1
|
Hong T, Park J, Min N, Bae SM, An G, Lee H, Song G, Jeong W, Lim W. Propanil impairs organ development in zebrafish by inducing apoptosis and inhibiting mitochondrial respiration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136364. [PMID: 39486319 DOI: 10.1016/j.jhazmat.2024.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Propanil, an anilide herbicide, has frequently been detected in surface waters in Europe and the United States, largely due to its use in paddy cultivation areas. Particularly in specific regions like Sri Lanka, propanil is considered a potential cause of certain diseases and toxicities due to its high environmental runoff; however, there has been little research on its developmental toxicity. In the present study, we confirmed the developmental toxicity of propanil in zebrafish embryos exposed to 0, 2, 5, and 6 mg/L based on the LC50 value. Propanil exposure in embryos induced morphological changes, including decreased body length and eye size, and increased the heart and yolk sac edema. It increased the number of apoptotic cells in the brains and eyes of zebrafish larvae by 214 % and 184 %, respectively. Propanil-treated embryos exhibited altered mitochondrial metabolism, reducing basal respiration by 28 %, maximal respiration by 24 %, and ATP production by 38 %. These alterations induced organ defects in transgenic zebrafish models (cmlc2:DsRed, flk1:EGFP, olig2:DsRed, lfabp:DsRed;elastase:EGFP, and insulin:EGFP). It induced cardiovascular toxicity, as confirmed by the reduced atrial area, cerebrovascular intensity, and intersegmental vessels. Additionally, propanil decreased the fluorescence intensity of neurons, liver, and pancreas. Collectively, this study indicates that propanil causes early developmental toxicity through apoptosis and mitochondrial dysfunction. It presents a new perspective on how mitochondrial dysfunction, previously unreported in toxicity studies of other anilide herbicides, may affect developmental toxicity.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nayoung Min
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Min Bae
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Xin X, Zhou X, Liu J, Liu H, Yuan S, Liu H, Hao W, Sun J, Wang Y, Gong W, Yang M, Li Z, Han Y, Gao C, Yang Y. ROS-responsive biomimetic nanosystem camouflaged by hybrid membranes of platelet-exosomes engineered with neuronal targeting peptide for TBI therapy. J Control Release 2024; 372:531-550. [PMID: 38851535 DOI: 10.1016/j.jconrel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.
Collapse
Affiliation(s)
- Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xin Xin
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xun Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; College of Pharmacy, Henan University, Kaifeng 475000, People's Republic of China
| | - Jingzhou Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shuo Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanhan Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wenyan Hao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jiejie Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wei Gong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Meiyan Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Zhiping Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| |
Collapse
|
3
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
4
|
Zamith Cunha R, Semprini A, Salamanca G, Gobbo F, Morini M, Pickles KJ, Roberts V, Chiocchetti R. Expression of Cannabinoid Receptors in the Trigeminal Ganglion of the Horse. Int J Mol Sci 2023; 24:15949. [PMID: 37958932 PMCID: PMC10648827 DOI: 10.3390/ijms242115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and the cannabinoid-related receptors like transient receptor potential vanilloid type 1 (TRPV1), peroxisome proliferator-activated receptor gamma (PPARɣ), and G protein-related receptor 55 (GPR55) in the trigeminal ganglia (TG) of the horse were studied, using immunofluorescence on cryosections and formalin-fixed paraffin-embedded (FFPE) sections. Neurons and glial cells were identified using fluorescent Nissl staining NeuroTrace® and an antibody directed against the glial marker glial fibrillary acidic protein (GFAP), respectively. Macrophages were identified by means of an antibody directed against the macrophages/microglia marker ionized calcium-binding adapter molecule 1 (IBA1). The protein expression of CB1R, CB2R, TRPV1, and PPARɣ was found in the majority of TG neurons in both cryosections and FFPE sections. The expression of GPR55 immunoreactivity was mainly detectable in FFPE sections, with expression in the majority of sensory neurons. Some receptors were also observed in glial cells (CB2R, TRPV1, PPARγ, and GPR55) and inflammatory cells (PPARγ and GPR55). These results support further investigation of such receptors in disorders of equine trigeminal neuronal excitability.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Alberto Semprini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Kirstie J. Pickles
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Veronica Roberts
- Bristol Vet School, University of Bristol, Bristol BS40 5DU, UK;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| |
Collapse
|
5
|
Reddy D, Wickman JR, Ajit SK. Epigenetic regulation in opioid induced hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100146. [PMID: 38099284 PMCID: PMC10719581 DOI: 10.1016/j.ynpai.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
About 25 million American adults experience pain daily and one of the most commonly prescribed drugs to treat pain are opioids. Prolonged opioid usage and dose escalations can cause a paradoxical response where patients experience enhanced pain sensitivity. This opioid induced hyperalgesia (OIH) is a major hurdle when treating pain in the clinic because its underlying mechanisms are still not fully understood. OIH is also commonly overlooked and lacks guidelines to prevent its onset. Research on pain disorders and opioid usage have recognized potential epigenetic drivers of disease including DNA methylation, histone modifications, miRNA regulation, but their involvement in OIH has not been well studied. This article discusses epigenetic changes that may contribute to pathogenesis, with an emphasis on miRNA alterations in OIH. There is a crucial gap in knowledge including how multiple epigenetic modulators contribute to OIH. Elucidating the epigenetic changes underlying OIH and the crosstalk among these mechanisms could lead to the development of novel targets for the prevention and treatment of this painful phenomena.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
6
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
8
|
Sankar S, Dhakshinamoorthy V, Rajakumar G. PARP in the neuropathogenesis of cytomegalovirus infection - Possible role and therapeutic perspective. Microb Pathog 2023; 176:106018. [PMID: 36736800 DOI: 10.1016/j.micpath.2023.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cytomegalovirus infects the majority of the population globally. Congenital CMV infection acquired through primary maternal infection in pregnancy is the most common intrauterine infection with a high mortality rate due to severe long-term neurodevelopmental sequelae. The demyelination and neuroinflammation during CMV infection have been attributed to altered immune response and ROS-mediated apoptosis. PARP-1 protein is linked to apoptotic neuronal loss with subsequent neurotoxicity and CNS injury as a result of PARP hyperactivation. PARP-1 play a critical role in the establishment of latency including EBV, HHV-8 and HIV. Research on PARP inhibitors recently shows significant progress against neurodegenerative diseases such as Alzheimer's disease and cancer therapy including malignant lymphoma and hepatitis B virus-induced hepatocellular carcinoma. The role of PARP1 in the neuropathogenesis of CMV and the potential of PARP inhibitors in the prevention of neurological sequelae is still elusive. Further studies on the role of PARP on the neuropathogenesis of CMV infection can help thwart neurodegeneration through the potential development of PARP inhibitors such as small molecule inhibitors.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Vasanth Dhakshinamoorthy
- PG Research & Department of Biotechnology and Microbiology, National College (Autonomous), Tiruchirappalli, 620 001, India
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
9
|
Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci 2023; 24:ijms24043201. [PMID: 36834611 PMCID: PMC9961553 DOI: 10.3390/ijms24043201] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood-brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases.
Collapse
Affiliation(s)
- Pilar Pizcueta
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Correspondence:
| | | | - Marco Emanuele
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| | | | | | - Marc Martinell
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| |
Collapse
|
10
|
Karimzadeh M, Hoffman MM. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome. Genome Biol 2022; 23:126. [PMID: 35681170 PMCID: PMC9185870 DOI: 10.1186/s13059-022-02690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
Collapse
Affiliation(s)
- Mehran Karimzadeh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada.,Vector Institute, Toronto, ON, Canada
| | - Michael M Hoffman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Vector Institute, Toronto, ON, Canada. .,Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Yazar V, Kang SU, Ha S, Dawson VL, Dawson TM. Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-γ associated gene regulation. Sci Rep 2021; 11:21500. [PMID: 34728675 PMCID: PMC8563805 DOI: 10.1038/s41598-021-00858-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
The transcriptional repressor called parkin interacting substrate (PARIS; ZNF746) was initially identified as a novel co-substrate of parkin and PINK1 that leads to Parkinson’s disease (PD) by disrupting mitochondrial biogenesis through peroxisome proliferator-activated receptor gamma (PPARγ) coactivator -1α (PGC-1α) suppression. Since its initial discovery, growing evidence has linked PARIS to defective mitochondrial biogenesis observed in PD pathogenesis. Yet, dopaminergic (DA) neuron-specific mechanistic underpinnings and genome-wide PARIS binding landscape has not been explored. We employed conditional translating ribosome affinity purification (TRAP) followed by RNA sequencing (TRAP-seq) for transcriptome profiling of DA neurons in transgenic Drosophila lines expressing human PARIS wild type (WT) or mutant (C571A). We also generated genome-wide maps of PARIS occupancy using ChIP-seq in human SH-SY5Y cells. The results demonstrated that PPARγ functions as a master regulator of PARIS-induced molecular changes at the transcriptome level, confirming that PARIS acts primarily on PGC-1α to lead to neurodegeneration in PD. Moreover, we identified that PARIS actively modulates expression of PPARγ target genes by physically binding to the promoter regions. Together, our work revealed how PARIS drives adverse effects on modulation of PPAR-γ associated gene clusters in DA neurons.
Collapse
Affiliation(s)
- Volkan Yazar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 711, Baltimore, MD, 21205, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 711, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 711, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 711, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA. .,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA. .,Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 711, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA. .,Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
| |
Collapse
|
12
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed Pharmacother 2021; 145:112179. [PMID: 34736076 DOI: 10.1016/j.biopha.2021.112179] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (AST) is a red pigmented carotenoid with significant antioxidant, anti-inflammatory, anti-proliferative, and anti-apoptotic properties. In this study, we summarize the available literature on the anti-inflammatory efficacy of AST in various chronic and acute disorders, such as neurodegenerative, renal-, hepato-, skin- and eye-related diseases, as well as gastrointestinal disorders. In addition, we elaborated on therapeutic efficacy of AST and the role of several pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3 in mediating its effects. However, additional experimental and clinical studies should be performed to corroborate the anti-inflammatory effects and protective effects of AST against inflammatory diseases in humans. Nevertheless, this review suggests that AST with its demonstrated anti-inflammatory property may be a suitable candidate for drug design with novel technology.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Depichering the Effects of Astragaloside IV on AD-Like Phenotypes: A Systematic and Experimental Investigation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1020614. [PMID: 34616501 PMCID: PMC8487832 DOI: 10.1155/2021/1020614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Astragaloside IV (AS-IV) is an active component in Astragalus membranaceus with the potential to treat neurodegenerative diseases, especially Alzheimer's diseases (ADs). However, its mechanisms are still not known. Herein, we aimed to explore the systematic pharmacological mechanism of AS-IV for treating AD. Drug prediction, network pharmacology, and functional bioinformatics analyses were conducted. Molecular docking was applied to validate reliability of the interactions and binding affinities between AS-IV and related targets. Finally, experimental verification was carried out in AβO infusion produced AD-like phenotypes to investigate the molecular mechanisms. We found that AS-IV works through a multitarget synergistic mechanism, including inflammation, nervous system, cell proliferation, apoptosis, pyroptosis, calcium ion, and steroid. AS-IV highly interacted with PPARγ, caspase-1, GSK3Β, PSEN1, and TRPV1 after docking simulations. Meanwhile, PPARγ interacts with caspase-1, GSK3Β, PSEN1, and TRPV1. In vivo experiments showed that AβO infusion produced AD-like phenotypes in mice, including impairment of fear memory, neuronal loss, tau hyperphosphorylation, neuroinflammation, and synaptic deficits in the hippocampus. Especially, the expression of PPARγ, as well as BDNF, was also reduced in the hippocampus of AD-like mice. Conversely, AS-IV improved AβO infusion-induced memory impairment, inhibited neuronal loss and the phosphorylation of tau, and prevented the synaptic deficits. AS-IV prevented AβO infusion-induced reduction of PPARγ and BDNF. Moreover, the inhibition of PPARγ attenuated the effects of AS-IV on BDNF, neuroflammation, and pyroptosis in AD-like mice. Taken together, AS-IV could prevent AD-like phenotypes and reduce tau hyperphosphorylation, synaptic deficits, neuroinflammation, and pyroptosis, possibly via regulating PPARγ.
Collapse
|
14
|
Repurposing Small Molecules to Target PPAR-γ as New Therapies for Peripheral Nerve Injuries. Biomolecules 2021; 11:biom11091301. [PMID: 34572514 PMCID: PMC8465622 DOI: 10.3390/biom11091301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 12/21/2022] Open
Abstract
The slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs. Targeting Rho or ROCK directly can act to suppress the activity of this pathway; however, the pathway can also be modulated through the activation of upstream receptors; one of particular interest being peroxisome proliferator-activated receptor gamma (PPAR-γ). The connection between the PPAR-γ receptor and the Rho/ROCK pathway is the suppression of the conversion of inactive guanosine diphosphate (GDP)-Rho to active guanosine triphosphate GTP-Rho, resulting in the suppression of Rho/ROCK activity. PPAR-γ is known for its role in cellular metabolism that leads to cell growth and differentiation. However, more recently there has been a growing interest in targeting PPAR-γ in peripheral nerve injury (PNI). The localisation and expression of PPAR-γ in neural cells following a PNI has been reported and further in vitro and in vivo studies have shown that delivering PPAR-γ agonists following injury promotes nerve regeneration, leading to improvements in functional recovery. This review explores the potential of repurposing PPAR-γ agonists to treat PNI and their prospective translation to the clinic.
Collapse
|
15
|
Li DD, Wang Y, Kim EL, Hong J, Jung JH. Neuroprotective Effect of Cyclo-(L-Pro-L-Phe) Isolated from the Jellyfish-Derived Fungus Aspergillus flavus. Mar Drugs 2021; 19:md19080417. [PMID: 34436256 PMCID: PMC8401322 DOI: 10.3390/md19080417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) expression has been implicated in pathological states such as cancer, inflammation, diabetes, and neurodegeneration. We isolated natural PPAR agonists—eight 2,5-diketopiperazines—from the jellyfish-derived fungus Aspergillus flavus. Cyclo-(L-Pro-L-Phe) was the most potent PPAR-γ activator among the eight 2,5-DKPs identified. Cyclo-(L-Pro-L-Phe) activated PPAR-γ in Ac2F rat liver cells and SH-SY5Y human neuroblastoma cells. The neuroprotective effect of this partial PPAR-γ agonist was examined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase release, and the Hoechst 33342 staining assay in SH-SY5Y cells. Our findings revealed that cyclo-(L-Pro-L-Phe) reduced hydrogen peroxide-induced apoptosis as well as the generation of reactive oxygen species. Rhodamine 123 staining and western blotting revealed that cyclo-(L-Pro-L-Phe) prevented the loss of mitochondrial membrane potential and inhibited the activation of mitochondria-related apoptotic proteins, such as caspase 3 and poly (ADP-ribose) polymerase. Moreover, cyclo-(L-Pro-L-Phe) inhibited the activation and translocation of nuclear factor-kappa B. Thus, the partial PPAR-γ agonist cyclo-(L-Pro-L-Phe) demonstrated potential neuroprotective activity against oxidative stress-induced neurodegeneration in SH-SY5Y cells.
Collapse
Affiliation(s)
- Dan-dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
- Correspondence:
| |
Collapse
|
16
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Nrf2 a molecular therapeutic target for Astaxanthin. Biomed Pharmacother 2021; 137:111374. [PMID: 33761600 DOI: 10.1016/j.biopha.2021.111374] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Astaxanthin (ATX) is a red pigment carotenoid present in shrimp, salmon, crab, and asteroidean. Several studies have corroborated the anti-oxidant efficacy of ATX. In addition, ATX has anti-inflammatory, anti-apoptotic and anti-proliferative properties. In the present review, we discuss the role of Nrf2 in mediating the anti-cancer, anti-aging, neuroprotective, lung-protective, skin-protective, cardioprotective, hepatoprotective, anti-diabetic and muscloprotective effects of ATX.
Collapse
|
18
|
Jonathan MC, Adrián SH, Gonzalo A. Type II nuclear receptors with potential role in Alzheimer disease. Mol Aspects Med 2021; 78:100940. [PMID: 33397589 DOI: 10.1016/j.mam.2020.100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors that can modulated cellular processes involved in the development, homeostasis, cell proliferation, metabolism, and reproduction through the control of the specific genetic and molecular program. In the central nervous system, they are key regulators of neural stem cell fate decisions and can modulate the physiology of different brain cells. Over the past decades, a large body of evidence has supported that nuclear receptors are potential therapeutic targets for the treatment of neurodegenerative disorders such as Alzheimer's disease, the most common dementia worldwide, and the main cause of disability in later life. This disease is characterized by the progressive accumulation of amyloid-beta peptides and hyperphosphorylated tau protein that can explain alterations in synaptic transmission and plasticity; loss of dendritic spines; increased in reactive microglia and inflammation; reduction of neuronal stem cells number; myelin and vascular alterations that finally leads to increased neuronal death. Here, we present a review of type II no steroidal nuclear receptors that form obligatory heterodimers with the Retinoid X Receptor (RXR) and its potential in the therapeutic of AD. Activation of type II nuclear receptor by synthetic agonist leads to transcriptional regulation of specific genes that acts counteracting against the detrimental effects of amyloid-beta peptides and hyperphosphorylated tau in neuronal cells recovering the functionality of the synapses. But also, activation of type II nuclear receptor leads to modifications in APP metabolism, repression of inflammatory cascade and inductors of the generation of neuronal stem cells and progenitor cells supporting its potential therapeutics role for Alzheimer's disease.
Collapse
Affiliation(s)
- Muñoz-Cabrera Jonathan
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandoval-Hernández Adrián
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Arboleda Gonzalo
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
19
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
20
|
Jung T, Hudson R, Rushlow W, Laviolette SR. Functional interactions between cannabinoids, omega-3 fatty acids, and peroxisome proliferator-activated receptors: Implications for mental health pharmacotherapies. Eur J Neurosci 2020; 55:1088-1100. [PMID: 33108021 DOI: 10.1111/ejn.15023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Cannabis contains a plethora of phytochemical constituents with diverse neurobiological effects. Cannabidiol (CBD) is the main non-psychotropic component found in cannabis that is capable of modulating mesocorticolimbic DA transmission and may possess therapeutic potential for several neuropsychiatric disorders. Emerging evidence also suggests that, similar to CBD, omega-3 polyunsaturated fatty acids may regulate DA transmission and possess therapeutic potential for similar neuropsychiatric disorders. Although progress has been made to elucidate the mechanisms underlying the therapeutic properties of CBD and omega-3s, it remains unclear through which receptor mechanisms they may produce their purported effects. Peroxisome proliferator-activated receptors are a group of nuclear transcription factors with multiple isoforms. PPARγ is an isoform activated by both CBD and omega-3, whereas the PPARα isoform is activated by omega-3. Interestingly, the activation of PPARγ and PPARα with selective agonists has been shown to decrease mesocorticolimbic DA activity and block neuropsychiatric symptoms similar to CBD and omega-3s, raising the possibility that CBD and omega-3s produce their effects through PPAR signaling. This review will examine the relationship between CBD, omega-3s, and PPARs and how they may be implicated in the modulation of mesocorticolimbic DAergic abnormalities and associated neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Tony Jung
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Wang X, Xu W, Chen H, Li W, Li W, Zhu G. Astragaloside IV prevents Aβ 1-42 oligomers-induced memory impairment and hippocampal cell apoptosis by promoting PPARγ/BDNF signaling pathway. Brain Res 2020; 1747:147041. [PMID: 32739157 DOI: 10.1016/j.brainres.2020.147041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Astragaloside IV (AS-IV), a natural product derived from Radix Astragali (Astragalus membranaceus), is beneficial for the treatment of Alzheimer's disease (AD), but the mechanisms underlying this benefit are not completely understood. Peroxisome proliferator-activated receptor gamma (PPARγ) and brain-derived neurotrophic factor (BDNF) are potential therapeutic targets for AD. In this study, we found that amyloid β protein fragment 1-42 oligomers (AβO) suppressed BDNF and PPARγ expression, and inhibited tyrosine receptor kinase B (TrkB) phosphorylation in cultured hippocampal neurons; these changes were ameliorated by treatment with AS-IV. Inhibition of PPARγ by genetic and pharmacological methods also blocked the effect of AS-IV on BDNF expression in AβO-treated cells. Importantly, exogenous BDNF protected against neurotoxicity and apoptosis induced by AβO, whereas inhibition of PPARγ reversed protective effects of AS-IV against these outcomes. In vivo data further revealed that AS-IV improved AβO-induced memory impairment and reduced apoptosis of hippocampal neurons. Moreover, AS-IV suppressed the AβO-induced reduction in BDNF by promoting PPARγ activation in the hippocampus. Taken together, these results indicate that AS-IV prevents AβO-induced memory impairment and hippocampal neuronal apoptosis, probably by promoting the PPARγ/BDNF signaling pathway.
Collapse
Affiliation(s)
- Xuncui Wang
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei 230032, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Wen Xu
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Hejuntao Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Weizu Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Weiping Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Experimental Center for Scientific Research, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
22
|
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr Neurosci 2020; 25:387-410. [PMID: 32338174 DOI: 10.1080/1028415x.2020.1755793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
23
|
Yaribeygi H, Ashrafizadeh M, Henney NC, Sathyapalan T, Jamialahmadi T, Sahebkar A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol Res 2019; 152:104611. [PMID: 31863868 DOI: 10.1016/j.phrs.2019.104611] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a potent upstream event in the molecular pathophysiology which gives rise to various diabetes-related complications. There are several classes of anti-diabetic medications that have been developed to normalize blood glucose concentrations through a variety of molecular mechanisms. Beyond glucose-lowering effects, these agents may also provide further therapeutic potential. For instance, there is a high incidence of diabetes-induced neuronal disorders among patients with diabetes, who may also develop neurodegenerative and psychological complications. If anti-diabetic agents can modify the molecular mechanisms involved in the pathophysiology of neuronal comorbidities, this could potentially be translated to reducing the risk of other neurological conditions such as Alzheimer's disease, Parkinson's disease, depression, memory deficits and cognition impairments among patients with diabetes. This review aimed to shed light on some of the potentially beneficial aspects of anti-diabetic agents in lowering the risk or treating neuronal disorders by reviewing the molecular mechanisms by which these agents can potentially modulate neuronal behaviors.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Neil C Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
25
|
Brunetti L, Loiodice F, Piemontese L, Tortorella P, Laghezza A. New Approaches to Cancer Therapy: Combining Fatty Acid Amide Hydrolase (FAAH) Inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) Activation. J Med Chem 2019; 62:10995-11003. [PMID: 31407888 DOI: 10.1021/acs.jmedchem.9b00885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the course of the past decade, peroxisome proliferator-activated receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and other N-acylethanolamines. These substances have been shown to have numerous anticancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this Miniperspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anticancer compounds.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
26
|
Rafiepour K, Esmaeili-Mahani S, Salehzadeh A, Sheibani V. Phytohormone Abscisic Acid Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity Through Its Antioxidant and Antiapoptotic Properties. Rejuvenation Res 2019; 22:99-108. [DOI: 10.1089/rej.2018.2062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kiana Rafiepour
- Department of Biology, Rasht Branch, Islamic Azad University. Rasht, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University. Rasht, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Cortez I, Denner L, Dineley KT. Divergent Mechanisms for PPARγ Agonism in Ameliorating Aging-Related Versus Cranial Irradiation-Induced Context Discrimination Deficits. Front Aging Neurosci 2019; 11:38. [PMID: 30930764 PMCID: PMC6427093 DOI: 10.3389/fnagi.2019.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors in a process termed neurogenesis. Adult neurogenesis is limited to specific brain regions in the mammalian brain, such as the subgranular zone (SGZ) of the hippocampus. Alterations in adult neurogenesis appear to be a common hallmark in different neurodegenerative diseases including Alzheimer’s disease (AD). We and others have shown that PPARγ agonism improves cognition in preclinical models of AD as well as in several pilot clinical trials. Context discrimination is recognized as a cognitive task supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus that we and others have previously shown declines with age. We therefore postulated that PPARγ agonism would positively impact context discrimination in middle-aged mice via mechanisms that influence proliferation and differentiation of adult-born neurons arising from the SGZ. To achieve our objective, 8-months old mice were left untreated or treated with the FDA-approved PPARγ agonist, rosiglitazone then tested for context discrimination learning and memory, followed by immunofluorescence evaluation of hippocampal SGZ cell proliferation and neuron survival. We found that PPARγ agonism enhanced context discrimination performance in middle-aged mice concomitant with stimulated SGZ cell proliferation, but not new neuron survival. Focal cranial irradiation that destroys neurogenesis severely compromised context discrimination in middle-aged mice yet rosiglitazone treatment significantly improved cognitive performance through an anti-inflammatory mechanism and resurrection of the neurogenic niche. Thus, we have evidence for divergent mechanisms by which PPARγ agonism impinges upon aging-related versus cranial irradiation-induced deficits in context discrimination learning and memory.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Larry Denner
- Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kelly T Dineley
- Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
28
|
Keilhoff G, Mbou RP, Lucas B, Schild L. The Differentiation of Spinal Cord Motor Neurons is Associated with Changes of the Mitochondrial Phospholipid Cardiolipin. Neuroscience 2019; 400:169-183. [DOI: 10.1016/j.neuroscience.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023]
|
29
|
Chen HH, Chang PC, Wey SP, Chen PM, Chen C, Chan MH. Therapeutic effects of honokiol on motor impairment in hemiparkinsonian mice are associated with reversing neurodegeneration and targeting PPARγ regulation. Biomed Pharmacother 2018; 108:254-262. [DOI: 10.1016/j.biopha.2018.07.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
|
30
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
31
|
Simandi Z, Horvath A, Cuaranta-Monroy I, Sauer S, Deleuze JF, Nagy L. RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Mol Cell Endocrinol 2018; 471:51-62. [PMID: 28778663 DOI: 10.1016/j.mce.2017.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022]
Abstract
Retinoid X Receptors (RXRs) are unique and enigmatic members of the nuclear receptor (NR) family with extensive and complex biological functions in cellular differentiation. On the one hand, RXRs through permissive heterodimerization with other NRs are able to integrate multiple lipid signaling pathways and are believed to play a central role to coordinate the development of the central nervous system. On the other hand, RXRs may have heterodimer-independent functions as well. Therefore, a more RXR-centric analysis is warranted to identify its genomic binding sites and regulated gene networks, which are orchestrating the earliest events in neuronal differentiation. Recently developed genome-wide approaches allow systematic analyses of the RXR-driven neural differentiation. Here we applied next generation sequencing-based methodology to track the dynamic redistribution of the RXR cistrome along the path of embryonic stem cell to glutamatergic neuron differentiation. We identified Retinoic Acid Receptor (RAR) and Liver X Receptor (LXR) as dominant heterodimeric partners of RXR in these cellular stages. Our data presented here characterize the RAR:RXR and LXR:RXR-mediated transcriptional program in embryonic stem cells, neural progenitors and terminally differentiated neurons. Considering the growing evidence for dysregulated RXR-mediated signaling in neurodegenerative disorders, such as Alzheimer's Disease or Amyotrophic Lateral Sclerosis, the data presented here will be also a valuable resource for the field of neuro(patho)biology.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sascha Sauer
- Max Delbruck Center for Molecular Medicine (BISMB and BIH), Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Genomique Humaine, Institute de Biologie Francois Jacob, CEA, Evry, France
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
32
|
Pioglitazone attenuates aging-related disorders in aged apolipoprotein E deficient mice. Exp Gerontol 2018; 102:101-108. [DOI: 10.1016/j.exger.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
|
33
|
Oral pioglitazone ameliorates fructose-induced peripheral insulin resistance and hippocampal gliosis but not restores inhibited hippocampal adult neurogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:274-285. [DOI: 10.1016/j.bbadis.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
34
|
Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout. Front Endocrinol (Lausanne) 2018; 9:484. [PMID: 30210451 PMCID: PMC6121026 DOI: 10.3389/fendo.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén M. Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Juan I. Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Argentina
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
35
|
Nadal X, del Río C, Casano S, Palomares B, Ferreiro‐Vera C, Navarrete C, Sánchez‐Carnerero C, Cantarero I, Bellido ML, Meyer S, Morello G, Appendino G, Muñoz E. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 2017; 174:4263-4276. [PMID: 28853159 PMCID: PMC5731255 DOI: 10.1111/bph.14019] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ9 -tetahydrocannabinol acid (Δ9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ9 -THCA through modulation of PPARγ pathways. EXPERIMENTAL APPROACH The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdhQ111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). KEY RESULTS Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdhQ111/Q111 cells and by mutHtt-q94 in N2a cells. Δ9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. CONCLUSIONS AND IMPLICATIONS Δ9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Carmen del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | | | | | - Irene Cantarero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| | | | | | | | - Giovanni Appendino
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleNovaraItaly
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e InmunologíaHospital Universitario Reina Sofía, Universidad de CórdobaCórdobaSpain
| |
Collapse
|
36
|
O'Léime CS, Cryan JF, Nolan YM. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 2017; 66:394-412. [PMID: 28751020 DOI: 10.1016/j.bbi.2017.07.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.
Collapse
Affiliation(s)
- Ciarán S O'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
37
|
Fernandez MO, Hsueh K, Park HT, Sauceda C, Hwang V, Kumar D, Kim S, Rickert E, Mahata S, Webster NJG. Astrocyte-Specific Deletion of Peroxisome-Proliferator Activated Receptor- γ Impairs Glucose Metabolism and Estrous Cycling in Female Mice. J Endocr Soc 2017; 1:1332-1350. [PMID: 29264458 PMCID: PMC5686676 DOI: 10.1210/js.2017-00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
Mice lacking peroxisome-proliferator activated receptor-γ (PPARγ) in neurons do not become leptin resistant when placed on a high-fat diet (HFD). In male mice, this results in decreased food intake and increased energy expenditure, causing reduced body weight, but this difference in body weight is not observed in female mice. In addition, estrous cycles are disturbed and the ovaries present with hemorrhagic follicles. We observed that PPARγ was more highly expressed in astrocytes than neurons, so we created an inducible, conditional knockout of PPARγ in astrocytes (AKO). The AKO mice had impaired glucose tolerance and hepatic steatosis that did not worsen with HFD. Expression of gluconeogenic genes was elevated in the mouse livers, as was expression of several genes involved in lipogenesis, lipid transport, and storage. The AKO mice also had a reproductive phenotype with fewer estrous cycles, elevated plasma testosterone levels, reduced corpora lutea formation, and alterations in hypothalamic and ovarian gene expression. Thus, the phenotypes of the AKO mice were very different from those seen in the neuronal knockout mice, suggesting distinct roles for PPARγ in these two cell types.
Collapse
Affiliation(s)
- Marina O Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, CONICET. Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Katherine Hsueh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Hyun Tae Park
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Consuelo Sauceda
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Vicky Hwang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Deepak Kumar
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sun Kim
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sumana Mahata
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Nicholas J G Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
38
|
Lysophosphatidic acid signaling regulates the KLF9-PPARγ axis in human induced pluripotent stem cell-derived neurons. Biochem Biophys Res Commun 2017; 491:223-227. [DOI: 10.1016/j.bbrc.2017.07.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022]
|
39
|
Kaupang Å, Laitinen T, Poso A, Hansen TV. Structural review of PPARγ in complex with ligands: Cartesian- and dihedral angle principal component analyses of X-ray crystallographic data. Proteins 2017; 85:1684-1698. [PMID: 28543443 DOI: 10.1002/prot.25325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Two decades of research into the ligand-dependent modulation of the activity of the peroxisome proliferator-activated receptor γ (PPARγ) have demonstrated the heterogeneous modes of action of PPARγ ligands, in terms of their interaction surfaces in the ligand-binding pocket, binding stoichiometry and ability to interact with functionally important parts of the receptor, through both direct and allosteric mechanisms. These findings signal the complex mechanistic bases of the distinct biological effects of different classes of PPARγ ligands. Today, the development of PPARγ ligands focuses on partial- and non-agonists as opposed to classical agonists, due to the severe side effects observed with PPARγ classical agonists as therapeutic agents. To aid this development, we performed principal component analyses of the atomic (Cartesian) coordinates (cPCA) and dihedral angles (dPCA) of the structures of human PPARγ from X-ray crystallography, available in the public domain, seeking to reveal ligand-induced trends. In the cPCA, projections of the structures along the principal components (PCs) demonstrated a moderate correlation between cPC1 and structural parameters related to the stabilization of helix 12, which is central to the transcriptional activation by PPARγ classical agonists. Consequently, the presented cPCA mapping of the PPARγ-ligand complexes may guide in silico drug discovery programs seeking to avoid stabilization of helix 12 in their development of partial- and non-agonistic PPARγ ligands. Notably, while the dPCA could identify key regions of dihedral fluctuation in the structural ensemble, the distributions along dPC1 - 2 could not be classified according to the same parameters as the distribution along cPC1. Proteins 2017; 85:1684-1698. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo, 0316, Norway
| | - Tuomo Laitinen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Antti Poso
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo, 0316, Norway
| |
Collapse
|
40
|
Wnuk A, Rzemieniec J, Lasoń W, Krzeptowski W, Kajta M. Apoptosis Induced by the UV Filter Benzophenone-3 in Mouse Neuronal Cells Is Mediated via Attenuation of Erα/Pparγ and Stimulation of Erβ/Gpr30 Signaling. Mol Neurobiol 2017; 55:2362-2383. [PMID: 28357806 PMCID: PMC5840254 DOI: 10.1007/s12035-017-0480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3β. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erβ, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erβ mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erβ and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erβ/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling.
Collapse
Affiliation(s)
- A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
41
|
Moutinho M, Landreth GE. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease. J Lipid Res 2017; 58:1937-1949. [PMID: 28264880 DOI: 10.1194/jlr.r075556] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an extensive accumulation of amyloid-β (Aβ) peptide, which triggers a set of deleterious processes, including synaptic dysfunction, inflammation, and neuronal injury, leading to neuronal loss and cognitive impairment. A large body of evidence supports that nuclear receptor (NR) activation could be a promising therapeutic approach for AD. NRs are ligand-activated transcription factors that regulate gene expression and have cell type-specific effects. In this review, we discuss the mechanisms that underlie the beneficial effects of NRs in AD. Moreover, we summarize studies reported in the last 10-15 years and their major outcomes arising from the pharmacological targeting of NRs in AD animal models. The dissection of the pathways regulated by NRs in the context of AD is of importance in identifying novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Miguel Moutinho
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
42
|
Song N, Zhang L, Chen W, Zhu H, Deng W, Han Y, Guo J, Qin C. Cyanidin 3- O -β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APP swe /PS1 ΔE9 mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1786-800. [DOI: 10.1016/j.bbadis.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/04/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
|
43
|
Krishnan ML, Wang Z, Silver M, Boardman JP, Ball G, Counsell SJ, Walley AJ, Montana G, Edwards AD. Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants. Brain Behav 2016; 6:e00434. [PMID: 27110435 PMCID: PMC4821839 DOI: 10.1002/brb3.434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The consequences of preterm birth are a major public health concern with high rates of ensuing multisystem morbidity, and uncertain biological mechanisms. Common genetic variation may mediate vulnerability to the insult of prematurity and provide opportunities to predict and modify risk. OBJECTIVE To gain novel biological and therapeutic insights from the integrated analysis of magnetic resonance imaging and genetic data, informed by prior knowledge. METHODS We apply our previously validated pathway-based statistical method and a novel network-based method to discover sources of common genetic variation associated with imaging features indicative of structural brain damage. RESULTS Lipid pathways were highly ranked by Pathways Sparse Reduced Rank Regression in a model examining the effect of prematurity, and PPAR (peroxisome proliferator-activated receptor) signaling was the highest ranked pathway once degree of prematurity was accounted for. Within the PPAR pathway, five genes were found by Graph Guided Group Lasso to be highly associated with the phenotype: aquaporin 7 (AQP7), malic enzyme 1, NADP(+)-dependent, cytosolic (ME1), perilipin 1 (PLIN1), solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1), and acetyl-CoA acyltransferase 1 (ACAA1). Expression of four of these (ACAA1, AQP7, ME1, and SLC27A1) is controlled by a common transcription factor, early growth response 4 (EGR-4). CONCLUSIONS This suggests an important role for lipid pathways in influencing development of white matter in preterm infants, and in particular a significant role for interindividual genetic variation in PPAR signaling.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Zi Wang
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Matt Silver
- Department of Population Health London School of Hygiene and Tropical Medicine London WC1E 7HT UK
| | - James P Boardman
- MRC Centre for Reproductive Health University of Edinburgh Edinburgh EH16 4TJ UK
| | - Gareth Ball
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Serena J Counsell
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Andrew J Walley
- School of Public Health Faculty of Medicine Imperial College London Norfolk Place London W2 1PG UK
| | - Giovanni Montana
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Anthony David Edwards
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| |
Collapse
|
44
|
Courtney R, Landreth GE. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 2016; 27:404-414. [PMID: 27113081 PMCID: PMC4986614 DOI: 10.1016/j.tem.2016.03.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Collapse
Affiliation(s)
- Rebecca Courtney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Saavedra JM. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:259-79. [PMID: 26993513 DOI: 10.1007/s10571-015-0327-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 4000 Reservoir Road, NW, Bldg. D, Room 287, Washington, DC, 20057, USA.
| |
Collapse
|
46
|
Ibeas Bih C, Chen T, Nunn AVW, Bazelot M, Dallas M, Whalley BJ. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics 2015; 12:699-730. [PMID: 26264914 PMCID: PMC4604182 DOI: 10.1007/s13311-015-0377-3] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent withmodulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug's action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD's effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD's therapeutic mechanism of action.
Collapse
Affiliation(s)
- Clementino Ibeas Bih
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Tong Chen
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | | | - Michaël Bazelot
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- GW Pharmaceuticals Ltd, Sovereign House, Vision Park, Chivers Way, Histon, Cambridge, CB24 9BZ, UK
| | - Mark Dallas
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Benjamin J Whalley
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
47
|
Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin. Mar Drugs 2015; 13:4310-30. [PMID: 26184238 PMCID: PMC4515619 DOI: 10.3390/md13074310] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (ATX) is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA) as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma (PPARγ). Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.
Collapse
|
48
|
Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26221414 PMCID: PMC4499633 DOI: 10.1155/2015/509654] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration.
Collapse
|
49
|
The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer. Arch Pharm Res 2015; 38:302-12. [DOI: 10.1007/s12272-015-0559-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|