1
|
Zhang Y, Tan J, Zhao Y, Guan L, Li S. By activating endothelium histone H4 mediates oleic acid-induced acute respiratory distress syndrome. BMC Pulm Med 2025; 25:3. [PMID: 39757148 DOI: 10.1186/s12890-024-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/08/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study investigated pathogenic role and mechanism of extracellular histone H4 during oleic acid (OA)-induced acute respiratory distress syndrome (ARDS). METHODS ARDS was induced by intravenous injection of OA in mice, and evaluated by blood gas, pathological analysis, lung edema, and survival rate. Heparan sulfate (HS) degradation was evaluated using immunofluorescence and flow cytometry. The released von Willebrand factor (vWF) was measured using ELISA. P-selectin translocation and neutrophil infiltration were measured via immunohistochemical analysis. Changes in VE-cadherin were measured by western blot. Blocking antibodies against TLRs were used to investigate the signaling pathway. RESULTS Histone H4 in plasma and BALF increased significantly after OA injection. Histone H4 was closely correlated with the OA dose, which determined the ARDS severity. Pretreatment with histone H4 further aggravated pulmonary edema and death rate, while anti-H4 antibody exerted obvious protective effects. Histone H4 directly activated the endothelia. Endothelial activation was evidently manifested as HS degradation, release of vWF, P-selectin translocation, and VE-Cadherin reduction. The synergistic stimulus of activated endothelia was required for effective neutrophil activation by histone H4. Both TLRs and calcium mediated histone H4-induced endothelial activation. CONCLUSIONS Histone H4 is a pro-inflammatory and pro-thrombotic molecule in OA-induced ARDS in mice.
Collapse
Affiliation(s)
- Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Jingjin Tan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yiran Zhao
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Guan
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuqiang Li
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Wei SL, Du JZ, Zhai KR, Yang JB, Zhang R, Wu XY, Li Y, Li B. Dexamethasone alleviates acute lung injury in a rat model with venovenous extracorporeal membrane oxygenation support. BMJ Open Respir Res 2024; 11:e002394. [PMID: 39632101 PMCID: PMC11624713 DOI: 10.1136/bmjresp-2024-002394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In recent years, dexamethasone (Dex) has been used to treat acute respiratory distress syndrome (ARDS) in patients with COVID-19 and achieved promising outcomes. Venovenous extracorporeal membrane oxygenation (VV ECMO) support for patients with ARDS has increased significantly worldwide. However, it remains unknown whether Dex could improve the efficiency of VV ECMO to reduce lung injury. Here, we investigate the combined efficiency of VV ECMO and Dex in rats with acute lung injury (ALI). METHODS We established VV ECMO in oleic acid (OA)-treated ALI rats and administered Dex. We conducted HE staining and evaluated lung and bronchoalveolar lavage (BAL) fluid cytokines to assess lung injury and inflammation. Furthermore, we investigated the activation of Hippo/YAP signalling in alveolar epithelial type II cell (AT2)-mediated alveolar epithelial repair using quantitative PCR, Western blotting and immunofluorescence. In vitro, the human alveolar epithelial cell line A549 was used to investigate the key role of YAP in alveolar epithelial cell differentiation. RESULTS VV ECMO combined with Dex alleviated OA-induced lung injury and pulmonary inflammation. Pulmonary oedema and exudation were significantly alleviated, and the lung and BAL levels of IL-6, IL-8 and TNF-α were significantly reduced compared with those observed with ECMO alone. In addition, VV ECMO combined with Dex treatment protected alveolar epithelial cells by activating Hippo/YAP signalling. In vitro, Dex promoted YAP expression and alveolar epithelial cell differentiation, whereas YAP knockdown inhibited YAP-mediated differentiation. CONCLUSIONS Our findings suggest that adjuvant Dex treatment during VV ECMO could alleviate ALI and pulmonary inflammation by activating the Hippo/YAP signalling pathway, which promoted alveolar regeneration and AT2 differentiation.
Collapse
Affiliation(s)
- Shi-Lin Wei
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, People's Republic of China
| | - Jun-Zhe Du
- Department of Cardiothoracic Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Bao Yang
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Ran Zhang
- Department of Cardiovascular Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Yang Wu
- Department of Cardiac Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Yongnan Li
- Department of Cardiac Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, People's Republic of China
| |
Collapse
|
3
|
Russo C, Evans A, Sullivan C, Wands K, Hudson A, Bedocs P. Bronchoalveolar Lavage and Oleic Acid Two-hit Model for Inducing Acute Respiratory Distress Syndrome in Swine Models. Mil Med 2024; 189:e2439-e2446. [PMID: 38771004 DOI: 10.1093/milmed/usae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a widespread and often fatal clinical syndrome marked by the acute onset of pulmonary edema and inflammatory-mediated disruptions in alveolar-capillary permeability resulting in impaired gas exchange and tissue oxygenation with subsequent acute respiratory failure that accounts for 10.4% of all intensive care unit admissions worldwide and boasts a mortality rate of 38.5%. The current treatment for ARDS remains largely supportive. This is largely because of the many challenges of achieving a stable and sustainable animal model that recreates the pathophysiology of ARDS experimentally in a controlled setting to allow research to elucidate potential treatments of ARDS moving forward. MATERIALS AND METHODS The bronchoalveolar lavage and oleic acid models are currently the 2 most frequently used experimental models in inducing ARDS in animal models. This study demonstrated that combining them into a "two-hit model" can produce sustained ARDS in swine models per the Horowitz index (PaO2/FiO2 ratio of ≤300 mmHg). Additionally, expected changes in pH, pCO2, lung compliance, cytokines, and tissue histopathology were observed and add to our confidence and reliability that the "two-hit model" produces symptomatic ARDS in a manner very similar to that observed in humans. RESULTS AND CONCLUSIONS In conclusion, we demonstrated a viable animal model of human ARDS that is maintained for a prolonged period, suitable for continuous monitoring of the progression, and evaluation of potential future treatments and procedures to reduce patient morbidity and mortality. To carry out this two-hit model, lung injury was induced through a combination of bronchoalveolar lavage and oleic acid administration and the disease process of ARDS is subsequently tracked through clinically relevant parameters such as respiratory mechanics, cytokine response, aretrial blood gas (ABG) changes, and observation of postmortem histopathologic changes. This promising new model has the capacity to successfully replicate human ARDS which is a well-known and notoriously multifactorial pathogenic process to reproduce experimentally for an extended period of time. The "two-hit model" is a viable and appropriate model for the research of novel treatments for ARDS.
Collapse
Affiliation(s)
- Christopher Russo
- Department of Anesthesiology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Andrew Evans
- Department of Anesthesiology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Cameron Sullivan
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kayla Wands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Arlene Hudson
- Department of Anesthesiology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Peter Bedocs
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Ye J, Li P, Liu P, Pei W, Wang R, Liu H, Ma C, Zhao D. Serum Metabolomics Analysis Revealed Metabolic Pathways Related to AECOPD Complicated with Anxiety and Depression. Int J Chron Obstruct Pulmon Dis 2024; 19:2135-2151. [PMID: 39355059 PMCID: PMC11444062 DOI: 10.2147/copd.s471817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background Anxiety and depression are two of the most common comorbidities of COPD, which can directly lead to the number of acute exacerbations and hospitalizations of COPD patients and reduce their quality of life. At present, there are many studies on anxiety and depression in stable COPD, but few studies on anxiety and depression in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Objective We aim to explore the changes of serum metabolomics in AECOPD complicated with anxiety and depression and to provide some clues for further understanding its pathogenesis. Methods This is an observational high-throughput experimental study based on retrospective data extraction. Twenty-one AECOPD with anxiety and depressive patients and 17 healthy controls (HCs) were retrospectively enrolled in the Second Affiliated Hospital of Anhui Medical University. Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD) for anxiety and depression were used to assess the patients with AECOPD. Untargeted metabolomics analysis was carried out to investigate different molecules in the serum of all participants. General information of all participants, baseline data and clinical measurement data of AECOPD patients were collected. Statistical analysis and bioinformatics analysis were performed to reveal different metabolites and perturbed metabolic pathways. Results A total of 724 metabolites in positive ionization mode and 555 metabolites in negative ionization mode were different in AECOPD patients with anxiety and depression. The 1,279 serum metabolites could be divided into 77 categories. Based on multivariate and univariate analysis, 74 metabolites were detected in positive ionization mode, and 60 metabolites were detected in negative ionization as differential metabolites. The 134 metabolites were enriched in 18 pathways, including biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, protein digestion and absorption, ovarian steroidogenesis, long-term depression, retrograde endocannabinoid signaling, and so on. Conclusion This work highlights the key metabolites and metabolic pathways disturbed in AECOPD patients with anxiety and depression. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in AECOPD patients with anxiety and depression.
Collapse
Affiliation(s)
- Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ruowen Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
5
|
Martinez E, Im H, Campos-Gomez J, Orihuela CJ. The Oxylipin Dependent Quorum Sensing System enhances Pseudomonas aeruginosa dissemination during burn-associated infection. RESEARCH SQUARE 2024:rs.3.rs-5073300. [PMID: 39399664 PMCID: PMC11469479 DOI: 10.21203/rs.3.rs-5073300/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Following severe burn injury, Pseudomonas aeruginosa is the leading cause of life-threatening infection. Herein, we unveil how P. aeruginosa strategically employs host-derived oleic acid, released as consequence of burn-injury, to induce a hypervirulent phenotype via its Oxylipin Dependent Quorum Sensing system (ODS). ODS activation enhanced P. aeruginosa invasion of burned skin and promoted its dissemination to distant organs in vivo. ODS regulation of P. aeruginosa virulence involved the control of nitic oxide levels, a key signaling molecule in bacteria, through upregulation of the nitric oxide reductases NorCB. Immunization with OdsA, one of the enzymes involved in oxylipin generation, or treatment with a pharmacological inhibitor of OdsA, protected mice against lethal P. aeruginosa infection following burn-injury. Our findings reveal a new mechanism underlying P. aeruginosa hypervirulence in burn wounds and identifies OdsA as a promising target for preventing disseminated infections following burns.
Collapse
Affiliation(s)
- Eriel Martinez
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hansol Im
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Carlos J Orihuela
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
6
|
Zhao G, Ji Z, Duan Y, Wang D, Peng Y, Shi Y, Wei B. A novel anti-inflammatory strategy for myocardial ischemia-reperfusion in rats with cinnamamide derivative compound 7. Int Immunopharmacol 2024; 136:112370. [PMID: 38823174 DOI: 10.1016/j.intimp.2024.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Reperfusion after myocardial ischemia would aggravate myocardial structural and functional damage, known as myocardial ischemia-reperfusion (MI/R) injury. Cinnamamide derivatives have been reported to exert cardioprotective effects, and we have previously reported that compound 7 played a role in cardioprotection against MI/R via anti-inflammatory effect. However, exact mechanism underlying such beneficial action of compound 7 is still unclear. The protective effect of compound 7 was determined in H9c2 cells under H2O2 stimulation with or without nigerin (NLRP3 activator). Electrocardiogram, echocardiography, myocardial infarction size, histopathology and serum biochemical assay were performed in MI/R rats. Metabolomics in vivo and mRNA or protein levels of NLRP3, ASC, cleaved caspase-1 and its downstream IL-18 and IL-1β were detected both in vitro and in vivo. Compound 7 significantly ameliorate H2O2-induced cardiomyocyte damage, which was supported by in vivo data determined by improved left ventricular systolic function and histopathological changes, reduced myocardial infarction area and cellular apoptosis in heart tissue. Cardiac differential metabolites demonstrated that compound 7 indeed altered the cardiac reprogramming of inflammation-related metabolites, which was evidenced by down-regulated cardiac inflammation by compound 7. Additionally, compound 7 alleviated myocardial injury by inhibiting the NLRP3 pathway rather than other members of the inflammasome both in vitro and in vivo, which was further evidenced by CETSA assay. Whereas, nigerin blocked the inhibitory activity of compound 7 against NLRP3. Cinnamamide derivative compound 7 ameliorated MI/R injury by inhibiting inflammation via NLRP3.
Collapse
Affiliation(s)
- Guangyuan Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Zhangyue Ji
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Yusen Duan
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Diya Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Yangyang Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
7
|
Golding R, Braun RK, Miller L, Lasarev M, Hacker TA, Rodgers AC, Staehler A, Eldridge MW, Al-Subu A. Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury. Exp Lung Res 2024; 50:96-105. [PMID: 38625585 DOI: 10.1080/01902148.2024.2341099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.
Collapse
Affiliation(s)
- Regina Golding
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rudolf K Braun
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lorenzo Miller
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michael Lasarev
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy A Hacker
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allison C Rodgers
- Cardiovascular Physiology Core Facility, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ava Staehler
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marlowe W Eldridge
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Awni Al-Subu
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Bahri S, Abdennabi R, Chaker A, Nahdi A, Elgheryeni A, Mlika M, Jameleddine S. Phœnix dactylifera, L. seed oil alleviates Bleomycin-induced pulmonary fibrosis and oxidative stress in Wistar rats. Biomarkers 2024; 29:45-54. [PMID: 38314578 DOI: 10.1080/1354750x.2024.2311178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is the most serious form of interstitial lung disease. We aimed to investigate the effect of Phœnix dactylifera, L. seed oil (DSO) on a murine model of IPF induced by bleomycin (BLM). METHODS Male Wistar rats were treated with a single intra-tracheal injection of BLM (4 mg/kg) and a daily intraperitoneal injection of DSO (75, 150 and 300 mg/kg) for 4 weeks. RESULTS Our phytochemical results showed that DSO has an important antioxidant activity with a high content of polyphenols and flavonoids. High-Performance Liquid Chromatography (HPLC) and Gas chromatography/mass spectrometry (GC-MS) analysis revealed a high amount of oleic and lauric acids and a large quantity of vitamins. Histological examination showed a significant reduction in fibrosis score and collagen bands in the group of rats treated with 75 mg/kg of DSO compared to the BLM group. DSO (75 mg/kg) reversed also the increase in catalase and malondialdehyde (MDA) levels while higher doses (150 and 300 mg/kg) are ineffective against the deleterious effects of BLM. We revealed also that DSO has no renal or hepatic cytotoxic effects. CONCLUSION DSO can play antioxidant and antifibrotic effects on rat models of pulmonary fibrosis at the lowest dose administered.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Asma Chaker
- Functional Exploration and Physiotherapy Department, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | | | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
9
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
10
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
12
|
Lai T, Li J, Zhou Z, Rao J, Zhu Y, Xia L, Lei Y, Huang X, Ke H, Wu Y, Liu P, Zeng H, Xiong H, Luo L, Chen Y, He W, Zhu Y, Lu N. Etiological Changes and Prognosis of Hospitalized Patients with Acute Pancreatitis Over a 15-Year Period. Dig Dis Sci 2024; 69:56-65. [PMID: 37943383 DOI: 10.1007/s10620-023-08172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The worldwide incidence of acute pancreatitis (AP) is increasing, but the dominant etiology of AP may vary by country. Mixed etiologies are involved in the increase in the number of AP patients. AIMS This study was to analyze the etiological changes and prognosis of AP patients and explore the prognosis of AP patients with mixed etiologies. METHODS Using a retrospective analysis method, AP patients hospitalized from January 2007 to December 2021 were selected from a pancreatic center in Nanchang, China. Trends in the main etiologies were analyzed, and the severity and prognosis of different etiologies were compared. RESULTS A total of 10,071 patients were included. Cholelithiasis (56.0%), hyperlipidemia (25.3%), and alcohol (6.5%) were the top three etiologies. The proportion of acute biliary pancreatitis (ABP) showed a decreasing trend, while the proportion of hypertriglyceridemic pancreatitis (HTGP) and alcoholic AP showed an increasing trend (all ptrend < 0.001). The incidence of organ failure and necrotizing pancreatitis was higher in patients with HTGP than in those with AP induced by other etiologies (all p < 0.05). There was no statistically significant difference in mortality among patients with different etiologies. Patients with AP due to a mixed hypertriglyceridemia-alcoholic etiology had higher ICU admission rates and were more severe than those with AP induced by other mixed etiologies. CONCLUSION In the past 15 years, the proportion of ABP has trended downward, while those of HTGP and alcoholic AP have risen. Among patients with mixed etiologies, those with a mixed hypertriglyceridemia-alcoholic etiology had a worse prognosis.
Collapse
Affiliation(s)
- Tianming Lai
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Jiarong Li
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Zhengang Zhou
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Jingwen Rao
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Yong Zhu
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Liang Xia
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Yupeng Lei
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Xin Huang
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Huajing Ke
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Yao Wu
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Pi Liu
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Hao Zeng
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Huifang Xiong
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Lingyu Luo
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Wenhua He
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China.
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Nonghua Lu
- Department of Gastroenterology, Digestive Disease Hospital, First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, 330006, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
13
|
Dincer B, Cinar I, Erol HS, Demirci B, Terzi F. Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury. J Mol Recognit 2023; 36:e3058. [PMID: 37696682 DOI: 10.1002/jmr.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayis University, Samsun, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Beste Demirci
- Department of Anatomy, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
14
|
Ghasemzadeh Rahbardar M, Razavi BM, Naraki K, Hosseinzadeh H. Therapeutic effects of minocycline on oleic acid-induced acute respiratory distress syndrome (ARDS) in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3233-3242. [PMID: 37247013 PMCID: PMC10226015 DOI: 10.1007/s00210-023-02532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious intensive care condition. Despite advances in treatment over the previous few decades, ARDS patients still have high fatality rates. Thus, more research is needed to improve the outcomes for people with ARDS. Minocycline is an antibiotic with antioxidant, anti-inflammatory, and anti-apoptotic effects. In the current investigation, the therapeutic effects of minocycline on oleic acid-induced ARDS were evaluated. Male rats were classified into 6 groups, 1. control (normal saline), 2. oleic acid (100 µL, i.v.), 3-5. oleic acid + minocycline (50, 100, 200 mg/kg, i.p.), and 6. minocycline (200 mg/kg, i.p.) alone. Twenty-four hours after the oleic acid injection, the lung tissue is isolated, weighed, and the middle part of the right lung is immediately placed in the freezer, while the middle part of the left lung is placed in formalin and sent to the laboratory for pathology testing. Then, the amounts of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), cytokines (interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α)), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase-3 were determined in lung tissue. Administration of oleic acid increased emphysema, inflammation, vascular congestion, hemorrhage, MDA amount, Bax/Bcl-2 ratio, cleaved caspase-3, IL-1β, TNF-α levels, and decreased GSH, SOD, and CAT levels in comparison with the control group. The administration of minocycline could significantly reduce pathological and biochemical alterations induced by oleic acid. Minocycline has a therapeutic effect on oleic acid-induced ARDS through antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Fahmy HA, El-Shamy S, Farag MA. Comparative GC-MS based nutrients profiling of less explored legume seeds of Melilotus, Medicago, Trifolium, and Ononis analysed using chemometric tools. Sci Rep 2023; 13:18221. [PMID: 37880311 PMCID: PMC10600120 DOI: 10.1038/s41598-023-45453-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Exploring novel sources of plant protein for nutrition of both humans and animals is motivated mainly by its growing demand worldwide, besides identifying healthy alternatives for animal protein. The present study evaluates metabolome diversity within 15 legume seed species. The examined samples comprised three Melilotus, four Medicago, four Trifolium, and four Ononis seed species. A holistic approach for metabolites profiling using gas chromatography-mass spectrometry (GC-MS) led to the annotation and quantification of 87 metabolites comprising alcohols, free amino acids, aromatics, fatty acids/esters, nitrogenous compounds, organic acids, sugar alcohols, sugars, terpenes, and steroids. Fatty acids represented the major metabolite class represented by palmitic, stearic, oleic, linoleic, and linolenic acids. Sucrose and pinitol were the major sugars and sugar alcohols among seeds. Ononis seeds (OR, OS and OA) were the most abundant in fatty acids, sugars, sugar alcohols, and free amino acids, whereas Melilotus species (MO and MS) were least enriched in these key nutrients posing Ononis as potential food source for humans and animals. The examined seeds were generally low in sulfur-containing free amino acids and lacking many of the essential free amino acids. Multivariate data analysis aided in the identification of Ononis metabolite markers belonging to various classes i.e., (alcohol) glycerol, (sugar) allofuranose, and (sugar alcohol) pinitol, although the differentiation between Medicago, Melilotus, and Trifolium genera was not attained suggestive for other analytical platforms for its classification.
Collapse
Affiliation(s)
- Heba A Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
16
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Puuvuori E, Chiodaroli E, Estrada S, Cheung P, Lubenow N, Sigfridsson J, Romelin H, Ingvast S, Elgland M, Liggieri F, Korsgren O, Perchiazzi G, Eriksson O, Antoni G. PET Imaging of Neutrophil Elastase with 11C-GW457427 in Acute Respiratory Distress Syndrome in Pigs. J Nucl Med 2023; 64:423-429. [PMID: 36109184 PMCID: PMC10071803 DOI: 10.2967/jnumed.122.264306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohistochemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Sergio Estrada
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Norbert Lubenow
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Hampus Romelin
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Mathias Elgland
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Francesco Liggieri
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Li Y, Huang J, Zhang R, Wang S, Cheng X, Zhang P, Zhai K, Wang W, Liu D, Gao B. Establishment of a venovenous extracorporeal membrane oxygenation in a rat model of acute respiratory distress syndrome. Perfusion 2023; 38:85-91. [PMID: 34378461 DOI: 10.1177/02676591211031468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Venovenous extracorporeal membrane oxygenation (VV ECMO) is now considered a reasonable option to salvage acute respiratory distress syndrome (ARDS). However, we lack a rodent model for experimental studies. This study was undertaken to establish an animal model of VV ECMO in ARDS rats. METHODS A total of 18 Sprague-Dawley (SD) rats (350 ± 50 g) were used in this study. Using a rat model of oleic acid (OA)-induced ARDS, VV ECMO was established through cavoatrial cannulation of the right jugular vein for venous drainage and venous reinfusion with a specially designed three-cavity catheter. Continuous arterial pressure monitoring was implemented by using a catheter through cannulation of the right femoral artery. The central temperature was monitored with a rectal probe. Arterial blood gas monitoring was implemented by a blood gas analyzer at three-time points: at baseline, 1-hour (after OA modeling), and 3.5-hour (after VV ECMO support). Lung tissue and bronchoalveolar lavage fluid were harvested respectively for protein concentration and pulmonary histologic evaluation to confirm the alleviation of lung injury during VV ECMO. RESULTS Following ARDS induced by OA, ten rats were successfully established on VV ECMO without failure and survived the ECMO procedure. VV ECMO alleviated lung injury and restored adequate circulation for the return of lung function and oxygenation. VV ECMO was associated with decreased lung injury score, wet/dry weight ratio, and fluid leakage into airspaces. CONCLUSION We have established a reliable, economical, and functioning ARDS rat model of VV ECMO.
Collapse
Affiliation(s)
- Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shixiong Wang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Pengbin Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Kerong Zhai
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Wei Wang
- Department of Cardiopulmonary Bypass, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Debin Liu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Laboratory of Extracorporeal Life Support, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
20
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
21
|
Huang J, Wang B, Tao S, Hu Y, Wang N, Zhang Q, Wang C, Chen C, Gao B, Cheng X, Li Y. D-tagatose protects against oleic acid-induced acute respiratory distress syndrome in rats by activating PTEN/PI3K/AKT pathway. Front Immunol 2022; 13:928312. [PMID: 36189316 PMCID: PMC9520915 DOI: 10.3389/fimmu.2022.928312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar–capillary barrier, resulting in severe alveolar edema and inflammation. D-tagatose (TAG) is a low-calorie fructose isomer with diverse biological activities whose role in ARDS has never been explored. We found that TAG protects lung tissues from injury in the oleic acid-induced rat model of ARDS. Seventeen male Sprague–Dawley rats were randomly assigned to 3 groups: Sham (n = 5), ARDS (n = 6), and TAG + ARDS (n = 6). The treatment groups were injected with oleic acid to induce ARDS, and the TAG + ARDS group was given TAG 3 days before the induction. After the treatments, the effect of TAG was evaluated by blood gas analysis and observing the gross and histological structure of the lung. The results showed that TAG significantly improved the oxygenation function, reduced the respiratory acidosis and the inflammatory response. TAG also improved the vascular permeability in ARDS rats and promoted the differentiation of alveolar type II cells, maintaining the stability of the alveolar structure. This protective effect of TAG on the lung may be achieved by activating the PTEN/PI3K/AKT pathway. Thus, TAG protects against oleic acid-induced ARDS in rats, suggesting a new clinical strategy for treating the condition.
Collapse
Affiliation(s)
- Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bingjie Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaoyi Tao
- Department of Plastic Repair Burn Surgery Dermatology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiaoyun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Chunhui Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| |
Collapse
|
22
|
Gao H, Zhang X, Tang F, Chen L, Tian Z, Xiao D, Li X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93-5p-dependent inhibition of NF‑κB signaling pathway. Pathol Res Pract 2022; 239:154142. [DOI: 10.1016/j.prp.2022.154142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
|
23
|
Wildi K, Bouquet M, Ainola C, Livingstone S, Colombo SM, Heinsar S, Sato N, Sato K, Wilson E, Abbate G, Passmore MR, Hyslop K, Liu K, Li Bassi G, Suen JY, Fraser JF. Differential Protein Expression among Two Different Ovine ARDS Phenotypes-A Preclinical Randomized Study. Metabolites 2022; 12:metabo12070655. [PMID: 35888779 PMCID: PMC9319228 DOI: 10.3390/metabo12070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS) remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking some key features as described in the human hyperinflammatory group, we aim to describe protein expression among the two different ovine models. Nine animals on mechanical ventilation were included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2, n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and 24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more pronounced by the factor of time than different injury models of ARDS. A protein signature consisting of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis, proteins involved in the inflammatory and defense response, complement and coagulation cascade, oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Correspondence:
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Emily Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Margaret R. Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Medical Faculty, Queensland University of Technology, Brisbane 4059, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| | - Jacky Y. Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - John F. Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| |
Collapse
|
24
|
Huang J, Zhang R, Zhai K, Li J, Yao M, Wei S, Cheng X, Yang J, Gao B, Wu X, Li Y. Venovenous extracorporeal membrane oxygenation promotes alveolar epithelial recovery by activating Hippo/YAP signaling after lung injury. J Heart Lung Transplant 2022; 41:1391-1400. [DOI: 10.1016/j.healun.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 10/16/2022] Open
|
25
|
Fang J, Ting YN, Chen YW. Quantitative Assessment of Lung Ultrasound Grayscale Images Based on Shannon Entropy for the Detection of Pulmonary Aeration: An Animal Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1699-1711. [PMID: 34698398 DOI: 10.1002/jum.15851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Lung ultrasound (LUS) is a radiation-free, affordable, and bedside monitoring method that can detect changes in pulmonary aeration before hypoxic damage. However, visual scoring methods of LUS only enable subjective diagnosis. Therefore, quantitative analysis of LUS is necessary for obtaining objective information on pulmonary aeration. Because raw data are not always available in conventional ultrasound systems, Shannon entropy (ShanEn) of information theory without the requirement of raw data is valuable. In this study, we explored the feasibility of ShanEn estimated through grayscale histogram (GSH) analysis of LUS images for the quantification of pulmonary aeration. METHODS Different degrees of pulmonary aeration caused by edema was induced in 32 male New Zealand rabbits intravenously injected with 0.1 mL/kg saline (the control group) and 0.025, 0.05, and 0.1 mL/kg oleic acid (mild, moderate, and severe groups, respectively). In vivo grayscale LUS images were acquired using a commercial point-of-care ultrasound system for estimation of GSH and corresponding ShanEn. Both lungs of each rabbit were dissected, weighed, and dried to determine the wet weight-to-dry weight ratio (W/D) through gravimetry. RESULTS The determination coefficients of linear correlations between ShanEn and W/D increased from 0.0487 to 0.7477 with gain and dynamic range (DR). In contrast to visual scoring methods of pulmonary aeration that use median gain and low DR, ShanEn for quantifying pulmonary aeration requires high gain and DR. CONCLUSION The current findings indicate that ShanEn estimated through GSH analysis of LUS images acquired using conventional ultrasonic imaging systems has great potential to provide objective information on pulmonary aeration.
Collapse
Affiliation(s)
- Jui Fang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan
| | - Yen-Nien Ting
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
- High Performance Materials Institute for xD Printing, Asia University, Taichung City, Taiwan
| |
Collapse
|
26
|
Angus SA, Henderson WR, Banoei MM, Molgat‐Seon Y, Peters CM, Parmar HR, Griesdale DEG, Sekhon M, Sheel AW, Winston BW, Dominelli PB. Therapeutic hypothermia attenuates physiologic, histologic, and metabolomic markers of injury in a porcine model of acute respiratory distress syndrome. Physiol Rep 2022; 10:e15286. [PMID: 35510328 PMCID: PMC9069168 DOI: 10.14814/phy2.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lung injury characterized by noncardiogenic pulmonary edema and hypoxic respiratory failure. The purpose of this study was to investigate the effects of therapeutic hypothermia on short-term experimental ARDS. Twenty adult female Yorkshire pigs were divided into four groups (n = 5 each): normothermic control (C), normothermic injured (I), hypothermic control (HC), and hypothermic injured (HI). Acute respiratory distress syndrome was induced experimentally via intrapulmonary injection of oleic acid. Target core temperature was achieved in the HI group within 1 h of injury induction. Cardiorespiratory, histologic, cytokine, and metabolomic data were collected on all animals prior to and following injury/sham. All data were collected for approximately 12 h from the beginning of the study until euthanasia. Therapeutic hypothermia reduced injury in the HI compared to the I group (histological injury score = 0.51 ± 0.18 vs. 0.76 ± 0.06; p = 0.02) with no change in gas exchange. All groups expressed distinct phenotypes, with a reduction in pro-inflammatory metabolites, an increase in anti-inflammatory metabolites, and a reduction in inflammatory cytokines observed in the HI group compared to the I group. Changes to respiratory system mechanics in the injured groups were due to increases in lung elastance (E) and resistance (R) (ΔE from pre-injury = 46 ± 14 cmH2 O L-1 , p < 0.0001; ΔR from pre-injury: 3 ± 2 cmH2 O L-1 s- , p = 0.30) rather than changes to the chest wall (ΔE from pre-injury: 0.7 ± 1.6 cmH2 O L-1 , p = 0.99; ΔR from pre-injury: 0.6 ± 0.1 cmH2 O L-1 s- , p = 0.01). Both control groups had no change in respiratory mechanics. In conclusion, therapeutic hypothermia can reduce markers of injury and inflammation associated with experimentally induced short-term ARDS.
Collapse
Affiliation(s)
- Sarah A. Angus
- Department of KinesiologyUniversity of WaterlooWaterlooOntarioCanada
| | - William R. Henderson
- Division of Critical Care MedicineDepartment of MedicineFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mohammad M. Banoei
- Department of Critical Care MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Yannick Molgat‐Seon
- Department Kinesiology and Applied HealthUniversity of WinnipegWinnipegManitobaCanada
| | - Carli M. Peters
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hanna R. Parmar
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Donald E. G. Griesdale
- Division of Critical Care MedicineDepartment of MedicineFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of AnesthesiologyPharmacology & TherapeuticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mypinder Sekhon
- Division of Critical Care MedicineDepartment of MedicineFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew William Sheel
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brent W. Winston
- Department of Critical Care MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Medicine and Biochemistry & Molecular BiologyUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
27
|
Ilić AŽ, de Luka SR, Popović TB, Debeljak-Martačić J, Kojadinović M, Ćirković S, Ristić-Djurović JL, Trbovich AM. Distinct fatty acid redistribution and textural changes in the brain tissue upon the static magnetic field exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103853. [PMID: 35318121 DOI: 10.1016/j.etap.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
We observed different outcomes upon the subacute exposure to the 128 mT highly homogeneous static magnetic field (SMF) when its orientation was (i) aligned with the vertical component of the geomagnetic field; (ii) in the opposite direction. We employed the fatty acids (FA) composition and digital image analyses (DIA) to provide insights into the underlying processes and examine the possible weak SMF effects. Swiss-Webster male mice were whole-body exposed for 1 h/day over five days. Brain tissue's thin liquid chromatography resulted in brain FA composition, indicating a possible sequence of changes due to the SMF exposure. Quantitative DIA accurately assessed different image parameters. Delicate textural changes were revealed in the group where pathohistological or biochemical alterations have not been detected. DIA-based biological markers seem to be very promising for studying delicate tissue changes, which results from the high sensitivity and wide availability of DIA.
Collapse
Affiliation(s)
- Andjelija Ž Ilić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Silvio R de Luka
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia
| | - Tamara B Popović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Jasmina Debeljak-Martačić
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Milica Kojadinović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Saša Ćirković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Jasna L Ristić-Djurović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Alexander M Trbovich
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia.
| |
Collapse
|
28
|
Park SH, Bae SW, Jeong KY, Koo EH, Choi JH, Park JH, Kong SH, Choi WS, Park DJ, Lee HJ, Yang HK. Clinical significance of lipid droplets formed in the peritoneal fluid after laparoscopic surgery for gastric cancer. Surg Endosc 2022; 36:6095-6104. [PMID: 35312849 DOI: 10.1007/s00464-022-09173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Several studies have previously reported that laparoscopic surgery using an energy sealing device generates hazardous surgical smoke. However, the droplets appearing on the surface of peritoneal fluid irrigated with saline, after dissection phase of laparoscopic gastrectomy were ignored for a long time. This study aimed to investigate the composition and clinical significance of these droplet particles. METHODS This study prospectively enrolled 15 patients with early gastric cancer (cT1NanyM0) who were scheduled for laparoscopic gastrectomy. Floating phases of peritoneal irrigation fluid containing droplets in dissected area were retrieved before and after surgical dissection. Using gas chromatography analysis, the areas under the peak were compared between the samples retrieved before and after surgical dissection. We also analyzed if the area value with significant change was related to the inflammatory response. RESULTS In gas chromatography, the area values after laparoscopic surgical dissection were significantly increased in 10 out of 37 kinds of fatty acids, compared to those before surgical dissection. The significant increase in area value of α-linoleic and eicosadienoic acids were positively correlated with the elevated level of C-reactive protein at postoperative day 2 (Spearman's ρ = 0.843, P < 0.001; Spearman's ρ = 0.785, P = 0.001). CONCLUSIONS The lipid droplets, generated after laparoscopic lymphadenectomy during gastric cancer surgery, contained various types of fatty acids, and some of them have been found to be associated with inflammatory response.
Collapse
Affiliation(s)
- Shin-Hoo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Woo Bae
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Yun Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Hee Koo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Ho Choi
- Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Won-Sil Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea. .,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Farag MA, Gad MZ. Omega-9 fatty acids: potential roles in inflammation and cancer management. J Genet Eng Biotechnol 2022; 20:48. [PMID: 35294666 PMCID: PMC8927560 DOI: 10.1186/s43141-022-00329-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
Abstract
Background Omega-9 fatty acids represent one of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They are synthesized endogenously in humans, though not fully compensating all body requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including anti-inflammatory and anti-cancer characters. The main body of the abstract This review capitalizes on the major omega-9 pharmacological activities in context of inflammation management for its different natural forms in different dietary sources. The observed anti-inflammatory effects reported for oleic acid (OA), mead acid, and erucic acid were directed to attenuate inflammation in several physiological and pathological conditions such as wound healing and eye inflammation by altering the production of inflammatory mediators, modulating neutrophils infiltration, and altering VEGF effector pathway. OA action mechanisms as anti-tumor agent in different cancer types are compiled for the first time based on its anti- and pro-carcinogenic actions. Conclusion We conclude that several pathways are likely to explain the anti-proliferative activity of OA including suppression of migration and proliferation of breast cancer cells, as well stimulation of tumor suppressor genes. Such action mechanisms warrant for further supportive clinical and epidemiological studies to confirm the beneficial outcomes of omega-9 consumption especially over long-term intervention.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B, Cairo, 11562, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Cairo, Egypt
| |
Collapse
|
30
|
Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol 2022; 198:101-110. [PMID: 34968533 PMCID: PMC8712435 DOI: 10.1016/j.ijbiomac.2021.12.073] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/μL & 6 ± 0.5 μg/μL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/μL & 7 ± 0.5 μg/μL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/μL & 10 ± 0.6 μg/μL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
31
|
Chen W, Hu Q. Secondary Metabolites of Purpureocilliumlilacinum. Molecules 2021; 27:18. [PMID: 35011248 PMCID: PMC8746413 DOI: 10.3390/molecules27010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fungi can synthesize a wealth of secondary metabolites, which are widely used in the exploration of lead compounds of pharmaceutical or agricultural importance. Beauveria, Metarhizium, and Cordyceps are the most extensively studied fungi in which a large number of biologically active metabolites have been identified. However, relatively little attention has been paid to Purpureocillium lilacinum. P. lilacinum are soil-habituated fungi that are widely distributed in nature and are very important biocontrol fungi in agriculture, providing good biological control of plant parasitic nematodes and having a significant effect on Aphidoidea, Tetranychus cinnbarinus, and Aleyrodidae. At the same time, it produces secondary metabolites with various biological activities such as anticancer, antimicrobial, and insecticidal. This review attempts to provide a comprehensive overview of the secondary metabolites of P. lilacinum, with emphasis on the chemical diversity and biological activity of these secondary metabolites and the biosynthetic pathways, and gives new insight into the secondary metabolites of medical and entomogenous fungi, which is expected to provide a reference for the development of medicine and agrochemicals in the future.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
32
|
Li Q, Peng W, Zhang Z, Pei X, Sun Z, Ou Y. A phycocyanin derived eicosapeptide attenuates lung fibrosis development. Eur J Pharmacol 2021; 908:174356. [PMID: 34280398 DOI: 10.1016/j.ejphar.2021.174356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive respiratory disease. Phycocyanin derived eicosapeptide (PP20) is a novel peptide derived from active protein C-phycocyanin in Cyanobacteria. The aim of our study was to explore the anti-fibrotic activity of the PP20 and its underlying mechanism. Characteristic features of pulmonary fibrosis in oleic acid (OA)-induced mice and epithelial-mesenchymal transition (EMT) in TGF-β1-exposed A549 and HFL-1 cells with or without PP20 and the change of TGF-β/Smad and MAPK signaling pathways were examined. Smad and MAPK agonists were used to explore the role of TGF-β/Smad and MAPK signaling in TGF-β1- induced collagen I expression in A549 cells and α-SMA expression in HFL-1 cells when treated with PP20. Our results showed that PP20 significantly alleviated the inflammatory response and tissue destruction, inhibited EMT, restored the imbalance of TIMP-1/MMP-9 and reduced collagen fiber deposition. Moreover, PP20 inhibited TGF-β1-induced EMT and collagen I expression in A549 cells. PP20 could also inhibit the proliferation, and decrease TGF-β1-induced the expression of collagen I and transformation of fibroblasts into myofibroblasts in HFL-1 cells. Additionally, animal experiments and cell experiments combined with pathway agonists have shown that PP20 can negatively regulate TGF-β/Smad and MAPK pathways and show anti-fibrotic properties. PP20 may be a promising drug candidate for protection against pulmonary fibrosis.
Collapse
Affiliation(s)
- Qihao Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Wen Peng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhaoyu Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xin Pei
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
33
|
Millar JE, Wildi K, Bartnikowski N, Bouquet M, Hyslop K, Passmore MR, Ki KK, See Hoe LE, Obonyo NG, Neyton L, Pedersen S, Rozencwajg S, Baillie JK, Li Bassi G, Suen JY, McAuley DF, Fraser JF. Characterizing preclinical sub-phenotypic models of acute respiratory distress syndrome: An experimental ovine study. Physiol Rep 2021; 9:e15048. [PMID: 34617676 PMCID: PMC8495778 DOI: 10.14814/phy2.15048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub-phenotypes that exist within its broader envelope. These sub-phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub-phenotypes or investigated the presence of sub-phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub-phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies.
Collapse
Affiliation(s)
- Jonathan E. Millar
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
- Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Karin Wildi
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
- Cardiovascular Research Institute BaselBaselSwitzerland
| | - Nicole Bartnikowski
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyAustralia
| | - Mahe Bouquet
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Kieran Hyslop
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Margaret R. Passmore
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Katrina K. Ki
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Louise E. See Hoe
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Nchafatso G. Obonyo
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Wellcome Trust Centre for Global Health ResearchImperial College LondonUK
| | | | - Sanne Pedersen
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
| | - Sacha Rozencwajg
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Sorbonne UniversitésUPMC Université Paris 06INSERMUMRS‐1166ICAN Institute of Cardiometabolism and Nutrition, Medical ICUPitié‐Salpêtrière University HospitalParisFrance
| | | | - Gianluigi Li Bassi
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Jacky Y. Suen
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Daniel F. McAuley
- Wellcome‐Wolfson Institute for Experimental MedicineQueen’s University BelfastBelfastUK
| | - John F. Fraser
- Critical Care Research GroupThe Prince Charles HospitalBrisbaneAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
34
|
Kamuf J, Garcia Bardon A, Ziebart A, Ruemmler R, Schwab J, Dib M, Daiber A, Thal SC, Hartmann EK. Influence of rosuvastatin treatment on cerebral inflammation and nitro-oxidative stress in experimental lung injury in pigs. BMC Anesthesiol 2021; 21:224. [PMID: 34517845 PMCID: PMC8435760 DOI: 10.1186/s12871-021-01436-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many patients with acute respiratory distress syndrome (ARDS) suffer from cognitive impairment after hospital discharge. Different mechanisms have been implicated as potential causes for this impairment, inter alia cerebral inflammation. A class of drugs with antioxidant and anti-inflammatory properties are β-HMG-CoA-reductase inhibitors ("statins"). We hypothesized that treatment with rosuvastatin attenuates cerebral cytokine mRNA expression and nitro-oxidative stress in an animal model of acute lung injury. METHODS After approval of the institutional and state animal care committee, we performed this prospective randomized controlled animal study in accordance with the international guidelines for the care and use of laboratory animals. Thirty-two healthy male pigs were randomized to one of four groups: lung injury by central venous injection of oleic acid (n = 8), statin treatment before and directly after lung injury (n = 8), statin treatment after lung injury (n = 8), or ventilation-only controls (n = 8). About 18 h after lung injury and standardized treatment, the animals were euthanised, and the brains and lungs were collected for further examinations. We determined histologic lung injury and cerebral and pulmonal cytokine and 3-nitrotyrosine production. RESULTS We found a significant increase in hippocampal IL-6 mRNA after lung injury (p < 0.05). Treatment with rosuvastatin before and after induction of lung injury led to a significant reduction of hippocampal IL-6 mRNA (p < 0.05). Cerebral 3-nitrotyrosine was significantly higher in lung-injured animals compared with all other groups (p < 0.05 vs. animals treated with rosuvastatin after lung injury induction; p < 0.001 vs. all other groups). 3-Nitrotyrosine was also increased in the lungs of the lung-injured pigs compared to all other groups (p < 0.05 each). CONCLUSIONS Our findings highlight cerebral cytokine production and nitro-oxidative stress within the first day after induction of lung injury. The treatment with rosuvastatin reduced IL-6 mRNA and 3-nitrotyrosine concentration in the brains of the animals. In earlier trials, statin treatment did not reduce mortality in ARDS patients but seemed to improve quality of life in ARDS survivors. Whether this is attributable to better cognitive function because of reduced nitro-oxidative stress and inflammation remains to be elucidated.
Collapse
Affiliation(s)
- Jens Kamuf
- Department of Anesthesiology, University Medical Centre, Mainz, Germany.
| | | | - Alexander Ziebart
- Department of Anesthesiology, University Medical Centre, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, University Medical Centre, Mainz, Germany
| | - Johannes Schwab
- Department of Anesthesiology, University Medical Centre, Mainz, Germany
| | - Mobin Dib
- Department of Cardiology, University Medical Centre, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Centre, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Centre, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, University Medical Centre, Mainz, Germany
| |
Collapse
|
35
|
Effect of Lipidic Excipients on the Particle Properties and Aerosol Performance of High Drug Load Spray Dried Particles for Inhalation. J Pharm Sci 2021; 111:1152-1163. [PMID: 34506865 DOI: 10.1016/j.xphs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
High drug load inhalable particles were prepared by co-spray drying a hydrophobic, crystalline, small molecule drug with various lipid or phospholipid excipients at a 9:1 molar ratio to understand the primary drivers of aerosol performance. The effect of excipient structure on solid-state, surface characteristics, and aerodynamic performance of the co-spray dried particles was studied while keeping the spray drying parameters constant. Spray drying of the drug with lipids produced crystalline drug particles, whereas phospholipids produced partially amorphous drug particles. All of the co-spray dried particles were nearly spherical with a smooth surface, except for the spray dried drug particles without excipients - which showed the presence of rough crystals on the surface. All co-spray dried particles showed surface enrichment of the excipient. The surface enrichment of the phospholipids was higher compared to the lipids. Co-spray dried particles that showed higher surface enrichment of excipients showed improved aerosol performance. In comparing all the excipients studied, distearyolphosphatidylcholine (DSPC) showed maximum enrichment on the particle surface and thereby significantly improved aerosol performance. This study demonstrated that the addition of small amounts of lipid excipients during spray drying can change surface morphology, composition, and cohesion, impacting aerosol performance of drugs.
Collapse
|
36
|
Muders T, Hentze B, Kreyer S, Wodack KH, Leonhardt S, Hedenstierna G, Wrigge H, Putensen C. Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure. J Clin Med 2021; 10:jcm10132933. [PMID: 34208890 PMCID: PMC8267627 DOI: 10.3390/jcm10132933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Individualized positive end-expiratory pressure (PEEP) titration might be beneficial in preventing tidal recruitment. To detect tidal recruitment by electrical impedance tomography (EIT), the time disparity between the regional ventilation curves (regional ventilation delay inhomogeneity [RVDI]) can be measured during controlled mechanical ventilation when applying a slow inflation of 12 mL/kg of body weight (BW). However, repeated large slow inflations may result in high end-inspiratory pressure (PEI), which might limit the clinical applicability of this method. We hypothesized that PEEP levels that minimize tidal recruitment can also be derived from EIT-based RVDI through the use of reduced slow inflation volumes. METHODS Decremental PEEP trials were performed in 15 lung-injured pigs. The PEEP level that minimized tidal recruitment was estimated from EIT-based RVDI measurement during slow inflations of 12, 9, 7.5, or 6 mL/kg BW. We compared RVDI and PEI values resulting from different slow inflation volumes and estimated individualized PEEP levels. RESULTS RVDI values from slow inflations of 12 and 9 mL/kg BW showed excellent linear correlation (R2 = 0.87, p < 0.001). Correlations decreased for RVDI values from inflations of 7.5 (R2 = 0.68, p < 0.001) and 6 (R2 = 0.42, p < 0.001) mL/kg BW. Individualized PEEP levels estimated from 12 and 9 mL/kg BW were comparable (bias -0.3 cm H2O ± 1.2 cm H2O). Bias and scatter increased with further reduction in slow inflation volumes (for 7.5 mL/kg BW, bias 0 ± 3.2 cm H2O; for 6 mL/kg BW, bias 1.2 ± 4.0 cm H2O). PEI resulting from 9 mL/kg BW inflations were comparable with PEI during regular tidal volumes. CONCLUSIONS PEEP titration to minimize tidal recruitment can be individualized according to EIT-based measurement of the time disparity of regional ventilation courses during slow inflations with low inflation volumes. This sufficiently decreases PEI and may reduce potential clinical risks.
Collapse
Affiliation(s)
- Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
- Correspondence:
| | - Benjamin Hentze
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Stefan Kreyer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Karin Henriette Wodack
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| | - Steffen Leonhardt
- Chair for Medical Information Technology, RWTH Aachen University, 52074 Aachen, Germany;
| | - Göran Hedenstierna
- Department of Medical Sciences, Clinical Physiology, Uppsala University, 75185 Uppsala, Sweden;
| | - Hermann Wrigge
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, 06112 Halle, Germany;
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (B.H.); (S.K.); (K.H.W.); (C.P.)
| |
Collapse
|
37
|
Nambiar S, Tan DBA, Clynick B, Bong SH, Rawlinson C, Gummer J, Corte TJ, Glaspole I, Moodley YP, Trengove R. Untargeted metabolomics of human plasma reveal lipid markers unique to chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Proteomics Clin Appl 2021; 15:e2000039. [PMID: 33580915 DOI: 10.1002/prca.202000039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airway inflammation and progressive airflow limitation, whereas idiopathic pulmonary fibrosis (IPF) is characterised by a restrictive pattern due to fibrosis and impaired gas exchange. We undertook metabolomic analysis of blood samples in IPF, COPD and healthy controls (HC) to determine differences in circulating molecules and identify novel pathogenic pathways. An untargeted metabolomics using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) was performed to profile plasma of patients with COPD (n = 21), and IPF (n = 24) in comparison to plasma from healthy controls (HC; n = 20). The most significant features were identified using multiple database matching. One-way ANOVA and variable importance in projection (VIP) scores were also used to highlight metabolites that influence the specific disease groups. Non-polar metabolites such as fatty acids (FA) and membrane lipids were well resolved and a total of 4805 features were identified. The most prominent metabolite composition differences in lipid mediators identified at ∼2-3 fold higher in both diseases compared to HC were palmitoleic acid, oleic acid and linoleic acid; and dihydrotestosterone was lower in both diseases. We demonstrated that COPD and IPF were characterised by systemic changes in lipid constituents such as essential FA sampled from circulating plasma.
Collapse
Affiliation(s)
- Shabarinath Nambiar
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Dino Bee Aik Tan
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Stem Cell Unit, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Britt Clynick
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Stem Cell Unit, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Sze How Bong
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Catherine Rawlinson
- The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | - Joel Gummer
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ian Glaspole
- Department of Allergy and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuben P Moodley
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Stem Cell Unit, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Robert Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
38
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Silva CID, Gonçalves-de-Albuquerque CF, Moraes BPTD, Garcia DG, Burth P. Na/K-ATPase: Their role in cell adhesion and migration in cancer. Biochimie 2021; 185:1-8. [PMID: 33713729 DOI: 10.1016/j.biochi.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
Na/K-ATPase (NKA) is a p-type transmembrane enzyme formed by three different subunits (α, β, and γ gamma). Primarily responsible for transporting sodium and potassium through the cell membrane, it also plays a critical role in intracellular signaling. The activation of diverse intracellular pathways may trigger cell death, survival, or even cell proliferation. Changes in the NKA functions or expression in isoforms subunits impact pathological conditions, such as cancer. The NKA function affects cell adhesion, motility, and migration, which are different in the physiological and pathological states. All enzyme subunits take part in the cell adhesion process, with the β subunit being the most studied. Thus, herein we aim to highlight NKA' central role in cell adhesion, motility, and migration in cancer cells.
Collapse
Affiliation(s)
- Camila Ignácio da Silva
- Laboratório de Enzimologia e Sinalização Celular, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Pós-Graduação em Ciências e Biotecnologia Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratorio de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Bianca Portugal Tavares de Moraes
- Laboratorio de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Gomes Garcia
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Burth
- Laboratório de Enzimologia e Sinalização Celular, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Pós-Graduação em Ciências e Biotecnologia Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
40
|
Martins CA, Santos MCBD, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Castro-Faria MV, Burth P, Younes-Ibrahim M. The relationship of oleic acid/albumin molar ratio and clinical outcomes in leptospirosis. Heliyon 2021; 7:e06420. [PMID: 33732938 PMCID: PMC7944043 DOI: 10.1016/j.heliyon.2021.e06420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/12/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Human leptospirosis is an acute infectious zoonosis presenting specific lipid disorders. Previous in vitro studies showed both leptospira glycolipoprotein endotoxin, and high oleic acid levels were associated with Na/K-ATPase inhibition that is amplified by the reduction of circulating albumin levels. In this study, we aimed to investigate the relationship of oleic acid/albumin (OA/A) molar ratio and clinical outcomes in Leptospirosis. Through a prospective observational cohort study employing high-performance liquid chromatography (HPLC) we sequentially determined serum concentrations of nonesterified fatty acids (NEFA) and albumin in twenty-eight patients with severe leptospirosis since their hospital admission. Twenty patients recovered, and eight died. Data was distributed in two groups according to clinical outcomes. Oleic acid/albumin molar ratios (OA/A), initial samples, were higher than those in healthy donors. The ratio OA/A, however, persisted high in dying patients, whereas patients who survived had a reduction matching to healthy donors. Biochemical alterations suggest that cure is correlated to the reestablishment of the OA/A molar ratio, while fatal outcomes related to persisting OA/A imbalances. Analysis by receiver operating characteristic (ROC) showed the area under the curve of 0.864 and the cutoff value of 0.715 being associated with a high odds ratio. Lipid analysis from patients with leptospirosis had an acute high serum OA/A molar ratio, and sustained imbalance has a high odds ratio and strong correlation with mortality.
Collapse
Affiliation(s)
- Caroline Azevedo Martins
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Maria Conceição B dos Santos
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mauro Velho Castro-Faria
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Patricia Burth
- Laboratório de Enzimologia e Sinalização Celular, Department of Cellular and Molecular Biology, Federal Fluminense University, Niteroi, Brazil
| | - Mauricio Younes-Ibrahim
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Talebi A, Emami F, Biranvand R, Moosavi Z, Ramtin K, Sadeghi S, Baghaei K, Lak Z, Nematbakhsh M. Protective Role of Angiotensin II Type 1 Receptor Blocker on Short Time Effect of Oleic Acid Induced Lung and Kidney Injury. Int J Prev Med 2021; 12:4. [PMID: 34084301 PMCID: PMC8106270 DOI: 10.4103/ijpvm.ijpvm_323_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Backgrounds: Acute respiratory distress syndrome (ARDS) causes high mortality rate in clinic, and the pathogenesis of this syndrome may interact with renin angiotensin system (RAS) components. The main objective of this study was to determine the protective role of AT1R antagonist (losartan) on oleic acid (OA) induced ARDS and kidney injury. Methods: The animal model of ARDS was performed by intravenous administration of 250 μl/kg oleic acid (OA). Male and female rats were subjected to received intravenously vehicle (saline, groups 1 and 4), OA (groups 2 and 5), or losartan (10 mg/kg) plus OA (groups 3 and 6), and six hour later, the measurements were performed. Results: Co-treatment of OA and losartan increased the serum levels of blood urea nitrogen significantly (P < 0.05) and creatinine insignificantly in both gender. However, the OA induced kidney damage was decreased by losartan significantly in male (P < 0.05) and insignificantly in female rats. In addition, co-treatment of OA and losartan decreased lung water content significantly in male rats (P < 0.05). Based on tissue staining, no significant difference in lung tissue damages were observed between the groups, however some exudate were observed in lung male rats treated with OA alone which were abolished by losartan. Conclusions: Losartan may protect the kidney and lung against OA induced tissue injury in male rats. This protective action is not certain in female rats.
Collapse
Affiliation(s)
- Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Emami
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Biranvand
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Moosavi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Ramtin
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheil Sadeghi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kimia Baghaei
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Lak
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.,IsfahanMN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
42
|
Kamuf J, Garcia Bardon A, Ziebart A, Frauenknecht K, Folkert K, Schwab J, Ruemmler R, Renz M, Cana D, Thal SC, Hartmann EK. Experimental lung injury induces cerebral cytokine mRNA production in pigs. PeerJ 2020; 8:e10471. [PMID: 33354426 PMCID: PMC7733330 DOI: 10.7717/peerj.10471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/11/2020] [Indexed: 12/02/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is an important disease with a high incidence among patients admitted to intensive care units. Over the last decades, the survival of critically ill patients has improved; however, cognitive deficits are among the long-term sequelae. We hypothesize that acute lung injury leads to upregulation of cerebral cytokine synthesis. Methods After approval of the institutional and animal care committee, 20 male pigs were randomized to one of three groups: (1) Lung injury by oleic acid injection (OAI), (2) ventilation only (CTR) or (3) untreated. We compared neuronal numbers, proportion of neurons with markers for apoptosis, activation state of Iba-1 stained microglia cells and cerebral mRNA levels of different cytokines between the groups 18 hours after onset of lung injury. Results We found an increase in hippocampal TNFalpha (p < 0.05) and IL-6 (p < 0.05) messenger RNA (mRNA) in the OAI compared to untreated group as well as higher hippocampal IL-6 mRNA compared to control (p < 0.05). IL-8 and IL-1beta mRNA showed no differences between the groups. We found histologic markers for beginning apoptosis in OAI compared to untreated (p < 0.05) and more active microglia cells in OAI and CTR compared to untreated (p < 0.001 each). Conclusion Hippocampal cytokine transcription increases within 18 hours after the induction of acute lung injury with histological evidence of neuronal damage. It remains to be elucidated if increased cytokine mRNA synthesis plays a role in the cognitive decline observed in survivors of ARDS.
Collapse
Affiliation(s)
- Jens Kamuf
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas Garcia Bardon
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantin Folkert
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Johannes Schwab
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Miriam Renz
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Denis Cana
- Institute of Neuropathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
43
|
Dupuis J, Sirois MG, Rhéaume E, Nguyen QT, Clavet-Lanthier MÉ, Brand G, Mihalache-Avram T, Théberge-Julien G, Charpentier D, Rhainds D, Neagoe PE, Tardif JC. Colchicine reduces lung injury in experimental acute respiratory distress syndrome. PLoS One 2020; 15:e0242318. [PMID: 33264297 PMCID: PMC7710059 DOI: 10.1371/journal.pone.0242318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is characterized by intense dysregulated inflammation leading to acute lung injury (ALI) and respiratory failure. There are no effective pharmacologic therapies for ARDS. Colchicine is a low-cost, widely available drug, effective in the treatment of inflammatory conditions. We studied the effects of colchicine pre-treatment on oleic acid-induced ARDS in rats. Rats were treated with colchicine (1 mg/kg) or placebo for three days prior to intravenous oleic acid-induced ALI (150 mg/kg). Four hours later they were studied and compared to a sham group. Colchicine reduced the area of histological lung injury by 61%, reduced lung edema, and markedly improved oxygenation by increasing PaO2/FiO2 from 66 ± 13 mmHg (mean ± SEM) to 246 ± 45 mmHg compared to 380 ± 18 mmHg in sham animals. Colchicine also reduced PaCO2 and respiratory acidosis. Lung neutrophil recruitment, assessed by myeloperoxidase immunostaining, was greatly increased after injury from 1.16 ± 0.19% to 8.86 ± 0.66% and significantly reduced by colchicine to 5.95 ± 1.13%. Increased lung NETosis was also reduced by therapy. Circulating leukocytosis after ALI was not reduced by colchicine therapy, but neutrophils reactivity and CD4 and CD8 cell surface expression on lymphocyte populations were restored. Colchicine reduces ALI and respiratory failure in experimental ARDS in relation with reduced lung neutrophil recruitment and reduced circulating leukocyte activation. This study supports the clinical development of colchicine for the prevention of ARDS in conditions causing ALI.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin G. Sirois
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Eric Rhéaume
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Quang T. Nguyen
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Genevieve Brand
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | | | | | - David Rhainds
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. J Nanobiotechnology 2020; 18:25. [PMID: 32005196 PMCID: PMC6995149 DOI: 10.1186/s12951-020-0583-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Oleic acid (OA) is reported to show anti-inflammatory activity toward activated neutrophils. It is also an important material in nanoparticles for increased stability and cellular internalization. We aimed to evaluate the anti-inflammatory activity of injectable OA-based nanoparticles for treating lung injury. Different sizes of nanocarriers were prepared to explore the effect of nanoparticulate size on inflammation inhibition. Results The nanoparticles were fabricated with the mean diameters of 105, 153, and 225 nm. The nanocarriers were ingested by isolated human neutrophils during a 5-min period, with the smaller sizes exhibiting greater uptake. The size reduction led to the decrease of cell viability and the intracellular calcium level. The OA-loaded nanosystems dose-dependently suppressed the superoxide anion and elastase produced by the stimulated neutrophils. The inhibition level was comparable for the nanoparticles of different sizes. In the ex vivo biodistribution study, the pulmonary accumulation of nanoparticles increased following the increase of particle size. The nanocarriers were mainly excreted by the liver and bile clearance. Mice were exposed to intratracheal lipopolysaccharide (LPS) to induce acute respiratory distress syndrome (ARDS), like lung damage. The lipid-based nanocarriers mitigated myeloperoxidase (MPO) and cytokines more effectively as compared to OA solution. The larger nanoparticles displayed greater reduction on MPO, TNF-α, and IL-6 than the smaller ones. The histology confirmed the decreased pulmonary neutrophil recruitment and lung-architecture damage after intravenous administration of larger nanoparticles. Conclusions Nanoparticulate size, an essential property governing the anti-inflammatory effect and lung-injury therapy, had different effects on activated neutrophil inhibition and in vivo therapeutic efficacy.
Collapse
|
45
|
Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol 2019; 318:L215-L225. [PMID: 31774305 DOI: 10.1152/ajplung.00065.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell death is increasingly recognized as a driving factor in the development of acute lung injury. Necroptosis, an immunogenic regulated cell death program important in innate immunity, has been implicated in the development of lung injury in a diverse range of conditions. Characterized by lytic cell death and consequent extracellular release of endogenous inflammatory mediators, necroptosis can be both beneficial and deleterious to the host, depending on the context. Here, we review recent investigations linking necroptosis and the development of experimental lung injury. We assess the consequences of necroptosis during bacterial pneumonia, viral infection, sepsis, and sterile injury, highlighting increasing evidence from in vitro studies, animal models, and clinical studies that implicates necroptosis in the pathogenesis of ARDS. Lastly, we highlight current challenges in translating laboratory findings to the bedside.
Collapse
Affiliation(s)
- Hilary Faust
- Allergy, Pulmonary, and Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther 2019; 59:101837. [PMID: 31491506 DOI: 10.1016/j.pupt.2019.101837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 11/23/2022]
Abstract
The oleic acid (OA) models of lung injury try to simulate the findings of human Acute Respiratory Distress Syndrome (ARDS). However, these models are difficult to replicate because they vary in terms of animals species, OA doses, time for establishment of lung injury, different observation periods and settings of mechanical ventilation. The objective of this study was to evaluate a protocol of administration of OA in lung injury model, challenges in its development and its effects on respiratory mechanics, hemodynamic changes, histology, gas exchange and mortality. We then submitted ten Large White pigs to acute lung injury through intravenous infusion of acid oleic in the pulmonary artery. The mortality of the model was 50%, due to an intense hemodynamic instability during OA administration, even with early use of vasoactive drugs. Three animals required additional doses of OA to achieve criteria for acute lung injury. Histology showed findings consistent with acute lung injury. However, more pulmonary edema was observed in lower segments than in upper segments of both lungs (p = 0.01). IL-6 and IL-8 were significantly increased compared to normal lungs (p < 0.05), and IL-6 showed higher levels in upper segments compared to lower segments (p = 0.03). Positive cells for Caspase 3 were present in all samples, localized mainly in respiratory epithelial cells and macrophages. In conclusion, this model shows histological findings of acute lung injury and inflammatory response similar to those of clinical ARDS, it presents high mortality, inconsistent reproducibility and hardly controlled hemodynamic instability.
Collapse
|
47
|
Muders T, Hentze B, Simon P, Girrbach F, Doebler MRG, Leonhardt S, Wrigge H, Putensen C. A Modified Method to Assess Tidal Recruitment by Electrical Impedance Tomography. J Clin Med 2019; 8:E1161. [PMID: 31382559 PMCID: PMC6723902 DOI: 10.3390/jcm8081161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Avoiding tidal recruitment and collapse during mechanical ventilation should reduce the risk of lung injury. Electrical impedance tomography (EIT) enables detection of tidal recruitment by measuring regional ventilation delay inhomogeneity (RVDI) during a slow inflation breath with a tidal volume (VT) of 12 mL/kg body weight (BW). Clinical applicability might be limited by such high VTs resulting in high end-inspiratory pressures (PEI) during positive end-expiratory pressure (PEEP) titration. We hypothesized that RVDI can be obtained with acceptable accuracy from reduced slow inflation VTs. In seven ventilated pigs with experimental lung injury, tidal recruitment was quantified by computed tomography at PEEP levels changed stepwise between 0 and 25 cmH2O. RVDI was measured by EIT during slow inflation VTs of 12, 9, 7.5, and 6 mL/kg BW. Linear correlation of tidal recruitment and RVDI was excellent for VTs of 12 (R2 = 0.83, p < 0.001) and 9 mL/kg BW (R2 = 0.83, p < 0.001) but decreased for VTs of 7.5 (R2 = 0.76, p < 0.001) and 6 mL/kg BW (R2 = 0.71, p < 0.001). With any reduction in slow inflation VT, PEI decreased at all PEEP levels. Receiver-Operator-Characteristic curve analyses revealed that RVDI-thresholds to predict distinct amounts of tidal recruitment differ when obtained from different slow inflation VTs. In conclusion, tidal recruitment can sufficiently be monitored by EIT-based RVDI-calculation with a slow inflation of 9 mL/kg BW.
Collapse
Affiliation(s)
- Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany.
| | - Benjamin Hentze
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
- Chair for Medical Information Technology, RWTH Aachen University, Aachen 52074, Germany
| | - Philipp Simon
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Felix Girrbach
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Michael R G Doebler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, RWTH Aachen University, Aachen 52074, Germany
| | - Hermann Wrigge
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, Halle 06112, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
48
|
Chen H, Ding Y, Chen W, Feng Y, Shi G. Glibenclamide alleviates inflammation in oleic acid model of acute lung injury through NLRP3 inflammasome signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1545-1554. [PMID: 31123394 PMCID: PMC6511253 DOI: 10.2147/dddt.s196040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
Background: Pulmonary fat embolism (PFE) is one of the important causes of acute lung injury (ALI), but its pathogenesis is unclear. In recent years, it has been found that the NLRP3 inflammasome is closely related to inflammatory response. However, there are no reports about the involvement of NLRP3 in PFE- associated ALI. Glibenclamide is a kind of hypoglycaemic drug with anti-inflammatory effect. It has been reported to have the anti-inflammatory effect related to inhibiting NLRP3. Objective: To determine whether NLRP3 inflammasome was involved in ALI induced by PFE or whether glibenclamide had therapeutic effects on such lung injury, we designed this experiment. Materials and methods: The rat model of intravenous injection of oleic acid (OA) was used to simulate PFE. Rats were divided into three groups: control, OA and glibenclamide treatment group. Blood free fatty acid (FFA) concentration was determined by ACS-ACOD. Histopathological examinations were taken to assess the severity of lung injury. The expression of NLRP3 pathway and its downstream products were analyzed by IHC, WB, qPCR and ELISA. Results: Four hours after intravenous OA injection, the typical pathological manifestations of ALI accompanied by elevated levels of plasma FFAs were found. The activity of NLRP3 inflammasomes increased in OA group, too. Pretreatment with glibenclamide partly inhibited the increase in NLRP3, caspase-1 and IL-1β expression induced by OA, simultaneously attenuated the lung injury. But it has little effect on the expression of Toll-like receptor 4 (TLR4) expression in this experiment. Conclusion: NLRP3 inflammasome, one of the main components of innate immune response, involved in ALI induced by OA. Glibenclamide can alleviate this kind of ALI by inhibiting rather the NLRP3/caspase-1/IL-1β signaling pathway than the levels of FFAs or TLR4 pathway.
Collapse
Affiliation(s)
- Hong Chen
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China
| | - Yongjie Ding
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China
| | - Wei Chen
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China
| | - Yun Feng
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China
| | - Guochao Shi
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai 20025, People's Republic of China
| |
Collapse
|
49
|
Seong GM, Kim M. Exogenous lipoid pneumonia presented by acute eosinophilic pneumonia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gil Myeong Seong
- Departments of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Miok Kim
- Departments of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
50
|
Gu L, Deng H, Ren Z, Zhao Y, Yu S, Guo Y, Dai J, Chen X, Li K, Li R, Wang G. Dynamic Changes in the Microbiome and Mucosal Immune Microenvironment of the Lower Respiratory Tract by Influenza Virus Infection. Front Microbiol 2019; 10:2491. [PMID: 31736922 PMCID: PMC6838016 DOI: 10.3389/fmicb.2019.02491] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023] Open
Abstract
Influenza is a major public health concern, and the high mortality rate is largely attributed to secondary bacterial infections. There are several mechanisms through which the virus increases host susceptibility to bacterial colonization, but the micro-environment in lower respiratory tract (LRT) of host, infected with influenza virus, is unclear. To this end, we analyzed the LRT microbiome, transcriptome of lung and metabolome of bronchoalveolar lavage fluid (BALF) in mice inoculated intra-nasally with H1N1 to simulate human influenza, and we observed significant changes in the composition of microbial community and species diversity in the acute (7 days post inoculation or dpi), convalescent (14 dpi) and the recovery (28 dpi) periods. The dominant bacterial class shifted from Alphaproteobacteria to Gammaproteobacteria and Actinobacteria in the infected mice, with a significant increase in the relative abundance of anaerobes and facultative anaerobes like Streptococcus and Staphylococcus. The dysbiosis in the LRT of infected mice was not normalized even in the recovery phase of the infection. In addition, the infected lung transcriptome showed significant differences in the expression levels of genes associated with bacterial infection and immune responses. Finally, the influenza virus infection also resulted in significant changes in the metabolome of the BALF. These alterations in the microbiome, transcriptome, and metabolome of infected lungs were not only appeared at the acute period, but also observed at the recovery period. Furthermore, the infection of influenza virus induced a long-term effect in LRT micro-environmental homeostasis, which may give a chance for the invasion of potential pathogens.
Collapse
Affiliation(s)
- Liming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhihui Ren
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Shun Yu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingzhu Guo
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jianping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- *Correspondence: Rui Li,
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Gefei Wang,
| |
Collapse
|