrates the development, versatility and utility of the NCCIM as a sensitive multiplex detector of cytokine signaling in a high throughput and controlled microenvironment. The NCCIM is expected to provide important new information to refine cell source choices in therapies as well as to support development of informative 2D or 3D in vitro models including areas of neurodegeneration or neuroplasticity.
Collapse
Affiliation(s)
- Mohammed A. A. Abdullah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222
| | - Nooshin Amini
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Janet L. Paluh
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
- Corresponding authors. ;
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Corresponding authors. ;
| |
Collapse
|
25
|
Gu Y, Cao H, Li F, Yu J, Nian R, Feng D, Lin J, Song H, Liu W. Production of functional human nerve growth factor from the submandibular glands of mice using a CRISPR/Cas9 genome editing system. World J Microbiol Biotechnol 2020; 36:176. [PMID: 33103226 DOI: 10.1007/s11274-020-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Nerve growth factor (NGF) is an essential trophic factor for the growth and survival of neurons in the central and peripheral nervous systems. For many years, mouse NGF (mNGF) has been used to treat various neuronal and non-neuronal disorders. However, the biological activity of human NGF (hNGF) is significantly higher than that of mNGF in human cells. Using the CRISPR/Cas9 system, we constructed the transgenic mice expressing hNGF specifically in their submandibular glands. As demonstrated by fluorescence immunohistochemical staining, these mice produced hNGF successfully, with 0.8 mg produced per gram of submandibular glands. hNGF with 99% purity was successfully extracted by two-step ion-exchange chromatography and one-step size-exclusion chromatography from the submandibular glands of these transgenic mice. Further, the purified hNGF was verified by LC-MS/MS. We analyzed the NH2-terminus of hNGF using both Edman degradation and LC-MS/MS-based methods. Both results showed that the obtained hNGF lost the NH2-terminal octapeptide (SSSHPIFH). Moreover, the produced hNGF demonstrated a strong promotion in the proliferation of TF1 cells.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Hui Cao
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jianli Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Dongxiao Feng
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jingtao Lin
- Dalang Hospital of Dongguan, No. 85 Jinlangzhong Road, Dalang, 523770, Dongguan, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
26
|
Kim JY, Park JH, Kang SS, Hwang SB, Tchah H. Topical nerve growth factor attenuates streptozotocin-induced diabetic cataracts via polyol pathway inhibition and Na +/K +-ATPase upregulation. Exp Eye Res 2020; 202:108319. [PMID: 33080303 DOI: 10.1016/j.exer.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate whether and how topical nerve growth factor (NGF) attenuates streptozotocin (STZ)-induced diabetic cataracts in vivo. Rats were randomly divided into three groups, including the normal control rat group, STZ-induced diabetic cataract rat group (DM group), and STZ-induced diabetic cataract rat group treated with 200 μg/mL recombinant rat β-NGF (DM + NGF group). Cataract formation was evaluated by portable slit lamp biomicroscopy following pupil dilation at 8 weeks. The expression levels of NGF, aldose reductase (AR), and Na+/K+-ATPase in the lens epithelial cells (LECs) of the three groups were measured in the presence or absence of topical NGF. TUNEL-positive LECs were quantified to determine if hyperglycemia caused LEC apoptosis. At 8 weeks, the mean cataract score in the control group was significantly lower than that in DM and DM + NGF groups, and the score in the DM + NGF group was significantly lower than that in the DM group. At the equatorial zone and anterior central zone of lens, NGF and Na+/K+-ATPase expression levels were significantly decreased in the DM group; however, they were partially restored in the DM + NGF group. At the equatorial zone and anterior central zone of lens, AR expression and TUNEL-positive apoptotic LECs were significantly increased in the DM group compared with the control group, however, they were significantly decreased in the DM + NGF group. In conclusion, topical NGF could delay the progression of diabetic cataracts by attenuating polyol pathway activation and increasing Na+/K+-ATPase protein levels.
Collapse
Affiliation(s)
- Jae Yong Kim
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hyoung Park
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Miso Eye Clinic, Seoul, Republic of Korea
| | - Soon-Suk Kang
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sae-Byeok Hwang
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Miso Eye Clinic, Seoul, Republic of Korea
| | - Hungwon Tchah
- Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Widasmara D, Menaldi SL, Turchan A. Evaluation of nerve growth factor serum level for early detection of leprosy disability. Pan Afr Med J 2020; 37:145. [PMID: 33425178 PMCID: PMC7757272 DOI: 10.11604/pamj.2020.37.145.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction this research aimed to analyze nerve growth factor (NGF) contents as diagnostic tools for early disability in leprosy patients and the cut-off point value. Methods research samples consisted of 79 leprosy patients with disability grade 0 or 1 who met the clinically approved inclusion criteria. The age of patients ranged from 14 to 50 years. For both sample groups, blood serum was collected to determine NGF concentration. NGF level was analyzed by enzyme-linked immunosorbent assay (ELISA) according to the manual guide of the kit insert from Cussabio®. Statistical analysis used SPSS 17 software for Windows. A comparison was performed with the Student's t-test and the NGF concentration cut-off point was determined using a receiver operating characteristic (ROC) curve. Results the research result demonstrated that NGF concentration in multibacillary leprosy with disability grade 0 was higher than in grade 1. Leprosy with disability grade 0 had an NGF content reaching 100.46 pg/mL, while those with grade 1 had a lower concentration of NGF at 30.56 pg/mL. The higher disability grade indicated a lower NGF concentration in the blood serum. Based on the ROC analysis result, the NGF cut-off was shown to be 81.43 pg/mL. This result indicated that low NGF in nerve and skin lesions of leprosy patients contributes to early peripheral nerve malfunction due to Mycobacterium leprae infection. Conclusion these results prove that NGF can be used as a marker of early disability in leprosy, with the cut-off value at 81.43 pg/mL.
Collapse
Affiliation(s)
- Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia
| | - Sri Linuwih Menaldi
- Department of Dermatology and Venereology, Faculty of Medicine, University of Indonesia, Depok 16424, West Java, Indonesia
| | - Agus Turchan
- Department of Neurosurgery, Faculty of Medicine, Airlangga University, Surabaya 60132, East Java, Indonesia
| |
Collapse
|
28
|
Kozlov EM, Grechko AV, Chegodaev YS, Wu WK, Orekhov AN. Contribution of Neurotrophins to the Immune System Regulation and Possible Connection to Alcohol Addiction. BIOLOGY 2020; 9:biology9040063. [PMID: 32231011 PMCID: PMC7235771 DOI: 10.3390/biology9040063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
The first references to neurotrophic factors date back to the middle of the 20th century when the nerve growth factor (NGF) was first discovered. Later studies delivered a large amount of data on neurotrophic factors. However, many questions regarding neurotrophin signaling still remain unanswered. One of the principal topics in neurotrophin research is their role in the immune system regulation. Another important research question is the possible involvement of neurotrophin signaling in the pathological processes associated with alcoholism. Among known neurotrophins, NT-4 remains the least studied and appears to be involved in alcoholism and chronic stress pathogenesis. In this review we discuss known neurotrophin signaling cascades mediated by different neurotrophin receptors, as well as provide a generalization of the data regarding the influence of neurotrophins NGF, BDNF, and NT-4 on the immune system and their potential contribution to the pathogenesis of alcoholism.
Collapse
Affiliation(s)
- Evgenii M. Kozlov
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia;
| | - Yegor S. Chegodaev
- I. M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-903-169-08-66
| |
Collapse
|
29
|
Guo L, Davis BM, Ravindran N, Galvao J, Kapoor N, Haamedi N, Shamsher E, Luong V, Fico E, Cordeiro MF. Topical recombinant human Nerve growth factor (rh-NGF) is neuroprotective to retinal ganglion cells by targeting secondary degeneration. Sci Rep 2020; 10:3375. [PMID: 32099056 PMCID: PMC7042238 DOI: 10.1038/s41598-020-60427-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Optic neuropathy is a major cause of irreversible blindness worldwide, and no effective treatment is currently available. Secondary degeneration is believed to be the major contributor to retinal ganglion cell (RGC) death, the endpoint of optic neuropathy. Partial optic nerve transection (pONT) is an established model of optic neuropathy. Although the mechanisms of primary and secondary degeneration have been delineated in this model, until now how this is influenced by therapy is not well-understood. In this article, we describe a clinically translatable topical, neuroprotective treatment (recombinant human nerve growth factor, rh-NGF) predominantly targeting secondary degeneration in a pONT rat model. Topical application of rh-NGF twice daily for 3 weeks significantly improves RGC survival as shown by reduced RGC apoptosis in vivo and increased RGC population in the inferior retina, which is predominantly affected in this model by secondary degeneration. Topical rh-NGF also promotes greater axonal survival and inhibits astrocyte activity in the optic nerve. Collectively, these results suggest that topical rh-NGF exhibits neuroprotective effects on retinal neurons via influencing secondary degeneration process. As topical rh-NGF is already involved in early clinical trials, this highlights its potential in multiple indications in patients, including those affected by glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Benjamin M Davis
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joana Galvao
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Neel Kapoor
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nasrin Haamedi
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Vy Luong
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Elena Fico
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom. .,Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
30
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Santos NAGD, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2019; 136:111079. [PMID: 31891754 DOI: 10.1016/j.fct.2019.111079] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Hah YS, Yoo WS, Seo SW, Chung I, Kim HA, Cho HY, Kim SJ. Reduced NGF Level Promotes Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells Exposed to High Dexamethasone Concentrations. Curr Eye Res 2019; 45:686-695. [PMID: 31751158 DOI: 10.1080/02713683.2019.1695844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the protective effects of nerve growth factor (NGF) against steroid-induced cataract formation in dexamethasone (Dex)-treated human lens epithelial B-3 (HLE-B3) cells and the possible molecular mechanisms underlying this protection.Materials and Methods: HLE-B3 cells were treated with Dex, and cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. The levels of expression of NGF, fibronectin, α-smooth muscle actin (α-SMA), and E-cadherin mRNAs were measured by real-time quantitative polymerase chain reaction (qPCR), and the levels of NGF, fibronectin, α-SMA, E-cadherin, tropomyosin receptor kinase A (TrkA), and Akt proteins were measured by Western blot analysis. Gene expression profiles of growth factors in Dex-treated HLE-B3 cells were determined by PCR arrays. In addition, anterior capsule tissue was obtained during cataract surgery, and the specimens were also examined expressions of NGF.Results: NGF was expressed in HLE-B3 cells and also in lens epithelial cells of anterior lens capsules. Dex treatment of HLE-B3 cells increased their expression of epithelial-mesenchymal transition (EMT) markers and migration activity, while markedly downregulating the expression of NGF. NGF treatment significantly reduced the expression of α-SMA and fibronectin, as well as cell proliferation. The decreased phosphorylation of p38 MAPK and Akt induced by Dex treatment was significantly reversed by treatment with NGF.Conclusion: NGF/TrkA may repress EMT by targeting the p38 MAPK and pAkt pathways in Dex-treated HLE-B3 cells. NGF may be a novel therapeutic target for patients with steroid-induced cataract.
Collapse
Affiliation(s)
- Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Woong-Sun Yoo
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Seong-Wook Seo
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Inyoung Chung
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Hyun-A Kim
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Hee Young Cho
- Biomedical Research Institute, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Seong-Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
33
|
|
34
|
Fang J, Zhao X, Li S, Xing X, Wang H, Lazarovici P, Zheng W. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90 rsk-CREB pathway. Stem Cell Res Ther 2019; 10:312. [PMID: 31655619 PMCID: PMC6815409 DOI: 10.1186/s13287-019-1419-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/02/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is one of the new therapeutic strategies for treating ischemic brain and heart tissues. However, the poor survival rate of transplanted BMSCs in ischemic tissue, due to high levels of reactive oxygen species (ROS), limits the therapeutic efficacy of this approach. Considering that BMSC survival may greatly enhance the effectiveness of transplantation therapy, development of effective therapeutics capable of mitigating oxidative stress-induced BMSC apoptosis is an important unmet clinical need. Methods BMSCs were isolated from the 4-week-old male Sprague Dawley rats by whole bone marrow adherent culturing, and the characteristics were verified by morphology, immunophenotype, adipogenic, and osteogenic differentiation potential. BMSCs were pretreated with artemisinin, and H2O2 was used to induce apoptosis. Cell viability was detected by MTT, FACS, LDH, and Hoechst 33342 staining assays. Mitochondrial membrane potential (ΔΨm) was measured by JC-1 assay. The apoptosis was analyzed by Annexin V-FITC/PI and Caspase 3 Activity Assay kits. ROS level was evaluated by using CellROX® Deep Red Reagent. SOD, CAT, and GPx enzymatic activities were assessed separately using Cu/Zn-SOD and Mn-SOD Assay Kit with WST-8, Catalase Assay Kit, and Total Glutathione Peroxidase Assay Kit. The effects of artemisinin on protein expression of BMSCs including p-Erk1/2, t-Erk1/2, p-c-Raf, p-p90rsk, p-CREB, BCL-2, Bax, p-Akt, t-Akt, β-actin, and GAPDH were measured by western blotting. Results We characterized for the first time the protective effect of artemisinin, an anti-malaria drug, using oxidative stress-induced apoptosis in vitro, in rat BMSC cultures. We found that artemisinin, at clinically relevant concentrations, improved BMSC survival by reduction of ROS production, increase of antioxidant enzyme activities including SOD, CAT, and GPx, in correlation with decreased Caspase 3 activation, lactate dehydrogenase (LDH) release and apoptosis, all induced by H2O2. Artemisinin significantly increased extracellular-signal-regulated kinase 1/2 (Erk1/2) phosphorylation, in a concentration- and time-dependent manner. PD98059, the specific inhibitor of the Erk1/2 pathway, blocked Erk1/2 phosphorylation and artemisinin protection. Similarly, decreased expression of Erk1/2 by siRNA attenuated the protective effect of artemisinin. Additionally, when the upstream activator KRAS was knocked down by siRNA, the protective effect of artemisinin was also blocked. These data strongly indicated the involvement of the Erk1/2 pathway. Consistent with this hypothesis, artemisinin increased the phosphorylation of Erk1/2 upstream kinases proto-oncogene c-RAF serine/threonine-protein kinase (c-Raf) and of Erk1/2 downstream targets p90 ribosomal s6 kinase (p90rsk) and cAMP response element binding protein (CREB). In addition, we found that the expression of anti-apoptotic protein B cell lymphoma 2 protein (BcL-2) was also upregulated by artemisinin. Conclusion These studies demonstrate the proof of concept of artemisinin therapeutic potential to improve survival in vitro of BMSCs exposed to ROS-induced apoptosis and suggest that artemisinin-mediated protection occurs via the activation of c-Raf-Erk1/2-p90rsk-CREB signaling pathway.
Collapse
Affiliation(s)
- Jiankang Fang
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xingan Xing
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Sothern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
35
|
Liu H, Wang W, Li X, Huang C, Zhang Z, Yuan M, Li X. High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway. Mol Med Rep 2019; 19:5321-5334. [PMID: 31059045 PMCID: PMC6522898 DOI: 10.3892/mmr.2019.10206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
High pressure is the most important factor inducing retinal ganglion cell (RGC) apoptosis. However, the underlying mechanisms remain obscure. The present study investigated the effects of different levels of hydrostatic pressure (HP) on RGCs and the potential mechanisms involved. Primary cultured rat RGCs were exposed to five levels of HP (0, 20, 40, 60 and 80 mmHg) for 24 h. Morphological changes in RGCs were observed. The viability and apoptosis rate of RGCs were detected using a Cell Counting Kit‑8 assay and Annexin V‑fluorescein isothiocyanate/propidium iodide flow cytometry, respectively. Western blotting, reverse transcription‑quantitative polymerase chain reaction and immunofluorescence were used to detect the expression and mRNA levels of nerve growth factor (NGF), protein kinase B (AKT), apoptosis signal‑regulating kinase 1 (ASK1), forkhead box O1 (FoxO1) and cAMP response element binding protein (CREB). In the 0‑ and 20‑mmHg groups, there were no apoptotic morphological changes. In the 40 mmHg group, parts of the cell were shrunken or disrupted. In the 60 mmHg group, neurite extension was weakened and parts of the cells were disintegrating or dying. In the 80 mmHg group, the internal structures of the cells were not visible at all. The apoptosis rates of RGCs were significantly higher and the viability rates significantly lower under 40, 60 and 80 mmHg compared with under 0 or 20 mmHg (all P<0.01). The expression and mRNA levels of NGF, AKT and CREB decreased in a dose‑dependent manner in the 40‑, 60‑ and 80‑mmHg groups (all P<0.05), but those of ASK1 and FoxO1 increased in a dose‑dependent manner (all P<0.05). Interestingly, the alterations to the expression and mRNA levels of CREB were significantly larger compared with the changes in ASK1 or FoxO1 in the 40‑, 60‑ and 80‑mmHg groups (all P<0.01). The results of the present study demonstrate that elevated HP of 40, 60 or 80 mmHg reduces viability and induces apoptosis in RGCs, which may occur through effects on the NGF/ASK1/FoxO1 and NGF/AKT/CREB pathways, of which the latter is more strongly affected.
Collapse
Affiliation(s)
- Hongji Liu
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Wei Wang
- Department of Ophthalmology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan 646000, P.R. China
| | - Xiang Li
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Chao Huang
- Central Laboratory, Shenzhen Bao'an People's Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Zongduan Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingyue Yuan
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiangyu Li
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
36
|
Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G. Glaucoma - Next Generation Therapeutics: Impossible to Possible. Pharm Res 2018; 36:25. [PMID: 30547244 DOI: 10.1007/s11095-018-2557-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.
Collapse
Affiliation(s)
- Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research (NIBR),, Cambridge, Massachusetts, USA
| | - Rebecca Stacy
- Translational Medicine, Ophthalmology, NIBR, Cambridge, Massachusetts, USA
| | - Nalini Rangaswamy
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Chad Bigelow
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Cynthia L Grosskreutz
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Ganesh Prasanna
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
37
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
38
|
Enomoto M, Mantyh PW, Murrell J, Innes JF, Lascelles BDX. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet Rec 2018; 184:23. [PMID: 30368458 PMCID: PMC6326241 DOI: 10.1136/vr.104590] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Nerve growth factor (NGF) is essential for the survival of sensory and sympathetic neurons during development. However, in the adult, NGF and its interaction with tropomyosin receptor kinase A receptor (TrkA) has been found to play a critical role in nociception and nervous system plasticity in pain conditions. Thus, various monoclonal antibody (mAb) therapies targeting this pathway have been investigated in the development of new pharmacotherapies for chronic pain. Although none of the mAbs against NGF are yet approved for use in humans, they look very promising for the effective control of pain. Recently, species-specific anti-NGF mAbs for the management of osteoarthritis (OA)-associated pain in dogs and cats has been developed, and early clinical trials have been conducted. Anti-NGF therapy looks to be both very effective and very promising as a novel therapy against chronic pain in dogs and cats. This review outlines the mechanism of action of NGF, the role of NGF in osteoarthritis, research in rodent OA models and the current status of the development of anti-NGF mAbs in humans. Furthermore, we describe and discuss the recent development of species-specific anti-NGF mAbs for the treatment of OA-associated pain in veterinary medicine.
Collapse
Affiliation(s)
- Masataka Enomoto
- Translational Research in Pain, Comparative Pain Research and Education Centre, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Patrick W Mantyh
- Cancer Center's Cancer Biology Program, Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joanna Murrell
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - B Duncan X Lascelles
- Translational Research in Pain, Comparative Pain Research and Education Centre, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Center for Pain Research and Innovation, UNC School of Dentistry, Chapel Hill, North Carolina, USA.,Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
39
|
Pappenhagen N, Inman DM. Changes in ganglioside GM1 expression in glaucomic retina. J Neurosci Res 2018; 96:1627-1630. [PMID: 30019489 DOI: 10.1002/jnr.24273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Nate Pappenhagen
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
40
|
Wang WJ, Jin W, Yang AH, Chen Z, Xing YQ. Protective effects of ciliary neurotrophic factor on the retinal ganglion cells by injure of hydrogen peroxide. Int J Ophthalmol 2018; 11:923-928. [PMID: 29977802 DOI: 10.18240/ijo.2018.06.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
AIM To explore the effect of ciliary neurotrophic factor (CNTF) on retinal ganglion cell (RGC)-5 induced by hydrogen peroxide (H2O2). METHODS After cell adherence, RGC-5 culture medium was changed to contain different concentrations of H2O2 from 50 to 150 µmol/L at four time points (0.5, 1, 1.5 and 2h) to select the concentration and time point for H2O2 induced model. Two different ways of interventions for injured RGC-5 cells respectively were CNTF as an addition in the culture medium or recombinant lentiviral plasmid carrying CNTF gene transfecting bone mesenchymal stem cells (BMSCs) for co-culture with RGC-5. RESULTS Compared to the control group, H2O2 led to RGC-5 death closely associated with concentrations and action time of H2O2 and we chose 125 µmol/L and 2h to establish the H2O2-induced model. While CNTF inhibited the loss of RGC-5 cells obviously with a dose-dependent survival rate. Nevertheless two administration routes had different survival rate yet higher rate in recombinant lentiviral plasmid group but there were no statistically significant differences. CONCLUSION Both the two administration routes of CNTF have effects on RGC-5 cells induced by H2O2. If their own advantages were combined, there may be a better administration route.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - An-Huai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
41
|
Aarão TLDS, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Front Immunol 2018; 9:939. [PMID: 29867937 PMCID: PMC5949531 DOI: 10.3389/fimmu.2018.00939] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil.,Tropical Medicine Center, Federal University of Para, Belem, Brazil.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
42
|
Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review. Front Cell Neurosci 2018; 12:85. [PMID: 29636665 PMCID: PMC5880906 DOI: 10.3389/fncel.2018.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 01/31/2023] Open
Abstract
SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2) is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF) signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK) pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF) neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Algarni AS, Hargreaves AJ, Dickenson JM. Activation of transglutaminase 2 by nerve growth factor in differentiating neuroblastoma cells: A role in cell survival and neurite outgrowth. Eur J Pharmacol 2017; 820:113-129. [PMID: 29242118 DOI: 10.1016/j.ejphar.2017.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022]
Abstract
NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca2+. Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF.
Collapse
Affiliation(s)
- Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
44
|
Effects of neuroactive agents on axonal growth and pathfinding of retinal ganglion cells generated from human stem cells. Sci Rep 2017; 7:16757. [PMID: 29196712 PMCID: PMC5711798 DOI: 10.1038/s41598-017-16727-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
We recently established a novel method for generating functional human retinal ganglion cells (RGCs) from human induced pluripotent cells (hiPSCs). Here, we confirmed that RGCs can also be generated from human embryonic stem cells (hESCs). We investigated the usefulness of human RGCs with long axons for assessing the effects of chemical agents, such as the neurotrophic factor, nerve growth factor (NGF), and the chemorepellent factors, semaphorin 3 A (SEMA3A) and SLIT1. The effects of direct and local administration of each agent on axonal projection were evaluated by immunohistochemistry, real-time polymerase chain reaction (PCR), and real-time imaging, in which the filopodia of the growth cone served as an excellent marker. A locally sustained agent system showed that the axons elongate towards NGF, but were repelled by SEMA3A and SLIT1. Focally transplanted beads that released SLIT1 bent the pathfinding of axons, imitating normal retinal development. Our innovative system for assessing the effects of chemical compounds using human RGCs may facilitate development of novel drugs for the examination, prophylaxis, and treatment of diseases. It may also be useful for observing the physiology of the optic nerve in vitro, which might lead to significant progress in the science of human RGCs.
Collapse
|
45
|
Zada M, Pattamatta U, White A. Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology 2017; 125:179-192. [PMID: 29079272 DOI: 10.1016/j.ophtha.2017.08.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Modulating conjunctival wound healing has the potential to improve outcomes after glaucoma filtration surgery and for several ocular disorders, including ocular cicatrial pemphigoid, vernal keratoconjunctivitis, and pterygium. Although anti-inflammatories and antimetabolites have been used with success, these nonspecific agents are not without their complications. The search for novel and more targeted means to control conjunctival fibrosis without such limitations has brought much attention to the regulation of fibroblast proliferation, differentiation, extracellular matrix production, and apoptosis. This review provides an update on where we stand with current antifibrotic agents and outlines the strategies that novel agents use, as they evolve from the bench to the bedside.
Collapse
Affiliation(s)
- Mark Zada
- Glaucoma Cell Biology Group, The Westmead Institute for Medical Research, NSW, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, NSW, Australia.
| | - Ushasree Pattamatta
- Glaucoma Cell Biology Group, The Westmead Institute for Medical Research, NSW, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, NSW, Australia
| | - Andrew White
- Glaucoma Cell Biology Group, The Westmead Institute for Medical Research, NSW, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| |
Collapse
|
46
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
47
|
Alam T, Uludag M, Essack M, Salhi A, Ashoor H, Hanks JB, Kapfer C, Mineta K, Gojobori T, Bajic VB. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res 2017; 45:2838-2848. [PMID: 27924038 PMCID: PMC5389649 DOI: 10.1093/nar/gkw973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna
Collapse
Affiliation(s)
- Tanvir Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Haitham Ashoor
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - John B Hanks
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Craig Kapfer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| |
Collapse
|
48
|
Tvarijonaviciute A, Castillo C, Ceron JJ, Martinez-Subiela S, Tecles F, López-Jornet P. Leptin and NGF in saliva of patients with diabetes mellitus type 2: A pilot study. J Oral Pathol Med 2017; 46:853-855. [PMID: 28437012 DOI: 10.1111/jop.12587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed to measure salivary levels of leptin and nerve growth factor (NGF) in patients with type 2 diabetes (T2D) and to compare with healthy subjects. In addition, markers previously evaluated in diabetes, including insulin, hepatocyte growth factor (HGF), and monocyte chemoattractant protein-1 (MCP-1), and markers of inflammation interleukin ([IL]-1b, IL-6, IL-8, Tumor necrosis factor alpha [TNF-α]), were also measured in saliva to evaluate possible relationship of these markers with the new analytes evaluated in the study. METHODS Unstimulated whole saliva was collected by passive drooling from a total of 65 individuals (34 controls and 31 with T2D) and used for leptin, NGF, HGF, MCP-1, insulin, IL-1b, IL-6, IL-8, and TNF-α determination. RESULTS Salivary leptin was 2.1 higher in T2D than in healthy controls (P<.001), while no statistically significant differences were detected between the two groups in salivary concentrations of NGF. Salivary IL-6, TNF-α, insulin, and MCP-1 were higher in DM in comparison with controls (P<.05 in all cases). Leptin showed positive significant correlations with MCP-1, IL-6, TNF-α, and insulin, while NGF positively correlated with HGF, MCP-1, IL-1 β, IL-6, and TNF-α. CONCLUSIONS This pilot study indicates that salivary leptin is increased in patients with T2D being positively correlated with insulin and pro-inflammatory cytokines and should be further explored as a non-invasive biomarker of T2D. In addition, salivary NGF was positively correlated with pro-inflammatory cytokines and further studies should be performed to evaluate whether it could be useful to detect diabetic neuropathy in T2D patients.
Collapse
Affiliation(s)
- Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Candela Castillo
- Faculty of Medicine, Department of Oral Medicine, University of Murcia, Murcia, Spain
| | - Jose J Ceron
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Silvia Martinez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Pia López-Jornet
- Faculty of Medicine, Department of Oral Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
49
|
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8:53791-53803. [PMID: 28881851 PMCID: PMC5581150 DOI: 10.18632/oncotarget.17339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
50
|
Yan P, Tang S, Zhang H, Guo Y, Zeng Z, Wen Q. Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway. Metab Brain Dis 2017; 32:453-460. [PMID: 27928692 DOI: 10.1007/s11011-016-9935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Lipotoxicity, involving a series of pathological cellular responses after exposure to elevated levels of fatty acids, leads to oxidative stress and cell death in various cell types. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O1 (PI3K/Akt/FoxO1) pathway is crucial for cell survival and apoptosis. More importantly, FoxO1 gene has been reported to confer relatively higher risks for eye diseases including glaucoma. However, little information is available regarding the interaction between FoxO1 and RGC apoptosis, much less a precise mechanism. In the present study, immortalized rat retinal ganglion cell line 5 (RGC-5) was used as a model to study the toxicity of palmitic acid (PA), as well as underlying mechanisms. We found that PA exposure significantly decreased cell viability by enhancing apoptosis in RGC-5 cells, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. PA also induced a remarkable increase in reactive oxygen species and malondialdehyde. Moreover, PA significantly decreased the level of phospho-Akt and phospho-FoxO1 in cells. Finally, shRNA knockdown and plasmid overexpression studies displayed that downregulation of Akt protein or upregulation of FoxO1 protein augmented cell death, while knockdown of FoxO1 or overexpression of Akt1 abolished PA-induced cell death. Collectively, our results indicated that PA-induced cell death is mediated through modulation of Akt/FoxO1 pathway activity.
Collapse
Affiliation(s)
- Panshi Yan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shu Tang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuanyuan Guo
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China
| | - Zhiwen Zeng
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China.
| | - Qiang Wen
- Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|