1
|
Jiang X, Geng H, Zhang C, Zhu Y, Zhu M, Feng D, Wang D, Yao J, Deng L. Circadian Rhythm Enhances mTORC1/AMPK Pathway-Mediated Milk Fat Synthesis in Dairy Cows via the Microbial Metabolite Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28178-28193. [PMID: 39630106 DOI: 10.1021/acs.jafc.4c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Livestock may respond differently to circadian rhythms, leading to differences in the composition of the animal products. Nevertheless, the circadian effects on rumen microorganisms and animal products are poorly understood. In the study, it was found that dairy cows exhibited increased milk fat levels, decreased acetic acid concentrations in the rumen fluid, and elevated acetic acid levels in the blood during the night compared to those of the day. Correlational analyses suggested a high association between Succiniclasticum, Lactobacillus, Prevotellacene NK3B31_group, Muribaculaceae_unclassified, etc., which were significantly enriched in rumen fluid at night, and milk fat levels. The differential metabolite Vitamin B6, significantly elevated at night, promoted the translocation of acetic acid into the circulation by increasing the level of rumen epithelial MCT1 protein expression. In addition, we found that both acetic acid treatment time and dose modulated the expression of lipid metabolism transcription factors (PPARγ, PPARα, and SREBP1c) and downstream genes (FASN, SCD1, ACCα, and CPT1A). Additionally, the mTORC1 and AMPK pathways were responsible for the effects of acetic acid on transcription factors and genes involved in lipid metabolism. Differences in rumen microbial taxa were observed between the day and night. Microbial metabolite (acetic acid) was found to be absorbed into the bloodstream and entered the mammary gland at night at a significantly elevated level. This regulation impacted the expression of lipid metabolism-related transcription factors (PPARγ, PPARα, and SREBP1c), as well as downstream genes through the mTORC1 and AMPK signaling pathways, ultimately affecting milk fat synthesis. These findings provide a new perspective for the microbial regulation of milk synthesis.
Collapse
Affiliation(s)
- Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaomiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingping Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
2
|
Song JW, Zhang ZS, Chen L, Wang QW, Xu JY, Bai WW, Li B, Wang SX, Guo T. Vitamin B-6 Prevents Heart Failure with Preserved Ejection Fraction Through Downstream of Kinase 3 in a Mouse Model. J Nutr 2024; 154:3031-3041. [PMID: 39147036 DOI: 10.1016/j.tjnut.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND There is an urgent need to develop an efficient therapeutic strategy for heart failure with preserved ejection fraction (HFpEF), which is mediated by phenotypic changes in cardiac macrophages. We previously reported that vitamin B-6 inhibits macrophage-mediated inflammasome activation. OBJECTIVES We sought to examine whether the prophylactic use of vitamin B-6 prevents HFpEF. METHODS HFpEF model was elicited by a combination of high-fat diet and Nω-nitro-l-arginine methyl ester supplement in mice. Cardiac function was assessed using conventional echocardiography and Doppler imaging. Immunohistochemistry and immunoblotting were used to detect changes in the macrophage phenotype and myocardial remodeling-related molecules. RESULTS Co-administration of vitamin B-6 with HFpEF mice mitigated HFpEF phenotypes, including diastolic dysfunction, cardiac macrophage phenotypic shifts, fibrosis, and hypertrophy. Echocardiographic improvements were observed, with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving from 2.13 to 1.17. The exercise capacity also increased from 295.3 to 657.7 min. However, these beneficial effects were negated in downstream of kinase (DOK) 3-deficient mice. Mechanistically, vitamin B-6 increased DOK3 protein concentrations and inhibited macrophage phenotypic changes, which were abrogated by an AMP-activated protein kinase inhibitor. CONCLUSIONS Vitamin B-6 increases DOK3 signaling to lower risk of HFpEF by inhibiting phenotypic changes in cardiac macrophages.
Collapse
Affiliation(s)
- Jia-Wen Song
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Shan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qian-Wen Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Yao Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Agraib LM, Al-Shami I, Alkhatib B, Hasan H. The impact of energy releasing B-vitamin intake on indices of obesity and cardiac function: a cross-sectional study. F1000Res 2024; 12:1382. [PMID: 39140087 PMCID: PMC11319906 DOI: 10.12688/f1000research.139672.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Background B vitamins play a crucial role in the balance and metabolism of energy. Energy metabolism mainly benefits from the B-complex vitamins. Specifically, decarboxylation, transamination, acylation, oxidation, and reduction of substrates that are ultimately employed in energy intake require thiamin, riboflavin, niacin, and vitamin B6. Vitamin deficiency could lead to chronic disease occurrence. Objectives To assess the impact of energy-releasing B-vitamins intake (B1, B2, B3, and B6) on selected indices of obesity and cardiac function. Methods A cross-sectional study was performed on 491 apparently healthy adults (18-64 years old) between January and May 2019 at Hashemite University, Jordan. Anthropometric measurements were taken, lipid profiles were analyzed, and indices of obesity and cardiac function were calculated. The typical dietary intake of B1, B2, B3, and B6 vitamins was calculated. Results Conicity index (CI) and abdominal volume index (AVI) scores significantly decreased with the increased adjusted vitamin B1 and B6 intake. Also, body roundness index (BRI), weight-adjusted-waist index (WWI), lipid accumulation product (LAP), and atherogenic index of plasma (AIP) scores were decreased with the increase of adjusted B6 intake ( p<0.05). The total sample showed a significant inverse weak correlation between energy-adjusted intake of B1 and AVI (r= -0.156, p=0.001) and BRI (r= 0.111, p=0.014). Similar correlations were detected among male participants between energy-adjusted B1 intake and BAI, AVI, and BRI. Female participants had a significant weak inverse correlation between BAI and energy-adjusted B2 (r= -0.180, p=0.029) and B6 intake (r= -0.212, p=0.010). Only B1, the vitamin, significantly explained 2.43 and 1.24% of changes observed in the AVI and BRI scores, respectively ( p<0.05). Conclusions Increasing the consumption of B1, B2, and B6 may significantly lower values of indices of obesity and cardiac function regardless of sex differences. Thus reducing the occurrence of obesity and related coronary heart diseases.
Collapse
Affiliation(s)
- Lana M. Agraib
- Department of Food Technology and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jerash Governorate, Jordan
| | - Islam Al-Shami
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
4
|
Agarwal NR, Kachhawa G, Oyeyemi BF, Bhavesh NS. Urine Metabolomics Reveals Overlapping Metabolic Associations Between Preeclampsia and Gestational Diabetes. Indian J Clin Biochem 2024; 39:356-364. [PMID: 39005861 PMCID: PMC11239642 DOI: 10.1007/s12291-022-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Pregnancy is associated with numerous metabolic adaptations to meet the demands of the growing foetus. These adaptations could be perturbed during pregnancy due to preeclampsia (PE) and gestational diabetes (GDM). As these two obstetric aliments show some overlapping pathophysiology and similar biochemical dysregulation, the present study was undertaken to compare urine metabolome of PE and GDM with normal pregnancy (NT) in all trimesters of gestation using nuclear magnetic resonance spectroscopy-based metabolomics analysis to ascertain and compare metabolome in the study groups. We observed overlapping metabolic perturbations in PE and GDM. Though a study with a small sample size, this is the first report which confirms significantly differential metabolites in urine of both PE and GDM. Dimethylglycine and oxoglutaric acid were decreased while benzoic acid was increased in both the cases in all trimesters. Alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, citrate and butanoate metabolism were the most perturbed pathways in both PE and GDM across pregnancy. These pathways have an association with energy metabolism, glucose homeostasis, insulin sensitivity and oxidative stress which play an important role in the development and progression of PE and GDM. In conclusion, our study showed that urine metabolome could reflect metabolic associations between PE and GDM and also in the identification of biomolecules that could be used as potential biomarker(s) for early detection of the metabolic diseases in pregnancy. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01103-2.
Collapse
Affiliation(s)
- Nupur Rani Agarwal
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Garima Kachhawa
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029 India
| | - Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
- Department of Science Technology, The Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, Nigeria
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
5
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Onyekweli CC, Ben-Azu B, Oyovwi OM, Nwangwa EK, Ovuakporaye IS, Moke GE, Agbonifo-Chijiokwu E, Onome BO, Emojevwe V, Rotu AR. Epigallocatechin-gallate attenuates rapamycin exacerbated high fat diet-induced autophagy, hormonal dysregulation, testicular and brain oxidative stress, and neurochemical changes in rats. Food Chem Toxicol 2024; 184:114340. [PMID: 38097001 DOI: 10.1016/j.fct.2023.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
This study investigated whether epigallocatechin-gallate (EGCG) could counteract the detrimental effects of high-fat diet (HFD)-induced obesity in rats exposed to rapamycin-induced reproductive and neuronal changes. Six rats per treatment group (n = 6) were utilized, in which groups 1 and 2 had dimethylsulfoxide (DMSO) (0.1%) and EGCG (80 mg/kg) respectively. Group 3 received HFD + 0.1% DMSO daily for 56 days. Group 4 received HFD + rapamycin (1 mg/kg) orally for 56 days. Rats in group 5 received HFD for 56 days and EGCG (80 mg/kg, p.o.) from days 29-56. Group 6 received the combination of HFD + rapamycin (56 days) with EGCG (80 mg/kg) from days 29-56. Cognitive loss was assessed using Y-maze-test (YMT). Afterwards, serum sex hormones, insulin-glucose balance, serotonin concentration, acetylcholinesterase activity, sperm features, antioxidants, and the markers of oxido-nitrergic, autophagy and apoptotic mediators were assessed. EGCG reversed rapamycin exacerbated HFD-induced alterations in spermatogenesis, insulin-glucose balance, reproductive hormones, oxido-nitrergic stress, and altered serotonin, acetylcholinesterase levels, and autophagic and apoptotic activities in rats' testes and brains respectively. EGCG significantly attenuated HFD-induced cognitive loss. The study showed that EGCG attenuated rapamycin-mediated HFD-induced spermatogenesis deficiency and cognitive impairment via normalization of reproductive hormones, testicular and brain oxidative stress, apoptotic, autophagic activities, with serotonin and cholinergic levels in rats.
Collapse
Affiliation(s)
- Chinedu Charles Onyekweli
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - O Mega Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - E Kingsley Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - I Simon Ovuakporaye
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Goodies Emuesiri Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ejime Agbonifo-Chijiokwu
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - B Oghenetega Onome
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilisan-Remo, Ogun State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo State, Nigeria
| | - A Rume Rotu
- Department of Physiology, University, Ibadan, Oyo State, Nigeria
| |
Collapse
|
7
|
Abdollahiyan S, Nabavi-Rad A, Keshavarz Azizi Raftar S, Monnoye M, Salarieh N, Farahanie A, Asadzadeh Aghdaei H, Zali MR, Hatami B, Gérard P, Yadegar A. Characterization of gut microbiome composition in Iranian patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep 2023; 13:20584. [PMID: 37996480 PMCID: PMC10667333 DOI: 10.1038/s41598-023-47905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Gut microbiota dysbiosis is intimately associated with development of non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Nevertheless, the gut microbial community during the course of NAFLD and NASH is yet to be comprehensively profiled. This study evaluated alterations in fecal microbiota composition in Iranian patients with NAFLD and NASH compared with healthy individuals. This cross-sectional study enrolled 15 NAFLD, 15 NASH patients, and 20 healthy controls, and their clinical parameters were examined. The taxonomic composition of the fecal microbiota was determined by sequencing the V3-V4 region of 16S rRNA genes of stool samples. Compared to the healthy controls, NAFLD and NASH patients presented reduced bacterial diversity and richness. We noticed a reduction in the relative abundance of Bacteroidota and a promotion in the relative abundance of Proteobacteria in NAFLD and NASH patients. L-histidine degradation I pathway, pyridoxal 5'-phosphate biosynthesis I pathway, and superpathway of pyridoxal 5'-phosphate biosynthesis and salvage were more abundant in NAFLD patients than in healthy individuals. This study examined fecal microbiota dysbiosis in NAFLD and NASH patients and presented consistent results to European countries. These condition- and ethnicity-specific data could provide different diagnostic signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sara Abdollahiyan
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Keshavarz Azizi Raftar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Magali Monnoye
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France
| | - Naghmeh Salarieh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Farahanie
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liu J, Qin L, Zheng J, Tong L, Lu W, Lu C, Sun J, Fan B, Wang F. Research Progress on the Relationship between Vitamins and Diabetes: Systematic Review. Int J Mol Sci 2023; 24:16371. [PMID: 38003557 PMCID: PMC10671335 DOI: 10.3390/ijms242216371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is a serious chronic metabolic disease that causes complications over time, bringing serious public health challenges that affect different countries across the world. The current clinical drugs for diabetes may lead to adverse effects such as hypoglycemia and liver and abdominal distension and pain, which prompt people to explore new treatments for diabetes without side effects. The research objective of this review article is to systematically review studies on vitamins and diabetes and to explain their possible mechanism of action, as well as to assess the role of vitamins as drugs for the prevention and treatment of diabetes. To achieve our objective, we searched scientific databases in PubMed Central, Medline databases and Web of Science for articles, using "vitamin" and "diabetes" as key words. The results of numerous scientific investigations revealed that vitamin levels were decreased in humans and animals with diabetes, and vitamins show promise for the prevention and/or control of diabetes through anti-inflammation, antioxidation and the regulation of lipid metabolism. However, a few studies showed that vitamins had no positive effect on the development of diabetes. Currently, studies on vitamins in the treatment of diabetes are still very limited, and there are no clinical data to clarify the dose-effect relationship between vitamins and diabetes; therefore, vitamins are not recommended as routine drugs for the treatment of diabetes. However, we still emphasize the great potential of vitamins in the prevention and treatment of diabetes, and higher quality studies are needed in the future to reveal the role of vitamins in the development of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Guo F, Xiong H, Tsao R, Shahidi F, Wen X, Liu J, Jiang L, Sun Y. Green Pea ( Pisum sativum L.) Hull Polyphenol Extract Alleviates NAFLD through VB6/TLR4/NF-κB and PPAR Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16067-16078. [PMID: 37861789 DOI: 10.1021/acs.jafc.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Green pea hull is a processing byproduct of green pea and rich in polyphenols. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by accumulation of lipids in the liver for which there are no effective treatment strategies. Here, a mouse model of NAFLD induced by a DSS+high-fat diet (HFD) was established to investigate the effect of green pea hull polyphenol extract (EGPH). The results show that EGPH relief of NAFLD was a combined effect, including reducing hepatic fat accumulation, improving antioxidant activity and blood lipid metabolism, and maintaining glucose homeostasis. Increased intestinal permeability aggravated NAFLD. Combined metabolomics and transcriptomic analysis showed that vitamin B6 is the key target substance for EGPH to alleviate NAFLD, and it may be the intestinal flora metabolite. After EGPH intervention, the level of vitamin B6 in mice was significantly increased, and more than 60% in the blood enters the liver, which activated or inhibited PPAR and TLR4/NF-κB signaling pathways to relieve NAFLD. Our research could be a win-win for expanding the use of green pea hull and the search for NAFLD prophylactic drugs.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Xushen Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | | | - Li Jiang
- Jiangxi University of TraditionalChinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
10
|
Dawood MH, Abdulridha MK, Qasim HS. Assessing pyridoxine adjuvant therapy effects on blood glucose levels in type 2 diabetes: A randomized clinical trial. J Med Life 2023; 16:1474-1481. [PMID: 38313181 PMCID: PMC10835547 DOI: 10.25122/jml-2023-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 02/06/2024] Open
Abstract
Pyridoxal-5-phosphate (PLP) is the bioactive derivative of vitamin B6, functioning as a coenzyme in over 150 metabolic pathways. Insufficient PLP levels could be associated with the onset and progression of diabetes. This study aimed to assess the effects of pyridoxine adjuvant treatment on blood glucose levels in patients with type 2 diabetes mellitus (T2DM). This interventional, randomized, open-label study was conducted in the Mesan Governorate, with participants from the Mesan Center for Diabetes and Endocrinology as the study population. This study included patients newly diagnosed with T2DM. Patients were randomized into three groups: Group 1, the control group, treated with non-pharmacological therapy (lifestyle modification) (n=20); Group 2, treated with Metformin 500 mg/day in addition to non-pharmacological therapy (lifestyle modification) (n=20). Group 3 was treated with Metformin 500 mg/day plus vitamin B6 300 mg/day in addition to non-pharmacological therapy (lifestyle modification) (n=68). The findings revealed a considerably favorable impact of pyridoxine adjuvant treatment with Metformin on blood glucose levels and other study variables. Compared to the patients in the control group G1, the reductions in fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) were statistically significant in groups G2 and G3 after a 4-week treatment period. Similar results were observed for fasting serum insulin and homeostasis model assessment of insulin resistance (HOMA-IR) levels, with a significant decrease in groups G2 and G3 (p<0.05). Furthermore, the reductions in indoleamine 2,3-dioxygenase levels were also significantly higher in groups G2 and G3 at the end of the 4-week treatment period (-14.48% vs -21.16%) (p<0.05). Adding pyridoxine adjuvant therapy to Metformin treatment could effectively improve the blood glucose levels of patients with T2DM.
Collapse
Affiliation(s)
- Moatamad Hanoon Dawood
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Manal Khalid Abdulridha
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Zhao JD, Sun M, Li Y, Yu CJ, Cheng RD, Wang SH, Du X, Fang ZH. Characterization of gut microbial and metabolite alterations in faeces of Goto Kakizaki rats using metagenomic and untargeted metabolomic approach. World J Diabetes 2023; 14:255-270. [PMID: 37035219 PMCID: PMC10075032 DOI: 10.4239/wjd.v14.i3.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/31/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND In recent years, the incidence of type 2 diabetes (T2DM) has shown a rapid growth trend. Goto Kakizaki (GK) rats are a valuable model for the study of T2DM and share common glucose metabolism features with human T2DM patients. A series of studies have indicated that T2DM is associated with the gut microbiota composition and gut metabolites. We aimed to systematically characterize the faecal gut microbes and metabolites of GK rats and analyse the relationship between glucose and insulin resistance.
AIM To evaluate the gut microbial and metabolite alterations in GK rat faeces based on metagenomics and untargeted metabolomics.
METHODS Ten GK rats (model group) and Wistar rats (control group) were observed for 10 wk, and various glucose-related indexes, mainly including weight, fasting blood glucose (FBG) and insulin levels, homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of β cell (HOMA-β) were assessed. The faecal gut microbiota was sequenced by metagenomics, and faecal metabolites were analysed by untargeted metabolomics. Multiple metabolic pathways were evaluated based on the differential metabolites identified, and the correlations between blood glucose and the gut microbiota and metabolites were analysed.
RESULTS The model group displayed significant differences in weight, FBG and insulin levels, HOMA-IR and HOMA-β indexes (P < 0.05, P < 0.01) and a shift in the gut microbiota structure compared with the control group. The results demonstrated significantly decreased abundances of Prevotella sp. CAG:604 and Lactobacillus murinus (P < 0.05) and a significantly increased abundance of Allobaculum stercoricanis (P < 0.01) in the model group. A correlation analysis indicated that FBG and HOMA-IR were positively correlated with Allobaculum stercoricanis and negatively correlated with Lactobacillus murinus. An orthogonal partial least squares discriminant analysis suggested that the faecal metabolic profiles differed between the model and control groups. Fourteen potential metabolic biomarkers, including glycochenodeoxycholic acid, uric acid, 13(S)-hydroxyoctadecadienoic acid (HODE), N-acetylaspartate, β-sitostenone, sphinganine, 4-pyridoxic acid, and linoleic acid, were identified. Moreover, FBG and HOMA-IR were found to be positively correlated with glutathione, 13(S)-HODE, uric acid, 4-pyridoxic acid and allantoic acid and ne-gatively correlated with 3-α, 7-α, chenodeoxycholic acid glycine conjugate and 26-trihydroxy-5-β-cholestane (P < 0.05, P < 0.01). Allobaculum stercoricanis was positively correlated with linoleic acid and sphinganine (P < 0.01), and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate was negatively associated with Prevotella sp. CAG:604 (P < 0.01). The metabolic pathways showing the largest differences were arginine biosynthesis; primary bile acid biosynthesis; purine metabolism; linoleic acid metabolism; alanine, aspartate and glutamate metabolism; and nitrogen metabolism.
CONCLUSION Metagenomics and untargeted metabolomics indicated that disordered compositions of gut microbes and metabolites may be common defects in GK rats.
Collapse
Affiliation(s)
- Jin-Dong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
- Graduate School, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Min Sun
- School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China
| | - Yan Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Chan-Juan Yu
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Ruo-Dong Cheng
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Si-Hai Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Xue Du
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Zhao-Hui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| |
Collapse
|
12
|
Khobrani M, Kandasamy G, Vasudevan R, Alhossan A, Chowdary Puvvada R, Devanandan P, Dhurke R, Naredla M. Impact of Vitamin B6 Deficiency on the Severity of Diabetic Peripheral Neuropathy – A Cross Sectional Study. Saudi Pharm J 2023; 31:655-658. [PMID: 37181142 PMCID: PMC10172568 DOI: 10.1016/j.jsps.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background Diabetic Peripheral Neuropathy is one of the most important and significantly prevalent microvascular complications of Diabetes Mellitus. Pyridoxine is a key nutrient for protecting nerve health. The objective of this research is to study the prevalence rate of pyridoxine deficiency in Diabetic neuropathy patients, to understand the correlation between various biochemical and markers of diabetic neuropathy and pyridoxine deficiency. Results 249 patients were selected for the study based on the selection criteria participants. 51.8% prevalence of pyridoxine deficiency in Diabetic neuropathy patients. The nerve conduction velocity significantly reduced in pyridoxine deficiency cases (p < 0.05). A strong inverse relationship is observed with fasting blood sugar levels and glycated hemoglobin pyridoxine deficiency might contribute to impaired glucose tolerance. Conclusion There also exists a strong inverse relationship with glycemic markers. Significant direct correlation is observed with nerve conduction velocity. Pyridoxine also has properties of antioxidant which may be utilized for the management of Diabetic Neuropathy.
Collapse
|
13
|
Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7-17. Nutrients 2022; 15:nu15010117. [PMID: 36615775 PMCID: PMC9824394 DOI: 10.3390/nu15010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This study was designed to explore the associations between nutrient patterns (NPs) and metabolic syndrome (MetS) and its five components among Chinese children and adolescents aged 7-17. The required data of participants were collected from the China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016-2017. Ultimately, 13,071 participants were included. Nutrient patterns were obtained by means of factor analysis. Multivariate logistic regression analysis was conducted to evaluate the association between nutrient patterns with MetS and its components. After adjusting covariates, the results of logistic regression models revealed that high-carbohydrate patterns were associated with the presence of abdominal obesity. The high-animal protein pattern was negatively associated with high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C). The high-sodium-and-fat pattern had a negative relationship with elevated blood pressure (BP) and was positively associated with low HDL-C. The high-Vitamin D-and-Vitamin B12 pattern had protective effects on MetS, high TG, and low HDL-C. Further large-scale longitudinal investigations are necessary in the future.
Collapse
|
14
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:ijms232415791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: (E.K.); (H.S.R.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (E.K.); (H.S.R.)
| |
Collapse
|
15
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
16
|
Peng H, Wang M, Pan L, Cao Z, Yao Z, Chen Q, Li Y, Wang Y, Lv W. Associations of serum multivitamin levels with the risk of non-alcoholic fatty liver disease: A population-based cross-sectional study in U.S. adults. Front Nutr 2022; 9:962705. [PMID: 36172527 PMCID: PMC9511103 DOI: 10.3389/fnut.2022.962705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamins were closely associated with non-alcoholic fatty liver disease (NAFLD) development, but no study had explored the association of serum multivitamin levels with NAFLD risk. We assessed the association between serum levels of both single-vitamin and multivitamins (VA, VB6, VB9, VB12, VC, VD, and VE) and the risk of NAFLD, using the database of National Health and Nutrition Examination Survey (NHANES) (cycles 2003–2004 and 2005–2006). We employed multivariable logistic regression and weighted quantile sum (WQS) regression models to explore the association of serum multivitamin levels with NAFLD. Among all 2,294 participants, 969 participants with NAFLD were more likely to be male, older, less educated, or have hypertension/high cholesterol/diabetes. After adjustment of covariates, serum VC/VD/VB6/VB9 levels were negatively correlated with NAFLD risk, while serum VA/VE levels were positively correlated with NAFLD risk. In the WQS model, elevated serum VA/VE levels and lowered serum VC/VD/VB6 levels were linearly associated with increased NAFLD risk. There was a non-linear relationship between serum VB9/VB12 levels and NAFLD risk. There were evident associations between serum multivitamin levels and reduced NAFLD risk, which was mainly driven by VD/VB9/VC. In conclusion, our findings suggested that serum multivitamin levels were significantly associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Hongye Peng
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hongye Peng,
| | - Miyuan Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Pan
- Phase 1 Clinical Trial Center, Deyang People’s Hospital, Deyang, China
| | - Zhengmin Cao
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziang Yao
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuye Chen
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanbo Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Wang
- Phase 1 Clinical Trial Center, Deyang People’s Hospital, Deyang, China
| | - Wenliang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wenliang Lv,
| |
Collapse
|
17
|
Salehi-sahlabadi A, Teymoori F, Ahmadirad H, Mokhtari E, Azadi M, Seraj SS, Hekmatdoost A. Nutrient patterns and non-alcoholic fatty liver disease in Iranian Adul: A case-control study. Front Nutr 2022; 9:977403. [PMID: 36147306 PMCID: PMC9486204 DOI: 10.3389/fnut.2022.977403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Backgrounds The current literature boasts the importance of diet in preventing or managing liver complications. However, there is limited evidence on the association of nutrient patterns (NP) with these complications. In this case-control study, we aimed to examine the possible relationship between nutrient patterns and the risk of non-alcoholic fatty liver disease (NAFLD) amongst the adult Iranian population. Methods This case-control study is being conducted at the Metabolic Liver Disease Research Center at Isfahan University of Medical Sciences in 2019. The study included 225 newly diagnosed cases of NAFLD and 450 controls. A validated semi-quantitative food frequency questionnaire (FFQ) assessed dietary intake. Principal component analysis using Varimax rotation obtained nutrient patterns. Logistic regression was performed to estimate NAFLD risk. Results We identified four major nutrient patterns. The first nutrient pattern was high in consumption of lactose, animal protein, vitamin D, riboflavin, pantothenic acid, vitamin B12, calcium, phosphorus, zinc, and potassium. The second nutrient pattern included fiber, plant protein, vitamin A, thiamine, niacin, copper, and selenium, while the third featured plant protein, zinc, copper, magnesium, manganese, chromium, and selenium. The fourth was characterized by fructose, vitamin A, pyridoxine, vitamin C, and potassium. After adjusting for confounders, individuals in the highest tertile of NP4 had lower odds of NAFLD (OR: 0.56, 95% CI: 0.32-0.98, P_trend = 0.042); compared to those who were in the lowest tertile. Conclusion High compliance to a nutrient pattern characterized by fructose, vitamin C, vitamin A, pyridoxine, and potassium mainly supplied from fruits, vegetables, and nuts is inversely proportional to the odds of NAFLD. Also our findings indicate a very high fiber intake, a relatively optimal dietary fat profile, and a pretty low sugar intake for cases and controls, unseen in western countries. However, these initial findings need to be approved with further studies to confirm the relationship between nutrient patterns and NAFLD.
Collapse
Affiliation(s)
- Ammar Salehi-sahlabadi
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Azadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Sanjid Seraj
- Walsall Healthcare NHS Trust, Walsall Manor Hospital, West Midlands, Walsall, United Kingdom
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mascolo E, Liguori F, Merigliano C, Schiano L, Gnocchini E, Pilesi E, Volonté C, Di Salvo ML, Contestabile R, Tramonti A, Vernì F. Vitamin B6 rescues insulin resistance and glucose-induced DNA damage caused by reduced activity of Drosophila PI3K. J Cell Physiol 2022; 237:3578-3586. [PMID: 35678366 PMCID: PMC9545242 DOI: 10.1002/jcp.30812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/19/2023]
Abstract
The insulin signaling pathway controls cell growth and metabolism, thus its deregulation is associated with both cancer and diabetes. Phosphatidylinositol 3‐kinase (PI3K) contributes to the cascade of phosphorylation events occurring in the insulin pathway by activating the protein kinase B (PKB/AKT), which phosphorylates several substrates, including those involved in glucose uptake and storage. PI3K inactivating mutations are associated with insulin resistance while activating mutations are identified in human cancers. Here we show that RNAi‐induced depletion of the Drosophila PI3K catalytic subunit (Dp110) results in diabetic phenotypes such as hyperglycemia, body size reduction, and decreased glycogen content. Interestingly, we found that hyperglycemia produces chromosome aberrations (CABs) triggered by the accumulation of advanced glycation end‐products and reactive oxygen species. Rearing PI3KRNAi flies in a medium supplemented with pyridoxal 5′‐phosphate (PLP; the catalytically active form of vitamin B6) rescues DNA damage while, in contrast, treating PI3KRNAi larvae with the PLP inhibitor 4‐deoxypyridoxine strongly enhances CAB frequency. Interestingly, PLP supplementation rescues also diabetic phenotypes. Taken together, our results provide a strong link between impaired PI3K activity and genomic instability, a crucial relationship that needs to be monitored not only in diabetes due to impaired insulin signaling but also in cancer therapies based on PI3K inhibitors. In addition, our findings confirm the notion that vitamin B6 is a good natural remedy to counteract insulin resistance and its complications.
Collapse
Affiliation(s)
- Elisa Mascolo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Chiara Merigliano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Ludovica Schiano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora Gnocchini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Martino L Di Salvo
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Jin W, Cho S, Laxi N, Bao T, Dai L, Yu H, Qi R, Zhang J, Ba G, Fu M. Hepatoprotective Effects of Ixeris chinensis on Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice: An Integrated Gut Microbiota and Metabolomic Analysis. Molecules 2022; 27:molecules27103148. [PMID: 35630624 PMCID: PMC9147883 DOI: 10.3390/molecules27103148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Ixeris chinensis (Thunb.) Nakai (IC) is a folk medicinal herb used in Mongolian medical clinics for the treatment of hepatitis and fatty liver diseases even though its pharmacological mechanism has not been well characterized. This study investigated the hepatoprotective mechanism of IC on mice with nonalcoholic fatty liver disease (NAFLD) by integrating gut microbiota and metabolomic analysis. A high-fat diet (HFD) was used to develop nonalcoholic fatty liver disease, after which the mice were treated with oral IC (0.5, 1.5 and 3.0 g/kg) for 10 weeks. HFD induced NAFLD and the therapeutic effects were characterized by pathological and histological evaluations, and the serum indicators were analyzed by ELISA. The gut microbial and metabolite profiles were studied by 16S rRNA sequencing and untargeted metabolomic analysis, respectively. The results showed that the administration of IC resulted in significant decreases in body weight; liver index; serum biomarkers such as ALT, TG, and LDL-C; and the liver inflammatory factors IL-1β, IL-6, and TNF-α. The 16S rRNA sequencing results showed that administration of IC extract altered both the composition and abundance of the gut microbiota. Untargeted metabolomic analysis of liver samples detected a total of 212 metabolites, of which 128 were differentially expressed between the HFD and IC group. IC was found to significantly alter the levels of metabolites such as L-glutamic acid, pyridoxal, ornithine, L-aspartic acid, D-proline, and N4-acetylaminobutanal, which are involved in the regulation of glutamine and glutamate, Vitamin B6 metabolism, and arginine and proline metabolic pathways. Correlation analysis indicated that the effects of the IC extract on metabolites were associated with alterations in the abundance of Akkermansiaceae, Lachnospiraceae, and Muribaculaceae. Our study revealed that IC has a potential hepatoprotective effect in NAFLD and that its function might be linked to improvements in the composition of gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Wenjie Jin
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Sungbo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Namujila Laxi
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Terigele Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Lili Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Hongzhen Yu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Rigeer Qi
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
| | - Junqing Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| | - Genna Ba
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
- Correspondence: (G.B.); (M.F.)
| | - Minghai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (N.L.); (T.B.); (L.D.); (H.Y.); (R.Q.)
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China;
- Correspondence: (G.B.); (M.F.)
| |
Collapse
|
20
|
A promising antifibrotic drug, pyridoxamine attenuates thioacetamide-induced liver fibrosis by combating oxidative stress, advanced glycation end products, and balancing matrix metalloproteinases. Eur J Pharmacol 2022; 923:174910. [PMID: 35339478 DOI: 10.1016/j.ejphar.2022.174910] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is a common chronic hepatic disease. This study was done to examine the effect of pyridoxamine against thioacetamide-induced hepatic fibrosis. Animals were divided into four groups (1) control group; (2) Thioacetamide group (200 mg/kg, i.p.) twice a week for eight weeks; (3) Pyridoxamine-treated group treated with pyridoxamine (100 mg/kg/day, i.p.) for eight weeks; (4) Thioacetamide and pyridoxamine group, in which pyridoxamine was given (100 mg/kg/day, i.p.) during thioacetamide injections. Thioacetamide treatment resulted in hepatic dysfunction manifested by increased serum levels of bilirubin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Oxidative stress was noted by increased hepatic lipid peroxidation and decreased glutathione (GSH). Increased concentrations of total nitrite/nitrate, advanced glycation end products (AGEs), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), matrix metalloproteinases (MMP-2&9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were noticed in hepatic tissues. Immunostaining sections also revealed overexpression of MMP-2, MMP-9 and collagen IV. Liver fibrosis was confirmed by severe histopathological changes. Pyridoxamine improved the assessed parameters. Moreover, histopathological and immunohistological studies supported the ability of pyridoxamine to reduce liver fibrosis. The findings of the present study provide evidence that pyridoxamine is a novel target for the treatment of liver fibrosis.
Collapse
|
21
|
Aguilera-Méndez A, Boone-Villa D, Nieto-Aguilar R, Villafaña-Rauda S, Molina AS, Sobrevilla JV. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch 2021; 474:117-140. [PMID: 34518916 DOI: 10.1007/s00424-021-02619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
The prevalence of metabolic syndrome and cardiovascular disease has increased and continues to be the leading cause of mortality worldwide. The etiology of these diseases includes a complex phenotype derived from interactions between genetic, environmental, and nutritional factors. In this regard, it is common to observe vitamin deficiencies in the general population and even more in patients with cardiometabolic diseases due to different factors. Vitamins are essential micronutrients for cellular metabolism and their deficiencies result in diseases. In addition to its role in nutritional functions, increasingly, vitamins are being recognized as modulators of genetics expression and signals transduction, when consumed at pharmacological concentrations. Numerous randomized preclinical and clinical trials have evaluated the use of vitamin supplementation in the prevention and treatment of metabolic syndrome and cardiovascular disease. However, it is controversy regarding its efficacy in the treatment and prevention of these diseases. In this review, we investigated chemical basics, physiological effect and recommended daily intake, problems with deficiency and overdose, preclinical and clinical studies, and mechanisms of action of vitamin supplementation in the treatment and prevention of metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Asdrubal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México.
| | - Daniel Boone-Villa
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| | - Renato Nieto-Aguilar
- University Center for Postgraduate Studies and Research, School of Dentistry, Universidad Michoacana de San Nicolás de Hidalgo, 58337, Morelia, Michoacán, México
| | - Santiago Villafaña-Rauda
- Postgraduate Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Alfredo Saavedra Molina
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México
| | - Janeth Ventura Sobrevilla
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| |
Collapse
|
22
|
Identification of Potential Metabolic Markers of Hypertension in Chinese Children. Int J Hypertens 2021; 2021:6691734. [PMID: 34484817 PMCID: PMC8410451 DOI: 10.1155/2021/6691734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Studies in adults have shown that several metabolites across multiple pathways are strongly associated with hypertension. However, as yet, to our knowledge, no study has investigated such association in childhood. We, therefore, compared the serum metabolite profile of children with normal and elevated blood pressure (BP) to identify potential metabolic markers and pathways that could be useful for the assessment of pediatric hypertension. Methods The study included 26 hypertensive children (age range, 6-11 years) and 26 age- and sex-matched ones with normal BP, who were recruited from the baseline survey of the Huantai Childhood Cardiovascular Health Cohort Study. Ultrahigh-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry was performed to assess the serum metabolite profile. Logistic regression analysis was used to select significant metabolites associated with hypertension after adjustment for body mass index, waist circumference, and lipid profile. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were utilized to search for the potential pathways of metabolites. Results A total of 45 and 34 metabolites were preliminarily screened in positive and negative modes, respectively (variable importance in the projection (VIP) > 1.0 and P < 0.05). After adjustment for the false discovery rate, 7 and 1 differential metabolites in the positive and negative modes, respectively, remained significant (VIP > 1.0 and q < 0.05). These metabolites were mainly involved in amino acid metabolism and glycerophospholipid metabolism. Among these, two significant metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate displayed an area under the curve value of 0.820 (95% confidence interval, 0.688-0.951), with a sensitivity of 0.846 and a specificity of 0.769. Conclusion The untargeted metabolomics approach effectively identified the differential serum metabolite profile in children with and without hypertension. Notably, two metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate exhibited a good discriminative ability to identify children with hypertension, providing new insights into potential mechanisms of pediatric hypertension.
Collapse
|
23
|
Haidari F, Mohammadshahi M, Zarei M, Haghighizadeh MH, Mirzaee F. The Effect of Pyridoxine Hydrochloride Supplementation on Leptin, Adiponectin, Glycemic Indices, and Anthropometric Indices in Obese and Overweight Women. Clin Nutr Res 2021; 10:230-242. [PMID: 34386442 PMCID: PMC8331291 DOI: 10.7762/cnr.2021.10.3.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Among several methods for treating obesity, the use of dietary supplements is common recently. One supplement that can help in this regard might be vitamin B6 in high doses. The objective of this study was to evaluate the effect of pyridoxine hydrochloride supplementation on anthropometric indices, body composition, visceral adiposity index (VAI), and metabolic status in obese and overweight women. In this randomized controlled clinical trial, 44 obese and overweight women aged 18-50 years were selected and divided randomly into 2 groups: an intervention group (receiving 80 mg pyridoxine hydrochloride supplement for 8 weeks) and a control group (receiving placebo for 8 weeks). In the pyridoxine hydrochloride group, weight (p = 0.03), body mass index (p = 0.023), fat mass (p = 0.003), waist circumference (p = 0.005), VAI (p = 0.001), fasting insulin, insulin resistance (homeostasis model assessment of insulin resistance; HOMA-IR), total cholesterol, low-density lipoprotein, triglycerides (TG) and leptin (p < 0.001) decreased whereas adiponectin (p < 0.001) increased in comparison to the baseline values. There was a significant difference in fat mass, VAI, fasting insulin, HOMA-IR, and TG between pyridoxine hydrochloride and control groups following intervention in adjusted models (p < 0.05). The findings suggest that vitamin B6 supplementation may be effective in reducing BMI and improving body composition and biochemical factors associated with obesity. Trial Registration Iranian Registry of Clinical Trials Identifier: IRCT20181002041206N1.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Majid Mohammadshahi
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-43337, Iran
| | - Mohammad Hosein Haghighizadeh
- Department of Statistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Fatemeh Mirzaee
- Department of Nutrition, Diabetes Research Center, Health Research Institute, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| |
Collapse
|
24
|
Yahaya TO, Yusuf AB, Danjuma JK, Usman BM, Ishiaku YM. Mechanistic links between vitamin deficiencies and diabetes mellitus: a review. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1080/2314808x.2021.1945395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tajudeen O. Yahaya
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - AbdulRahman B. Yusuf
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Jamilu K. Danjuma
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Bello M. Usman
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Yahaya M. Ishiaku
- Department of Biochemistry and Molecular Biology, Federal University Dutsinma, Katsina, Nigeria
| |
Collapse
|
25
|
Wang R, Han X, Pang H, Hu Z, Shi C. Illuminating a time-response mechanism in mice liver after PM 2.5 exposure using metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144485. [PMID: 33429275 DOI: 10.1016/j.scitotenv.2020.144485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
PM2.5 is recognized as an atmospheric pollutant that seriously jeopardizes human health. Emerging evidence indicates that PM2.5 exposure is associated with metabolic disorders. Existing epidemiology and toxicology studies on the health effects of PM2.5 usually focused on its different components and doses, the effects on susceptible populations, or the effects of indoor and outdoor pollution. The underlying mechanisms of exposure time are poorly understood. Liver, as the central organ involved in various metabolisms, has special signaling pathways non-existed in lung and cardiovascular systems. Exacerbation in liver by the prolonged exposure of PM2.5 leads to hepatic function disorder. It is therefore essential to elucidate the mechanism underlying hepatotoxicity after PM2.5 exposure from the perspective of time-response relationship. In this study, targeted metabolomics was utilized to explore the hepatic injury in mice after PM2.5 exposure. Our results showed that prolonged exposure of PM2.5 would aggravate liver metabolic disorders. The metabolic process was divided into three phases. In phase I, it was found that PM2.5 exposure disturbed the hepatic urea synthesis. In phase II, oxidative damages and inflammations obviously occurred in liver, which would further cause neurobehavioral disorders and fat deposits. In phase III, the changes of metabolites and metabolic pathways indicated that the liver has been severely damaged, with the accelerated biosynthesis and fat metabolism. Finally, using ROC analysis coupled with their biological functions, 4 potential biomarkers were screened out, with which we established a method to classify and diagnose the progress of liver damage in mice after PM2.5 exposure. In this paper, we not only established the time-response relationship of PM2.5, but also provided new insights for the classification and prediction of the toxic injury stages in mice liver, which provides a ground work for the future drug intervention to prevent oxidative damage of PM2.5.
Collapse
Affiliation(s)
- Rongrong Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Han
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
26
|
Cimmino F, Catapano A, Trinchese G, Cavaliere G, Culurciello R, Fogliano C, Penna E, Lucci V, Crispino M, Avallone B, Pizzo E, Mollica MP. Dietary Micronutrient Management to Treat Mitochondrial Dysfunction in Diet-Induced Obese Mice. Int J Mol Sci 2021; 22:2862. [PMID: 33799812 PMCID: PMC8000238 DOI: 10.3390/ijms22062862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity and associated metabolic disturbances, which have been increasing worldwide in recent years, are the consequences of unhealthy diets and physical inactivity and are the main factors underlying non-communicable diseases (NCD). These diseases are now responsible for about three out of five deaths worldwide, and it has been shown that they depend on mitochondrial dysfunction, systemic inflammation and oxidative stress. It was also demonstrated that several nutritional components modulating these processes are able to influence metabolic homeostasis and, consequently, to prevent or delay the onset of NCD. An interesting combination of nutraceutical substances, named DMG-gold, has been shown to promote metabolic and physical wellness. The aim of this research was to investigate the metabolic, inflammatory and oxidative pathways modulated by DMG-gold in an animal model with diet-induced obesity. Our data indicate that DMG-gold decreases the metabolic efficiency and inflammatory state and acts as an antioxidant and detoxifying agent, modulating mitochondrial functions. Therefore, DMG-gold is a promising candidate in the prevention/treatment of NCD.
Collapse
Affiliation(s)
- Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- IEOS, Institute of Experimental Endocrinology and Oncology “G. Salvatore”—National Research Council, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| |
Collapse
|
27
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
28
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
29
|
Pereira ENGDS, Silvares RR, Rodrigues KL, Flores EEI, Daliry A. Pyridoxamine and Caloric Restriction Improve Metabolic and Microcirculatory Abnormalities in Rats with Non-Alcoholic Fatty Liver Disease. J Vasc Res 2021; 58:1-10. [PMID: 33535220 DOI: 10.1159/000512832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This study aims to examine the effect of a diet intervention and pyridoxamine (PM) supplementation on hepatic microcirculatory and metabolic dysfunction in nonalcoholic fatty liver disease (NAFLD). METHODS NAFLD in Wistar rats was induced with a high-fat diet for 20 weeks (NAFLD 20 weeks), and control animals were fed with a standard diet. The NAFLD diet intervention group received the control diet between weeks 12 and 20 (NAFLD 12 weeks), while the NAFLD 12 weeks + PM group also received PM. Fasting blood glucose (FBG) levels, body weight (BW), visceral adipose tissue (VAT), and hepatic microvascular blood flow (HMBF) were evaluated at the end of the protocol. RESULTS The NAFLD group exhibited a significant increase in BW and VAT, which was prevented by the diet intervention, irrespective of PM treatment. The FBG was elevated in the NAFLD group, and caloric restriction improved this parameter, although additional improvement was achieved by PM. The NAFLD group displayed a 31% decrease in HMBF, which was partially prevented by caloric restriction and completely prevented when PM was added. HMBF was negatively correlated to BW, FBG, and VAT content. CONCLUSION PM supplementation in association with lifestyle modifications could be an effective intervention for metabolic and hepatic vascular complications.
Collapse
Affiliation(s)
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil,
| |
Collapse
|
30
|
Teymoori F, Mokhtari E, Salehi P, Hosseini-Esfahani F, Mirmiran P, Azizi F. A nutrient pattern characterized by vitamin A, C, B6, potassium, and fructose is associated with reduced risk of insulin-related disorders: A prospective study among participants of Tehran lipid and glucose study. Diabetol Metab Syndr 2021; 13:12. [PMID: 33499915 PMCID: PMC7836167 DOI: 10.1186/s13098-021-00629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Insulin-related disorders, including insulin resistance, insulin insensitivity, and insulinemia, is considered early predictors of major chronic disease risk. Using a set of correlated nutrient as nutrient patterns to explore the diet-disease relationship has drawn more attention recently. We aimed to investigate the association of nutrient patterns and insulin markers' changes prospectively among adults who participated in the Tehran Lipid and Glucose Study (TLGS). METHODS For the present study, 995 men and women aged 30-75 years, with complete information on insulin and dietary intake in survey III TLGS, were selected and followed three years until survey IV. Dietary intakes at baseline were assessed using a valid and reliable food frequency questionnaire (FFQ). Nutrient patterns were derived using principal component analysis (PCA). We extracted five dominant patterns based on the scree plot and categorized them into quartiles. Linear regression analysis was conducted to investigate the association between Nutrient patterns and three-year insulin markers changes, including fasting insulin, HOMA-IR, and HOMA-S. RESULTS The mean (SD) age and BMI of participants (43.1 % male) were 46.2(10.9) year and 28.0(4.7) kg/m2, respectively. The median (IQR, 25, 75) of 3 years changes of insulin, HOMA-IR and HOMA-S were 0.35 (- 1.71, 2.67) mU/mL, 0.25 (- 0.28, 0.84) and - 6.60 (- 22.8, 7.76), respectively. In the fully adjusted model for potential confounders, per each quartile increment of the fifth nutrient pattern, the β coefficients (95 % CI) of changes in insulin, HOMA-IR, and HOMA-S were - 0.36 (- 0.62, - 0.10); P value = 0.007, -0.10 (-0.19, -0.01); P value = 0.022, and 1.92 (0.18, 3.66); P value = 0.030, respectively. There were no significant association between other nutrient patterns and insulin related indices. CONCLUSIONS Present study showed that high adherence to a nutrient pattern rich in vitamin A, vitamin C, pyridoxine, potassium, and fructose is inversely associated with 3-years changes in insulin, HOMA-IR, and directly associated with HOMA-S.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Pantea Salehi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Kobayashi T, Kessoku T, Ozaki A, Iwaki M, Honda Y, Ogawa Y, Imajo K, Yoneda M, Saito S, Nakajima A. Vitamin B6 efficacy in the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, single-center trial. J Clin Biochem Nutr 2021; 68:181-186. [PMID: 33879971 DOI: 10.3164/jcbn.20-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vitamin B6 is an important cofactor in fat metabolism and its deficiency has been correlated with nonalcoholic fatty liver disease. However, no study has investigated the efficacy of vitamin B6 supplementation in these patients. The aim of this open-label, single-arm, single-center study was to examine the therapeutic effect of vitamin B6 in patients with nonalcoholic fatty liver disease. Twenty-two patients with nonalcoholic fatty liver disease received vitamin B6 (90 mg/day) orally for 12 weeks. Clinical parameters were evaluated, and liver fat and fibrosis were quantified before and after treatment using magnetic resonance imaging-based proton density fat fraction and magnetic resonance elastography. Serum alanine aminotransferase levels, the primary endpoint, did not change significantly after vitamin B6 treatment (93.6 ± 46.9 to 93.9 ± 46.6, p = 0.976). On the other hand, magnetic resonance imaging-based proton density fat fraction, a parameter of hepatic lipid accumulation, was significantly reduced (18.7 ± 6.1 to 16.4 ± 6.4, p<0.001) despite no significant changes in body mass index, even in those not taking vitamin E (n = 17, 18.8 ± 6.9 to 16.7 ± 7.3, p = 0.0012). Vitamin B6 administration significantly ameliorated hepatic fat accumulation. As an inexpensive agent with few side effects, vitamin B6 could be a novel therapeutic agent for the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
32
|
Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, Li L, Abdel Rahman AM, Aljada A. Distinctive Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus. Front Mol Biosci 2020; 7:609806. [PMID: 33381523 PMCID: PMC7768025 DOI: 10.3389/fmolb.2020.609806] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated metabolism and can be prevented in pre-diabetic individuals with impaired glucose tolerance. A metabolomic approach emphasizing metabolic pathways is critical to our understanding of this heterogeneous disease. This study aimed to characterize the serum metabolomic fingerprint and multi-metabolite signatures associated with IR and T2DM. Here, we have used untargeted high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs detected, 62% were either identified or matched. A group of 78 metabolites were up-regulated and 111 metabolites were down-regulated comparing obese to lean group while 459 metabolites were up-regulated and 166 metabolites were down-regulated comparing T2DM to obese groups. Several metabolites were identified as IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides. In conclusion, these pilot data have identified IR and T2DM metabolomics panels as potential novel biomarkers of IR and identified metabolites associated with T2DM, with possible diagnostic and therapeutic applications. Further studies to confirm these associations in prospective cohorts are warranted.
Collapse
Affiliation(s)
- Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Al Dubayee
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Zahra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Uche UI, Suzuki S, Fulda KG, Zhou Z. Environment-wide association study on childhood obesity in the U.S. ENVIRONMENTAL RESEARCH 2020; 191:110109. [PMID: 32841636 DOI: 10.1016/j.envres.2020.110109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Childhood obesity is a national public health issue with increasing prevalence. It has been linked to diet, lack of physical activity, and genetic susceptibility, with more recent evidence that it could also result from environmental factors. Studies linking it to environmental factors are limited, unsystematic, incomprehensive, and inconclusive. OBJECTIVE To conduct an environment-wide association study (EWAS) to comprehensively investigate all the environmental factors available in a nationally representative sample of children to determine factors associated with childhood obesity. METHODS We utilized the 1999-2016 National Health and Nutrition Examination Survey (NHANES) datasets and included all children/adolescents (6-17 years). Obesity was measured using body mass index and waist to height ratio. A multinomial and binary logistic regression were used adjusting for age, sex, race/ethnicity, creatinine, calorie intake, physical activity, screen time, limitation to physical activities, and socioeconomic status. We then controlled for multiple hypothesis testing and validated our findings on a different cohort of children. RESULTS We found that metals such as beryllium (OR: 3.305 CI: 1.460-7.479) and platinum (OR: 1.346 CI: 1.107-1.636); vitamins such as gamma-tocopherol (OR: 8.297 CI: 5.683-12.114) and delta-tocopherol (OR: 1.841 CI:1.476-2.297); heterocyclic aromatic amines such as 2-Amino-9H-pyrido (2,3-b) indole (OR: 1.323 CI: 1.083-1.617) and 2-Amino-3-methyl-9H-pyriodo(2,3-b)indole (OR: 2.799 CI: 1.442-5.433); polycyclic aromatic amines such as 9- fluorene (OR: 1.509 CI: 1.230-1.851) and 4-phenanthrene (OR: 2.828 CI: 1.632-4.899); and caffeine metabolites such as 1,3,7-trimethyluric acid (OR: 1.22 CI: 1.029-1.414) and 1,3,7-trimethylxanthine (OR: 1.258 CI: 1.075-1.473) were positively and significantly associated with childhood obesity. CONCLUSION Following the unique concept of EWAS, certain environmental factors were associated with childhood obesity. Further studies are required to confirm these associations while investigating their mechanisms of action.
Collapse
Affiliation(s)
- Uloma Igara Uche
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kimberly G Fulda
- Department of Family Medicine and Osteopathic Manipulative Medicine; North Texas Primary Care Practice-Based Research Network (NorTex) University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
34
|
Vitamin B6 and Diabetes: Relationship and Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21103669. [PMID: 32456137 PMCID: PMC7279184 DOI: 10.3390/ijms21103669] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin B6 is a cofactor for approximately 150 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. In addition, it plays the role of antioxidant by counteracting the formation of reactive oxygen species (ROS) and advanced glycation end-products (AGEs). Epidemiological and experimental studies indicated an evident inverse association between vitamin B6 levels and diabetes, as well as a clear protective effect of vitamin B6 on diabetic complications. Interestingly, by exploring the mechanisms that govern the relationship between this vitamin and diabetes, vitamin B6 can be considered both a cause and effect of diabetes. This review aims to report the main evidence concerning the role of vitamin B6 in diabetes and to examine the underlying molecular and cellular mechanisms. In addition, the relationship between vitamin B6, genome integrity, and diabetes is examined. The protective role of this vitamin against diabetes and cancer is discussed.
Collapse
|
35
|
Ma T, Li Y, Zhu Y, Jiang S, Cheng C, Peng Z, Xu L. Differential Metabolic Pathways and Metabolites in a C57BL/6J Mouse Model of Alcoholic Liver Disease. Med Sci Monit 2020; 26:e924602. [PMID: 32384076 PMCID: PMC7236594 DOI: 10.12659/msm.924602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Alcoholic liver disease (ALD), an important cause of acute or chronic liver injury, results from binge drinking or long-term alcohol consumption. To date, there is no well-established mouse model with a comprehensive metabolic profile that mimics ALD in humans. This study aimed to explore the differential metabolic pathways and related differential metabolites in the liver of an ALD mouse model. Material/Methods A C57BL/6J mouse model of ALD was induced by alcohol feeding for 10 days plus binge alcohol feeding. The metabolomic profiles in the liver of the ALD mouse model was detected through ultra-high-pressure liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS). Results A total 35 metabolites were significantly altered during the development of ALD. These metabolites were correlated to multiple metabolic pathways, including purine metabolism, the pentose phosphate pathway, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, pyrimidine metabolism, and vitamin B6 metabolism. Conclusions The findings of the present study reveal potential biomarkers of ALD, and provide further insights into the pathogenesis of ALD.
Collapse
Affiliation(s)
- Tai Ma
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yue Li
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yun Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Shuling Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Chen Cheng
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Zhiwei Peng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
36
|
Molecular and Lifestyle Factors Modulating Obesity Disease. Biomedicines 2020; 8:biomedicines8030046. [PMID: 32121611 PMCID: PMC7148479 DOI: 10.3390/biomedicines8030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity adversely affects bone health by means of multiple mechanisms, e.g., alterations in bone-regulating hormones, inflammation, and oxidative stress. Substantial evidence supports the relationship between adiposity and bone disorders in overweight/obese individuals. It is well known that the balance between mutually exclusive differentiation of progenitor cells into osteoblasts or adipocytes is controlled by different agents, including growth factors, hormones, genetic and epigenetic factors. Furthermore, an association between vitamin D deficiency and obesity has been reported. On the other hand, regular physical activity plays a key role in weight control, in the reduction of obesity-associated risks and promotes osteogenesis. The aim of this review is to highlight relevant cellular and molecular aspects for over-weight containment. In this context, the modulation of progenitor cells during differentiation as well as the role of epigenetics and microbiota in obesity disease will be discussed. Furthermore, lifestyle changes including an optimized diet as well as targeted physical activity will be suggested as strategies for the treatment of obesity disease.
Collapse
|
37
|
Shan MR, Zhou SN, Fu CN, Song JW, Wang XQ, Bai WW, Li P, Song P, Zhu ML, Ma ZM, Liu Z, Xu J, Dong B, Liu C, Guo T, Zhang C, Wang SX. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med 2020; 24:3139-3148. [PMID: 31970902 PMCID: PMC7077594 DOI: 10.1111/jcmm.14983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP‐activated protein kinase (AMPK) produces anti‐inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin‐1 beta (IL‐1β), IL‐6 and tumour necrosis factor alpha (TNF‐α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP‐activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose‐dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL‐1β, IL‐6 and TNF‐α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS‐induced macrophage activation if AMPK was in deficient through siRNA‐mediated approaches. Further, the anti‐inflammatory effects produced by VitB6 or AICAR in LPS‐treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS‐induced both systemic inflammation and acute pneumonia in wild‐type mice, but not in DOK3−/− mice. VitB6 prevents LPS‐induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Min Ma
- Department of Endocrinology, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
38
|
Pereira ENGDS, Silvares RR, Flores EEI, Rodrigues KL, Daliry A. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation 2020; 27:e12603. [PMID: 31876010 DOI: 10.1111/micc.12603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We investigated the protective effects of pyridoxamine against metabolic and microcirculatory complications in nonalcoholic fatty liver disease. METHODS Nonalcoholic fatty liver disease was established by a high-fat diet administration over 28 weeks. Pyridoxamine was administered between weeks 20 and 28. The recruitment of leukocytes and the number of vitamin A-positive hepatic stellate cells were examined by in vivo microscopy. Laser speckle contrast imaging was used to evaluate microcirculatory hepatic perfusion. Thiobarbituric acid reactive substances measurement and RT-PCR were used for oxidative stress and inflammatory parameters. advanced glycation end products were evaluated by fluorescence spectroscopy. RESULTS The increase in body, liver, and fat weights, together with steatosis and impairment in glucose metabolism observed in the nonalcoholic fatty liver disease group were attenuated by pyridoxamine treatment. Regarding the hepatic microcirculatory parameters, rats with high-fat diet-induced nonalcoholic fatty liver disease showed increased rolling and adhesion of leukocytes, increased hepatic stellate cells activation, and decreased tissue perfusion, which were reverted by pyridoxamine. Pyridoxamine protected against the increased hepatic lipid peroxidation observed in the nonalcoholic fatty liver disease group. Pyridoxamine treatment was associated with increased levels of tumor necrosis factor alpha (TNF-α) mRNA transcripts in the liver. CONCLUSION Pyridoxamine modulates oxidative stress, advanced glycation end products, TNF-α transcripts levels, and metabolic disturbances, being a potential treatment for nonalcoholic fatty liver disease-associated microcirculatory and metabolic complications.
Collapse
Affiliation(s)
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Wolke C, Gürtler S, Peter D, Weingärtner J, Domanska G, Lendeckel U, Schild L. Vitamin B6 deficiency in new born rats affects hepatic cardiolipin composition and oxidative phosphorylation. Exp Biol Med (Maywood) 2019; 244:1619-1628. [PMID: 31752529 DOI: 10.1177/1535370219889880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin B6 deficiency during pregnancy translates into a severe vitamin B6 deficiency (plasma levels decreased by 97%) in new-born rats. Further, hallmarks are increased (+89%) concentrations of homocysteine, gross changes in gene methylation and expression, and metabolic alterations including lipid metabolism. This study focuses on determining the effects of vitamin B6-deficiency on cardiolipin composition and oxidative phosphorylation in liver. For this purpose, hepatic cardiolipin composition was analyzed by means of LC/MS/MS, and mitochondrial oxygen consumption was determined by using a Clark-type electrode in a rat model of vitamin B6 deficiency. Liver mitochondria from new-born rats with pre-term vitamin B6 deficiency responded with substantial alterations in cardiolipin composition that include the following changes in the amounts of cardiolipin incorporated fatty acids: increase in C16, decrease in C18, decrease in saturated fatty acid, as well as increase in amount of oxidized cardiolipin species. These changes were accompanied by significantly decreased capacity of oxidative phosphorylation. In conclusion, vitamin B6 deficiency in new born rats induces massive alterations of cardiolipin composition and function of liver mitochondria. These findings support the importance of sufficient periconceptional supply of vitamin B6 to prevent vitamin B6 deficiency.Impact statementVitamin B6 (VitB6) is an active co-enzyme for more than 150 enzymes and is required for a great diversity of biosynthesis and metabolic reactions. There is an increased need for VitB6 during pregnancy and sufficient supply of VitB6 is crucial for the prevention of cleft palate and neural tube defects. We show that liver mitochondria from new-born rats with pre-term VitB6 deficiency respond with substantial alterations in cardiolipin (CL) composition and in the amount of oxidized CL species. These changes are associated with a decrease in the efficiency of oxidative phosphorylation. The results of this study support the significance of sufficient supply of VitB6 during pregnancy (and periconceptional) for diminishing the number of early abortions and minimizing malformation. The established link between VitB6 deficiency, CL composition, and mitochondrial respiration/energy production provides mechanistic insight as to how the VitB6 deficiency translates into the known pathophysiological and clinically relevant conditions.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Sarah Gürtler
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Daniela Peter
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - Jens Weingärtner
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17489, Germany
| | - Grazyna Domanska
- Institute of Immunology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| |
Collapse
|
40
|
Safaryan AS, Sargsyan VS, Kamyshova TV, Akhmedzhanov NM, Nebieridze DV, Poddubskaya EA. The Role of Magnesium in the Development of Cardiovascular Diseases and the Possibility of their Prevention and Correction with Magnesium Preparations (Part 1). RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-5-725-735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The article is devoted to the influence of magnesium on the homeostasis of the body and, in particular, on the cardiovascular system. It describes the importance of the presence and effects of magnesium on various key processes and functions occurring in the body. The reasons for the lack of magnesium and ways to replenish it both in the natural way (eating, certain foods) and magnesium preparations are considered. The article provides examples of large randomized studies that prove the importance of the influence of normal magnesium levels on human health in general and on the state of the cardiovascular system. These studies show how magnesium deficiency increases the risk of cardiovascular diseases and how it can be reduced. It is also shown which trace elements and vitamins are closely related to magnesium metabolism, and how they (in particular, potassium and vitamin B6) improve and facilitate the normalization of magnesium levels. It is noted how comorbidity decreases with the normalization of magnesium level – the higher the magnesium level in the blood plasma (closer to the upper limit and more), the less comorbidity and longer life expectancy. Magnesium is an absolutely essential ion and a good medicine. Magnesium deficiency and hypomagnesemia are quite common, difficult to diagnose (due to underestimation and rare level control) and accompany many diseases of the cardiovascular system and beyond. The widespread use of organic magnesium salts would improve the situation as a whole, due to their universal multiple effect on many processes in the body. This is an integral part of therapeutic and preventive measures in patients with already existing diseases and in people who do not have diseases, but who are at risk due to existing hypomagnesemia.
Collapse
Affiliation(s)
- A. S. Safaryan
- National Medical Research Center for Preventive Medicine
| | - V. S. Sargsyan
- National Medical Research Center for Preventive Medicine
| | | | | | | | | |
Collapse
|
41
|
Taleban R, Heidari-Beni M, Qorbani M, Esmaeil Motlagh M, Fazel-Tabar Malekshah A, Moafi M, Hani-Tabaei Zavareh N, Kelishadi R. Is dietary vitamin B intake associated with weight disorders in children and adolescents? The weight disorders survey of the CASPIAN-IV Study. Health Promot Perspect 2019; 9:299-306. [PMID: 31777710 PMCID: PMC6875549 DOI: 10.15171/hpp.2019.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Weight disorders are highly prevalent at the global level. Vitamin B groups are clearly involved in intracellular mechanisms, energy equation, and weight gain. The present study aims to evaluate the association of dietary vitamin B intake and obesity in a large pediatric population. Methods: This cross-sectional study was conducted among children and adolescents, aged 6-18years, living in urban and rural areas of 30 provinces of Iran. The BMI-for-age classifications were as follow: percentile <0.1, (emaciated), 0.1 ≤percentile <2.35 (thin), 2.35 ≤percentile≤84.1 (normal), 84.1 <percentile ≤97.7 (overweight), 97.1 <percentile (obese). A valid 168-item semi-quantitative Food Frequency Questionnaire (FFQ) was used to assess the usual dietary intake including vitamin B. Results: Out of 5606 children and adolescents participated (mean age: 11.62, SD: 3.32),46.8% were girls. The intake of thiamin, pyridoxine, niacin and pantothenic acid increased the likelihood of obesity, compared with the normal-weight group. Odds ratios (ORs) (95% CI) of obesity for vitamin B1, B3, B5, and B6 were 1.32 (1.14-1.53), 1.01 (1.00-1.02), 1.04 (1.00-1.08),and 1.20 (1.04-1.38), respectively. Riboflavin, cyanocobalamin, biotin and folic acid did not have any significant association with weight disorders (B2: OR=1.09, 95% CI =0.99-1.20); B12:OR=1.00, 95% CI=0.98-1.03; B8: OR=1.00, 95% CI=0.99-1.00 B9: OR=1.00, 95% CI=1.00-1.00). Conclusion: The current study showed a significant correlation between consumption of vitamin B group and increased risk of excess weight.
Collapse
Affiliation(s)
- Roya Taleban
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Mohammad Moafi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Obesity Status Affects the Relationship Between Protein Intake and Insulin Sensitivity in Late Pregnancy. Nutrients 2019; 11:nu11092190. [PMID: 31514469 PMCID: PMC6769608 DOI: 10.3390/nu11092190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to determine the associations between amount and type of dietary protein intake and insulin sensitivity in late pregnancy, in normal weight and overweight women (29.8 ± 0.2 weeks gestation, n = 173). A 100-g oral glucose tolerance test (OGTT) was administered following an overnight fast to estimate the metabolic clearance rate of glucose (MCR, mg·kg−1·min−1) using four different equations accounting for the availability of blood samples. Total (TP), animal (AP), and plant (PP) protein intakes were assessed using a 3-day food record. Two linear models with MCR as the response variable were fitted to the data to estimate the relationship of protein intake to insulin sensitivity either unadjusted or adjusted for early pregnancy body mass index (BMI) because of the potential of BMI to influence this relationship. There was a positive association between TP (β = 1.37, p = 0.002) and PP (β = 4.44, p < 0.001) intake in the last trimester of pregnancy and insulin sensitivity that weakened when accounting for early pregnancy BMI. However, there was no relationship between AP intake and insulin sensitivity (β = 0.95, p = 0.08). Therefore, early pregnancy BMI may be a better predictor of insulin sensitivity than dietary protein intake in late pregnancy.
Collapse
|
43
|
Mabasa L, Samodien E, Sangweni NF, Pheiffer C, Louw J, Johnson R. In Utero One-Carbon Metabolism Interplay and Metabolic Syndrome in Cardiovascular Disease Risk Reduction. Mol Nutr Food Res 2019; 64:e1900377. [PMID: 31408914 DOI: 10.1002/mnfr.201900377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/16/2022]
Abstract
The maternal obesogenic environment plays a role in programing the susceptibility of the fetus to postnatal non-alcoholic fatty liver disease (NAFLD), a risk factor for cardiovascular disease (CVD). NAFLD is a multisystem disease that is characterized by hepatic fat accumulation due in part to dysregulated energy metabolism network through epigenetic mechanisms such as DNA methylation. DNA methylation affects fetal programing and disease risk via regulation of gene transcription; it is affected by methyl donor nutrients such as vitamin B12 , methionine, folic acid, vitamin B6 , and choline. Although several studies have documented the role of several maternal methyl donor nutrients on obesity-induced NAFLD in offspring, currently, data are lacking on its impact on CVD risk as an endpoint. The aim of this paper is to use current knowledge to construct a postulation for the potential role of a comprehensive gestational methyl donor nutrients supplementary approach on the susceptibility of offspring to developing metabolic-syndrome-related cardiovascular complications.
Collapse
Affiliation(s)
- Lawrence Mabasa
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Ebrahim Samodien
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Nonhlakanipho F Sangweni
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
44
|
Jayanthi R, Srinivasan AR, Maran AL. Clinical sensitivity and specificity of serum total bilirubin - A study on thyroid status in clinically euthyroid non-obese, overweight, and obese type 2 diabetics. Int J Health Sci (Qassim) 2019; 13:22-28. [PMID: 31341452 PMCID: PMC6619454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the sensitivity and specificity of total bilirubin (serum) in determining thyroid status in clinically euthyroid non-obese, overweight, and obese type 2 diabetics. SUBJECTS AND METHODS Three anthropometry specific groups of clinically euthyroid type 2 diabetics were enabled, following enrolment: 153 non-obese (body mass index [BMI] = 18.5-24.99), 291 overweight (BMI = 25-29.99), and 126 obese type 2 diabetes mellitus (BMI ≥30). Total bilirubin (serum), glycemic status, insulin resistance (IR), and thyroid hormones, besides routine biochemistry, were estimated, as per International Federation of Clinical Chemistry approved procedures. RESULTS Receiver operating characteristic curves for non-obese, overweight, and obese were plotted to assess the role of total bilirubin (serum) in determining thyroid status in clinically euthyroid type 2 diabetics. In overweight, the area under curve (AUC) for FT3 and postprandial sugar showed 0.621 and 0.531 with cutoff values of 2.02 pg/ml and 147.5 mg/dl, respectively, whereas for aspartate aminotransferase/alanine aminotransferase (De Ritis ratio), the AUC was 0.583. As regards, obese diabetics and the AUC for insulin and homeostatic model assessment IR were 0.657 and 0.709, respectively, with cutoff values of 16.06 mIU/L and 7.274, respectively, and for postprandial sugar 0.727, in the same group (obese) with cutoff value of 208.5 mg/dl. CONCLUSION Total bilirubin could predict thyroid status and IR in anthropometry specific clinically euthyroid type 2 diabetics.
Collapse
Affiliation(s)
- Rajendran Jayanthi
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute (A Constituent College of Sri Balaji Vidyapeeth), Pondicherry, India
| | - Abu Raghavan Srinivasan
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute (A Constituent College of Sri Balaji Vidyapeeth), Pondicherry, India,Address for correspondence: Dr. Abu Raghavan Srinivasan, Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute (A Constituent College of Sri Balaji Vidyapeeth), Pillaiyarkuppam, Pondy-Cuddalore Main Road, Pondicherry – 607 402, India. Phone: +91-9994455627. Fax.: +91-413-2615457. E-mail:
| | - Anandraj Lokesh Maran
- Department of Community Medicine, Mahatma Gandhi Medical College and Research Institute (A Constituent College of Sri Balaji Vidyapeeth), Pondicherry, India
| |
Collapse
|
45
|
Merigliano C, Mascolo E, Burla R, Saggio I, Vernì F. The Relationship Between Vitamin B6, Diabetes and Cancer. Front Genet 2018; 9:388. [PMID: 30271425 PMCID: PMC6146109 DOI: 10.3389/fgene.2018.00388] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, works as cofactor in numerous enzymatic reactions and it behaves as antioxidant molecule. PLP deficiency has been associated to many human pathologies including cancer and diabetes and the mechanism behind this connection is now becoming clearer. Inadequate intake of this vitamin increases the risk of many cancers; furthermore, PLP deprivation impairs insulin secretion in rats, whereas PLP supplementation prevents diabetic complications and improves gestational diabetes. Growing evidence shows that diabetes and cancer are correlated not only because they share same risk factors but also because diabetic patients have a higher risk of developing tumors, although the underlying mechanisms remain elusive. In this review, we will explore data obtained in Drosophila revealing the existence of a connection between vitamin B6, DNA damage and diabetes, as flies in the past decade turned out to be a promising model also for metabolic diseases including diabetes. We will focus on recent studies that revealed a specific role for PLP in maintaining chromosome integrity and glucose homeostasis, and we will show that these aspects are correlated. In addition, we will discuss recent data identifying PLP as a putative linking factor between diabetes and cancer.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Rome, Italy
| | - Elisa Mascolo
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Rome, Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Rome, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Rome, Italy.,Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
46
|
Zhao Z, Hu J, Gao X, Liang H, Yu H, Liu S, Liu Z. Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2018; 8:30030-30038. [PMID: 28415790 PMCID: PMC5444723 DOI: 10.18632/oncotarget.16273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 01/02/2023] Open
Abstract
Diabetes is one of high risk factors for cardio- and cerebra-vascular diseases, including stroke, atherosclerosis and hypertension. This study was conducted to elucidate whether and how thromboxane receptor (TPr) activation contributes to blood-brain barrier (BBB) dysfunction in diabetes. Human brain microvascular endothelial cells (HBMECs) were cultured. The levels of phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 (p-eNOS) and Akt at Ser473 (p-Akt) were assayed by western blot. Exposure of HBMECs to either high glucose (HG) or thromboxane A2 (TxA2) mimetic U46619, significantly reduced p-eNOS and p-Akt. These effects were abolished by pharmacological or genetic inhibitors of TPr. HG/U46619-induced suppressions of eNOS and Akt phosphorylation were accompanied by upregulation of PTEN and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation or HG. The small GTPase, Rho, was also activated by HG stimulation, and pretreatment of HBMECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued HG-impaired Akt-eNOS signaling. In STZ-injected rats, we found that hyperglycemia dramatically increased the levels of PTEN and PTEN-Ser380/Thr382/383 phosphorylation, reduced both levels of p-eNOS and p-Akt, and disrupted BBB function assayed by Evans blue staining, which were abolished by SQ29548 treatment. We conclude that hyperglycemia activates thromboxane A2 receptor to impair the integrity and function of blood-brain barrier via the ROCK-PTEN-Akt-eNOS pathway.
Collapse
Affiliation(s)
- Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Jue Hu
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Haiya Yu
- Department of Neurology, The People's Hospital of Xishui, Huangang, Hubei, China
| | - Suosi Liu
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China.,Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
47
|
Antagonist of thromboxane A2 receptor by SQ29548 lowers DOCA-induced hypertension in diabetic rats. Eur J Pharmacol 2017; 815:298-303. [DOI: 10.1016/j.ejphar.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
|
48
|
Federico A, Dallio M, Caprio GG, Gravina AG, Picascia D, Masarone M, Persico M, Loguercio C. Qualitative and Quantitative Evaluation of Dietary Intake in Patients with Non-Alcoholic Steatohepatitis. Nutrients 2017; 9:1074. [PMID: 28956816 PMCID: PMC5691691 DOI: 10.3390/nu9101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
There are very few reports about the intake of nutrients for the development or progression of non-alcoholic steatohepatitis (NASH). The aim of this study was to identify the dietary habits and the nutrient intake in patients with NASH, in comparison to chronic hepatitis C (HCV)-related patients. We prospectively evaluated the intake of macronutrients and micronutrients in 124 NAFLD and 162 HCV patients, compared to 2326 subjects as a control group. We noticed major differences in macro- and micronutrients intakes in NASH and HCV patients compared to controls. Proteins, carbohydrate (glucose, fructose, sucrose, maltose and amide), saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), folic acid, vitamin A and C (p < 0.0001), and thiamine (p < 0.0003) ingestion was found to be higher in patients with NASH, while total lipids, polyunsaturated fatty acid (PUFA), riboflavin and vitamin B6 daily intake were lower compared to controls (p < 0.0001). Similarly, NASH patients had significantly reduced carbohydrate intake (p < 0.0001) and an increased intake of calcium (p < 0.0001) compared to HCV positive patients. Finally, we showed in NASH males an increase in the intake of SFA, PUFA, soluble carbohydrates (p < 0.0001) and a decrease in the amount of fiber (p < 0.0001) compared to control males. In NASH female population, we showed an increase of daily total calories, SFA, MUFA, soluble carbohydrates, starch and vitamin D ingested (p < 0.0001) with a reduction of fibers and calcium (p < 0.0001) compared to control females. This study showed how NASH patients' diets, in both male and females, is affected by a profound alteration in macro- and micronutrients intake.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| | - Giuseppe Gerardo Caprio
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| | - Antonietta Gerarda Gravina
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| | - Desiree Picascia
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 84081 Baronissi, Salerno, Italy.
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 84081 Baronissi, Salerno, Italy.
| | - Carmela Loguercio
- Department of Clinical and Experimental Medicine, University of Campania "L. Vanvitelli", Via Pansini 5 80131 Naples, Italy.
| |
Collapse
|
49
|
Li P, Zhu ML, Pan GP, Lu JX, Zhao FR, Jian X, Liu LY, Wan GR, Chen Y, Ping S, Wang SX, Hu CP. Vitamin B6 prevents isocarbophos-induced vascular dementia in rats through N-methyl-D-aspartate receptor signaling. Clin Exp Hypertens 2017; 40:192-201. [PMID: 28872356 DOI: 10.1080/10641963.2017.1356844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. METHODS The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. RESULTS Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. CONCLUSION Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.
Collapse
Affiliation(s)
- Peng Li
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China.,b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Mo-Li Zhu
- c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Guo-Pin Pan
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Jun-Xiu Lu
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Fan-Rong Zhao
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Xu Jian
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Li-Ying Liu
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China.,b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Guang-Rui Wan
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Yuan Chen
- c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Song Ping
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Shuang-Xi Wang
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China.,c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Chang-Ping Hu
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China
| |
Collapse
|
50
|
Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens 2017; 39:312-318. [PMID: 28513223 DOI: 10.1080/10641963.2016.1246558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. METHODS AND RESULTS Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser1177 and Akt at Ser473. These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser380/Thr382/383 phosphorylation, and dephosphorylation of Akt (at Ser473) and eNOS (at Ser1177). Importantly, administration of TPr antagonist blocked these changes. CONCLUSION We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.
Collapse
Affiliation(s)
- Xiaona Xie
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China.,b The First Hospital of Jilin University , Changchun , China
| | - Wanchun Sun
- c Key Laboratory of Zoonosis, Ministry of Education , Institute of Zoonosis, Jilin University , Changchun , China
| | - Jun Wang
- d Shenzhen Center for Chronic Disease Control , Shenzhen , China
| | - Xiaoou Li
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Xiaofeng Liu
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Ning Liu
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China
| |
Collapse
|