1
|
Sohal S, Uppal D, Mathai SV, Wats K, Uppal NN. Acute Cardiorenal Syndrome: An Update. Cardiol Rev 2024; 32:489-498. [PMID: 36883827 DOI: 10.1097/crd.0000000000000532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The complex dynamic pathophysiological interplay between the heart and kidney causes a vicious cycle of worsening renal and/or cardiovascular function. Acute decompensated heart failure causing worsening renal function defines Type 1 cardiorenal syndrome (CRS). Altered hemodynamics coupled with a multitude of nonhemodynamic factors namely pathological activation of the renin angiotensin aldosterone system and systemic inflammatory pathways mechanistically incite CRS type 1. A multipronged diagnostic approach utilizing laboratory markers, noninvasive and/or invasive modalities must be implemented to enable timely initiation of effective treatment strategies. In this review, we discuss the pathophysiology, diagnosis, and emerging treatment options for CRS type 1.
Collapse
Affiliation(s)
- Sumit Sohal
- From the Division of Cardiovascular Diseases, Department of Medicine, RWJ-BH Newark Beth Israel Medical Center, Newark, NJ
| | - Dipan Uppal
- Department of Cardiovascular Diseases, Cleveland Clinic Florida, Weston, FL
| | | | - Karan Wats
- Division of Cardiovascular Diseases, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY
| | - Nupur N Uppal
- Division of Kidney Diseases and Hypertension, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| |
Collapse
|
2
|
Yang CC, Chen KH, Yue Y, Cheng BC, Hsu TW, Chiang JY, Chen CH, Liu F, Xiao J, Yip HK. SGLT2 inhibitor downregulated oxidative stress via activating AMPK pathway for cardiorenal (CR) protection in CR syndrome rodent fed with high protein diet. J Mol Histol 2024; 55:803-823. [PMID: 39190032 PMCID: PMC11464616 DOI: 10.1007/s10735-024-10233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024]
Abstract
This study tested the hypothesis that empagliflozin (EMPA) therapy effectively protected renal and heart functions via downregulating reactive oxygen species (ROS) and activating AMPK signaling in cardiorenal syndrome (CRS) (induced by doxorubicin-5/6 nephrectomy) rats. In vitro result showed that underwent p-Cresol treatment, the H9C2/NRK-52E cell viabilities, were significantly suppressed, whereas cellular levels of ROS and early/late apoptosis of these cells were significantly increased that were significantly reversed by EMPA treatment (all p < 0.001). The protein levels of the cell-stress/oxidative signaling (p-PI3K/p-Akt/p-mTOR/NOXs/p-DRP1) were significantly activated, whereas the mitochondrial biogenesis signaling (p-AMPK/SIRT-1/TFAM/PGC-1α) was significantly repressed in these two cell lines treated by p-Cresol and all of these were significantly reversed by EMPA treatment (all p < 0.001). Male-adult-SD rats were categorized into groups 1 [sham-operated control (SC)]/2 [SC + high protein diet (HPD) since day 1 after CKD induction]/3 (CRS + HPD)/4 (CRS + HPD+EMPA/20 mg/kg/day) and heart/kidney were harvested by day 60. By day 63, the renal function parameters (creatinine/BUN/proteinuria)/renal artery restrictive index/cellular levels of ROS/inflammation were significantly increased in group 3 than in groups 1/2, whereas heart function exhibited an opposite pattern of ROS among the groups, and all of these parameters were significantly reversed by EMPA treatment (all p < 0.0001). The protein levels of inflammation/ oxidative-stress/cell-stress signalings were highest in group 2, lowest in group 1 and significantly lower in group 4 than in group 2, whereas the AMPK-mitochondrial biogenesis displayed an opposite manner of oxidative-stress among the groups (all p < 0.0001). EMPA treatment effectively protected the heart/kidney against CRS damage via suppressing ROS signaling and upregulating AMPK-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Ya Yue
- The First Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, R.O.C
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Fanna Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Jie Xiao
- The First Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist., Kaohsiung, 83301, Taiwan, R.O.C..
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, R.O.C..
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C..
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C..
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, R.O.C..
- Department of Nursing, Asia University, Taichung, 41354, Taiwan, R.O.C..
| |
Collapse
|
3
|
Tasić D, Dimitrijević Z. The Role of Oxidative Stress as a Mechanism in the Pathogenesis of Acute Heart Failure in Acute Kidney Injury. Diagnostics (Basel) 2024; 14:2094. [PMID: 39335773 PMCID: PMC11431490 DOI: 10.3390/diagnostics14182094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Despite a large amount of research on synchronous and mutually induced kidney and heart damage, the basis of the disease is still not fully clarified. Healthy mitochondria are essential for normal kidney and heart function. Mitochondrial dysfunction occurs when the clearance or process of generation and fragmentation of mitochondria is disturbed. The kidney is the second organ after the heart in terms of the number of mitochondria. Kidney tubules are rich in mitochondria due to the high energy requirements for absorption of large amounts of ultrafiltrate and dissolved substances. The place of action of oxidative stress is the influence on the balance in the production and breakdown of the mitochondrial reactive oxygen species. A more precise determination of the place and role of key factors that play a role in the onset of the disease is necessary for understanding the nature of the onset of the disease and the creation of therapy in the future. This underscores the urgent need for further research. The narrative review integrates results found in previously performed studies that have evaluated oxidative stress participation in cardiorenal syndrome type 3.
Collapse
Affiliation(s)
- Danijela Tasić
- Clinic of Nephrology Prof Dr Spira Strahinjić, University Clinical Center Niš, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | | |
Collapse
|
4
|
Wang S, Wang Y, Deng Y, Zhang J, Jiang X, Yu J, Gan J, Zeng W, Guo M. Sacubitril/valsartan: research progress of multi-channel therapy for cardiorenal syndrome. Front Pharmacol 2023; 14:1167260. [PMID: 37214467 PMCID: PMC10196136 DOI: 10.3389/fphar.2023.1167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Cardiorenal syndrome (CRS) results from complex interaction between heart and kidneys, inducing simultaneous acute or chronic dysfunction of these organs. Although its incidence rate is increasing with higher mortality in patients, effective clinical treatment drugs are currently not available. The literature suggests that renin-angiotensin-aldosterone system (RAAS) and diuretic natriuretic peptide (NP) system run through CRS. Drugs only targeting the RAAS and NPs systems are not effective. Sacubitril/valsartan contains two agents (sacubitril and valsartan) that can regulate RAAS and NPs simultaneously. In the 2017 American College of Cardiology/American Heart Association/American Heart Failure (HF) ssociation (ACC/AHA/HFSA) guideline, sacubitril/valsartan was recommended as standard therapy for HF patients. The latest research shows that Combined levosimendan and Sacubitril/Valsartan markets are protected the heart and kidney against cardiovascular syndrome in rat. However, fewer studies have reported its therapeutic efficacy in CRS treatment, and their results are inconclusive. Therefore, based on RAAS and NPs as CRS biomarkers, this paper summarizes possible pathophysiological mechanisms and preliminary clinical application effects of sacubitril/valsartan in the prevention and treatment of CRS. This will provide a pharmacological justification for expanding sacubitril/valsartan use to the treatment of CRS.
Collapse
Affiliation(s)
- Shuangcui Wang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Deng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianchun Yu
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Traditional Chinese Medicine Department, Ganzhou People’s Hospital, Ganzhou, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Wu Z, Lohmöller J, Kuhl C, Wehrle K, Jankowski J. Use of Computation Ecosystems to Analyze the Kidney-Heart Crosstalk. Circ Res 2023; 132:1084-1100. [PMID: 37053282 DOI: 10.1161/circresaha.123.321765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The identification of mediators for physiologic processes, correlation of molecular processes, or even pathophysiological processes within a single organ such as the kidney or heart has been extensively studied to answer specific research questions using organ-centered approaches in the past 50 years. However, it has become evident that these approaches do not adequately complement each other and display a distorted single-disease progression, lacking holistic multilevel/multidimensional correlations. Holistic approaches have become increasingly significant in understanding and uncovering high dimensional interactions and molecular overlaps between different organ systems in the pathophysiology of multimorbid and systemic diseases like cardiorenal syndrome because of pathological heart-kidney crosstalk. Holistic approaches to unraveling multimorbid diseases are based on the integration, merging, and correlation of extensive, heterogeneous, and multidimensional data from different data sources, both -omics and nonomics databases. These approaches aimed at generating viable and translatable disease models using mathematical, statistical, and computational tools, thereby creating first computational ecosystems. As part of these computational ecosystems, systems medicine solutions focus on the analysis of -omics data in single-organ diseases. However, the data-scientific requirements to address the complexity of multimodality and multimorbidity reach far beyond what is currently available and require multiphased and cross-sectional approaches. These approaches break down complexity into small and comprehensible challenges. Such holistic computational ecosystems encompass data, methods, processes, and interdisciplinary knowledge to manage the complexity of multiorgan crosstalk. Therefore, this review summarizes the current knowledge of kidney-heart crosstalk, along with methods and opportunities that arise from the novel application of computational ecosystems providing a holistic analysis on the example of kidney-heart crosstalk.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Johannes Lohmöller
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Christiane Kuhl
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Klaus Wehrle
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany (J.J.)
| |
Collapse
|
6
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
7
|
Liu X, Li Y, Ni SH, Sun SN, Deng JP, Ou-Yang XL, Huang YS, Li H, Chen ZX, Feng WJ, Lian ZM, Wang ZK, Xian SX, Yang ZQ, Ye XH, Wang LJ, Lu L. Zhen-Wu decoction and lactiflorin, an ingredient predicted by in silico modelling, alleviate uremia induced cardiac endothelial injury via Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115579. [PMID: 35963415 DOI: 10.1016/j.jep.2022.115579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiorenal syndrome type 4 (CRS type 4), with high rates of morbidity and mortality, has become a social and economic problem worldwide over the last few decades. Zhen-Wu decoction, a traditional medicine used in East Asia, has been widely used in the treatment of cardiovascular disease and kidney disease, and has shown potential therapeutic effects for the clinical treatment of CRS type 4. However, the underlying mechanism has not been extensively explored. AIM OF THE STUDY The purpose of this study was to investigate the effect and underlying mechanism of Zhen-Wu decoction on uremic cardiomyopathy, offering a potential target for clinical treatment of CRS type 4. MATERIALS AND METHODS Five/six nephrectomized mice were utilized for experiments in vivo. The cardioprotective effects of Zhen-Wu decoction were evaluated by echocardiography and tissue staining. RNA-Seq data were used to investigate the potential pharmacological mechanism. The prediction of targets and active components was based on our previous strategy. Subsequently, the protective effect of the selected compound was verified in experiments in vitro. RESULTS Zhen-Wu decoction alleviated cardiac dysfunction and endothelial injury in 5/6 nephrectomized mice, and the mechanism may involve the inflammatory process and oxidative stress. The activation of the Nrf2 signaling pathway was predicted to be a potential target of Zhen-Wu decoction in protecting endothelial cells. Through our machine learning strategy, we found that lactiflorin as an ingredient in Zhen-Wu decoction, alleviates IS-induced endothelial cell injury by blocking Keap1 and activating Nrf2. CONCLUSIONS The present study demonstrated that Zhen-Wu decoction and lactiflorin could protect endothelial cells against oxidative stress in mice after nephrectomy by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Xiao-Lu Ou-Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zhi-Ming Lian
- Guangzhou Integrated Traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zhen-Kui Wang
- Guangzhou Integrated Traditional Chinese and Western Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Xiao-Han Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| |
Collapse
|
8
|
Prastaro M, Nardi E, Paolillo S, Santoro C, Parlati ALM, Gargiulo P, Basile C, Buonocore D, Esposito G, Filardi PP. Cardiorenal syndrome: Pathophysiology as a key to the therapeutic approach in an under-diagnosed disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1110-1124. [PMID: 36218199 PMCID: PMC9828083 DOI: 10.1002/jcu.23265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/09/2023]
Abstract
Cardiorenal syndrome is a clinical condition that impacts both the heart and the kidneys. One organ's chronic or acute impairment can lead to the other's chronic or acute dysregulation. The cardiorenal syndrome has been grouped into five subcategories that describe the etiology, pathophysiology, duration, and pattern of cardiac and renal dysfunction. This classification reflects the large spectrum of interrelated dysfunctions and underlines the bidirectional nature of heart-kidney interactions. However, more evidence is needed to apply these early findings in medical practice. Understanding the relationship between these two organs during each organ's impairment has significant clinical implications that are relevant for therapy in both chronic and acute conditions. The epidemiology, definition, classification, pathophysiology, therapy, and outcome of each form of cardiorenal syndrome are all examined in this review.
Collapse
Affiliation(s)
- Maria Prastaro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ermanno Nardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Stefania Paolillo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ciro Santoro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Antonio L. M. Parlati
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Paola Gargiulo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Christian Basile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Davide Buonocore
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Giovanni Esposito
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | |
Collapse
|
9
|
Alasmari WA, Hosny S, Fouad H, Quthami KA, Althobiany EAM, Faruk EM. Molecular and Cellular Mechanisms Involved in Adipose-derived stem cell and their extracellular vesicles in an Experimental Model of Cardio- renal Syndrome type 3: Histological and Biochemical Study. Tissue Cell 2022; 77:101842. [DOI: 10.1016/j.tice.2022.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
10
|
Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med 2022; 9:889553. [PMID: 35694669 PMCID: PMC9177996 DOI: 10.3389/fcvm.2022.889553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other’s behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.
Collapse
Affiliation(s)
- Beatrice Gabbin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- *Correspondence: Milena Bellin, ,
| |
Collapse
|
11
|
Goldstein J, Dieter RS, Bansal V, Wieschhaus K, Dieter RS, Bontekoe E, Hoppensteadt D, Fareed J. Arterial-renal Syndrome in Patients with ESRD, a New Disease Paradigm. Clin Appl Thromb Hemost 2022; 28:10760296211072820. [PMID: 35018865 PMCID: PMC8761876 DOI: 10.1177/10760296211072820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Patients with end-stage renal disease (ESRD) often present with an increased risk of cardiovascular disease. Conditions of compromised cardiovascular health such as atrial fibrillation (AFIB) and peripheral arterial disease (PAD) may alter biomarker levels in a way that reflects worsening ESRD. This study profiled biomarkers and laboratory parameters of endothelium dysfunction in patients with ESRD, categorized by additional AFIB and PAD conditions. Methods Citrated blood samples were collected from 95 patients with ESRD. Biomarker levels were measured from plasma samples using sandwich ELISAs, including tissue plasminogen activator (tPA), D-dimer, and nitrotyrosine. Lab parameters, including BUN, calcium, creatinine, parathyroid hormone, phosphate, alkaline phosphatase, ferritin, transferrin, and total iron capacity, and patient comorbidities were obtained from patient medical records. The comorbidities were determined through provider notes, and evidence of applicable testing. Results 14.89% of patients were found to have atrial fibrillation (n = 14), 30.85% of patients were found to have peripheral arterial disease (n = 29), and 6.38% of patients were found to have both peripheral arterial disease and atrial fibrillation (n = 6). When compared to patients with only ESRD, patients with ESRD and PAD showed elevated levels of D-Dimer (p = .0314) and nitrotyrosine (p = .0330). When compared to patients with only ESRD, patients with atrial fibrillation showed elevated levels of D-Dimer (p = .0372), nitrotyrosine (p = .0322), and tPA (p = .0198). Conclusion When compared to patients with just ESRD, patients with concomitant PAD had elevated levels of Nitrotyrosine and D-dimer; while patients with concomitant Afib had elevated levels of nitrotyrosine, D-dimer, as well as tPA.
Collapse
Affiliation(s)
- Jake Goldstein
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert S Dieter
- Loyola University Medical Center, Department of Cardiovascular Medicine Maywood, IL, USA
| | - Vinod Bansal
- Loyola University Medical Center, Department of Nephrology, Maywood, IL, USA
| | | | - Robert S Dieter
- Northwestern's McCormick School of Engineering, Evanston, IL, USA
| | - Emily Bontekoe
- Loyola University Medical Center, Department of Pathology and Pharmacology Maywood, IL, USA
| | - Debra Hoppensteadt
- Loyola University Medical Center, Department of Pathology and Pharmacology Maywood, IL, USA
| | - Jawed Fareed
- Loyola University Medical Center, Department of Pathology and Pharmacology Maywood, IL, USA
| |
Collapse
|
12
|
Fu K, Hu Y, Zhang H, Wang C, Lin Z, Lu H, Ji X. Insights of Worsening Renal Function in Type 1 Cardiorenal Syndrome: From the Pathogenesis, Biomarkers to Treatment. Front Cardiovasc Med 2022; 8:760152. [PMID: 34970606 PMCID: PMC8712491 DOI: 10.3389/fcvm.2021.760152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Type-1 cardiorenal syndrome refers to acute kidney injury induced by acute worsening cardiac function. Worsening renal function is a strong and independent predictive factor for poor prognosis. Currently, several problems of the type-1 cardiorenal syndrome have not been fully elucidated. The pathogenesis mechanism of renal dysfunction is unclear. Besides, the diagnostic efficiency, sensitivity, and specificity of the existing biomarkers are doubtful. Furthermore, the renal safety of the therapeutic strategies for acute heart failure (AHF) is still ambiguous. Based on these issues, we systematically summarized and depicted the research actualities and predicaments of the pathogenesis, diagnostic markers, and therapeutic strategies of worsening renal function in type-1 cardiorenal syndrome.
Collapse
Affiliation(s)
- Kang Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zongwei Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
14
|
Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Malik MZ, Ishrat R. Deciphering key genes in cardio-renal syndrome using network analysis. Bioinformation 2021; 17:86-100. [PMID: 34393423 PMCID: PMC8340714 DOI: 10.6026/97320630017086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-1100067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
15
|
Ammar LA, Nahlawi MI, Shayya NW, Ghadieh HE, Azar NS, Harb F, Eid AA. Immunomodulatory Approaches in Diabetes-Induced Cardiorenal Syndromes. Front Cardiovasc Med 2021; 7:630917. [PMID: 33585587 PMCID: PMC7876252 DOI: 10.3389/fcvm.2020.630917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Immunomodulatory approaches are defined as all interventions that modulate and curb the immune response of the host rather than targeting the disease itself with the aim of disease prevention or treatment. A better understanding of the immune system continues to offer innovative drug targets and methods for immunomodulatory interventions. Cardiorenal syndrome is a clinical condition that defines disorders of the heart and kidneys, both of which communicate with one another through multiple pathways in an interdependent relationship. Cardiorenal syndrome denotes the confluence of heart-kidney relationships across numerous interfaces. As such, a dysfunctional heart or kidney has the capacity to initiate disease in the other organ via common hemodynamic, neurohormonal, immunological, and/or biochemical feedback pathways. Understanding how immunomodulatory approaches are implemented in diabetes-induced cardiovascular and renal diseases is important for a promising regenerative medicine, which is the process of replacing cells, tissues or organs to establish normal function. In this article, after a brief introduction on the immunomodulatory approaches in diseases, we will be reviewing the epidemiology and classifications of cardiorenal syndrome. We will be emphasizing on the hemodynamic factors and non-hemodynamic factors linking the heart and the kidneys. In addition, we will be elaborating on the immunomodulatory pathways involved in diabetes-induced cardiorenal syndrome namely, RAS, JAK/STAT, and oxidative stress. Moreover, we will be addressing possible therapeutic approaches that target the former pathways in an attempt to modulate the immune system.
Collapse
Affiliation(s)
- Lama A Ammar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| | - Mohamad I Nahlawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| | - Nizar W Shayya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| | - Nadim S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| | - Frédéric Harb
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Delgado-Valero B, de la Fuente-Chávez L, Romero-Miranda A, Visitación Bartolomé M, Ramchandani B, Islas F, Luaces M, Cachofeiro V, Martínez-Martínez E. Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clin Sci (Lond) 2021; 135:143-159. [PMID: 33355632 DOI: 10.1042/cs20201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level or renal level respectively. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8 to 10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers up-regulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.
Collapse
Affiliation(s)
- Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lucía de la Fuente-Chávez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Visitación Bartolomé
- Departmento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, Madrid, Spain
| | - Fabián Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
18
|
Peesapati VSR, Sadik M, Verma S, Attallah MA, Khan S. Panoramic Dominance of the Immune System in Cardiorenal Syndrome Type I. Cureus 2020; 12:e9869. [PMID: 32963910 PMCID: PMC7500732 DOI: 10.7759/cureus.9869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Physiological organ cross-talk is necessary to maintain equilibrium and homeostasis. Heart and kidney are the essences of this equilibrium. Organ failure in either of these organs can perturb the bidirectional communication between them, impinging this unpleasant vascular and cellular milieu on other distant organs. Cardiorenal syndrome (CRS) type I occurs due to acute deterioration of cardiac function, ultimately causing acute kidney injury (AKI). This syndrome is an intricate condition with neurohormonal and inflammatory aspects. Inflammation creates a vicious circle filled with the innate and adaptive immune systems, pro-inflammatory cytokines, chemokines to actuate hemodynamic compromise in CRS type I patients. Pro-inflammatory cytokines not only aggravate fluid retention and venous congestion but also initiate apoptosis and oxidative stress. The immune response's primary motive is to elicit the heart and kidney to produce cytokines, intensifying the inflammatory process. Despite the possible standard of care, patient mortality, treatment cost, readmissions are extreme in CRS type I, and inflammation certainly has critical inferences warranting future research in humans.
Collapse
Affiliation(s)
| | - Mohammad Sadik
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| | - Sadhika Verma
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, Manipal College of Medical Sciences, Pokhara, NPL
| | - Marline A Attallah
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
19
|
Adaptive Autophagy Offers Cardiorenal Protection in Rats with Acute Myocardial Infarction. Cardiol Res Pract 2020; 2020:7158975. [PMID: 32655948 PMCID: PMC7322605 DOI: 10.1155/2020/7158975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Understanding the multifactorial changes involved in the kidney and heart after acute myocardial infarction (AMI) is prerequisite for further mechanisms and early intervention, especially autophagy changes. Here, we discussed the role of adaptive autophagy in the heart and kidney of rats with AMI. Methods A rat model of AMI was established by ligating the left anterior descending branch of the coronary artery. Animals were sacrificed at 2 and 4 weeks after the operation to assess the morphological and functional changes of the heart and kidney, as well as the autophagy pathway. In vitro, HK-2 and AC16 cell injuries and the autophagy pathway were assayed after autophagy was inhibited by 3-methyladenine (3-MA) in a hypoxia incubator. Results We found that the left ventricular systolic pressure (LVSP) significantly decreased in the model group at weeks 2 and 4. At weeks 2 and 4, the level of urinary kidney injury molecule 1 (uKIM1) of the model group was significantly higher than the sham group. At week 4, urinary neutrophil gelatinase-associated lipocalcin (uNGAL) and urinary albumin also significantly increased. At week 2, microtubule-associated protein 1 light chain 3-II (LC3-II), ATG5, and Beclin1 were significantly elevated in the heart and kidney compared with the sham-operated rats, but there was no change in p62 levels. At week 4, LC3-II did not significantly increase and p62 levels significantly increased. In addition, 3-MA markedly increased KIM1, NGAL, and the activity of caspase-3 in the hypoxic HK-2 and AC16 cell. Conclusion Autophagy will undergo adaptive changes and play a protective role in the heart and kidney of rats after AMI.
Collapse
|
20
|
Junho CVC, Caio-Silva W, Trentin-Sonoda M, Carneiro-Ramos MS. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front Physiol 2020; 11:735. [PMID: 32760284 PMCID: PMC7372084 DOI: 10.3389/fphys.2020.00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are key regulators of calcium signaling in health and disease. CaMKII is the most abundant isoform in the heart; although classically described as a regulator of excitation–contraction coupling, recent studies show that it can also mediate inflammation in cardiovascular diseases (CVDs). Among CVDs, cardiorenal syndrome (CRS) represents a pressing issue to be addressed, considering the growing incidence of kidney diseases worldwide. In this review, we aimed to discuss the role of CaMK as an inflammatory mediator in heart and kidney interaction by conducting an extensive literature review using the database PubMed. Here, we summarize the role and regulating mechanisms of CaMKII present in several quality studies, providing a better understanding for future investigations of CamKII in CVDs. Surprisingly, despite the obvious importance of CaMKII in the heart, very little is known about CaMKII in CRS. In conclusion, more studies are necessary to further understand the role of CaMKII in CRS.
Collapse
Affiliation(s)
| | - Wellington Caio-Silva
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil
| | - Mayra Trentin-Sonoda
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
21
|
Savira F, Magaye R, Liew D, Reid C, Kelly DJ, Kompa AR, Sangaralingham SJ, Burnett JC, Kaye D, Wang BH. Cardiorenal syndrome: Multi-organ dysfunction involving the heart, kidney and vasculature. Br J Pharmacol 2020; 177:2906-2922. [PMID: 32250449 DOI: 10.1111/bph.15065] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a multi-organ disease, encompassing heart, kidney and vascular system dysfunction. CRS is a worldwide problem, with high morbidity, mortality, and inflicts a significant burden on the health care system. The pathophysiology is complex, involving interactions between neurohormones, inflammatory processes, oxidative stress and metabolic derangements. Therapies remain inadequate, mainly comprising symptomatic care with minimal prospect of full recovery. Challenges include limiting the contradictory effects of multi-organ targeted drug prescriptions and continuous monitoring of volume overload. Novel strategies such as multi-organ transplantation and innovative dialysis modalities have been considered but lack evidence in the CRS context. The adjunct use of pharmaceuticals targeting alternative pathways showing positive results in preclinical models also warrants further validation in the clinic. In recent years, studies have identified the involvement of gut dysbiosis, uraemic toxin accumulation, sphingolipid imbalance and other unconventional contributors, which has encouraged a shift in the paradigm of CRS therapy.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew R Kompa
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, New York, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, New York, USA
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Mercanoglu G, Semen O. Nitric oxide mediated the effects of nebivolol in cardiorenal syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1314-1324. [PMID: 32128097 PMCID: PMC7038421 DOI: 10.22038/ijbms.2019.37400.8927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/14/2019] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Despite several proposed mechanisms for the pathophysiology of cardiorenal syndrome (CRS), the exact mechanism remains unclear. Nitrosative stress has been argued as a key mechanism recently. Nebivolol is a beta-blocker with nitric oxide (NO)-releasing effect. In the present study, NO-mediated effects of two different treatment regimes of nebivolol in CRS were studied. MATERIALS AND METHODS Rats were divided into: sham-operated (sham-control), myocardial infarction (MI)-induced, (MI-control) early nebivolol-treated (MI-neb1) and late nebivolol-treated (Mı-neb2) groups. The effects of nebivolol were assessed both in the early and late period of MI by histologic, hemodynamic and biologic studies. RESULTS Developed MI model was in line with the heart failure with preserved ejection fraction. Focal and total tubular damage findings were observed in MI-control group both in early and late period of MI. In parallel, subclinical functional damage was transformed into chronic renal dysfunction in this group. Increased inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) together with decreased neuronal NOS (nNOS) levels were in parallel with the increased inflammation and nitrosative stress biomarkers. Nebivolol effectively prevented both subclinical and clinical nephropathy. There was no statistical difference between the nebivolol treatment regimes. CONCLUSION The beneficial effects of nebivolol were closely related to the reduction of nitrosative damages as well as hemodynamic alterations. The NO-mediated effects were: prevention of nitrosative damage by decreasing iNOS, preservation of nNOS in order to maintain glomerular filtration rate (GFR), and restoration of eNOS in the late period of MI. On contrary to our previous work, early nebivolol administration had a similar effect with delayed administration of nebivolol on CRS.
Collapse
Affiliation(s)
- Guldem Mercanoglu
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Onder Semen
- Istanbul University, Istanbul Medical Faculty, Department of Pathology, Istanbul, Turkey
| |
Collapse
|
23
|
Gyselaers W, Thilaganathan B. Preeclampsia: a gestational cardiorenal syndrome. J Physiol 2019; 597:4695-4714. [PMID: 31343740 DOI: 10.1113/jp274893] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
It is generally accepted today that there are two different types of preeclampsia: an early-onset or placental type and a late-onset or maternal type. In the latent phase, the first one presents with a low output/high resistance circulation eventually leading in the late second or early third trimester to an intense and acutely aggravating systemic disorder with an important impact on maternal and neonatal mortality and morbidity; the other type presents initially as a high volume/low resistance circulation, gradually evolving to a state of circulatory decompensation usually in the later stages of pregnancy, with a less severe impact on maternal and neonatal outcome. For both processes, numerous dysfunctions of the heart, kidneys, arteries, veins and interconnecting systems are reported, most of them presenting earlier and more severely in early- than in late-onset preeclampsia; however, some very specific dysfunctions exist for either type. Experimental, clinical and epidemiological observations before, during and after pregnancy are consistent with gestation-induced worsening of subclinical pre-existing chronic cardiovascular dysfunction in early-onset preeclampsia, and thus sharing the pathophysiology of cardiorenal syndrome type II, and with acute volume overload decompensation of the maternal circulation in late-onset preeclampsia, thus sharing the pathophysiology of cardiorenal syndrome type 1. Cardiorenal syndrome type V is consistent with the process of preeclampsia superimposed upon clinical cardiovascular and/or renal disease, alone or as part of a systemic disorder. This review focuses on the specific differences in haemodynamic dysfunctions between the two types of preeclampsia, with special emphasis on the interorgan interactions between heart and kidneys, introducing the theoretical concept that the pathophysiological processes of preeclampsia can be regarded as the gestational manifestations of cardiorenal syndromes.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics & Gynaecology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium.,Department Physiology, Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, UK.,Molecular and Clinical Sciences Research Institute, St George's University of London, UK
| |
Collapse
|
24
|
Abstract
Cardiorenal syndrome commonly refers to the collective dysfunction of heart and kidney resulting in a cascade of feedback mechanism causing damage to both the organs and is associated with adverse clinical outcomes. The pathophysiology of cardiorenal syndrome is complex, multifactorial, and dynamic. Improving the understanding of disease mechanisms will aid in developing targeted pharmacologic and nonpharmacologic therapies for the management of this syndrome. This article discusses the various mechanisms involved in the pathophysiology of the cardiorenal syndrome.
Collapse
Affiliation(s)
- Ujjala Kumar
- Division of Nephrology-Hypertension, University of California San Diego, 9500 Gilman Drive# 9111H, La Jolla, CA 92093-9111, USA
| | - Nicholas Wettersten
- Division of Cardiology, University of California San Diego, 9434 Medical Center Drive, La Jolla, CA 92037, USA
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, University of California San Diego, 9500 Gilman Drive# 9111H, La Jolla, CA 92093-9111, USA.
| |
Collapse
|
25
|
Hou J, Xie X, Tu Q, Li J, Ding J, Shao G, Jiang Q, Yuan L, Lai X. SIRT1 gene polymorphisms are associated with nondiabetic type 1 cardiorenal syndrome. Ann Hum Genet 2019; 83:445-453. [PMID: 31355422 DOI: 10.1111/ahg.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022]
Abstract
Type 1 cardiorenal syndrome (CRS1) is characterized by acute cardiac disease (e.g., acute heart failure [AHF]), leading to acute kidney injury. Sirtuin 1 (SIRT1), an NAD+ -dependent deacylase, has been found to be associated with CRS1. To confirm whether a correlation exists between SIRT1 variants and the risk of CRS1, the association between the prevalence of CRS1 and single-nucleotide polymorphisms (SNPs) within the SIRT1 gene was investigated in AHF patients. A total of 316 Chinese AHF participants (158 patients with CRS1 and 158 age- and sex-matched controls) were recruited for the present observational study to investigate the association between nine common SIRT1 SNPs (i.e., rs7895833 G > A, rs10509291 T > A, rs3740051 A > G, rs932658 A > C, rs33957861 C > T, rs7069102 C > G, rs2273773 T > C, rs3818292 A > G, and rs1467568 A > G) and the susceptibility to CRS1. Significant differences in genotype distribution between the control and CRS1 groups were found for rs7895833 and rs1467568. After applying a Bonferroni adjustment, the A allele of rs7895833 was still found to be protective (p = 0.001; odds ratio [OR] = 0.77) against CRS1 in this study population. The AA genotype of rs7895833 and the GA genotype of rs1467568 were associated with a significantly reduced risk of CRS1 (OR = 0.23 and 0.49, respectively). rs7895833 and rs1467568 were further analyzed as a haplotype, and the GA haplotype (rs7895833-rs1467568) exhibited a significant association with CRS1 (p = 0.008), while the AA haplotype showed a significant protective effect (p = 0.022). Our study showed that SIRT1 rs7895833 and rs1467568 polymorphisms had a significant effect on the risk of developing CRS1 in a population in China.
Collapse
Affiliation(s)
- Jiebin Hou
- Department of Nephrology, the Second Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Xinyue Xie
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingxian Tu
- Department of Cardiology, The First People's Hospital of ZunYi, Zunyi, Guizhou, China
| | - Jie Li
- Department of Cardiology, The First People's Hospital of ZunYi, Zunyi, Guizhou, China
| | - Jiarong Ding
- Department of Nephrology, Shanghai Changhai Hospital, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Qianfeng Jiang
- Department of Cardiology, The First People's Hospital of ZunYi, Zunyi, Guizhou, China.,The Third Affiiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Yuan
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|
26
|
Clementi A, Virzì G, Battaglia G, Ronco C. Neurohormonal, Endocrine, and Immune Dysregulation and Inflammation in Cardiorenal Syndrome. Cardiorenal Med 2019; 9:265-273. [DOI: 10.1159/000500715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022] Open
Abstract
“Organ crosstalk” is the complex physiological communication between different body systems, and it is necessary for the optimal equilibrium and functioning of the organism. In particular, heart and kidney function is tightly connected, and interplay between these two organs occurs through a vast array of dynamic and bidirectional mechanisms. The term cardiorenal syndrome (CRS) indicates an interaction between the heart and kidneys in acute and chronic disease settings. In all types of CRS, multiple pathophysiological processes are implicated in the initiation and progression of organ injury. In addition to hemodynamic parameters, endothelial injury, immunological imbalance, cell death, inflammatory cascades, oxidative stress, neutrophil migration, leukocyte trafficking, caspase-mediated apoptosis, extracellular vesicles, small noncoding RNAs, and epigenetics play pivotal roles in the development of CRS. In this review, we will focus on neurohormonal, endocrine, and immune dysregulation and inflammation as mechanisms involved in the pathogenesis of CRS.
Collapse
|
27
|
Kimura Y, Kuno A, Tanno M, Sato T, Ohno K, Shibata S, Nakata K, Sugawara H, Abe K, Igaki Y, Yano T, Miki T, Miura T. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig 2019; 10:933-946. [PMID: 30663266 PMCID: PMC6626958 DOI: 10.1111/jdi.13009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is a risk factor of acute kidney injury after myocardial infarction (MI), a form of cardiorenal syndrome. Recent clinical trials have shown that a sodium-glucose cotransporter 2 (SGLT2) inhibitor improved both cardiac and renal outcomes in patients with type 2 diabetes mellitus, but effects of an SGLT2 inhibitor on cardiorenal syndrome remain unclear. MATERIALS AND METHODS Type 2 diabetes mellitus (Otsuka Long-Evans Tokushima Fatty rats [OLETF]) and control (Long-Evans Tokushima Otsuka rats [LETO]) were treated with canagliflozin, an SGLT2 inhibitor, for 2 weeks. Renal tissues were analyzed at 12 h after MI with or without preoperative fasting. RESULTS Canagliflozin reduced blood glucose levels in OLETF, and blood β-hydroxybutyrate levels were increased by canagliflozin only with fasting. MI increased neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 protein levels in the kidney by 3.2- and 1.6-fold, respectively, in OLETF, but not in LETO. The renal messenger ribonucleic acid level of Toll-like receptor 4 was higher in OLETF than in LETO after MI, whereas messenger ribonucleic acid levels of cytokines/chemokines were not significantly different. Levels of lipid peroxides, nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 and NOX4 proteins after MI were significantly higher in OLETF than in LETO. Canagliflozin with pre-MI fasting suppressed MI-induced renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in OLETF, together with reductions in lipid peroxides and NOX proteins in the kidney. Blood β-hydroxybutyrate levels before MI were inversely correlated with neutrophil gelatinase-associated lipocalin protein levels in OLETF. Pre-incubation with β-hydroxybutyrate attenuated angiotensin II-induced upregulation of NOX4 in NRK-52E cells. CONCLUSIONS The findings suggest that SGLT2 inhibitor treatment with a fasting period protects kidneys from MI-induced cardiorenal syndrome, possibly by β-hydroxybutyrate-mediated reduction of NOXs and oxidative stress, in type 2 diabetic rats.
Collapse
Affiliation(s)
- Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Kouhei Ohno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Satoru Shibata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yusuke Igaki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
28
|
Lipopolysaccharide in systemic circulation induces activation of inflammatory response and oxidative stress in cardiorenal syndrome type 1. J Nephrol 2019; 32:803-810. [DOI: 10.1007/s40620-019-00613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 01/21/2023]
|
29
|
Virzì G, Clementi A, Battaglia G, Ronco C. Multi-Omics Approach: New Potential Key Mechanisms Implicated in Cardiorenal Syndromes. Cardiorenal Med 2019; 9:201-211. [DOI: 10.1159/000497748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiorenal syndromes (CRS) include a scenario of clinical interactions characterized by the heart and kidney dysfunction. The crosstalk between cardiac and renal systems is clearly evidenced but not completely understood. Multi-factorial mechanisms leading to CRS do not involve only hemodynamic parameters. In fact, in recent works on organ crosstalk endothelial injury, the alteration of normal immunologic balance, cell death, inflammatory cascades, cell adhesion molecules, cytokine and chemokine overexpression, neutrophil migration, leukocyte trafficking, caspase-mediated induction of apoptotic mechanisms and oxidative stress has been demonstrated to induce distant organ dysfunction. Furthermore, new alternative mechanisms using the multi-omics approach may be implicated in the pathogenesis of cardiorenal crosstalk. The study of “omics” modifications in the setting of cardiovascular and renal disease represents an emerging area of research. Over the last years, indeed, many studies have elucidated the exact mechanisms involved in gene expression and regulation, cellular communication and organ crosstalk. In this review, we analyze epigenetics, gene expression, small non-coding RNAs, extracellular vesicles, proteomics, and metabolomics in the setting of CRS.
Collapse
|
30
|
Duan X, Yan F, Hu H, Liu H, Wu Q, Sun S, Ming X, Bu X, He Y, Zhu H. Qiliqiangxin Protects against Renal Injury in Rat with Cardiorenal Syndrome Type I through Regulating the Inflammatory and Oxidative Stress Signaling. Biol Pharm Bull 2018; 41:1178-1185. [PMID: 30068867 DOI: 10.1248/bpb.b17-00930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiorenal syndrome (CRS) is a frequently encountered clinical condition when the dysfunction of either the heart or kidneys amplifies the failure progression of the other organ. CRS remains a major global health problem. Qiliqiangxin (QLQX) is a traditional Chinese herbs medication, which can improve cardiac function, urine volume, and subjective symptoms in patients with chronic heart failure. In the present study, we aim to investigate the role of QLQX in the treatment of CRS type I and the possible mechanism through establishment of a rat model of myocardial infarction. Rats in CRS-Q group were orally treated with QLQX daily for 2 weeks or 4 weeks, while in sham group and CRS-C group were treated with saline at the same time. Enzyme-linked immunosorbent assay (ELISA) analysis showed that QLQX significantly reduced the levels of angiotensin II (AngII), brain natriuretic peptides (BNP), creatinine (CRE), cystatin C (CysC), tumor necrosis factor (TNF)-α, interleukin (IL)-6, microalbuminuria (MAU), and neutrophil gelatinase-associated lipocalin (NGAL) in plasma induced by myocardial infarction. Western blot analysis showed that QLQX significantly reduced the expressions of AngII, non-phagocytic cell oxidase (NOX)2, and B-cell lymphoma (Bcl)2 associated X protein (Bax), and increased the expressions of Bcl2 and Angiotensin II Type 1 receptor (ATR) in the kidney as compared with the CRS-C group. Fluorescence microscopy showed that the content of reactive oxygen species (ROS) was significantly reduced in the kidney as compared with the CRS-C group. We also examined the apoptosis level in kidney by using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, and the result showed that QLQX significantly reduced the apoptosis level in kidney induced by myocardial infarction. Taken together, we suggest that QLQX may be a potentially effective drug for the treatment of CRS by regulating inflammatory/oxidative stress signaling.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Fengqin Yan
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Hongling Hu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Hongjie Liu
- Department of Health Care Section, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Qinqin Wu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Shan Sun
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaoyan Ming
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaofen Bu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Yingxia He
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Hong Zhu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
31
|
Vescovo G, Castellani C, Fedrigo M, Virzì GM, Vescovo GM, Tavano R, Pozzobon M, Angelini A. Stem cells transplantation positively modulates the heart-kidney cross talk in cardiorenal syndrome type II. Int J Cardiol 2018; 275:136-144. [PMID: 30509369 DOI: 10.1016/j.ijcard.2018.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION We investigated the effects of human amniotic fluid stem cells (hAFS) and rat adipose tissue stromal vascular fraction GFP-positive cells (rSVC-GFP) in a model of cardio-renal syndrome type II (CRSII). METHODS AND RESULTS RHF was induced by monocrotaline (MCT) in 28 Sprague-Dawley rats. Three weeks later, four million hAFS or rSVC-GFP cells were injected via tail vein. BNP, sCreatinine, kidney and heart NGAL and MMP9, sCytokines, kidney and heart apoptosis and cells (Cs) engraftment were evaluated. Cell-treated rats showed a significant reduction of serum NGAL and Creatinine compared to CRSII. In both hAFS and rSVC-GFP group, kidney protein expression of NGAL was significantly lower than in CRSII (hAFS p = 0.036 and rSVC-GFP p < 0.0001) and similar to that of controls. In both hAFS and rSVC-GFP treated rats, we observed cell engraftment in the medulla and differentiation into tubular, endothelial and SMCs cells. Apoptosis was significantly decreased in cell-treated rats (hAFS 14.07 ± 1.38 and rSVC-GFP 12.67 ± 2.96 cells/mm2) and similar to controls (9.85 ± 2.1 cell/mm2). TUNEL-positive cells were mainly located in the kidney medulla. Pro-inflammatory cytokines were down regulated in cell-treated groups and similar to controls. In cell-treated rats, kidney and heart tissue NGAL was not complexed with MMP9 as in CRSII group, suggesting inhibition of MMPs activity. CONCLUSION Cell therapy produced improvement in kidney function in rats with CRSII. This was the result of interstitial, vessel and tubular cell engraftment leading to tubular and vessel regeneration, decreased tubular cells apoptosis and mitigated pro-inflammatory milieu. Reduction of NGLA-MMP9 complexes mainly due to decrease MMPs activity prevented further negative heart remodeling.
Collapse
Affiliation(s)
| | - Chiara Castellani
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Marny Fedrigo
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy; IRRIV-International Renal Resarch Institute Vicenza, San Bortolo Hospital, Vicenza, Italy
| | | | - Regina Tavano
- Dept. Biomedical Sciences, University of Padua, Italy
| | - Michela Pozzobon
- Dept. Women and Children Health, University of Padua, Italy; Insitute of Pediatric Research Città della Speranza, Padova, Italy
| | - Annalisa Angelini
- Dept. Cardiac Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| |
Collapse
|
32
|
Virzì GM, Breglia A, Brocca A, de Cal M, Bolin C, Vescovo G, Ronco C. Levels of Proinflammatory Cytokines, Oxidative Stress, and Tissue Damage Markers in Patients with Acute Heart Failure with and without Cardiorenal Syndrome Type 1. Cardiorenal Med 2018; 8:321-331. [PMID: 30205401 DOI: 10.1159/000492602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cardiorenal syndrome type 1 (CRS type 1) is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Inflammation and oxidative stress seem to play a pivotal role in its pathophysiology. In this in vivo study, we examined the putative role of inflammation and humoral markers in the pathogenesis of the CRS type 1. METHODS We enrolled 53 patients with acute heart failure (AHF); 17 of them developed AKI (CRS type 1). The cause of AKI was presumed to be related to cardiac dysfunction after having excluded other causes. We assessed the plasma levels of proinflammatory cytokines (TNF-α, IL-6, IL-18, sICAM, RANTES, GMCSF), oxidative stress marker (myeloperoxidase, MPO), brain natriuretic peptide (BNP), and neutrophil gelatinase-associated lipocalin (NGAL) in AHF and CRS type 1 patients. RESULTS We observed a significant increase in IL-6, IL-18, and MPO levels in CRS type 1 group compared to AHF (p < 0.001). We found higher NGAL at admission in the CRS type 1 group compared to the AHF group (p = 0.008) and a positive correlation between NGAL and IL-6 (Spearman's rho = 0.45, p = 0.003) and between IL-6 and BNP (Spearman's rho = 0.43, p = 0.004). We observed lower hemoglobin levels in CRS type 1 patients compared to AHF patients (p < 0.05) and inverse correlation between hemoglobin and cytokines (IL-6: Spearman's rho = -0.38, p = 0.005; IL-18: Spearman's rho = -0.32, p = 0.02). CONCLUSION Patients affected by CRS type 1 present increased levels of proinflammatory cytokines and oxidative stress markers, increased levels of tissue damage markers, and lower hemoglobin levels. All these factors may be implicated in the pathophysiology of CRS type 1 syndrome.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute, Vicenza, Italy
| | - Andrea Breglia
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute, Vicenza, Italy.,Department of Internal Medicine, University of Trieste, Trieste, Italy
| | - Alessandra Brocca
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute, Vicenza, Italy.,Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute, Vicenza, Italy
| | - Chiara Bolin
- Internal Medicine, San Bortolo Hospital, Vicenza, Italy
| | - Giorgio Vescovo
- Internal Medicine, San Bortolo Hospital, Vicenza, Italy.,Internal Medicine Unit Sant'Antonio Hospital, Padua, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute, Vicenza, Italy
| |
Collapse
|
33
|
Rangaswami J, Mathew RO. Pathophysiological Mechanisms in Cardiorenal Syndrome. Adv Chronic Kidney Dis 2018; 25:400-407. [PMID: 30309457 DOI: 10.1053/j.ackd.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023]
Abstract
Cardiorenal syndrome represents the confluence of intricate hemodynamic, neurohormonal, and inflammatory pathways that initiate and propagate the maladaptive cross talk between the heart and kidneys. Several of these pathophysiological principles were described in older historical experiments. The last decade has witnessed major efforts in streamlining its definition, clinical phenotypes, and classification to improve diagnostic accuracy and deliver optimal goal-directed medical therapies. The ability to characterize the various facets of cardiorenal syndrome based on its pathophysiology is poised in an exciting vantage point, in the backdrop of several advanced diagnostic strategies, notably cardiorenal biomarkers that may help with accurate delineation of clinical phenotype, prognosis, and delivery of optimal medical therapies in future studies. This promises to help integrate precision medicine into the clinical diagnosis and treatment strategies for cardiorenal syndrome and, through a heightened understanding of its pathophysiology, to deliver appropriate therapies that will reduce its associated morbidity and mortality.
Collapse
|
34
|
|
35
|
Breglia A, Virzì GM, Pastori S, Brocca A, de Cal M, Bolin C, Vescovo G, Ronco C. Determinants of Monocyte Apoptosis in Cardiorenal Syndrome Type 1. Cardiorenal Med 2018; 8:208-216. [PMID: 29847820 DOI: 10.1159/000488949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cardiorenal syndrome type 1 (CRS type 1) is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Its pathophysiology is complex and not completely understood. In this study, we examined the role of apoptosis and the caspase pathways involved. MATERIAL AND METHODS We enrolled 40 acute heart failure (AHF) patients, 11 of whom developed AKI characterizing CRS type 1. We exposed the human cell line U937 to plasma from the CRS type 1 and AHF groups and then we evaluated apoptotic activity by annexin-V evaluation, determination of caspase-3, -8 and -9 levels, and BAX, BAD, and FAS gene expression. RESULTS We observed significant upregulation of apoptosis in monocytes exposed to CRS type 1 plasma compared to AHF, with increased levels of caspase-3 (p < 0.01), caspase-9 (p < 0.01), and caspase-8 (p < 0.03) showing activation of both intrinsic and extrinsic pathways. Furthermore, monocytes exposed to CRS type 1 plasma had increased gene expression of BAX and BAD (intrinsic pathways) (p = 0.010 for both). Furthermore, strong significant correlations between the caspase-9 levels and BAD and BAX gene expression were observed (Spearman ρ = - 0.76, p = 0.011, and ρ = - 0.72, p = 0.011). CONCLUSION CRS type 1 induces dual apoptotic pathway activation in monocytes; the two pathways converged on caspase-3. Many factors may induce activation of both intrinsic and extrinsic apoptotic pathways in CRS type 1 patients, such as upregulation of proinflammatory cytokines and hypoxia/ischemia. Further investigations are necessary to corroborate the present findings, and to better understand the pathophysiological mechanism and consequent therapeutic and prognostic implications for CRS type 1.
Collapse
Affiliation(s)
- Andrea Breglia
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Internal Medicine, University of Trieste, Trieste, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy
| | - Silvia Pastori
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy
| | - Alessandra Brocca
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Medicine DIMED, University of Padua Medical School, Padua, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy
| | - Chiara Bolin
- Internal Medicine, San Bortolo Hospital, Vicenza, Italy
| | - Giorgio Vescovo
- Internal Medicine, San Bortolo Hospital, Vicenza, Italy.,Internal Medicine Unit, Sant'Antonio Hospital, Padua, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV - International Renal Research Institute Vicenza, Vicenza, Italy
| |
Collapse
|
36
|
Ronco C, Ronco F, McCullough PA. A Call to Action to Develop Integrated Curricula in Cardiorenal Medicine. Blood Purif 2017; 44:251-259. [PMID: 29065398 DOI: 10.1159/000480318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the adoption of the new definition and classification of cardiorenal syndrome (CRS) and its relevant subtypes, much attention has been placed on elucidating the mechanisms of heart and kidney interactions. Of great interest are the pathophysiological pathways by which acute heart failure may result in acute kidney injury (AKI; type 1), chronic heart failure accelerating the progression of chronic kidney disease (CKD; type 2), AKI provoking cardiac events (type 3), and CKD increasing the risk and severity of cardiovascular disease (type 4). A remarkable interest has also been placed on the acute and chronic systemic conditions, such as sepsis and diabetes, which simultaneously affect heart and kidney function (type 5). Furthermore, the physiology of acute and chronic heart-kidney cross talk is drawing attention to hemodynamics (fluids, pressures, flows, resistances, perfusion), physiochemical (electrolytes, pH, and toxins), and biological (inflammation, immune system activation, neurohormonal signals) processes. Common clinical scenarios call for recognition, knowledge, and skill in managing CRS. There is a clear need for medical and surgical specialists that are well versed in the pathophysiology and the clinical manifestations that arise in the setting of CRS. With this editorial, we are making a call to action to stimulate universities, medical schools, and teaching hospitals to create a core curriculum for cardiorenal medicine to better equip the physicians of the future for these common, serious, and frequently fatal syndromes.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Nephrology, San Bortolo Hospital, Vicenza, Italy
| | | | | |
Collapse
|
37
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol 2017; 31:333-341. [PMID: 28780716 DOI: 10.1007/s40620-017-0425-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Epigenetics is defined as the heritable changes in gene expression patterns which are not directly encoded by modifications in the nucleotide DNA sequence of the genome, including higher order chromatin organization, DNA methylation, cytosine modifications, covalent histone tail modifications, and short non-coding RNA molecules. Recently, much attention has been paid to the role and the function of epigenetics and epimutations in the cellular and subcellular pathways and in the regulation of genes in the setting of both kidney and cardiovascular disease. Indeed, deregulation of histone alterations has been highlighted in a large spectrum of renal and cardiac disease, including chronic and acute renal injury, renal and cardiac fibrosis, cardiac hypertrophy and failure, kidney congenital anomalies, renal hypoxia, and diabetic renal complications. Nevertheless, the role of epigenetics in the pathogenesis and pathophysiology of cardiorenal syndromes is currently underexplored. Given the significant clinical relevance of heart-kidney crosstalk, efforts in the research for new action mechanisms concurrently operating in both pathologies are thus of maximum interest. This review focuses on epigenetic mechanisms involved in heart and kidney disease, and their possible role in the setting of cardiorenal syndromes.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy. .,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.
| | - Anna Clementi
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Nephrology and Dialysis, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Alessandra Brocca
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy.,Department of Medicine DIMED, University of Padova Medical School, Padua, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| |
Collapse
|
38
|
Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, Cozzolino M, Ronco C. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J 2017; 69:255-265. [PMID: 28460776 PMCID: PMC5415026 DOI: 10.1016/j.ihj.2017.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/06/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
According to the recent definition proposed by the Consensus conference on Acute Dialysis Quality Initiative Group, the term cardio-renal syndrome (CRS) has been used to define different clinical conditions in which heart and kidney dysfunction overlap. Type 1 CRS (acute cardio- renal syndrome) is characterized by acute worsening of cardiac function leading to AKI (5, 6) in the setting of active cardiac disease such as ADHF, while type - 2 CRS occurs in a setting of chronic heart disease. Type 3 CRS is closely link to acute kidney injury (AKI), while type 4 represent cardiovascular involvement in chronic kidney disese (CKD) patients. Type 5 CRS represent cardiac and renal involvement in several diseases such as sepsis, hepato - renal syndrome and immune - mediated diseases.
Collapse
Affiliation(s)
- L Di Lullo
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy.
| | - A Bellasi
- Department of Nephrology and Dialysis, S. Anna Hospital, Como, Italy
| | - V Barbera
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy
| | - D Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - L Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - B Di Iorio
- Department of Nephrology and Dialysis, A. Landolfi Hospital, Solofra, Avellino, Italy
| | - M Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Italy
| | - C Ronco
- International Renal Research Institute, S. Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
39
|
Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int 2017; 89:303-316. [PMID: 26806833 PMCID: PMC4734360 DOI: 10.1016/j.kint.2015.12.019] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Remuzzi
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Engineering Department, University of Bergamo, Dalmine, Italy
| | - Marco Franzoni
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Zhang J, Bottiglieri T, McCullough PA. The Central Role of Endothelial Dysfunction in Cardiorenal Syndrome. Cardiorenal Med 2016; 7:104-117. [PMID: 28611784 DOI: 10.1159/000452283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endothelial dysfunction (ED) has emerged as a critical process in cardiorenal syndrome (CRS). The concept that ED is closely linked with cardiac and renal dysfunction has become an important target for CRS-related research and clinical practice. SUMMARY The sequence of events leading to ED is initiated by type I endothelial activation (almost immediately) and type II endothelial activation (over hours, days, and even months), followed by endothelial apoptosis and endothelial necrosis. The fact that ED is a continual cellular event divides this process into reversible ED (endothelial activation) and irreversible ED (endothelial apoptosis and necrosis). This basic research-defined concept may have clinical implications. Although most antihypertensive drugs (ACE inhibitors, statins, etc.) are effective in patients with hypertension and diabetes, some of them have proved to be ineffective, which may partly be attributed to irreversible ED. Even though the etiology of ED consists mainly of asymmetric dimethylarginine, nitric oxide, oxidative stress, and anti-endothelial cell antibodies, many other inducers of ED have been identified. In addition, a distinct role of ED has been reported for each type of CRS in humans. KEY MESSAGES Further study is warranted to prove whether ED holds promise as a pharmacological target in CRS patients.
Collapse
Affiliation(s)
- Jun Zhang
- Baylor Heart and Vascular Institute, TX, USA
| | | | - Peter A McCullough
- Baylor Heart and Vascular Institute, TX, USA.,Department of Internal Medicine, Baylor University Medical Center, TX, USA.,Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX, TX, USA.,The Heart Hospital Baylor Plano, Plano, TX, USA
| |
Collapse
|
41
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Molecular and Genetic Mechanisms Involved in the Pathogenesis of Cardiorenal Cross Talk. Pathobiology 2016; 83:201-10. [DOI: 10.1159/000444502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
|
42
|
Protective effects of naringenin in cardiorenal syndrome. J Surg Res 2016; 203:416-23. [PMID: 27363651 DOI: 10.1016/j.jss.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cardiorenal syndrome is a complicated and bidirectional interrelationship between the heart and kidneys. Naringenin (NG) is a naturally occurring flavonoid possessing various biological and pharmacological properties. MATERIALS AND METHODS We tested whether NG could improve cardiac and renal function in a rat model of cardiorenal syndrome. RESULTS The results showed that NG-attenuated cardiac remodeling and cardiac dysfunction in rats with cardiorenal syndrome, as evidenced by decrease of left ventricle weight (LVW), increase of body weight (BW), decrease of LVW/BW, decrease of concentrations of serum creatinine, blood urea nitrogen, type-B natriuretic peptide, aldosterone, angiotensin (Ang) II, C-reactive protein, and urine protein, increase of left ventricular systolic pressure and falling rates of left ventricular pressure (dp/dtmax), and decrease of left ventricular diastolic pressure, left ventricular end-diastolic pressure, and -dp/dtmax. NG significantly inhibited the increase of lipid profiles including low-density lipoprotein, TC, and TG in rats. In addition, NG significantly inhibited the increase of cardiac expression of IL-1β, IL-6, and interferon γ. Moreover, NG decreased malonaldehyde level, increased superoxide dismutase activity and glutathione content in rats, and increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunit of γ-glutamylcysteine ligase (GCLc) in rats and Ang II-treated cardiac fibroblasts. Inhibition of Nrf2 and glutathione synthesis significantly suppressed NG-induced decrease of ROS level. Inhibition of Nrf2 markedly suppressed NG-induced increase of GCLc expression in Ang II-treated cardiac fibroblasts. CONCLUSIONS The data provide novel options for therapy of patients and new insights into the cardioprotective effects of NG in cardiorenal syndrome.
Collapse
|
43
|
|
44
|
Pastori S, Virzì GM, Brocca A, de Cal M, Cantaluppi V, Castellani C, Fedrigo M, Thiene G, Valente ML, Angelini A, Vescovo G, Ronco C. Cardiorenal Syndrome Type 1: Activation of Dual Apoptotic Pathways. Cardiorenal Med 2015; 5:306-15. [PMID: 26648947 DOI: 10.1159/000438831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022] Open
Abstract
Cardiorenal syndrome type 1 (CRS1) pathophysiology is complex, and immune-mediated damage, including alterations in the immune response with monocyte apoptosis and cytokine release, has been reported as a potential mechanism. In this study, we examined the putative role of renal tubular epithelial cell (RTC) apoptosis as a pathogenic mechanism in CRS1. In particular, we investigated the caspase pathways involved in induced apoptosis. We enrolled 29 patients with acute heart failure (AHF), 11 patients with CRS1, and 15 controls (CTR) without AHF or acute kidney injury (AKI). Patients who had AKI prior to the episode of AHF or who had any other potential causes of AKI were excluded. Plasma from different groups was incubated with RTCs for 24 h. Subsequently, cell apoptosis, DNA fragmentation, and caspase-3, -8, and -9 activities were investigated in RTCs incubated with AHF, CRS1, and CTR plasma. A p value <0.5 was considered statistically significant. A quantitative analysis of apoptosis showed significantly higher apoptosis rates in CRS1 patients compared to AHF patients and CTR (p < 0.01). This increase in apoptosis was strongly confirmed by caspase-3 levels (ρ = 0.73). Caspase-8 and -9 were significantly higher in CRS1 patients compared to AHF patients and CTR (p < 0.01). Furthermore, caspase-3 levels showed a significantly positive correlation with caspase-8 (ρ = 0.57) and -9 (ρ = 0.47; p < 0.001). This study demonstrated the significantly heightened presence of dual apoptotic disequilibrium in CRS1. Our findings indicated that apoptosis may have a central role in the mechanism of CRS1, and it could be a potential therapeutic target in this syndrome.
Collapse
Affiliation(s)
- Silvia Pastori
- Department of Nephrology, Dialysis and Transplantation, Vicenza, Italy ; Department of IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy ; Department of Information Engineering, University of Padua, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplantation, Vicenza, Italy ; Department of IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Alessandra Brocca
- Department of Nephrology, Dialysis and Transplantation, Vicenza, Italy ; Department of IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy ; Department of Medicine DIMED, University of Padua Medical School, Padua, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplantation, Vicenza, Italy ; Department of IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Azienda Ospedaliera 'Città della Salute e della Scienza di Torino-Presidio Molinette', Torino, Italy
| | - Chiara Castellani
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
| | - Maria Luisa Valente
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Italy
| | - Giorgio Vescovo
- Department of Internal Medicine, San Bortolo Hospital, Vicenza, Italy ; Internal Medicine Unit, Sant'Antonio Hospital Padua, Padua, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, Vicenza, Italy ; Department of IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| |
Collapse
|
45
|
Prins KW, Thenappan T, Markowitz JS, Pritzker MR. Cardiorenal Syndrome Type 1: Renal Dysfunction in Acute Decompensated Heart Failure. JOURNAL OF CLINICAL OUTCOMES MANAGEMENT : JCOM 2015; 22:443-454. [PMID: 27158218 PMCID: PMC4855293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To present a review of cardiorenal syndrome type 1 (CRS1). METHODS Review of the literature. RESULTS Acute kidney injury occurs in approximately one-third of patients with acute decompensated heart failure (ADHF) and the resultant condition was named CRS1. A growing body of literature shows CRS1 patients are at high risk for poor outcomes, and thus there is an urgent need to understand the pathophysiology and subsequently develop effective treatments. In this review we discuss prevalence, proposed pathophysiology including hemodynamic and nonhemodynamic factors, prognosticating variables, data for different treatment strategies, and ongoing clinical trials and highlight questions and problems physicians will face moving forward with this common and challenging condition. CONCLUSION Further research is needed to understand the pathophysiology of this complex clinical entity and to develop effective treatments.
Collapse
Affiliation(s)
- Kurt W Prins
- Cardiovascular Division, Department of Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Thenappan Thenappan
- Cardiovascular Division, Department of Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Jeremy S Markowitz
- Cardiovascular Division, Department of Internal Medicine, University of Minnesota, Minneapolis, MN
| | - Marc R Pritzker
- Cardiovascular Division, Department of Internal Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|