1
|
Li Y, Wang D, Sun J, Hao Z, Tang L, Sun W, Zhang X, Wang P, Ruiz-Alonso S, Pedraz JL, Kim HW, Ramalingam M, Xie S, Wang R. Calcium Carbonate/Polydopamine Composite Nanoplatform Based on TGF-β Blockade for Comfortable Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3187-3201. [PMID: 38206677 DOI: 10.1021/acsami.3c16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-β) and inflammatory factor (IL-6, IL-1β, and TNF-α) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-β leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.
Collapse
Affiliation(s)
- Yunmeng Li
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
| |
Collapse
|
2
|
Dutta RK, Abu YF, Tao J, Chupikova I, Oleas J, Singh PK, Vitari NA, Qureshi R, Ramakrishnan S, Roy S. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer. Am J Cancer Res 2024; 14:274-299. [PMID: 38323292 PMCID: PMC10839306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.
Collapse
Affiliation(s)
- Rajib K Dutta
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Yaa F Abu
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Janneth Oleas
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Praveen K Singh
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Nicolas A Vitari
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Rehana Qureshi
- Department of Pathology, University of MiamiMiami, FL 33136, USA
| | | | - Sabita Roy
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| |
Collapse
|
3
|
Doan LV, Yoon J, Chun J, Perez R, Wang J. Pain associated with breast cancer: etiologies and therapies. FRONTIERS IN PAIN RESEARCH 2023; 4:1182488. [PMID: 38148788 PMCID: PMC10750403 DOI: 10.3389/fpain.2023.1182488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Pain associated with breast cancer is a prevalent problem that negatively affects quality of life. Breast cancer pain is not limited to the disease course itself but is also induced by current therapeutic strategies. This, combined with the increasing number of patients living with breast cancer, make pain management for breast cancer patients an increasingly important area of research. This narrative review presents a summary of pain associated with breast cancer, including pain related to the cancer disease process itself and pain associated with current therapeutic modalities including radiation, chemotherapy, immunotherapy, and surgery. Current pain management techniques, their limitations, and novel analgesic strategies are also discussed.
Collapse
Affiliation(s)
- Lisa V. Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Jenny Yoon
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Jeana Chun
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Raven Perez
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
How Does Dietary Intake Relate to Dispositional Optimism and Health-Related Quality of Life in Germline BRCA1/2 Mutation Carriers? Nutrients 2023; 15:nu15061396. [PMID: 36986126 PMCID: PMC10058690 DOI: 10.3390/nu15061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Background: The Mediterranean diet (MD) is an anti-inflammatory diet linked to improved health-related quality of life (HRQoL). Germline (g)BRCA1/2 mutation carriers have an increased risk of developing breast cancer and are often exposed to severe cancer treatments, thus the improvement of HRQoL is important. Little is known about the associations between dietary intake and HRQoL in this population. Methods: We included 312 gBRCA1/2 mutation carriers from an ongoing prospective randomized controlled lifestyle intervention trial. Baseline data from the EPIC food frequency questionnaire was used to calculate the dietary inflammatory index (DII), and adherence to MD was captured by the 14-item PREDIMED questionnaire. HRQoL was measured by the EORTC QLQ-C30 and LOT-R questionnaires. The presence of metabolic syndrome (MetS) was determined using anthropometric measurements, blood samples and vital parameters. Linear and logistic regression models were performed to assess the possible impact of diet and metabolic syndrome on HRQoL. Results: Women with a prior history of cancer (59.6%) reported lower DIIs than women without it (p = 0.011). A greater adherence to MD was associated with lower DII scores (p < 0.001) and reduced odds for metabolic syndrome (MetS) (p = 0.024). Women with a more optimistic outlook on life reported greater adherence to MD (p < 0.001), whereas a more pessimistic outlook on life increased the odds for MetS (OR = 1.15; p = 0.023). Conclusions: This is the first study in gBRCA1/2 mutation carriers that has linked MD, DII, and MetS to HRQoL. The long-term clinical implications of these findings are yet to be determined.
Collapse
|
6
|
Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022; 288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is among the most common clinical complications associated with the use of anti-cancer drugs. CINP occurs in nearly 68.1% of the cancer patients receiving chemotherapeutic drugs. Most of the clinically available analgesics are ineffective in the case of CINP patients as the pathological mechanisms involved with different chemotherapeutic drugs are distinct from each other. CINP triggers the somatosensory nervous system, increases the neuronal firing and activation of nociceptive mediators including transient receptor protein vanilloid 1 (TRPV1). TRPV1 is widely present in the peripheral nociceptive nerve cells and it has been reported that the higher expression of TRPV1 in DRGs serves a critical role in the potentiation of CINP. The therapeutic glory of TRPV1 is well recognized in clinics which gives a promising insight into the treatment of pain. But the adverse effects associated with some of the antagonists directed the scientists towards RNA interference (RNAi), a tool to silence gene expression. Thus, ongoing research is focused on developing small interfering RNA (siRNA)-based therapeutics targeting TRPV1. In this review, we have discussed the involvement of TRPV1 in the nociceptive signaling associated with CINP and targeting this nociceptor, using siRNA will potentially arm us with effective therapeutic interventions for the clinical management of CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nimisha Verma
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Yan Y, Yu Z, Lu J, Jin P, Tang Z, Hu Y. Predictive values profiling of interleukin-2, interleukin-8, tumor necrosis factor-α, procalcitonin, and C-reactive protein in critical gastrointestinal cancer patients. J Gastrointest Oncol 2021; 12:1398-1406. [PMID: 34532097 DOI: 10.21037/jgo-21-334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background The prognostic values of serum cytokines in cancer have not yet been fully determined. The objective of this study was to identify potential biomarkers associated with clinical outcomes in critical gastrointestinal (GI) cancer patients. Methods A retrospective analysis was performed to quantify serum interleukin (IL)-2, IL-8, tumor necrosis factor-α (TNF-α), procalcitonin (PCT), and C-reactive protein (CRP) for correlation with clinical outcomes in GI cancer patients. The patients were divided into tertiles or quartiles based on the cytokine levels: Q1, Q2, and Q3, or Q1, Q2, Q3, and Q4. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values of the cytokines. Results Trend analysis showed that IL-2, IL-8, TNF-α, PCT, and CRP levels had significant positive correlations with mortality in GI cancer patients (all P-values were lower than 0.05). The significance was observed in Q3 vs. Q1 in IL-2 (P=0.026), Q3 vs. Q1 in IL-8 (P=0.003), Q2 and Q3 vs. Q1 in TNF-α (P=0.012 and P=0.002, respectively), Q4 vs. Q1 in PCT (P=0.031), Q3 and Q4 vs. Q1 in CRP (P=0.011 and P=0.001, respectively). The area under curve (AUC) of IL-2, IL-8, TNF-α, PCT, and CRP were 0.706, 0.729, 0.743, 0.769, and 0.736, and the optimal cutoff points were determined at 838 U/mL, 46.15 pg/mL, 11.95 pg/mL, 0.77 pg/mL, and 109.38 mg/L, respectively. Under these critical values, the sensitivity was 73.3%, 66.7%, 80.0%, 93.3%, and 86.7%, and the specificity was 64.9%, 72.0%, 60.4%, 61.8%, and 68.9%, respectively. Conclusions In GI cancer patients, serum IL-2, IL-8, TNF-α, PCT, and CRP levels can provide potential prognostic values for predicting clinical outcomes. The results may facilitate the exploration of cancer-related cytokine networks and development of novel therapy for GI cancer patients.
Collapse
Affiliation(s)
- Yamin Yan
- Nursing Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenghong Yu
- Nursing Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Lu
- Nursing Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peili Jin
- Nursing Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqing Tang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Nursing Department, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Druzhkova I, Lukina M, Dudenkova V, Ignatova N, Snopova L, Gavrina A, Shimolina L, Belousov V, Zagaynova E, Shirmanova M. Tracing of intracellular pH in cancer cells in response to Taxol treatment. Cell Cycle 2021; 20:1540-1551. [PMID: 34308742 PMCID: PMC8409750 DOI: 10.1080/15384101.2021.1949106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Genetically encoded pH-sensors are the promising instrument for intracellular pH (pHi) registration. In tumor tissue the reversed pH gradient is known to be the important hallmark of cancer and regulator of tumor response on chemotherapy. However the effect of chemotherapeutic drugs on the pHi of tumor cells is largely unknown. Here we using genetically encoded ratiometric pH-sensor SypHer2 were able to monitor pHi in vitro in cell monolayer and tumor spheroids and in vivo in tumor xenografts. In tumor cell monolayer different pHi dynamic was revealed in the dying cell and division-arrested surviving cells. The treatment effect of taxol varied in monolayer and tumor spheroids and pHi changes were able to reflect these difference. The tend to pHi decrease in respect to taxol in vivo matched with results obtained for the cell monolayer. Also in both cases the cell cycle-arrest was the main treatment effect in contrast to tumor spheroid, where the cell death was the primary result. These findings elucidate the significance of pHi in the mechanisms of taxol action on cervical cancer cells and will be valuable for development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Irina Druzhkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Maria Lukina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Varvara Dudenkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Nadezhda Ignatova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Ludmila Snopova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Alena Gavrina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Lyubov Shimolina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| | - Vsevolod Belousov
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russian Federation
| | - Marina Shirmanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
9
|
Autenshlyus A, Arkhipov S, Mikhailova E, Marinkin I, Arkhipova V, Varaksin N. The Relationship Between Cytokine Production, CSF2RA, and IL1R2 Expression in Mammary Adenocarcinoma, Tumor Histopathological Parameters, and Lymph Node Metastasis. Technol Cancer Res Treat 2020; 18:1533033819883626. [PMID: 31635541 PMCID: PMC6806119 DOI: 10.1177/1533033819883626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: The aim of this study was to evaluate the relationship between cytokine production,
GM-CSF receptor (CSF2RA), and IL-1 receptor (IL1R2) expression in mammary adenocarcinoma
and their association with it histopathological parameters and lymph node
metastasis. Methods: We analyzed tumor biopsy samples (cultured in vitro) from 50 women
(aged 43-75) with invasive ductal mammary adenocarcinomas. Enzyme-linked immunosorbent
assay method the concentrations of interleukin 2, interleukin 6, interleukin 8,
interleukin 10, interleukin 17, interleukin 18, interleukin 1β, interleukin 1Ra, tumor
necrosis factor α, interferon γ, granulocyte colony-stimulating factor, granulocyte
macrophage colony-stimulating factor, and vascular endothelial growth factor A were
determined in culture supernatants. The expression of CSF2RA and IL1R2 in tumor biopsy
was evaluated by immunohistochemical method. Results: We showed that the “cytokine profile” of a tumor (the ability of tumor cells and its
microenvironment to produce different cytokines) is very individual. It has been shown
that the features of the cytokine profile of the mammary adenocarcinoma are important
for the formation and realization of the metastatic potential of the mammary
adenocarcinoma. We found correlations between some histopathological parameters of
mammary adenocarcinoma and coefficients KGM-CSF/CSF2RA and
KIL-1β/IL1R2, which are the ratios of concentrations of granulocyte
macrophage colony-stimulating factor and interleukin -1β to expression of CSF2RA and
IL1R2, respectively. KGM-CSF/CSF2RA positively correlated with highly
differentiated cells, and KIL-1β/IL1R2 positively correlated with the number
of mitoses, poorly differentiated cells, and a number of lymph nodes with metastases.
KGM-CSF/CSF2RA positively correlated with the concentrations of interleukin
6, interleukin 8, interleukin 1Ra, and granulocyte colony-stimulating factor.
KIL-1β/IL1R2 positively correlated with concentrations of interleukin 1β
and interferon γ and negative correlated with the concentrations of vascular endothelial
growth factor A and tumor necrosis factor α. It is shown that KIL-1β/IL1R2
can be considered as a prognostic indicator predicting the probability of mammary
adenocarcinoma metastasis to regional lymph nodes. Conclusions: The ratios of granulocyte macrophage colony-stimulating factor and interleukin 1β
cytokines, produced in tumor, to the expression of CSF2RA and IL1R2 depend on levels of
interleukin 6, interleukin 8, tumor necrosis factor α, interferon γ, granulocyte
colony-stimulating factor, and vascular endothelial growth factor A and are important
factors affecting the progression and metastasis of the breast cancer.
Collapse
Affiliation(s)
- Alexander Autenshlyus
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Sergey Arkhipov
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Mikhailova
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | | | | |
Collapse
|
10
|
MacLeod K, Laird BJA, Carragher NO, Hoskin P, Fallon MT, Sande TA. Predicting Response to Radiotherapy in Cancer-Induced Bone Pain: Cytokines as a Potential Biomarker? Clin Oncol (R Coll Radiol) 2020; 32:e203-e208. [PMID: 32284199 DOI: 10.1016/j.clon.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Abstract
AIMS Radiotherapy (XRT) for cancer-induced bone pain (CIBP) has varying levels of efficacy. A biomarker that predicts likely efficacy could stratify XRT to those most likely to benefit. No biomarker is used in clinical practice, but potential candidate cytokines have been identified. The aim of the present study was to examine the relationship between candidate cytokines and analgesic response after XRT. MATERIALS AND METHODS An exploratory analysis was undertaken on biobank data from patients who had received single fraction (8 Gy) XRT for CIBP. The biobank data were prospectively collected from multiple centres in the UK as part of a larger clinical trial, which had institutional review board approval and all patients provided written informed consent for the use of their data in future research. Phenotypic data, pain assessments as well as plasma samples were collected at baseline (within the 24 h before the XRT) and at follow-up (4 weeks after XRT). Baseline and follow-up samples were analysed and levels of 16 pre-identified cytokines were compared in patients classified as XRT 'responders' or 'non-responders'. RESULTS Data from 60 patients were analysed. Insulin-like growth factor binding protein 9 (NOV/CCN3/IGFBP-9) and interleukin-1ß (IL-1ß) were identified as potential predictors of response to XRT. A significant relationship was shown between the response to XRT and the ratio of the median level of NOV/CCN3/IGFBP-9 at baseline:follow-up (P = 0.024). Furthermore, for the patients up to 64 years of age, the median level of NOV/CCN3/IGFBP-9 was significantly different between responders and non-responders (P = 0.047). For IL-1ß, the median level was significantly different between responders and non-responders in patients with breast cancer (P = 0.006). CONCLUSION Although the present findings do not identify robust biomarkers, this is the first such study to examine the role of cytokines in predicting response to XRT in patients with CIBP, and studies that build on these findings are encouraged.
Collapse
Affiliation(s)
- K MacLeod
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - B J A Laird
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - N O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - P Hoskin
- Department of Oncology, Mount Vernon Cancer Centre, Mount Vernon Hospital, Northwood, UK
| | - M T Fallon
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - T A Sande
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
12
|
Fazzari J, Sidhu J, Motkur S, Inman M, Buckley N, Clemons M, Vandermeer L, Singh G. Applying Serum Cytokine Levels to Predict Pain Severity in Cancer Patients. J Pain Res 2020; 13:313-321. [PMID: 32104053 PMCID: PMC7012636 DOI: 10.2147/jpr.s227175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Aim Cancers originating in the breast, lung and prostate often metastasize to the bone, frequently resulting in cancer-induced bone pain that can be challenging to manage despite conventional analgesic therapy. This exploratory study’s aim was to identify potential biomarkers associated with cancer-induced pain by examining a sample population of breast cancer patients undergoing bisphosphonate therapy. Methods A secondary analysis of the primary study was performed to quantify serum cytokine levels for correlation to pain scores. Cytokines with statistically significant correlations were then input into a stepwise regression analysis to generate a predictive equation for a patient’s pain severity. In an effort to find additional potential biomarkers, correlation analysis was performed between these factors and a more comprehensive panel of cytokines and chemokines from breast, lung, and prostate cancer patients. Results Statistical analysis identified nine cytokines (GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-12p70, IL-17A, and IL-23) that had significant negative correlations with pain scores and they could best predict pain severity through a predictive equation generated for this specific evaluation. After performing a correlation analysis between these factors and a larger panel of cytokines and chemokines, samples from breast, lung and prostate patients showed distinct correlation profiles, highlighting the clinical challenge of applying pain-associated cytokines related to more defined nociceptive states, such as arthritis, to a cancer pain state. Conclusion Exploratory analyses such as the ones presented here will be a beneficial tool to expand insights into potential cancer-specific nociceptive mechanisms and to develop novel therapeutics.
Collapse
Affiliation(s)
- Jennifer Fazzari
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shreya Motkur
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark Inman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Norman Buckley
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Mark Clemons
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital, Ottawa, Canada.,Cancer Research Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Lisa Vandermeer
- Cancer Research Program, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Gurmit Singh
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Autenshlyus A, Arkhipov S, Mikhailova E, Marinkin I, Varaksin N, Vavilin V, Lyakhovich V. Effects of polyclonal activators on cell differentiation and cytokine production of cultured invasive breast carcinoma of no special type, their association with tumour histopathological parameters and lymph node metastasis. Int J Immunopathol Pharmacol 2020; 34:2058738420950580. [PMID: 33100082 PMCID: PMC7786416 DOI: 10.1177/2058738420950580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Currently, a number of promising strategies and approaches to cancer treatment include differentiation therapy. However, theoretical and methodological foundations of this field are not yet well developed. The objective of this study was to determine the effects of a mixture of polyclonal activators (PAs; phytohaemagglutinin, concanavalin A and lipopolysaccharide) on cytokine production by biopsy samples of invasive breast carcinoma of no special type (IBC-NST) having various differentiation abilities and metastatic potentials as well as on differentiation status of the IBC-NST biopsy samples. We used ELISAs to investigate spontaneous and PA-stimulated cytokine production in the IBC-NST biopsy samples; from these data, we calculated a cytokine production stimulation index (SIPA). The effect of PAs on tumour cell differentiation was determined via a differentiation stimulation index (DSI). DSI was found to vary within the range 1.0-5.0. After treatment with PAs, in the IBC-NST biopsy samples of group I (DSI <1.25), the production of IL-2, IL-6, IL-8, IL-17, IL-18, IL-1β, IL-1Ra, TNF-α and GM-CSF increased; in the biopsy samples of group II (DSI >1.25), the production of IL-6, IL-1β, IL-1Ra, TNF-α, G-CSF and GM-CSF significantly increased, while the production of VEGF-A decreased. Receiver operating characteristic (ROC) analysis of SIPA revealed that increased production of IL-18 in the IBC-NST biopsy samples after exposure to PAs may block the PA-driven, cytokine-mediated differentiation of moderately differentiated into highly differentiated tumour cells. The ROC analysis also uncovered an association between the responses of tumour cells to PAs and lymph node metastasis observed in the patients. The findings suggest that there is a need for research aimed at finding new drugs for differentiating cancer therapy and at searching for targeted inducers of cytokine production or specific suppressors of their induction.
Collapse
Affiliation(s)
- Alexander Autenshlyus
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Sergey Arkhipov
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Mikhailova
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | | | - Valentin Vavilin
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Vyacheslav Lyakhovich
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
14
|
Fonia A, Richert B. Onychalgia Causes and Mechanisms: The “GIFTED KID” and the “FOMITE”. Skin Appendage Disord 2020; 6:77-87. [DOI: 10.1159/000504347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
This article gives an account of the commonest causes of nail pain. The acronyms GIFTED KID and FOMITE will help aid doctors in a busy clinical setting to remember the main causes of onychalgia, respectively, on the fingers and toes. It includes a brief overview of the clinical characteristics and focuses on the type of pain for each condition as well as the mechanisms that cause it.
Collapse
|
15
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
16
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Dalenogare DP, Pereira GC, Ritter CDS, Peres DS, Antoniazzi CTDD, Stein C, Moresco RN, Oliveira SM, Trevisan G. Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma. Cell Mol Neurobiol 2019; 39:605-617. [PMID: 30850915 DOI: 10.1007/s10571-019-00666-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Diéssica Padilha Dalenogare
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Camila Dos Santos Ritter
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Diulle Spat Peres
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Carolina Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
17
|
Frantsiyants EM, Sheiko EA. ANTITUMOR EFFECT OF ELECTROMAGNETIC FIELDS AND THEIR EFFECT ON PAIN IN EXPERIMENTAL AND CLINICAL ONCOLOGY. RESEARCH'N PRACTICAL MEDICINE JOURNAL 2019. [DOI: 10.17709/2409-2231-2019-6-2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review examined and analyzed scientific publications on the effect of electromagnetic fields (EMF) on various systems of the human body and animals with tumors, as well as on pain in the experiment and the clinic. The theoretical foundations and practical results of the use of EMF in various modulations and modes in the goals and objectives of oncology, including how to optimize the process of anesthesia and correct the vital activity of the body's functional systems with a tumor, are consecrated. Information is given on possible physicochemical effects, features, and mechanisms of therapeutic influence at various levels of a living organism. The ability of electromagnetic waves to transfer information both within a single biosystem and at the level of a whole living organism with a tumor is shown. Studies of combined action of EMF and chemotherapy were analyzed. It has been established that there are experimental prerequisites for using this factor in order to induce changes in the permeability of the membranes of tumor cells by increasing the internalization of chemotherapeutic agents and, thus, enhance the antitumor effect. The role of EMF in the induction of apoptosis in tumor cells is shown. It has been shown that chemotherapy together with electromagnetic fields induces apoptosis and has an inhibitory effect on DNA synthesis in osteosarcoma cells, breast cancer, colon cancer, melanoma and other tumors. The role of magnetic fields in order to enhance the analgesic effect was investigated. The analgesic effect is due to the cessation or weakening of nerve impulses from the painful focus due to the elimination of hypoxia, the improvement of microcirculation, and the reduction of edema, it has been shown. Transcranial magnetic therapy is used as an analgesic tool in onconurology. The therapeutic anti-pain effect is associated with the stimulation of the antinociceptive system, an increase in the synthesis of natural analgesics — endorphins with their subsequent release into the cerebrospinal fluid and blood. As it has already been shown, with the increase in the intensity of pain and its duration, all indicators of the quality of life and the results of treatment of the patient deteriorate, so the search for ways to improve the antitumor effectiveness of specialized treatment and eliminate the causes that prevent their implementation continue to be relevant and in demand.
Collapse
|
18
|
Habberstad R, Frøseth TCS, Aass N, Abramova T, Baas T, Mørkeset ST, Caraceni A, Laird B, Boland JW, Rossi R, Garcia-Alonso E, Stensheim H, Loge JH, Hjermstad MJ, Bjerkeset E, Bye A, Lund JÅ, Solheim TS, Vagnildhaug OM, Brunelli C, Damås JK, Mollnes TE, Kaasa S, Klepstad P. The Palliative Radiotherapy and Inflammation Study (PRAIS) - protocol for a longitudinal observational multicenter study on patients with cancer induced bone pain. BMC Palliat Care 2018; 17:110. [PMID: 30266081 PMCID: PMC6162927 DOI: 10.1186/s12904-018-0362-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Radiation therapy (RT) results in pain relief for about 6 of 10 patients with cancer induced bone pain (CIBP) caused by bone metastases. The high number of non-responders, the long median time from RT to pain response and the risk of adverse effects, makes it important to determine predictors of treatment response. Clinical features such as cancer type, performance status and pain intensity, and biomarkers for osteoclast activity are proposed as predictors of response to RT. However, results are inconsistent and there is a need for better predictors of RT response. A similar argument can be stated for the development of cachexia; there are currently no predictors that can identify patients who will develop cachexia later in the cancer disease trajectory. Experimental and preclinical studies show that pain, depression and cachexia are related to inflammation. However, it is not known if inflammatory biomarkers can predict CIBP, depression or development of cachexia. METHODS This multicenter, multinational longitudinal observational study will include 600 adult patients receiving RT for CIBP. Demographic data, clinical variables, osteoclast and inflammatory biomarkers will be assessed before start of RT, and 3, 8, 16, 24 and 52 weeks after last course of RT. The primary aim of the study is to identify potential predictors for pain relief from RT. Secondary aims are to explore potential predictors for development of cachexia, the longitudinal relationship between pain intensity and depression, and if inflammatory biomarkers are associated with changes in pain intensity, cachexia and depression during one-year follow up. DISCUSSION The immediate clinical implication of the PRAIS study is to identify potential predictive factors for a RT response on CIBP, and thereby reduce non-efficacious RT. Patient benefits are fewer hospital visits, reduced risk of adverse effects and more individualized pain treatment. The long-term clinical implication of the PRAIS study is to improve the knowledge about inflammation in relation to CIBP, cachexia and depression and potentially identify associations and mechanisms that can be targeted for treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02107664 , date of registration April 8, 2014 (retrospectively registered). TRIAL SPONSOR The European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, NTNU, Faculty of medicine and Health Sciences, Trondheim, N-7491, Norway.
Collapse
Affiliation(s)
- Ragnhild Habberstad
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Cancer Clinic, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trude Camilla Salvesen Frøseth
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nina Aass
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- University of Oslo and Department of Oncology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tatiana Abramova
- Department Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Theo Baas
- Department Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Siri Tessem Mørkeset
- Department Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Augusto Caraceni
- Palliative Care, Pain Therapy and Rehabilitation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barry Laird
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Jason W Boland
- Wolfson Palliative Care Research Centre, Hull York Medical School, University of Hull, Hull, UK
| | - Romina Rossi
- Palliative Care Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Garcia-Alonso
- Radiation Oncology Department Arnau de Vilanova University Hospital, IRB, Lleida, Spain
| | - Hanne Stensheim
- University of Oslo and Department of Oncology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Cancer Registry of Norway, Institute of Populationbased Cancer Research, Oslo, Norway
| | - Jon Håvard Loge
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- University of Oslo and Department of Oncology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marianne Jensen Hjermstad
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ellen Bjerkeset
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asta Bye
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jo-Åsmund Lund
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Department Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Tora Skeidsvoll Solheim
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Cancer Clinic, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ola Magne Vagnildhaug
- European Palliative Care Research Centre (PRC), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology and St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Cancer Clinic, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cinzia Brunelli
- Palliative Care, Pain Therapy and Rehabilitation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jan Kristian Damås
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olav’s Hospital, Trondheim, Norway
| | - Tom Eirik Mollnes
- KG Jebsen Inflammation Research Center, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- KG Jebsen Thrombosis Research and Expertise Center, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Stein Kaasa
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- University of Oslo and Department of Oncology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Klepstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Anesthesiology and Intensive Care Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Effects of Transcutaneous Electrical Nerve Stimulation on Proinflammatory Cytokines: Systematic Review and Meta-Analysis. Mediators Inflamm 2018; 2018:1094352. [PMID: 29805310 PMCID: PMC5901481 DOI: 10.1155/2018/1094352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/01/2018] [Indexed: 11/29/2022] Open
Abstract
The mechanism of pain reduction involves bidirectional processes of pain blocking (nociception) and reductions in the levels of proinflammatory cytokines in the blood. Does transcutaneous electrical nerve stimulation (TENS) reduce blood levels of proinflammatory cytokines? For this systematic review, we searched in six databases to identify randomized controlled trials with the criteria: humans older than 18 years (adults), use of TENS in the experimental group, and having at least one pre- and postintervention blood level of at least one proinflammatory cytokine. The risk of bias and the level of evidence were assessed. Five studies were included involving 240 participants. The heterogeneity of the studies was high (I2: 85%); therefore, we used a random-effects meta-analysis. It was observed through the meta-analysis synthesis measures that there were statistically significant differences following the use of TENS to reduce the general group of cytokines. When grouped by chronic disease, by postoperative settings, or by individual studies in the case of IL-6, it was observed that the significant reduction of cytokines related to the use of TENS was maintained. The use of TENS reduced the blood levels of proinflammatory cytokines (we observed a protective factor of TENS in relation to inflammation). The protocol of the systematic review was registered in PROSPERO, CRD42017060379.
Collapse
|
20
|
Mafu TS, September AV, Shamley D. The potential role of angiogenesis in the development of shoulder pain, shoulder dysfunction, and lymphedema after breast cancer treatment. Cancer Manag Res 2018; 10:81-90. [PMID: 29391829 PMCID: PMC5772395 DOI: 10.2147/cmar.s151714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Shoulder morbidity is a well-documented sequela of breast cancer treatment, which includes various manifestations such as pain, reduced range of motion, and lymphedema, among others. The multifactorial nature of such morbidities has long been appreciated, and research on reliable risk predictors of development thereof still continues. Previous studies have demonstrated the potential of different types of physical therapy to treat such shoulder problems, and the integration of such interventions into routine care for breast cancer survivors is a requirement in most high-income countries. Although patients at risk for developing shoulder problems would most likely benefit from posttreatment physical therapy, currently, there is no gold standard for identifying this patient group. This is particularly important in low- and middle-income countries where scarce monetary resources need to be directed specifically to those most in need. Modulators of the angiogenesis pathway have been implicated in noncancer shoulder conditions such as rotator cuff disease, adhesive capsulitis, and tendon injuries. The present review summarizes the role of angiogenesis in the development of shoulder morbidity among breast cancer survivors and sets forth the rationale for our belief that angiogenesis signaling may help explain a proportion of the reported clinical variability noted in the development of shoulder pain and dysfunction and upper-limb lymphedema after breast cancer treatment.
Collapse
Affiliation(s)
- Trevor S Mafu
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town
| | - Alison V September
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town
| | - Delva Shamley
- Clinical Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Autenshlyus A, Arkhipov S, Mikhailova E, Arkhipova V, Varaksin N. VEGF-R2 and TNF-R1 expression and cytokine production by samples of mammary adenocarcinomas and correlations with histopathological parameters of these malignant tumors. Int J Immunopathol Pharmacol 2018; 32:2058738418787990. [PMID: 29985074 PMCID: PMC6073826 DOI: 10.1177/2058738418787990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
Currently, the role of cytokines in the tumor progression, including breast cancer, is universally recognized. At the same time, there are still many questions concerning the role of individual cytokines and receptors for cytokines in various morphogenetic processes underlying the tumor progression. The objective of this work was to study cytokine production and vascular endothelial growth factor (VEGF)-R2 and VEGF-R1 expression by mammary adenocarcinoma (MAC) and the correlations with histopathological parameters of malignant tumors. The object of the study was cultured tumor biopsy samples from 47 women aged 43-75 years with invasive ductal carcinoma, which was classified as grade II-III adenocarcinoma. It was shown that the cytokine profiles of the supernatants of MAC samples from patients differ greatly. A correlation between the levels of VEGF-R2 and tumor necrosis factor (TNF)-R1 expression was observed. Correlations were also revealed during analysis of the relations of histopathological MAC indicators with KVEGF-R2/VEGF-A and KTNF-R1/TNF-α coefficients, which are equal, respectively, to the ratio of expression values of receptors VEGF-R2 and TNF-R1 to the concentrations of the relevant cytokines (VEGF-A and TNF-α) in the culture supernatants of the same MAC samples. A direct correlation was identified between KVEGF-R/VEGF-A and some histopathological MAC characteristics: proportion of cells undergoing mitosis or pathological mitosis in MAC and poorly differentiated cells. KVEGF-R2/VEGF-A directly correlated with the concentration in supernatant interleukin (IL)-18 and interferon (IFN)-γ. KTNF-R1/TNF-α was inversely correlated with the concentration in supernatant of IL-1Ra, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF). The data obtained show that the high-level production of IL-18 and IL-1β by MAC, overexpression of VEGF-R2 in tumor (at relatively low VEGF-A production), and the high level of IFN-γ production are attributed factors contributing to the formation of a population of low-grade cells in the tumor. The factors regulating the population of moderately differentiated cells in the tumor are referred to as IL-1Ra, IL-8, and GM-CSF.
Collapse
Affiliation(s)
- Alexander Autenshlyus
- Novosibirsk State Medical University,
Novosibirsk, Russia
- Institute of Molecular Biology and
Biophysics, Subdivision of Federal Research Center of Fundamental and Translational
Medicine, Novosibirsk, Russia
| | - Sergey Arkhipov
- Novosibirsk State Medical University,
Novosibirsk, Russia
- Institute of Molecular Biology and
Biophysics, Subdivision of Federal Research Center of Fundamental and Translational
Medicine, Novosibirsk, Russia
- Laboratory of Immunohistochemistry,
Biochemistry and Pharmacology, Central Research Laboratory, Novosibirsk State
Medical University
| | - Elena Mikhailova
- Novosibirsk State Medical University,
Novosibirsk, Russia
- Institute of Molecular Biology and
Biophysics, Subdivision of Federal Research Center of Fundamental and Translational
Medicine, Novosibirsk, Russia
| | | | | |
Collapse
|
22
|
BARROS-NETO JA, SANTOS TMDM, CORTES ML, JESUS RPD, FREITAS MC, KRAYCHETE DC. Constipation in patients with myofascial pain syndrome as important aspect for clinical and nutritional treatment: A case-control study. REV NUTR 2017. [DOI: 10.1590/1678-98652017000500003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Objective To identify the occurrence of constipation in patients with myofascial pain syndrome and to correlate these disorders with the clinical and nutritional variables. Methods This report describes a case-control study performed with 98 adults of both sexs, including 49 patients and 49 individuals without pain. The intensity of the reported pain was evaluated using the Pain Visual Analog Scale, which provided a simple and efficient measurement of pain intensity consisting of a 10cm horizontal line with the ends marked “absence of pain” and “worst possible pain”. The occurrence of constipation was evaluated using the Rome III criteria. A multivariate linear regression was proposed to investigate risk factors between the frequency of bowel movements per week and independent variables this study. Results The mean ages of the patients and controls were 45.9 (7.6) years and 41.2 (12.2) years, respectively. The intensity of the reported pain showed a mean of 7.3 (1.6) points. The likelihood of exhibiting constipation was 4.5 times higher in the patients than in the controls (p=0.001). The number of stools per week was negatively correlated with the intensity of the reported pain (r=-0.613, p<0.001). The use of benzodiazepines was negatively correlated with the frequency of bowel movements per week, while the use of muscle relaxants appeared to increase the frequency of defecation when combined with the use of benzodiazepines and adjusted for the intake of fiber, water and sexs (p=0.037). Conclusion Constipation was a frequent nosological entity in this patient population and the persistence of a change in intestinal motility showed a significant correlation with the pain intensity and low water intake. The reduction of the number of stools per week seems to be associated with the use of benzodiazepines.
Collapse
|
23
|
Wang CH, Chang SJ, Tzeng YS, Shih YJ, Adrienne C, Chen SG, Chen TM, Dai NT, Cherng JH. Enhanced wound-healing performance of a phyto-polysaccharide-enriched dressing - a preclinical small and large animal study. Int Wound J 2017; 14:1359-1369. [PMID: 28941182 DOI: 10.1111/iwj.12813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Alginate is a natural rich anionic polysaccharide (APS), commonly available as calcium alginate (CAPS). It can maintain a physiologically moist microenvironment, which minimises bacterial infection and facilitates wound healing at a wound site. Patients with burn injuries suffer from pain and an inflammatory response. In this study, we evaluated the CAPS dressing and traditional dressing containing carboxymethyl cellulose (CMC) for wound healing and scar tissue formation in a burn model of rat and swine. In our pilot study of a burn rat model to evaluate inflammatory response and wound healing, we found that the monocyte chemoattractant protein (MCP)-1 and transforming growth factor (TGF)-β were up-regulated in the CAPS treatment group. Next, the burn swine models tested positive for MCP-1 in a Gram-positive bacterial infection, and there was overproduction of TGF-β during the burn wound healing process. Rats were monitored daily for 1 week for cytokine assay and sacrificed on day 28 post-burn injury. The swine were monitored over 6 weeks. We further examined the pain and related factors and inflammatory cytokine expression in a rodent burns model monitored everyday for 7 days post-burn. Our results revealed that the efficacy of the dressing containing CAPS for wound repair post-burn was better than the CMC dressing with respect to natural wound healing and scar formation. The polysaccharide-enriched dressing exerted an antimicrobial effect on burn wounds, regulated the inflammatory response and stimulated anti-inflammatory cytokine release. However, one pain assessment method showed no significant difference in the reduction in levels of adenosine triphosphate in serum of rats after wound dressing in either the CAPS or CMC group. In conclusion, a polysaccharide-enriched dressing outperformed a traditional dressing in reducing wound size, minimising hypertrophic scar formation, regulating cytokines and maximising antimicrobial effects.
Collapse
Affiliation(s)
- Chih-Hsin Wang
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Shu-Jen Chang
- Department of Dentistry, National Yang-Ming University, National Defense Medical Center, Taipei, Taiwan (R.O.C)
| | - Yuan-Sheng Tzeng
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Yu-Jen Shih
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Chang Adrienne
- Department of Chemistry, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shyi-Gen Chen
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Tim-Mo Chen
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Niann-Tzyy Dai
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan (R.O.C).,General Clinical Research Center, Tri-Service General Hospital, Taipei, Taiwan (R.O.C).,Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan (R.O.C)
| |
Collapse
|
24
|
Almeida TCDC, Figueiredo FWDS, Barbosa Filho VC, de Abreu LC, Fonseca FLA, Adami F. Effects of transcutaneous electrical nerve stimulation (TENS) on proinflammatory cytokines: protocol for systematic review. Syst Rev 2017; 6:139. [PMID: 28697739 PMCID: PMC5505047 DOI: 10.1186/s13643-017-0532-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pain reduction can be achieved by lowering proinflammatory cytokine levels in the blood. Transcutaneous electrical nerve stimulation (TENS) is a non-invasive physiotherapeutic resource for pain management, but evidence on the effectiveness of this device at reducing proinflammatory cytokines in the blood is unclear. This study systematically reviews the literature on the effect of TENS on proinflammatory cytokines. METHODS A systematic review protocol was developed based on searches of articles in six electronic databases and references of retrieved articles, contact with authors, and repositories of clinical trials. Eligibility criteria: publication in peer-reviewed journals, randomized clinical trials, use of TENS in the experimental group, and pre- and post-measurements of proinflammatory cytokines in the blood. Selection of the studies and extraction of the data will be carried out by two reviewers independently. Characteristics of the study, participants, interventions and outcomes were extracted and described. Assessments were performed on the risk of bias, level of evidence and the size of the intervention effect in the studies, according to GRADE guidelines and the Cochrane Handbook for Systematic Reviews. Clinical and statistical assessments compared the effects of the interventions (meta-analysis), taking into consideration any influencing characteristics of the studies (e.g., methods and application sites). DISCUSSION We anticipate that this review will strengthen evidence-based knowledge of the effect of TENS on proinflammatory cytokines and, as a result, direct new studies to benefit patients with specific pathologies. SYSTEMATIC REVIEW REGISTRATION PROSPERO, CRD42017060379 .
Collapse
Affiliation(s)
- Tábata Cristina do Carmo Almeida
- Faculdade de Medicina do ABC (FMABC), Laboratório de Epidemiologia e Análise de dados (ABC Medical School), Av. Lauro Gomes, 2000, Vila Sacadura Cabral, CEP: 09060-870 Santo André, SP Brazil
| | - Francisco Winter dos Santos Figueiredo
- Faculdade de Medicina do ABC (FMABC), Laboratório de Epidemiologia e Análise de dados (ABC Medical School), Av. Lauro Gomes, 2000, Vila Sacadura Cabral, CEP: 09060-870 Santo André, SP Brazil
| | - Valter Cordeiro Barbosa Filho
- Centre in Physical Activity and Health. Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luiz Carlos de Abreu
- Faculdade de Medicina do ABC (FMABC), Laboratório de Delineamento de Estudos e Escrita Científica (ABC Medical School), Av. Lauro Gomes, 2000, Vila Sacadura Cabral, CEP: 09060-870 Santo André, SP Brazil
| | - Fernando Luiz Affonso Fonseca
- Faculdade de Medicina do ABC (FMABC), Laboratório de Análises Clínicas (ABC Medical School), Av. Lauro Gomes, 2000, Vila Sacadura Cabral, CEP: 09060-870 Santo André, SP Brazil
| | - Fernando Adami
- Faculdade de Medicina do ABC (FMABC), Laboratório de Epidemiologia e Análise de dados (ABC Medical School), Av. Lauro Gomes, 2000, Vila Sacadura Cabral, CEP: 09060-870 Santo André, SP Brazil
| |
Collapse
|
25
|
Di Pompo G, Lemma S, Canti L, Rucci N, Ponzetti M, Errani C, Donati DM, Russell S, Gillies R, Chano T, Baldini N, Avnet S. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma. Oncotarget 2017; 8:54478-54496. [PMID: 28903357 PMCID: PMC5589596 DOI: 10.18632/oncotarget.17091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is common in patients with bone metastases (BM), significantly impairing quality of life. The current treatments for CIBP are limited since they are often ineffective. Local acidosis derived from glycolytic carcinoma and tumor-induced osteolysis is only barely explored cause of pain. We found that breast carcinoma cells that prefer bone as a metastatic site have very high extracellular proton efflux and expression of pumps/ion transporters associated with acid-base balance (MCT4, CA9, and V-ATPase). Further, the impairment of intratumoral acidification via V-ATPase targeting in xenografts with BM significantly reduced CIBP, as measured by incapacitance test. We hypothesize that in addition to the direct acid-induced stimulation of nociceptors in the bone, a novel mechanism mediated by the acid-induced and tumor-associated mesenchymal stroma might ultimately lead to nociceptor sensitization and hyperalgesia. Consistent with this, short-term exposure of cancer-associated fibroblasts, mesenchymal stem cells, and osteoblasts to pH 6.8 promotes the expression of inflammatory and nociceptive mediators (NGF, BDNF, IL6, IL8, IL1b and CCL5). This is also consistent with a significant correlation between breakthrough pain, measured by pain questionnaire, and combined high serum levels of BDNF and IL6 in patients with BM, and also by immunofluorescence staining showing IL8 expression that was more in mesenchymal stromal cells rather than in tumors cells, and close to LAMP-2 positive acidifying carcinoma cells in BM tissue sections. In summary, intratumoral acidification in BM might promote CIBP also by activating the tumor-associated stroma, offering a new target for palliative treatments in advanced cancer.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo Canti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Shonagh Russell
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
26
|
Serum Cytokinome Profile Evaluation: A Tool to Define New Diagnostic and Prognostic Markers of Cancer Using Multiplexed Bead-Based Immunoassays. Mediators Inflamm 2016; 2016:3064643. [PMID: 28050120 PMCID: PMC5168457 DOI: 10.1155/2016/3064643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/19/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022] Open
Abstract
In recent years, many researchers are focusing their attention on the link between inflammation and cancer. The inflammation is involved in the tumor development and suppression, by stimulating the immune response. In particular, the transition from chronic inflammation to cancer produces angiogenic and growth factors able to repair the tissue and to promote cancer cell survival, implantation, and growth. In this contest, the cytokines contribute to the development of these processes becoming active before and during the inflammatory process and playing an important function at the various disease levels. Thus, these proteins can represent specific markers of tumor development and progression. Therefore the "cytokinome" term is used to indicate the evaluation of cytokine pattern by using an "omics" approach. Newly, specific protein chips of considerable and improved sensitivity are being developed to determine simultaneously several and different cytokines. This can be achieved by a multiplex technology that, through the use of small amounts of serum or other fluids, is used to determine the presence and the levels of underrepresented cytokines. Since this method is an accurate, sensitive, and reproducible cytokine assay, it is already used in many different studies. Thus, this review focuses on the more latest aspects related to cytokinome profile evaluation in different cancers.
Collapse
|