1
|
Clarke KSP, Kingdon CC, Hughes MP, Lacerda EM, Lewis R, Kruchek EJ, Dorey RA, Labeed FH. The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med 2025; 23:149. [PMID: 39905423 DOI: 10.1186/s12967-025-06146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in functioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative biomarker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria-a process that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few participate in social activities. MAIN BODY Recent studies have reported promising quantifiable differences in the biochemical and electrophysiological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities and specificities-demonstrating potential development of an accessible and relatively non-invasive diagnostic biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and certain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker are yet to be explored. CONCLUSION Different biochemical and electrophysiological properties which differentiate ME/CFS have been identified across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. However, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.
Collapse
Affiliation(s)
- Krista S P Clarke
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Caroline C Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology/Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Eliana Mattos Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Robert A Dorey
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
2
|
Hoffmann K, Hainzl A, Stingl M, Kurz K, Biesenbach B, Bammer C, Behrends U, Broxtermann W, Buchmayer F, Cavini AM, Fretz GS, Gole M, Grande B, Grande T, Habermann-Horstmeier L, Hackl V, Hamacher J, Hermisson J, King M, Kohl S, Leiss S, Litzlbauer D, Renz-Polster H, Ries W, Sagelsdorff J, Scheibenbogen C, Schieffer B, Schön L, Schreiner C, Thonhofer K, Strasser M, Weber T, Untersmayr E. [Interdisciplinary, collaborative D-A-CH (Germany, Austria and Switzerland) consensus statement concerning the diagnostic and treatment of myalgic encephalomyelitis/chronic fatigue syndrome]. Wien Klin Wochenschr 2024; 136:103-123. [PMID: 38743348 PMCID: PMC11093804 DOI: 10.1007/s00508-024-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe, chronic multisystemic disease which, depending on its severity, can lead to considerable physical and cognitive impairment, loss of ability to work and the need for nursing care including artificial nutrition and, in very severe cases, even death.The aim of this D-A-CH (Germany, Austria, Switzerland) consensus statement is 1) to summarize the current state of knowledge on ME/CFS, 2) to highlight the Canadian Consensus Criteria (CCC) as clinical criteria for diagnostics with a focus on the leading symptom post-exertional malaise (PEM) and 3) to provide an overview of current options and possible future developments, particularly with regard to diagnostics and therapy. The D-A-CH consensus statement is intended to support physicians, therapists and valuer in diagnosing patients with suspected ME/CFS by means of adequate anamnesis and clinical-physical examinations as well as the recommended clinical CCC, using the questionnaires and other examination methods presented. The overview of the two pillars of therapy for ME/CFS, pacing and symptom-relieving therapy options, is intended not only to provide orientation for physicians and therapists, but also to support decision-makers from healthcare policy and insurance companies in determining which therapy options should already be reimbursable by them at this point in time for the indication ME/CFS.
Collapse
Affiliation(s)
- Kathryn Hoffmann
- Allgemeinmedizin, Public Health und Versorgungsforschung, Abteilung für Primary Care Medicine, Zentrum für Public Health, Medizinische Universität Wien, Kinderspitalgasse 15, 1090, Wien, Österreich.
| | - Astrid Hainzl
- Österreichische Gesellschaft für ME/CFS, Wien, Österreich
| | | | - Katharina Kurz
- Innere Medizin, Universitätsklinik für Innere Medizin II, MedUni Innsbruck, Innsbruck, Österreich
| | - Beate Biesenbach
- Kinder- und Jugendheilkunde, kokon - Reha für junge Menschen, Kinder-Reha Rohrbach-Berg GmbH, Rohrbach-Berg, Österreich
| | - Christoph Bammer
- Innere Medizin, Nephrologie & Geriatrie, a. ö. BKH Kufstein, Kufstein, Österreich
| | - Uta Behrends
- MRI Chronische Fatigue Centrum für junge Menschen (MCFC), Zentrum für Kinder- und Jugendmedizin: eine Kooperation des Klinikums rechts der Isar, Technischen Universität München und der München Klinik gGmbH, München, Deutschland
| | | | - Florian Buchmayer
- Psychiatrie und Psychotherapie, Abteilung für Psychiatrie und Psychotherapie, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Österreich
| | - Anna Maria Cavini
- Fachärztin für Kinder- und Jugendheilkunde, Psychotherapeutische Medizin, St.Veit/Glan, Österreich
| | - Gregory Sacha Fretz
- Department Innere Medizin, Medizinische Poliklinik, Kantonsspital Graubünden, Loestraße 170, 7000, Chur, Schweiz
| | - Markus Gole
- Psychologie und Philosophie, Praxis für Psychologie, Philosophie und Berufskunde, Linz, Österreich
| | - Bettina Grande
- Psychotherapie und Psychoanalyse, Heidelberg, Deutschland
| | - Tilman Grande
- Psychotherapie und Psychoanalyse, Heidelberg, Deutschland
| | | | - Verena Hackl
- Physiotherapie, AUVA Rehabilitationszentrum Meidling, Wien, Österreich
| | - Jürg Hamacher
- Innere Medizin und Pneumologie, Lindenhofspital, Bern, Schweiz
| | - Joachim Hermisson
- Biomathematik, Fakultät für Mathematik, Universität Wien, Wien, Österreich
- Department of Structural and Computational Biology, Max Perutz Labs, Wien, Österreich
| | - Martina King
- Lehrstuhl für Medical Humanities, Mathematisch-Naturwissenschaftliche und Medizinische Fakultät, Universität Fribourg, Fribourg, Schweiz
| | - Sonja Kohl
- #MillionsMissing Deutschland, Bedburg-Hau, Deutschland
| | - Sandra Leiss
- Österreichische Gesellschaft für ME/CFS, Wien, Österreich
| | | | - Herbert Renz-Polster
- Kinder- und Jugendheilkunde, Zentrum für Präventivmedizin und Digitale Gesundheit, Abteilung Allgemeinmedizin, Universitätsmedizin Mannheim, Universität Heidelberg, Heidelberg, Deutschland
| | - Wolfgang Ries
- Nephrologie, Dialyse, DIAKO Krankenhaus gGmbH, Flensburg, Deutschland
| | | | - Carmen Scheibenbogen
- Institut für Med. Immunologie, Sektion Immundefekte und Postinfektiöse Erkrankungen, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland
| | - Bernhard Schieffer
- Klinik für Innere Medizin-Kardiologie- Angiologie und Internistische Intensivmedizin und Zentrums für Notfallmedizin, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, Marburg, Deutschland
| | - Lena Schön
- Physiotherapie, Physio Austria: Fachgruppe für komplexe Multisystemerkrankungen, Wien, Österreich
| | - Claudia Schreiner
- Österreichische Gesellschaft für ME/CFS, Wien, Österreich
- #MillionsMissing Deutschland, Bedburg-Hau, Deutschland
| | | | - Maja Strasser
- Neurologie, Neurologische Praxis Solothurn, Solothurn, Schweiz
| | - Thomas Weber
- Schmerzmedizin, Facharzt für Anästhesie und Intensivmedizin, Graz, Österreich
| | - Eva Untersmayr
- Klinische Immunologie, Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
3
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Paffrath A, Kim L, Kedor C, Stein E, Rust R, Freitag H, Hoppmann U, Hanitsch LG, Bellmann-Strobl J, Wittke K, Scheibenbogen C, Sotzny F. Impaired Hand Grip Strength Correlates with Greater Disability and Symptom Severity in Post-COVID Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2024; 13:2153. [PMID: 38610918 PMCID: PMC11012649 DOI: 10.3390/jcm13072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Post-COVID syndrome (PCS) encompasses a diverse array of symptoms persisting beyond 3 months after acute SARS-CoV-2 infection, with mental as well as physical fatigue being the most frequent manifestations. Methods: In 144 female patients with PCS, hand grip strength (HGS) parameters were assessed as an objective measure of muscle fatigue, with 78 meeting the Canadian Consensus Criteria for postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The severity of disability and key symptoms was evaluated using self-reported questionnaires. Results: Patients with ME/CFS exhibited heightened overall symptom severity, including lower physical function (p < 0.001), a greater degree of disability (p < 0.001), more severe fatigue (p < 0.001), postexertional malaise (p < 0.001), and autonomic dysfunction (p = 0.004) compared to other patients with PCS. While HGS was impaired similarly in all patients with PCS and exhibited a significant correlation with physical function across the entire patient group, HGS of patients with ME/CFS uniquely demonstrated associations with key symptoms. Conclusions: Thus, impaired HGS serves as an objective marker of physical function in patients with PCS. Only in patients meeting ME/CFS criteria is impaired HGS also associated with the severity of hallmark symptoms. This suggests a common mechanism for muscle fatigue and other symptoms in the ME/CFS subtype, distinct from that in other types of PCS.
Collapse
Affiliation(s)
- Anna Paffrath
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Laura Kim
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Elisa Stein
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Rebekka Rust
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
- Experimental and Research Center (ECRC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Helma Freitag
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Uta Hoppmann
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Judith Bellmann-Strobl
- Experimental and Research Center (ECRC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (A.P.); (C.K.); (E.S.); (R.R.); (H.F.); (U.H.); (L.G.H.); (K.W.); (C.S.); (F.S.)
| |
Collapse
|
5
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
6
|
Raij T, Raij K. Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome. Front Endocrinol (Lausanne) 2024; 15:1358404. [PMID: 38505756 PMCID: PMC10948554 DOI: 10.3389/fendo.2024.1358404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
Background Fatigue of unknown origin is a hallmark symptom in chronic fatigue syndrome (CFS) and is also found in 20% of hypothyroidism patients despite appropriate levothyroxine treatment. Here, we suggest that in these disorders, peripheral serotonin levels are low, and elevating them to normal range with L-carnitine is accompanied with reduced fatigue. Methods We conducted a retrospective analysis of follow-up clinical data (CFS N=12; hypothyroidism with fatigue N=40) where serum serotonin and fatigue levels were compared before vs. after 7 weeks of oral L-carnitine supplementation. Results After L-carnitine, serotonin increased (8-fold in CFS, Sig. = 0.002, 6-fold in hypothyroidism, Sig. < 0.001) whereas fatigue decreased (2-fold in both CFS and hypothyroidism, Sig. = 0.002 for CFS, Sig. < 0.001 for hypothyroidism). There was a negative correlation between serotonin level and fatigue (for CFS, rho = -0.49 before and -0.67 after L-carnitine; for hypothyroidism, rho = -0.24 before and -0.83 after L-carnitine). Conclusions These findings suggest a new link between low peripheral serotonin, L-carnitine, and fatigue.
Collapse
Affiliation(s)
- Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department Of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MGH Department of Radiology, Boston, MA, United States
| | - Kari Raij
- Kruunuhaka Medical Center, Helsinki, Finland
| |
Collapse
|
7
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
8
|
Wirth KJ, Löhn M. Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Evolving from the Post COVID-19 Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:194. [PMID: 38399482 PMCID: PMC10890404 DOI: 10.3390/medicina60020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent, debilitating and still enigmatic disease. There is a broad overlap in the symptomatology of ME/CFS and the Post-COVID-19 Syndrome (PCS). A fraction of the PCS patients develop the full clinical picture of ME/CFS. New observations in microvessels and blood from patients suffering from PCS have appeared and include microclots and malformed pathological blood cells. Capillary blood flow is impaired not only by pathological blood components but also by prothrombotic changes in the vascular wall, endothelial dysfunction, and the expression of adhesion molecules in the capillaries. These disturbances can finally cause a low capillary flow and even capillary stasis. A low cardiac stroke volume due to hypovolemia and the inability of the capacitance vessels to adequately constrict to deliver the necessary cardiac preload generate an unfavorable low precapillary perfusion pressure. Furthermore, a predominance of vasoconstrictor over vasodilator influences exists, in which sympathetic hyperactivity and endothelial dysfunction play a strong role, causing the constriction of resistance vessels and of precapillary sphincters, which leads to a fall in capillary pressure behind the sphincters. The interaction of these two precapillary cardiovascular mechanisms causing a low capillary perfusion pressure is hemodynamically highly unfavorable in the presence of a primary capillary stasis, which is already caused by the pathological blood components and their interaction with the capillary wall, to severely impair organ perfusion. The detrimental coincidence of microcirculatory and precapillary cardiovascular disturbances may constitute the key disturbance of the Post-COVID-19 syndrome and finally lead to ME/CFS in predisposed patients because the interaction causes a particular kind of perfusion disturbance-capillary ischemia/reperfusion-which has a high potential of causing mitochondrial dysfunction by inducing sodium- and calcium-overload in skeletal muscles. The latter, in turn, worsens the vascular situation through the generation of reactive oxygen species to close a vicious cycle from which the patient can hardly escape.
Collapse
Affiliation(s)
| | - Matthias Löhn
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany;
| |
Collapse
|
9
|
Ullah H, Khan A, Riccioni C, Di Minno A, Tantipongpiradet A, Buccato DG, De Lellis LF, Khan H, Xiao J, Daglia M. Polyphenols as possible alternative agents in chronic fatigue: a review. PHYTOCHEMISTRY REVIEWS 2023; 22:1637-1661. [DOI: 10.1007/s11101-022-09838-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2025]
Abstract
AbstractChronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms. The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results. The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system. However, the pathological mechanism revolves around inflammatory and oxidative stress markers. Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders. The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade. The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.
Graphical abstract
Collapse
|
10
|
Corbalán JA, Feltes G, Silva D, Gómez-Utrero E, Núñez-Gil IJ. A Quick and Practical Approach to Secure a Chronic Fatigue Syndrome Diagnosis: The Novel Functional Limitation Index. J Clin Med 2023; 12:7157. [PMID: 38002769 PMCID: PMC10672372 DOI: 10.3390/jcm12227157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic Fatigue Syndrome (CFS) is a serious, clinical, long-term condition with an unclear etiology and a difficult diagnosis. Our aim is to propose an objective physiological parameter (Functional Limitation Index, FLI) that describes the degree of functional impairment to support clinical suspicion. MATERIALS AND METHODS We consecutively included all CFS patients who consulted in the Exercise Physiology Department at our hospital, a dedicated referral unit for CFS, from 2009 to 2022. For comparison purposes, we included two control groups. Thus, three cohorts were included: the CFS group (patients with a previous definitive diagnosis), healthy voluntaries and a sportspeople/trained cohort (amateur athletes). All patients underwent a body composition test, spirometry, basal ECG in supine and standing positions and double peak effort ergospirometry with criteria of maximality. RESULTS The CFS+ group comprised 183 patients (85% female, mean age 46.2 years) and the CFS- included 161 cases (25.5% female, mean age 41.2 years); there were 93 patients in the healthy and 68 in the trained cohort. The CFS+ presented a lower functional class and scored worse in all of the performance parameters. The FLI was significantly higher in CFS+ (2.7 vs. 1.2; p < 0.001). The FLI displayed a good discrimination power (AUC = 0.94, p < 0.001), with a higher AUC than all of the other spirometric variables recorded. The best dichotomic overall FLI cutoff would be 1.66 with good specificity and sensitivity (S = 0.874, E = 0.864, Youden Index = 0.738). CONCLUSIONS The Functional Limitation Index (FLI) could provide an easy and accurate diagnosis of this condition in both genders in a one-day assessment.
Collapse
Affiliation(s)
| | - Gisela Feltes
- Cardiology Department, Vithas Arturo Soria Hospital, 28043 Madrid, Spain;
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Daniela Silva
- Geriatric Department, Vithas International Arturo Soria Hospital, 28043 Madrid, Spain;
| | - Eduardo Gómez-Utrero
- Neurophysiology Department, Vithas International Arturo Soria Hospital, 28043 Madrid, Spain;
| | - Iván J. Núñez-Gil
- Cardiology Department, Vithas Arturo Soria Hospital, 28043 Madrid, Spain;
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
- Cardiology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
11
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
12
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
13
|
Schulze H, Charles James J, Trampe N, Richter D, Pakeerathan T, Siems N, Ayzenberg I, Gold R, Faissner S. Cross-sectional analysis of clinical aspects in patients with long-COVID and post-COVID syndrome. Front Neurol 2022; 13:979152. [PMID: 36313487 PMCID: PMC9614029 DOI: 10.3389/fneur.2022.979152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Regarding pathogenesis, clinical manifestations, at-risk individuals, and diagnostic methods for stratifying patients for therapeutic approaches, our understanding of post-COVID syndrome is limited. Here, we set out to assess sociodemographic and clinical aspects in patients with the long-COVID and post-COVID syndrome. Methods We performed a cross-sectional analysis of patients presenting at our specialized university hospital outpatient clinic. We assessed patients' clinical presentation, fatigue, symptoms of depression and anxiety, and impairment of smell. Results A total of 101 patients were included (73.3% female), of whom 78.2% had a mild course of COVID-19. At presentation, 93.1% suffered from fatigue, 82.2% from impaired concentration, and 79.2% from impaired memory, 53.5% had impaired sleep. The most common secondary diagnosis found in our cohort was thyroid disease. Fatigue analysis showed that 81.3% of female and 58.8% of male patients had severe combined fatigue. Female gender was an independent risk factor for severe fatigue (severe cognitive fatigue OR = 8.045, p = 0.010; severe motor fatigue OR = 7.698, p = 0.013). Males suffered from more depressive symptoms, which correlated positively with the duration of symptom onset. 70.3% of patients with anamnestic smell impairment had hyposmia, and 18.9% were anosmic. Interpretation Most long-COVID patients suffered from severe fatigue, with the female sex as an independent risk factor. Fatigue was not associated with symptoms of depression or anxiety. Patients with long-COVID symptoms should receive an interdisciplinary diagnostic and therapeutic approach depending on the clinical presentation.
Collapse
|
14
|
Linking Human Betaretrovirus with Autoimmunity and Liver Disease in Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14091941. [PMID: 36146750 PMCID: PMC9502388 DOI: 10.3390/v14091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the production of diagnostic antimitochondrial antibodies (AMA) reactive to the pyruvate dehydrogenase complex. A human betaretrovirus (HBRV) resembling mouse mammary tumor virus has been characterized in patients with PBC. However, linking the viral infection with the disease is not a straight-forward process because PBC is a complex multifactorial disease influenced by genetic, hormonal, autoimmune, environmental, and other factors. Currently, PBC is assumed to have an autoimmune etiology, but the evidence is lacking to support this conjecture. In this review, we describe different approaches connecting HBRV with PBC. Initially, we used co-cultivation of HBRV with biliary epithelial cells to trigger the PBC-specific phenotype with cell surface expression of cryptic mitochondrial autoantigens linked with antimitochondrial antibody expression. Subsequently, we have derived layers of proof to support the role of betaretrovirus infection in mouse models of autoimmune biliary disease with spontaneous AMA production and in patients with PBC. Using Hill’s criteria, we provide an overview of how betaretrovirus infection may trigger autoimmunity and propagate biliary disease. Ultimately, the demonstration that disease can be cured with antiviral therapy may sway the argument toward an infectious disease etiology in an analogous fashion that was used to link H. pylori with peptic ulcer disease.
Collapse
|
15
|
Leong KH, Yip HT, Kuo CF, Tsai SY. Treatments of chronic fatigue syndrome and its debilitating comorbidities: a 12-year population-based study. J Transl Med 2022; 20:268. [PMID: 35690765 PMCID: PMC9187893 DOI: 10.1186/s12967-022-03461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study aims to provide 12-year nationwide epidemiology data to investigate the epidemiology and comorbidities of and therapeutic options for chronic fatigue syndrome (CFS) by analyzing the National Health Insurance Research Database. Methods 6306 patients identified as having CFS during the 2000–2012 period and 6306 controls (with similar distributions of age and sex) were analyzed. Result The patients with CFS were predominantly female and aged 35–64 years in Taiwan and presented a higher proportion of depression, anxiety disorder, insomnia, Crohn’s disease, ulcerative colitis, renal disease, type 2 diabetes, gout, dyslipidemia, rheumatoid arthritis, Sjogren syndrome, and herpes zoster. The use of selective serotonin receptor inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), Serotonin antagonist and reuptake inhibitors (SARIs), Tricyclic antidepressants (TCAs), benzodiazepine (BZD), Norepinephrine-dopamine reuptake inhibitors (NDRIs), muscle relaxants, analgesic drugs, psychotherapies, and exercise therapies was prescribed significantly more frequently in the CFS cohort than in the control group. Conclusion This large national study shared the mainstream therapies of CFS in Taiwan, we noticed these treatments reported effective to relieve symptoms in previous studies. Furthermore, our findings indicate that clinicians should have a heightened awareness of the comorbidities of CFS, especially in psychiatric problems.
Collapse
Affiliation(s)
- Kam-Hang Leong
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung City, 404, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Institute of Infectious Disease, Mackay Memorial Hospital, Taipei City, 104, Taiwan.,Department of Nursing, Nursing and Management, MacKay Junior College of Medicine, New Taipei City, 25245, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA. .,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 252, Taiwan. .,Institute of Long-Term Care, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, 104, Taiwan.
| |
Collapse
|
16
|
Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, Wiersinga WJ, van Vugt M, Weijs PJM, Murray AJ, Wüst RCI. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022; 13:11-22. [PMID: 34997689 PMCID: PMC8818659 DOI: 10.1002/jcsm.12896] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
Collapse
Affiliation(s)
- Madu N Soares
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Moritz Eggelbusch
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Karin H L Gerrits
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Merem Medical Rehabilitation, Hilversum, The Netherlands
| | - Marike van der Schaaf
- Department of Rehabilitation, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Health, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Bram van den Borst
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michele van Vugt
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J M Weijs
- Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
The Atrophic Effect of 1,25(OH) 2 Vitamin D 3 (Calcitriol) on C2C12 Myotubes Depends on Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121980. [PMID: 34943083 PMCID: PMC8750283 DOI: 10.3390/antiox10121980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dysfunctional mitochondrial metabolism has been linked to skeletal muscle loss in several physio-pathological states. Although it has been reported that vitamin D (VD) supports cellular redox homeostasis by maintaining normal mitochondrial functions, and VD deficiency often occurs in conditions associated with skeletal muscle loss, the efficacy of VD supplementation to overcome muscle wasting is debated. Investigations on the direct effects of VD metabolites on skeletal muscle using C2C12 myotubes have revealed an unexpected pro-atrophic activity of calcitriol (1,25VD), while its upstream metabolites cholecalciferol (VD3) and calcidiol (25VD) have anti-atrophic effects. Here, we investigated if the atrophic effects of 1,25VD on myotubes depend on its activity on mitochondrial metabolism. The impact of 1,25VD and its upstream metabolites VD3 and 25VD on mitochondria dynamics and the activity of C2C12 myotubes was evaluated by measuring mitochondrial content, architecture, metabolism, and reactive oxygen species (ROS) production. We found that 1,25VD induces atrophy through protein kinase C (PKC)-mediated ROS production, mainly of extramitochondrial origin. Consistent with this, cotreatment with the antioxidant N-acetylcysteine (NAC), but not with the mitochondria-specific antioxidant mitoTEMPO, was sufficient to blunt the atrophic activity of 1,25VD. In contrast, VD3 and 25VD have antioxidant properties, suggesting that the efficacy of VD supplementation might result from the balance between atrophic pro-oxidant (1,25VD) and protective antioxidant (VD3 and 25VD) metabolites.
Collapse
|
18
|
Kan J, Cheng J, Hu C, Chen L, Liu S, Venzon D, Murray M, Li S, Du J. A Botanical Product Containing Cistanche and Ginkgo Extracts Potentially Improves Chronic Fatigue Syndrome Symptoms in Adults: A Randomized, Double-Blind, and Placebo-Controlled Study. Front Nutr 2021; 8:658630. [PMID: 34901100 PMCID: PMC8662561 DOI: 10.3389/fnut.2021.658630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dietary therapy may be beneficial in alleviating symptoms of chronic fatigue syndrome (CFS), a disorder that is characterized by extreme fatigue and other symptoms, but the cause of which remains unclear. The aim of this study was to evaluate the protective effect of a botanical product containing cistanche (Cistanche tubulosa [Schenk] Wight) and ginkgo (Ginkgo biloba L.) extracts on adults with CFS in a randomized, double-blind, placebo-controlled clinical trial. A total of 190 subjects (35-60 years old, non-obese) with CFS were randomized to receive one tablet of a low dose (120-mg ginkgo and 300-mg cistanche), a high dose (180-mg ginkgo and 450-mg cistanche) or a placebo once daily for 60 days. Blood samples and responses on the Chalder fatigue scale (CFQ 11), the World Health Organization's quality of life questionnaire (WHOQOL), and the sexual life quality questionnaire (SLQQ) were collected at baseline and post-intervention. CFS symptoms of impaired memory or concentration, physical fatigue, unrefreshing sleep, and post-exertional malaise were significantly improved (p < 0.001) in both of the treatment groups. The botanical intervention significantly decreased physical and mental fatigue scores of CFQ 11 and improved WHOQOL and SLQQ scores of the subjects (p < 0.01). Levels of blood ammonia and lactic acid in the treatment groups were significantly lower than those of the placebo group (low-dose: p < 0.05; high-dose: p < 0.01). In addition, the change in lactic acid concentration was negatively associated with the severity of CFS symptoms (p = 0.0108) and was correlated with the change in total physical fatigue score of the CFQ (p = 0.0302). Considering the trivial effect size, the results may lack clinical significance. In conclusion, this botanical product showed promising effects in ameliorating the symptoms of CFS. Clinical trials with improved assessment tools, an expanded sample size, and an extended follow-up period are warranted to further validate the findings. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT02807649.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Junrui Cheng
- Nutrilite Health Institute, Shanghai, China
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Chun Hu
- Nutrilite Health Institute, Buena Park, CA, United States
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Siyu Liu
- Nutrilite Health Institute, Shanghai, China
| | - Dawna Venzon
- Nutrilite Health Institute, Buena Park, CA, United States
| | - Mary Murray
- Nutrilite Health Institute, Buena Park, CA, United States
| | - Shuguang Li
- School of Public Health, Fudan University, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| |
Collapse
|
19
|
A Competitive Sprinter's Resting Blood Lactate Levels Fluctuate with a One-Year Training Cycle: Case Reports. J Funct Morphol Kinesiol 2021; 6:jfmk6040095. [PMID: 34842747 PMCID: PMC8628947 DOI: 10.3390/jfmk6040095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
It has been reported that the variability of resting blood lactate concentration (BLa) is related to metabolic capacity. However, it is unclear whether the resting BLa of athletes can be utilized as a metabolic biomarker. This longitudinal case study tested the hypothesis that resting BLa levels in the morning fluctuate with a 1-year training cycle. The subject was an adult male sprinter, and BLa and blood glucose at the time of waking were measured every day for 1 year. The training cycles were divided into five phases: 1. Basic training: high-intensity and high-volume load; 2. Condition and speed training: high-intensity and low-volume load; 3. Competition training I: track race and high-intensity load; 4. Conditioning for injury; 5. Competition training II. The mean BLa levels in the basic training (1.10 ± 0.32 mmol/L and competition training I (1.06 ± 0.28 mmol/L) phases were significantly lower than in the condition and speed training (1.26 ± 0.40 mmol/L) and conditioning injury (1.37 ± 0.34 mmol/L) phases. The clarified training cycle dependence of resting BLa is suggested to be related to the ability to utilize lactate as an energy substrate with fluctuations in oxidative metabolic capacity. This case report supports the tentative hypothesis that resting BLa may be a biomarker index linked to the metabolic capacity according to the training cycle.
Collapse
|
20
|
Abulizi A, Hu L, Ma A, Shao FY, Zhu HZ, Lin SM, Shao GY, Xu Y, Ran JH, Li J, Zhou H, Lin DM, Wang LF, Li M, Yang BX. Ganoderic acid alleviates chemotherapy-induced fatigue in mice bearing colon tumor. Acta Pharmacol Sin 2021; 42:1703-1713. [PMID: 33927358 PMCID: PMC8463583 DOI: 10.1038/s41401-021-00669-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ling Hu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Fang-Yu Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui-Ze Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Mei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Li
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lian-Fu Wang
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
21
|
Chu L, Elliott M, Stein E, Jason LA. Identifying and Managing Suicidality in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Healthcare (Basel) 2021; 9:629. [PMID: 34070367 PMCID: PMC8227525 DOI: 10.3390/healthcare9060629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Adult patients affected by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are at an increased risk of death by suicide. Based on the scientific literature and our clinical/research experiences, we identify risk and protective factors and provide a guide to assessing and managing suicidality in an outpatient medical setting. A clinical case is used to illustrate how information from this article can be applied. Characteristics of ME/CFS that make addressing suicidality challenging include absence of any disease-modifying treatments, severe functional limitations, and symptoms which limit therapies. Decades-long misattribution of ME/CFS to physical deconditioning or psychiatric disorders have resulted in undereducated healthcare professionals, public stigma, and unsupportive social interactions. Consequently, some patients may be reluctant to engage with mental health care. Outpatient medical professionals play a vital role in mitigating these effects. By combining evidence-based interventions aimed at all suicidal patients with those adapted to individual patients' circumstances, suffering and suicidality can be alleviated in ME/CFS. Increased access to newer virtual or asynchronous modalities of psychiatric/psychological care, especially for severely ill patients, may be a silver lining of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lily Chu
- Independent Consultant, Burlingame, CA 94010, USA
| | - Meghan Elliott
- Center for Community Research, DePaul University, Chicago, IL 60614, USA; (M.E.); (L.A.J.)
| | - Eleanor Stein
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB T2T 4L8, Canada;
| | - Leonard A. Jason
- Center for Community Research, DePaul University, Chicago, IL 60614, USA; (M.E.); (L.A.J.)
| |
Collapse
|
22
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
23
|
Chu L, Fuentes LR, Marshall OM, Mirin AA. Environmental accommodations for university students affected by Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Work 2021; 66:315-326. [PMID: 32568151 DOI: 10.3233/wor-203176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Today, 24% of college and university students are affected by a chronic health condition or disability. Existing support programs, including disability services, within colleges and universities are often unaccustomed to addressing the fluctuating and unpredictable changes in health and functioning faced by students with severe chronic illnesses. This situation is especially difficult for students with lesser-known, invisible diseases like Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a complex disease affecting up to 2.5 million Americans which often begins in late adolescence or young adulthood. OBJECTIVE Educate occupational therapists (OTs) about ME/CFS and steps they can take to assist students. METHODS This work is based on a review of the scientific literature and our collective professional/ personal experiences. RESULTS ME/CFS' effects on multiple organ systems combined with the unusual symptom of post-exertional malaise frequently and substantially decrease function. Currently, no effective disease-modifying treatments have been established. Nevertheless, OTs can help student maximize their participation in university life by identifying potential obstacles, formulating practical solutions and negotiating with their institutions to implement reasonable, environmental accommodations. CONCLUSIONS Through understanding this disease, being aware of possible support options, and recommending them as appropriate, OTs are in unique position to greatly improve these students' lives.
Collapse
Affiliation(s)
- Lily Chu
- Independent Consultant, Burlingame, CA, USA
| | | | - Olena M Marshall
- Doctoral Candidate, Educational Leadership, DePaul University College of Education, Chicago, IL, USA
| | | |
Collapse
|
24
|
Amato A, Messina G, Giustino V, Brusa J, Brighina F, Proia P. A pilot study on non-invasive treatment of migraine: The self-myofascial release. Eur J Transl Myol 2021; 31. [PMID: 33709650 PMCID: PMC8056163 DOI: 10.4081/ejtm.2021.9646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The aims of this paper was to determine the effect of self-myofascial release (SMFR) on postural stability and to analyze if it can influence migraine condition. Twenty-five subjects (age 49.7± 12.5) affected by migraine were enrolled. Assessments included a stabilometric analysis in order to evaluate balance and plantar support, with eyes open (OE) and closed (CE); cervical ROM measurement; evaluation of upper limb strength through handgrip. All the analysis were carried out before and after the administration of a single SMFR protocol, using medium density small balls laid in the three most painful trigger points in migraine patients: trapezius, sternocleidomastoids and suboccipital muscles. Performing a T test for paired samples, there was a significant increase in two ranges of the stabilometric analysis: ellipse surface, both with open and closed eyes (p value EO = 0.05; p value EC = 0.04) and length of the sway path, but just with closed eyes (p value = 0.05). SMFR might have a positive impact on postural stability in subjects with migraine. Further investigation should be conducted to confirm the hypothesis.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo.
| | - Giuseppe Messina
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo.
| | - Valerio Giustino
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo.
| | - Jessica Brusa
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo.
| | - Filippo Brighina
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo.
| | - Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo.
| |
Collapse
|
25
|
Amato A, Messina G, Giustino V, Brusa J, Brighina F, Proia P. A pilot study on non-invasive treatment of migraine: The self-myofascial release. Eur J Transl Myol 2021. [DOI: 10.4081/ejtm.2020.9646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aims of this paper was to determine the effect of self-myofascial release (SMFR) on postural stability and to analyze if it can influence migraine condition. Twenty-five subjects (age 49.7± 12.5) affected by migraine were enrolled. Assessments included a stabilometric analysis in order to evaluate balance and plantar support, with eyes open (OE) and closed (CE); cervical ROM measurement; evaluation of upper limb strength through handgrip. All the analysis were carried out before and after the administration of a single SMFR protocol, using medium density small balls laid in the three most painful trigger points in migraine patients: trapezius, sternocleidomastoids and suboccipital muscles. Performing a T test for paired samples, there was a significant increase in two ranges of the stabilometric analysis: ellipse surface, both with open and closed eyes (p value EO = 0.05; p value EC = 0.04) and length of the sway path, but just with closed eyes (p value = 0.05). SMFR might have a positive impact on postural stability in subjects with migraine. Further investigation should be conducted to confirm the hypothesis.
Collapse
|
26
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
27
|
Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions. Clin Epigenetics 2020; 12:167. [PMID: 33148325 PMCID: PMC7641803 DOI: 10.1186/s13148-020-00960-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a lifelong debilitating disease with a complex pathology not yet clearly defined. Susceptibility to ME/CFS involves genetic predisposition and exposure to environmental factors, suggesting an epigenetic association. Epigenetic studies with other ME/CFS cohorts have used array-based technology to identify differentially methylated individual sites. Changes in RNA quantities and protein abundance have been documented in our previous investigations with the same ME/CFS cohort used for this study. RESULTS DNA from a well-characterised New Zealand cohort of 10 ME/CFS patients and 10 age-/sex-matched healthy controls was isolated from peripheral blood mononuclear (PBMC) cells, and used to generate reduced genome-scale DNA methylation maps using reduced representation bisulphite sequencing (RRBS). The sequencing data were analysed utilising the DMAP analysis pipeline to identify differentially methylated fragments, and the MethylKit pipeline was used to quantify methylation differences at individual CpG sites. DMAP identified 76 differentially methylated fragments and Methylkit identified 394 differentially methylated cytosines that included both hyper- and hypo-methylation. Four clusters were identified where differentially methylated DNA fragments overlapped with or were within close proximity to multiple differentially methylated individual cytosines. These clusters identified regulatory regions for 17 protein encoding genes related to metabolic and immune activity. Analysis of differentially methylated gene bodies (exons/introns) identified 122 unique genes. Comparison with other studies on PBMCs from ME/CFS patients and controls with array technology showed 59% of the genes identified in this study were also found in one or more of these studies. Functional pathway enrichment analysis identified 30 associated pathways. These included immune, metabolic and neurological-related functions differentially regulated in ME/CFS patients compared to the matched healthy controls. CONCLUSIONS Major differences were identified in the DNA methylation patterns of ME/CFS patients that clearly distinguished them from the healthy controls. Over half found in gene bodies with RRBS in this study had been identified in other ME/CFS studies using the same cells but with array technology. Within the enriched functional immune, metabolic and neurological pathways, a number of enriched neurotransmitter and neuropeptide reactome pathways highlighted a disturbed neurological pathophysiology within the patient group.
Collapse
|
28
|
Tomas C, Elson JL, Newton JL, Walker M. Substrate utilisation of cultured skeletal muscle cells in patients with CFS. Sci Rep 2020; 10:18232. [PMID: 33106563 PMCID: PMC7588462 DOI: 10.1038/s41598-020-75406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic fatigue syndrome (CFS) patients often suffer from severe muscle pain and an inability to exercise due to muscle fatigue. It has previously been shown that CFS skeletal muscle cells have lower levels of ATP and have AMP-activated protein kinase dysfunction. This study outlines experiments looking at the utilisation of different substrates by skeletal muscle cells from CFS patients (n = 9) and healthy controls (n = 11) using extracellular flux analysis. Results show that CFS skeletal muscle cells are unable to utilise glucose to the same extent as healthy control cells. CFS skeletal muscle cells were shown to oxidise galactose and fatty acids normally, indicating that the bioenergetic dysfunction lies upstream of the TCA cycle. The dysfunction in glucose oxidation is similar to what has previously been shown in blood cells from CFS patients. The consistency of cellular bioenergetic dysfunction in different cell types supports the hypothesis that CFS is a systemic disease. The retention of bioenergetic defects in cultured cells indicates that there is a genetic or epigenetic component to the disease. This is the first study to use cells derived from skeletal muscle biopsies in CFS patients and healthy controls to look at cellular bioenergetic function in whole cells.
Collapse
Affiliation(s)
- Cara Tomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Joanna L Elson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia L Newton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Nacul L, O'Boyle S, Palla L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front Neurol 2020; 11:826. [PMID: 32849252 PMCID: PMC7431524 DOI: 10.3389/fneur.2020.00826] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Shennae O'Boyle
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luigi Palla
- Department of Medical Statistics, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Flavio E. Nacul
- Pro-Cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Jammes Y, Adjriou N, Kipson N, Criado C, Charpin C, Rebaudet S, Stavris C, Guieu R, Fenouillet E, Retornaz F. Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome. J Transl Med 2020; 18:173. [PMID: 32306967 PMCID: PMC7168976 DOI: 10.1186/s12967-020-02341-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background In myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), altered membrane excitability often occurs in exercising muscles demonstrating muscle dysfunction regardless of any psychiatric disorder. Increased oxidative stress is also present in many ME/CFS patients and could affect the membrane excitability of resting muscles. Methods Seventy-two patients were examined at rest, during an incremental cycling exercise and during a 10-min post-exercise recovery period. All patients had at least four criteria leading to a diagnosis of ME/CFS. To explore muscle membrane excitability, M-waves were recorded during exercise (rectus femoris (RF) muscle) and at rest (flexor digitorum longus (FDL) muscle). Two plasma markers of oxidative stress (thiobarbituric acid reactive substance (TBARS) and oxidation–reduction potential (ORP)) were measured. Plasma potassium (K+) concentration was also measured at rest and at the end of exercise to explore K+ outflow. Results Thirty-nine patients had marked M-wave alterations in both the RF and FDL muscles during and after exercise while the resting values of plasma TBARS and ORP were increased and exercise-induced K+ outflow was decreased. In contrast, 33 other patients with a diagnosis of ME/CFS had no M-wave alterations and had lower baseline levels of TBARS and ORP. M-wave changes were inversely proportional to TBARS and ORP levels. Conclusions Resting muscles of ME/CFS patients have altered muscle membrane excitability. However, our data reveal heterogeneity in some major biomarkers in ME/CFS patients. Measurement of ORP may help to improve the diagnosis of ME/CFS. Trial registration Ethics Committee “Ouest II” of Angers (May 17, 2019) RCB ID: number 2019-A00611-56
Collapse
Affiliation(s)
- Yves Jammes
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Department of Internal Medicine, European Hospital, Marseille, France
| | - Nabil Adjriou
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Nathalie Kipson
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Christine Criado
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Caroline Charpin
- Department of Internal Medicine, European Hospital, Marseille, France
| | | | - Chloé Stavris
- Department of Internal Medicine, European Hospital, Marseille, France
| | - Régis Guieu
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Emmanuel Fenouillet
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Institut National des Sciences Biologiques, CNRS, Paris, France
| | | |
Collapse
|
31
|
Wirth K, Scheibenbogen C. A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against ß2-adrenergic receptors. Autoimmun Rev 2020; 19:102527. [PMID: 32247028 DOI: 10.1016/j.autrev.2020.102527] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (CFS/ME) is a complex and severely disabling disease with a prevalence of 0.3% and no approved treatment and therefore a very high medical need. Following an infectious onset patients suffer from severe central and muscle fatigue, chronic pain, cognitive impairment, and immune and autonomic dysfunction. Although the etiology of CFS/ME is not solved yet, there is numerous evidence for an autoantibody mediated dysregulation of the immune and autonomic nervous system. We found elevated ß2 adrenergic receptor (ß2AdR) and M3 acetylcholine receptor antibodies in a subset of CFS/ME patients. As both ß2AdR and M3 acetylcholine receptor are important vasodilators, we would expect their functional disturbance to result in vasoconstriction and hypoxemia. An impaired circulation and oxygen supply could result in many symptoms of ME/CFS. There are consistent reports of vascular dysfunction in ME/CFS. Muscular and cerebral hypoperfusion has been shown in ME/CFS in various studies and correlated with fatigue. Metabolic changes in ME/CFS are also in line with a concept of hypoxia and ischemia. Here we try to develop a unifying working concept for the complex pathomechanism of ME/CFS based on the presence of dysfunctional autoantibodies against ß2AdR and M3 acetylcholine receptor and extrapolate it to the pathophysiology of ME/CFS without an autoimmune pathogenesis.
Collapse
Affiliation(s)
- Klaus Wirth
- Sanofi-Aventis Deutschland, R&D, Frankfurt a.M., Germany.
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany.
| |
Collapse
|
32
|
Melvin A, Lacerda E, Dockrell HM, O'Rahilly S, Nacul L. Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med 2019; 17:409. [PMID: 31801546 PMCID: PMC6892232 DOI: 10.1186/s12967-019-02153-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterised by fatigue and post-exertional malaise. Its pathogenesis is poorly understood. GDF15 is a circulating protein secreted by cells in response to a variety of stressors. The receptor for GDF15 is expressed in the brain, where its activation results in a range of responses. Among the conditions in which circulating GDF15 levels are highly elevated are mitochondrial disorders, where early skeletal muscle fatigue is a key symptom. We hypothesised that GDF15 may represent a marker of cellular stress in ME/CFS. Methods GDF15 was measured in serum from patients with ME/CFS (n = 150; 100 with mild/moderate and 50 with severe symptoms), “healthy volunteers” (n = 150) and a cohort of patients with multiple sclerosis (n = 50). Results Circulating GDF15 remained stable in a subset of ME/CFS patients when sampled on two occasions ~ 7 months (IQR 6.7–8.8) apart, 720 pg/ml (95% CI 625–816) vs 670 pg/ml (95% CI 598–796), P = 0.5. GDF15 levels were 491 pg/ml in controls (95% CI 429–553), 546 pg/ml (95% CI 478–614) in MS patients, 560 pg/ml (95% CI 502–617) in mild/moderate ME/CFS patients and 602 pg/ml (95% CI 531–674) in severely affected ME/CFS patients. Accounting for potential confounders, severely affected ME/CFS patients had GDF15 concentrations that were significantly increased compared to healthy controls (P = 0.01). GDF15 levels were positively correlated (P = 0.026) with fatigue scores in ME/CFS. Conclusions Severe ME/CFS is associated with increased levels of GDF15, a circulating biomarker of cellular stress that appears which stable over several months.
Collapse
Affiliation(s)
- A Melvin
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrookes Treatment Centre, Cambridge, CB2 0QQ, UK
| | - E Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - H M Dockrell
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.,Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - S O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrookes Treatment Centre, Cambridge, CB2 0QQ, UK
| | - L Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
33
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
34
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics (Basel) 2019; 9:diagnostics9030091. [PMID: 31394725 PMCID: PMC6787585 DOI: 10.3390/diagnostics9030091] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies' aims and therapeutic approaches have been described in order to benefit patients' prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS.
Collapse
|
35
|
Bohne VJB, Bohne Ø. Suggested pathology of systemic exertion intolerance disease: Impairment of the E 3 subunit or crossover of swinging arms of the E 2 subunit of the pyruvate dehydrogenase complex decreases regeneration of cofactor dihydrolipoic acid of the E 2 subunit. Med Hypotheses 2019; 130:109260. [PMID: 31383326 DOI: 10.1016/j.mehy.2019.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Systemic Exertion Intolerance Disease (SEID) or myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) has an unknown aetiology, with no known treatment and a prevalence of approximately 22 million individuals (2%) in Western countries. Although strongly suspected, the role of lactate in pathology is unknown, nor has the nature of the two most central symptoms of the condition - post exertional malaise and fatigue. The proposed mechanism of action of pyruvate dehydrogenase complex (PDC) plays a central role in maintaining energy production with cofactors alpha-lipoic acid (LA) and its counterpart dihydrolipoic acid (DHLA), its regeneration suggested as the new rate limiting factor. Decreased DHLA regeneration due to impairment of the E3 subunit or crossover of the swinging arms of the E2 subunit of PDC have been suggested as a cause of ME/CFS/SEID resulting in instantaneous fluctuations in lactate levels and instantaneous offset of the DHLA/LA ratio and defining the condition as an LA deficiency with chronic instantaneous hyperlactataemia with explicit stratification of symptoms. While instantaneous hyperlactataemia has been suggested to account for the PEM, the fatigue was explained by the downregulated throughput of pyruvate and consequently lower production of ATP with the residual enzymatic efficacy of the E3 subunit or crossover of the E2 as a proposed explanation of the fatigue severity. Functional diagnostics and visualization of instantaneous elevations of lactate and DHLA has been suggested. Novel treatment strategies have been implicated to compensate for chronic PDC impairment and hyperlactataemia. This hypothesis potentially influences the current understanding and treatment methods for any type of hyperlactataemia, fatigue, ME/CFS/SEID, and conditions associated with PDC impairment.
Collapse
|
36
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
37
|
Ohba T, Domoto S, Tanaka M, Nakamura S, Shimazawa M, Hara H. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice. Biol Pharm Bull 2019; 42:1140-1145. [DOI: 10.1248/bpb.b19-00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takuya Ohba
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinichi Domoto
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Miyu Tanaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| |
Collapse
|
38
|
Chromone-3-aldehyde derivatives – sirtuin 2 inhibitors for correction of muscular dysfunction. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the study was to evaluate experimentally, the myoprotective effect of new chromone-3-aldehyde derivatives in conditions of muscular dysfunction and to establish a potential mechanism of myoprotective activity – the blockade of the function of sirutin 2. Materials and methods. The effect of new chromone-3-aldehyde derivatives on the development of muscular dysfunction under the conditions of an electromiostimulation test, was studied. The degree of muscle fatigue was evaluated in the «grip-strength» and through test biochemical assays (determination of the activity of lactate dehydrogenase, creatine kinase, concentration of lactic and pyruvic acids, creatinine, myoglobin, and total protein) to determine the possible mechanism of action of the test compounds (5 new derivatives of chromone-3-aldehyde) and their effect on the function of sirtuin 2 was evaluated.
Results. The study showed that chromone-3-aldehyde derivatives have a pronounced myoprotective effect associated with low toxicity (class 5 toxicity according to the GHS classification), which was confirmed by the results of the «grip-strength» test and biochemical tests data. Test compounds under the X3AC1, X3AOAC and X3AN codes evince sirtuin 2 inhibitory activity, which was reflected in a decrease in its concentration by 63.6% (p <0.05); 130.2% (p <0.05) and 218.8% (p <0.05).
Conclusion. The study showed that chromone-3-aldehyde derivatives are promising subjects for further study with the goal of creating a drug with a high myoprotective effect and an optimal safety profile.
Collapse
|
39
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
40
|
VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, Koh HJ, Carson JA. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol 2019; 104:385-397. [PMID: 30576589 DOI: 10.1113/ep087429] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Interleukin-6 has been associated with muscle mass and metabolism in both physiological and pathological conditions. A causal role for interleukin-6 in the induction of fatigue and disruption of mitochondrial function has not been determined. What is the main finding and its importance? We demonstrate that chronically elevated interleukin-6 increased skeletal muscle fatigability and disrupted mitochondrial content and function independent of changes in fibre type and mass. ABSTRACT Interleukin-6 (IL-6) can initiate intracellular signalling in skeletal muscle by binding to the IL-6-receptor and interacting with the transmembrane gp130 protein. Circulating IL-6 has established effects on skeletal muscle mass and metabolism in both physiological and pathological conditions. However, the effects of circulating IL-6 on skeletal muscle function are not well understood. The purpose of this study was to determine whether chronically elevated systemic IL-6 was sufficient to disrupt skeletal muscle force, fatigue and mitochondrial function. Additionally, we examined the role of muscle gp130 signalling during overexpression of IL-6. Systemic IL-6 overexpression for 2 weeks was achieved by electroporation of an IL-6 overexpression plasmid or empty vector into the quadriceps of either C57BL/6 (WT) or skeletal muscle gp130 knockout (KO) male mice. Tibialis anterior muscle in situ functional properties and mitochondrial respiration were determined. Interleukin-6 accelerated in situ skeletal muscle fatigue in the WT, with a 18.5% reduction in force within 90 s of repeated submaximal contractions and a 7% reduction in maximal tetanic force after 5 min. There was no difference between fatigue in the KO and KO+IL-6. Interleukin-6 reduced WT muscle mitochondrial respiratory control ratio by 36% and cytochrome c oxidase activity by 42%. Interleukin-6 had no effect on either KO respiratory control ratio or cytochrome c oxidase activity. Interleukin-6 also had no effect on body weight, muscle mass or tetanic force in either genotype. These results provide evidence that 2 weeks of elevated systemic IL-6 is sufficient to increase skeletal muscle fatigability and decrease muscle mitochondrial content and function, and these effects require muscle gp130 signalling.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dennis K Fix
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan N Montalvo
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Brittany R Counts
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ashley J Smuder
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Ho-Jin Koh
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - James A Carson
- College of Health Professions, Department of Physical Therapy, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| |
Collapse
|
41
|
Campbell-Tofte J, Vrahatis A, Josefsen K, Mehlsen J, Winther K. Investigating the aetiology of adverse events following HPV vaccination with systems vaccinology. Cell Mol Life Sci 2019; 76:67-87. [PMID: 30324425 PMCID: PMC11105185 DOI: 10.1007/s00018-018-2925-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
In contrast to the insidious and poorly immunogenic human papillomavirus (HPV) infections, vaccination with the HPV virus-like particles (vlps) is non-infectious and stimulates a strong neutralizing-antibody response that protects HPV-naïve vaccinees from viral infection and associated cancers. However, controversy about alleged adverse events following immunization (AEFI) with the vlps have led to extensive reductions in vaccine acceptance, with countries like Japan dropping it altogether. The AEFIs are grouped into chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). In this review, we present a hypothesis that the AEFIs might arise from malfunctions within the immune system when confronted with the unusual antigen. In addition, we outline how the pathophysiology of the AEFIs can be cost-effectively investigated with the holistic principles of systems vaccinology in a two-step process. First, comprehensive immunological profiles of HPV vaccinees exhibiting the AEFIs are generated by integrating the data derived from serological profiling for prominent HPV antibodies and serum cytokines, with data from serum metabolomics, peripheral white blood cells transcriptomics and gut microbiome profiling. Next, the immunological profiles are compared with corresponding profiles generated for matched (a) HPV vaccinees without AEFIs; (b) non-HPV-vaccinated individuals with CFS/ME-like symptoms; and (c) non-HPV-vaccinated individuals without CFS/ME. In these comparisons, any causal links between HPV vaccine and the AEFIs, as well as the underlying molecular basis for the links will be revealed. Such a study should provide an objective basis for evaluating HPV vaccine safety and for identifying biomarkers for individuals at risk of developing AEFI with HPV vaccination.
Collapse
Affiliation(s)
| | | | - Knud Josefsen
- Bartholin Institute, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Jesper Mehlsen
- Coordinating Research Centre, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark
| | - Kaj Winther
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
42
|
Cai JG, Luo LM, Tang H, Zhou L. Cytotoxicity of Malondialdehyde and Cytoprotective Effects of Taurine via Oxidative Stress and PGC-1α Signal Pathway in C2C12 Cells. Mol Biol 2018. [DOI: 10.1134/s0026893318040040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Pietrangelo T, Fulle S, Coscia F, Gigliotti PV, Fanò-Illic G. Old muscle in young body: an aphorism describing the Chronic Fatigue Syndrome. Eur J Transl Myol 2018; 28:7688. [PMID: 30344981 PMCID: PMC6176399 DOI: 10.4081/ejtm.2018.7688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/27/2022] Open
Abstract
The chronic fatigue syndrome (CFS) otherwise known as myalgic encephalomyelitis (ME), is a debilitating syndrome whose identification is very complex due to lack of precise diagnostic criteria. This pathology begins with limitations in duration and intensity of exercise and rapid onset of pain during physical activity. Its etiology is unknown, and symptoms are not limited to the muscles. Epidemiology is rather difficult to delimit, even if it affects mainly young (20-40 years), female subjects. The results of muscular research show some peculiarities that can justify what has been observed in vivo. In particular, 1. presence of oxidative damage of lipid component of biological membranes and DNA not compensated by the increase of the scavenger activity; 2. Excitation-Contraction (E-C) alteration with modification of Ca2+ transport; 3. passage from slow to fast fiber phenotype; 4. inability to increase glucose uptake; 5. presence of mitochondrial dysfunction; and 6. genes expressed differentially (particularly those involved in energy production). The skeletal muscles of CFS / ME patients show a significant alteration of the oxidative balance due to mitochondrial alteration and of the fiber phenotype composition as shown in sarcopenic muscles of the elderly. Vice versa, the muscle catabolism does not appear to be involved in the onset of this syndrome. The data support the hypothesis that patients with CFS are subjected to some of the problems typical for muscle aging, which is probably related to disorders of muscle protein synthesis and biogenesis of mitochondria. Patients with CFS can benefit from an appropriate training program because no evidence suggests that physical exercise worsens symptoms. Type, intensity and duration of any physical activity that activates muscle contraction (including Electrical Stimulation) require further investigation even if it is known that non-exhaustive physical activity decreases painful symptomatology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
| | - Francesco Coscia
- Sport Medicine Service of Autonome Provinz Bozen, San Candido-Innichen, Italy
- Laboratory of Sport Physiology, San Candido-Innichen, Italy
| | - Paola Virginia Gigliotti
- Sport Medicine Service of Autonome Provinz Bozen, San Candido-Innichen, Italy
- Laboratory of Sport Physiology, San Candido-Innichen, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
- Free University of Alcatraz, Santa Cristina di Gubbio, Italy
| |
Collapse
|
44
|
Cambras T, Castro-Marrero J, Zaragoza MC, Díez-Noguera A, Alegre J. Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. PLoS One 2018; 13:e0198106. [PMID: 29874259 PMCID: PMC5991397 DOI: 10.1371/journal.pone.0198106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year. Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer. Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin vasodilator responses may play a role in CFS/ME.
Collapse
Affiliation(s)
- Trinitat Cambras
- Chronobiology Group, Department of Physiology and Biochemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (TC); (JC-M)
| | - Jesús Castro-Marrero
- CFS/ME Unit, Vall d’Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (TC); (JC-M)
| | - Maria Cleofé Zaragoza
- CFS/ME Unit, Vall d’Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Department, Laboratorios Viñas, Barcelona, Spain
| | - Antoni Díez-Noguera
- Chronobiology Group, Department of Physiology and Biochemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - José Alegre
- CFS/ME Unit, Vall d’Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini-review. Biochem Soc Trans 2018; 46:547-553. [PMID: 29666214 DOI: 10.1042/bst20170503] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Chronic fatigue syndrome (CFS), commonly known as myalgic encephalomyelitis (ME), is a debilitating disease of unknown etiology. CFS/ME is a heterogeneous disease associated with a myriad of symptoms but with severe, prolonged fatigue as the core symptom associated with the disease. There are currently no known biomarkers for the disease, largely due to the lack of knowledge surrounding the eitopathogenesis of CFS/ME. Numerous studies have been conducted in an attempt to identify potential biomarkers for the disease. This mini-review offers a brief summary of current research into the identification of metabolic abnormalities in CFS/ME which may represent potential biomarkers for the disease. The progress of research into key areas including immune dysregulation, mitochondrial dysfunction, 5'-adenosine monophosphate-activated protein kinase activation, skeletal muscle cell acidosis, and metabolomics are presented here. Studies outlined in this mini-review show many potential causes for the pathogenesis of CFS/ME and identify many potential metabolic biomarkers for the disease from the aforementioned research areas. The future of CFS/ME research should focus on building on the potential biomarkers for the disease using multi-disciplinary techniques at multiple research sites in order to produce robust data sets. Whether the metabolic changes identified in this mini-review occur as a cause or a consequence of the disease must also be established.
Collapse
|
46
|
DO CT. Successful outcome of musculoskeletal injury leads to a reduction in chronic fatigue: A case report. J Bodyw Mov Ther 2018; 22:281-286. [DOI: 10.1016/j.jbmt.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
47
|
Blomberg J, Gottfries CG, Elfaitouri A, Rizwan M, Rosén A. Infection Elicited Autoimmunity and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An Explanatory Model. Front Immunol 2018; 9:229. [PMID: 29497420 PMCID: PMC5818468 DOI: 10.3389/fimmu.2018.00229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis (ME) often also called chronic fatigue syndrome (ME/CFS) is a common, debilitating, disease of unknown origin. Although a subject of controversy and a considerable scientific literature, we think that a solid understanding of ME/CFS pathogenesis is emerging. In this study, we compiled recent findings and placed them in the context of the clinical picture and natural history of the disease. A pattern emerged, giving rise to an explanatory model. ME/CFS often starts after or during an infection. A logical explanation is that the infection initiates an autoreactive process, which affects several functions, including brain and energy metabolism. According to our model for ME/CFS pathogenesis, patients with a genetic predisposition and dysbiosis experience a gradual development of B cell clones prone to autoreactivity. Under normal circumstances these B cell offsprings would have led to tolerance. Subsequent exogenous microbial exposition (triggering) can lead to comorbidities such as fibromyalgia, thyroid disorder, and orthostatic hypotension. A decisive infectious trigger may then lead to immunization against autoantigens involved in aerobic energy production and/or hormone receptors and ion channel proteins, producing postexertional malaise and ME/CFS, affecting both muscle and brain. In principle, cloning and sequencing of immunoglobulin variable domains could reveal the evolution of pathogenic clones. Although evidence consistent with the model accumulated in recent years, there are several missing links in it. Hopefully, the hypothesis generates testable propositions that can augment the understanding of the pathogenesis of ME/CFS.
Collapse
Affiliation(s)
- Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | | | - Amal Elfaitouri
- Department of Infectious Disease and Tropical Medicine, Faculty of Public Health, Benghazi University, Benghazi, Libya
| | - Muhammad Rizwan
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
48
|
Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front Psychiatry 2018; 9:589. [PMID: 30505285 PMCID: PMC6250825 DOI: 10.3389/fpsyt.2018.00589] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1β, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ifuku
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Katafuchi
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings. Curr Rheumatol Rep 2017; 19:1. [PMID: 28116577 DOI: 10.1007/s11926-017-0628-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. RECENT FINDINGS Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.
Collapse
|
50
|
Bland JS. Chronic Fatigue Syndrome, Functional Mitochondriopathy, and Enterohepatic Dysfunction. Integr Med (Encinitas) 2017; 16:18-21. [PMID: 30936800 PMCID: PMC6438100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic fatigue syndrome (CFS) has remained a medical enigma since it was first reported in the late 1980s by Paul Cheney, MD, PhD, who-along with his medical partner in Incline Village, Nevada-made the observation of a group of his patients all having serious and unremitting fatigue following a significant winter flu season. I was introduced to Dr Cheney by Scott Rigden, MD, an expert in the study of chronic fatigue syndrome and also a key advisor to me during the founding days of the Institute for Functional Medicine. From 1989 to 1991, Dr Cheney was an important contributor to the development of concepts underlying the Functional Medicine model.
Collapse
|