1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Feys O, Wens V, Schuind S, Rikir E, Legros B, De Tiège X, Gaspard N. Variability of cortico-cortical evoked potentials in the epileptogenic zone is related to seizure occurrence. Ann Clin Transl Neurol 2024; 11:2645-2656. [PMID: 39370736 PMCID: PMC11514933 DOI: 10.1002/acn3.52179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Cortico-cortical evoked potentials (CCEPs) were described as reproducible during trains of single-pulse electrical stimulations (SPES). Still, few studies described a variability of CCEPs that was higher within the epileptogenic zone (EZ). This study aimed at characterizing the relationship of CCEP variability with the occurrence of interictal/ictal epileptiform discharges at the temporal vicinity of the stimulation, but not during the stimulation, by effective connectivity modifications. METHODS We retrospectively included 20 patients who underwent SPES during their stereo-electroencephalography (SEEG). We analyzed the variability of CCEPs by using the post-stimulation time course of intertrial standard deviation (amplitude) and the timing of peak amplitude signal of CCEP epochs (latency). Values were corrected for the Euclidian distance between stimulating/recording electrodes. Receiver operating characteristics curves were used to assess the relationship with the EZ. The link between CCEP variability and interictal discharges occurrence, seizure frequency prior to the SEEG recording, and number of seizures during SEEG recording was assessed with Spearman's correlations. RESULTS A relationship was demonstrated between the EZ and both the distance-corrected latency variation (area under the curve (AUC): 0.73-0.74) and the distance-corrected amplitude variation (AUC: 0.71-0.72) and both were related with the occurrence of seizures. CONCLUSION Seizures before/during SEEG impact the dynamics of effective connectivity within the epileptogenic network by reducing the variability of CCEP latency/amplitude when the seizure frequency increases. It suggests a strengthening of the epileptogenic network with the occurrence of many seizures. These findings stress the importance of early epilepsy surgery at a time when the network organization has not yet been complete.
Collapse
Affiliation(s)
- Odile Feys
- Department of NeurologyUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LNT)Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI)BruxellesBelgium
| | - Vincent Wens
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LNT)Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI)BruxellesBelgium
- Department of Translational NeuroimagingUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
| | - Sophie Schuind
- Department of NeurosurgeryUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
| | - Estelle Rikir
- Department of NeurologyUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
| | - Benjamin Legros
- Department of NeurologyUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LNT)Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI)BruxellesBelgium
- Department of Translational NeuroimagingUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
| | - Nicolas Gaspard
- Department of NeurologyUniversité libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital ErasmeBruxellesBelgium
- Department of NeurologyYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
3
|
Zhou F, Hu R, Wang Y, Wu X, Chen X, Xi Z, Zeng K. Calsyntenin-1 expression and function in brain tissue of lithium-pilocarpine rat seizure models. Synapse 2024; 78:e22307. [PMID: 39171546 DOI: 10.1002/syn.22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
To present the expression of calsyntenin-1 (Clstn1) in the brain and investigate the potential mechanism of Clstn1 in lithium-pilocarpine rat seizure models. Thirty-five male SD adult rats were induced to have seizures by intraperitoneal injection of lithium chloride pilocarpine. Rats exhibiting spontaneous seizures were divided into the epilepsy (EP) group (n = 15), whereas those without seizures were divided into the control group (n = 14). Evaluate the expression of Clstn1 in the temporal lobe of two groups using Western blotting, immunohistochemistry, and immunofluorescence. Additionally, 55 male SD rats were subjected to status epilepticus (SE) using the same induction method. Rats experiencing seizures exceeding Racine's level 4 (n = 48) were randomly divided into three groups: SE, SE + control lentivirus (lentiviral vector expressing green fluorescent protein [LV-GFP]), and SE + Clstn1-targeted RNA interference lentivirus (LV-Clstn1-RNAi). The LV-GFP group served as a control for the lentiviral vector, whereas the LV-Clstn1-RNAi group received a lentivirus designed to silence Clstn1 expression. These lentiviral treatments were administered via hippocampal stereotactic injection 2 days after SE induction. Seven days after SE, Western blot analysis was performed to evaluate the expression of Clstn1 in the hippocampus and temporal lobe. Meanwhile, we observed the latency of spontaneous seizures and the frequency of spontaneous seizures within 8 weeks among the three groups. The expression of Clstn1 in the cortex and hippocampus of the EP group was significantly increased compared to the control group (p < .05). Immunohistochemistry and immunofluorescence showed that Clstn1 was widely distributed in the cerebral cortex and hippocampus of rats, and colocalization analysis revealed that it was mainly co expressed with neurons in the cytoplasm. Compared with the SE group (11.80 ± 2.17 days) and the SE + GFP group (12.40 ± 1.67 days), there was a statistically significant difference (p < .05) in the latency period of spontaneous seizures (15.14 ± 2.41 days) in the SE + Clstn1 + RNAi group rats. Compared with the SE group (4.60 ± 1.67 times) and the SE + GFP group (4.80 ± 2.05 times), the SE + Clstn1 + RNAi group (2.0 ± .89 times) showed a significant reduction in the frequency of spontaneous seizures within 2 weeks of chronic phase in rats (p < .05). Elevated Clstn1 expression in EP group suggests its role in EP onset. Targeting Clstn1 may be a potential therapeutic approach for EP management.
Collapse
Affiliation(s)
- Fu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurology, Pizhou People's Hospital, Jiangsu, China
| | - Yuzhu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiqin Xi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kebin Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Carrese AM, Vitale R, Turco M, Masola V, Aniello F, Vitale E, Donizetti A. Sustained Depolarization Induces Gene Expression Pattern Changes Related to Synaptic Plasticity in a Human Cholinergic Cellular Model. Mol Neurobiol 2024:10.1007/s12035-024-04262-w. [PMID: 38941065 DOI: 10.1007/s12035-024-04262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/25/2024] [Indexed: 06/29/2024]
Abstract
Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.
Collapse
Affiliation(s)
- Anna Maria Carrese
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Rossella Vitale
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy
| | - Valeria Masola
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy.
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy.
| |
Collapse
|
5
|
DePew AT, Bruckner JJ, O'Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation and cytoskeletal organization of Drosophila peripheral synapses. Development 2024; 151:dev202517. [PMID: 38738619 PMCID: PMC11190576 DOI: 10.1242/dev.202517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Synaptic development requires multiple signaling pathways to ensure successful connections. Transmembrane receptors are optimally positioned to connect the synapse and the rest of the neuron, often acting as synaptic organizers to synchronize downstream events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor that has been most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, identified emerging roles, but how LRP4 acts as a presynaptic organizer and the downstream mechanisms of LRP4 are not well understood. Here, we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motoneurons to instruct pre- and postsynaptic development. Loss of presynaptic LRP4 results in multiple defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. These data demonstrate a function for presynaptic LRP4 as a peripheral synaptic organizer, highlight a downstream mechanism conserved with its CNS function in Drosophila, and underscore previously unappreciated but important developmental roles for LRP4 in cytoskeletal organization, synapse maturation and active zone organization.
Collapse
Affiliation(s)
- Alison T. DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate M. O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
7
|
Doğanyiğit Z, Okan A, Yılmaz S, Uğuz AC, Akyüz E. Gender-related variation expressions of neuroplastin TRAF6, GluA1, GABA(A) receptor, and PMCA in cortex, hippocampus, and brainstem in an experimental epilepsy model. Synapse 2024; 78:e22289. [PMID: 38436644 DOI: 10.1002/syn.22289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Seher Yılmaz
- Faculty of Medicine, Department of Anatomy, Yozgat Bozok University, Yozgat, Turkey
| | - A Cihangir Uğuz
- Faculty of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Enes Akyüz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Malone TJ, Tien NW, Ma Y, Cui L, Lyu S, Wang G, Nguyen D, Zhang K, Myroshnychenko MV, Tyan J, Gordon JA, Kupferschmidt DA, Gu Y. A consistent map in the medial entorhinal cortex supports spatial memory. Nat Commun 2024; 15:1457. [PMID: 38368457 PMCID: PMC10874432 DOI: 10.1038/s41467-024-45853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
The medial entorhinal cortex (MEC) is hypothesized to function as a cognitive map for memory-guided navigation. How this map develops during learning and influences memory remains unclear. By imaging MEC calcium dynamics while mice successfully learned a novel virtual environment over ten days, we discovered that the dynamics gradually became more spatially consistent and then stabilized. Additionally, grid cells in the MEC not only exhibited improved spatial tuning consistency, but also maintained stable phase relationships, suggesting a network mechanism involving synaptic plasticity and rigid recurrent connectivity to shape grid cell activity during learning. Increased c-Fos expression in the MEC in novel environments further supports the induction of synaptic plasticity. Unsuccessful learning lacked these activity features, indicating that a consistent map is specific for effective spatial memory. Finally, optogenetically disrupting spatial consistency of the map impaired memory-guided navigation in a well-learned environment. Thus, we demonstrate that the establishment of a spatially consistent MEC map across learning both correlates with, and is necessary for, successful spatial memory.
Collapse
Affiliation(s)
- Taylor J Malone
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nai-Wen Tien
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lian Cui
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shangru Lyu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Center of Neural Science, New York University, New York, NY, USA
| | - Kai Zhang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Maxym V Myroshnychenko
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Tyan
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Office of the Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Feys O, Wens V, Rovai A, Schuind S, Rikir E, Legros B, De Tiège X, Gaspard N. Delayed effective connectivity characterizes the epileptogenic zone during stereo-EEG. Clin Neurophysiol 2024; 158:59-68. [PMID: 38183887 DOI: 10.1016/j.clinph.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE Single-pulse electrical stimulations (SPES) can elicit normal and abnormal responses that might characterize the epileptogenic zone, including spikes, high-frequency oscillations and cortico-cortical evoked potentials (CCEPs). In this study, we investigate their association with the epileptogenic zone during stereoelectroencephalography (SEEG) in 28 patients with refractory focal epilepsy. METHODS Characteristics of CCEPs (distance-corrected or -uncorrected latency, amplitude and the connectivity index) and the occurrence of spikes and ripples were assessed. Responses within the epileptogenic zone and within the non-involved zone were compared using receiver operating characteristics curves and analysis of variance (ANOVA) either in all patients, patients with well-delineated epileptogenic zone, and patients older than 15 years old. RESULTS We found an increase in distance-corrected CCEPs latency after stimulation within the epileptogenic zone (area under the curve = 0.71, 0.72, 0.70, ANOVA significant after false discovery rate correction). CONCLUSIONS The increased distance-corrected CCEPs latency suggests that neuronal propagation velocity is altered within the epileptogenic network. This association might reflect effective connectivity changes at cortico-cortical or cortico-subcortico-cortical levels. Other responses were not associated with the epileptogenic zone, including the CCEPs amplitude, the connectivity index, the occurrences of induced ripples and spikes. The discrepancy with previous descriptions may be explained by different spatial brain sampling between subdural and depth electrodes. SIGNIFICANCE Increased distance-corrected CCEPs latency, indicating delayed effective connectivity, characterizes the epileptogenic zone. This marker could be used to help tailor surgical resection limits after SEEG.
Collapse
Affiliation(s)
- Odile Feys
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium.
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Sophie Schuind
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurosurgery, Bruxelles, Belgium
| | - Estelle Rikir
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Benjamin Legros
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Nicolas Gaspard
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Experimental Neurology, Bruxelles, Belgium; Yale University, Department of Neurology, New Haven, CT, USA
| |
Collapse
|
10
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
11
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
DePew AT, Bruckner JJ, O’Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation, and cytoskeletal organization of peripheral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564481. [PMID: 37961323 PMCID: PMC10635100 DOI: 10.1101/2023.11.03.564481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synapse development requires multiple signaling pathways to accomplish the myriad of steps needed to ensure a successful connection. Transmembrane receptors on the cell surface are optimally positioned to facilitate communication between the synapse and the rest of the neuron and often function as synaptic organizers to synchronize downstream signaling events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, has identified emerging roles for LRP4 as a presynaptic molecule, but how LRP4 acts as a presynaptic organizer, what roles LRP4 plays in organizing presynaptic biology, and the downstream mechanisms of LRP4 are not well understood. Here we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motor neurons to instruct multiple aspects of pre- and postsynaptic development. Loss of presynaptic LRP4 results in a range of developmental defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure, and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. SRPK79D overexpression suppresses synaptic defects associated with loss of lrp4. These data demonstrate a function for LRP4 as a peripheral synaptic organizer acting presynaptically, highlight a downstream mechanism conserved with its CNS function, and indicate previously unappreciated roles for LRP4 in cytoskeletal organization, synapse maturation, and active zone organization, underscoring its developmental importance.
Collapse
Affiliation(s)
- Alison T. DePew
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Lead Contact
| |
Collapse
|
13
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a bicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. G3 (BETHESDA, MD.) 2023; 13:jkad221. [PMID: 37757863 PMCID: PMC10627267 DOI: 10.1093/g3journal/jkad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Tescarollo FC, Valdivia D, Chen S, Sun H. Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus. Front Mol Neurosci 2023; 16:1268311. [PMID: 37942301 PMCID: PMC10627882 DOI: 10.3389/fnmol.2023.1268311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
The kindling model has been used extensively by researchers to study the neurobiology of temporal lobe epilepsy (TLE) due to its capacity to induce intensification of seizures by the progressive recruitment of additional neuronal clusters into epileptogenic networks. We applied repetitive focal optogenetic activation of putative excitatory neurons in the dorsal CA1 area of the hippocampus of mice to investigate the role of inhibitory signaling during this process. This experimental protocol resulted in a kindling phenotype that was maintained for 2 weeks after the animals were fully kindled. As a result of the different phases of optogenetic kindling (OpK), key inhibitory signaling elements, such as KCC2 and NKCC1, exhibited distinct temporal and spatial dynamics of regulation. These alterations in protein expression were related to the distinct pattern of ictal activity propagation through the different hippocampal sublayers. Our results suggest the KCC2 disruption in the contralateral hippocampus of fully kindled animals progressively facilitated the creation of pathological pathways for seizure propagation through the hippocampal network. Upon completion of kindling, we observed animals that were restimulated after a rest period of 14-day showed, besides a persistent KCC2 downregulation, an NKCC1 upregulation in the bilateral dentate gyrus and hippocampus-wide loss of parvalbumin-positive interneurons. These alterations observed in the chronic phase of OpK suggest that the hippocampus of rekindled animals continued to undergo self-modifications during the rest period. The changes resulting from this period suggest the possibility of the development of a mirror focus on the hippocampus contralateral to the site of optical stimulations. Our results offer perspectives for preventing the recruitment and conversion of healthy neuronal networks into epileptogenic ones among patients with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Hai Sun
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Malone TJ, Tien NW, Ma Y, Cui L, Lyu S, Wang G, Nguyen D, Zhang K, Myroshnychenko MV, Tyan J, Gordon JA, Kupferschmidt DA, Gu Y. A consistent map in the medial entorhinal cortex supports spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560254. [PMID: 37986767 PMCID: PMC10659391 DOI: 10.1101/2023.09.30.560254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The medial entorhinal cortex (MEC) is hypothesized to function as a cognitive map for memory-guided navigation. How this map develops during learning and influences memory remains unclear. By imaging MEC calcium dynamics while mice successfully learned a novel virtual environment over ten days, we discovered that the dynamics gradually became more spatially consistent and then stabilized. Additionally, grid cells in the MEC not only exhibited improved spatial tuning consistency, but also maintained stable phase relationships, suggesting a network mechanism involving synaptic plasticity and rigid recurrent connectivity to shape grid cell activity during learning. Increased c-Fos expression in the MEC in novel environments further supports the induction of synaptic plasticity. Unsuccessful learning lacked these activity features, indicating that a consistent map is specific for effective spatial memory. Finally, optogenetically disrupting spatial consistency of the map impaired memory-guided navigation in a well-learned environment. Thus, we demonstrate that the establishment of a spatially consistent MEC map across learning both correlates with, and is necessary for, successful spatial memory.
Collapse
Affiliation(s)
- Taylor J. Malone
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Nai-Wen Tien
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- These authors contributed equally to this work
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Lian Cui
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shangru Lyu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Center of Neural Science, New York University, New York, NY, USA
| | - Kai Zhang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Maxym V. Myroshnychenko
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean Tyan
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A. Gordon
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Office of the Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Kupferschmidt
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
17
|
Díaz F, Aguilar F, Wellmann M, Martorell A, González-Arancibia C, Chacana-Véliz L, Negrón-Oyarzo I, Chávez AE, Fuenzalida M, Nualart F, Sotomayor-Zárate R, Bonansco C. Enhanced Astrocyte Activity and Excitatory Synaptic Function in the Hippocampus of Pentylenetetrazole Kindling Model of Epilepsy. Int J Mol Sci 2023; 24:14506. [PMID: 37833953 PMCID: PMC10572460 DOI: 10.3390/ijms241914506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a chronic condition characterized by recurrent spontaneous seizures. The interaction between astrocytes and neurons has been suggested to play a role in the abnormal neuronal activity observed in epilepsy. However, the exact way astrocytes influence neuronal activity in the epileptogenic brain remains unclear. Here, using the PTZ-induced kindling mouse model, we evaluated the interaction between astrocyte and synaptic function by measuring astrocytic Ca2+ activity, neuronal excitability, and the excitatory/inhibitory balance in the hippocampus. Compared to control mice, hippocampal slices from PTZ-kindled mice displayed an increase in glial fibrillary acidic protein (GFAP) levels and an abnormal pattern of intracellular Ca2+-oscillations, characterized by an increased frequency of prolonged spontaneous transients. PTZ-kindled hippocampal slices also showed an increase in the E/I ratio towards excitation, likely resulting from an augmented release probability of excitatory inputs without affecting inhibitory synapses. Notably, the alterations in the release probability seen in PTZ-kindled slices can be recovered by reducing astrocyte hyperactivity with the reversible toxin fluorocitrate. This suggests that astroglial hyper-reactivity enhances excitatory synaptic transmission, thereby impacting the E/I balance in the hippocampus. Altogether, our findings support the notion that abnormal astrocyte-neuron interactions are pivotal mechanisms in epileptogenesis.
Collapse
Affiliation(s)
- Franco Díaz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Escuela de Ciencias de la Salud, Universidad Viña del Mar, Viña del Mar 2580022, Chile
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Freddy Aguilar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Mario Wellmann
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Andrés Martorell
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Fonoaudiología, Facultad de Salud, Universidad Santo Tomás, Viña del Mar 2561780, Chile
| | - Camila González-Arancibia
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Lorena Chacana-Véliz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Ignacio Negrón-Oyarzo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile;
- Center for Advanced Microscopy CMA BIOBIO, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| |
Collapse
|
18
|
Castelli V, Lavanco G, D’Amico C, Feo S, Tringali G, Kuchar M, Cannizzaro C, Brancato A. CBD enhances the cognitive score of adolescent rats prenatally exposed to THC and fine-tunes relevant effectors of hippocampal plasticity. Front Pharmacol 2023; 14:1237485. [PMID: 37583903 PMCID: PMC10424934 DOI: 10.3389/fphar.2023.1237485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Cesare D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Oya M, Matsuoka K, Kubota M, Fujino J, Tei S, Takahata K, Tagai K, Yamamoto Y, Shimada H, Seki C, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Sugihara G, Obata T, Zhang MR, Suhara T, Nakamura M, Kato N, Takado Y, Takahashi H, Higuchi M. Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism. Sci Rep 2023; 13:11655. [PMID: 37468523 DOI: 10.1038/s41598-023-38306-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.
Collapse
Affiliation(s)
- Masaki Oya
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
- Department of Psychiatry, Nara Medical University, Kashihara-shi, Nara, Japan.
| | - Manabu Kubota
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Tokorozawa-shi, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata-shi, Niigata, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, School of Medicine, Showa University, Setagaya-ku, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Kanagawa Psychiatric Center, Yokohama-shi, Kanagawa, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| |
Collapse
|
20
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549367. [PMID: 37502901 PMCID: PMC10370149 DOI: 10.1101/2023.07.17.549367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement behaviors and stimulus processing. The immense number and variety of neurons within the nervous system makes discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila , Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via expression of two independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Ensuring adequate expression of each transgene is essential to enable more complex experiments; as such, work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof-of-principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that synaptic puncta number labeled by SynLight was comparable to endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| |
Collapse
|
21
|
Perversi F, Costa C, Labate A, Lattanzi S, Liguori C, Maschio M, Meletti S, Nobili L, Operto FF, Romigi A, Russo E, Di Bonaventura C. The broad-spectrum activity of perampanel: state of the art and future perspective of AMPA antagonism beyond epilepsy. Front Neurol 2023; 14:1182304. [PMID: 37483446 PMCID: PMC10359664 DOI: 10.3389/fneur.2023.1182304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glutamate is the brain's main excitatory neurotransmitter. Glutamatergic neurons primarily compose basic neuronal networks, especially in the cortex. An imbalance of excitatory and inhibitory activities may result in epilepsy or other neurological and psychiatric conditions. Among glutamate receptors, AMPA receptors are the predominant mediator of glutamate-induced excitatory neurotransmission and dictate synaptic efficiency and plasticity by their numbers and/or properties. Therefore, they appear to be a major drug target for modulating several brain functions. Perampanel (PER) is a highly selective, noncompetitive AMPA antagonist approved in several countries worldwide for treating different types of seizures in various epileptic conditions. However, recent data show that PER can potentially address many other conditions within epilepsy and beyond. From this perspective, this review aims to examine the new preclinical and clinical studies-especially those produced from 2017 onwards-on AMPA antagonism and PER in conditions such as mesial temporal lobe epilepsy, idiopathic and genetic generalized epilepsy, brain tumor-related epilepsy, status epilepticus, rare epileptic syndromes, stroke, sleep, epilepsy-related migraine, cognitive impairment, autism, dementia, and other neurodegenerative diseases, as well as provide suggestions on future research agenda aimed at probing the possibility of treating these conditions with PER and/or other AMPA receptor antagonists.
Collapse
Affiliation(s)
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Neurological Clinic, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome ‘Tor Vergata”, Rome, Italy
- Epilepsy Center, Neurology Unit, University Hospital “Tor Vergata”, Rome, Italy
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Meletti
- Neurology Department, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genova, Genova, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Romigi
- Sleep Medicine Center, Neurological Mediterranean Institute IRCCS Neuromed, Pozzilli, Italy
- Psychology Faculty, International Telematic University Uninettuno, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
23
|
Rijal S, Corona L, Perry MS, Tamilia E, Madsen JR, Stone SSD, Bolton J, Pearl PL, Papadelis C. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci Rep 2023; 13:9622. [PMID: 37316544 PMCID: PMC10267141 DOI: 10.1038/s41598-023-36551-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.
Collapse
Affiliation(s)
- Sakar Rijal
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Ludovica Corona
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX, 76104, USA.
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76010, USA.
- School of Medicine, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
24
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
25
|
Zhao YC, Wang CC, Li XY, Wang DD, Wang YM, Xue CH, Wen M, Zhang TT. Supplementation of n-3 PUFAs in Adulthood Attenuated Susceptibility to Pentylenetetrazol Induced Epilepsy in Mice Fed with n-3 PUFAs Deficient Diet in Early Life. Mar Drugs 2023; 21:354. [PMID: 37367679 DOI: 10.3390/md21060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The growth and development of the fetus and newborn throughout pregnancy and lactation are directly related to the nutritional status of the mother, which has a significant impact on the health of the offspring. The purpose of this experiment was to investigate the susceptibility of n-3 polyunsaturated fatty acid deficiency in early life to seizures in adulthood. The n-3 PUFAs-deficient mice's offspring were established and then fed with α-LNA diet, DHA-enriched ethyl ester, and DHA-enriched phospholipid-containing diets for 17 days at the age of eight weeks. During this period, animals received intraperitoneal injections of 35 mg/kg of pentylenetetrazol (PTZ) every other day for eight days. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate PTZ-induced epileptic seizures and brain disorders. Notably, nutritional supplementation with n-3 PUFAs in adulthood for 17 days could significantly recover the brain n-3 fatty acid and alleviate the epilepsy susceptibility as well as raise seizure threshold to different levels by mediating the neurotransmitter disturbance and mitochondria-dependent apoptosis, demyelination, and neuroinflammation status of the hippocampus. DHA-enriched phospholipid possessed a superior effect on alleviating the seizure compared to α-LNA and DHA-enriched ethyl ester. Dietary n-3 PUFA deficiency in early life increases the susceptibility to PTZ-induced epilepsy in adult offspring, and nutritional supplementation with n-3 PUFAs enhances the tolerance to the epileptic seizure.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Pet Nutrition Research and Development Center, Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
26
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
27
|
Chen Y, Holland KD, Shertzer HG, Nebert DW, Dalton TP. Fatal Epileptic Seizures in Mice Having Compromised Glutathione and Ascorbic Acid Biosynthesis. Antioxidants (Basel) 2023; 12:antiox12020448. [PMID: 36830006 PMCID: PMC9952205 DOI: 10.3390/antiox12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10-40% of normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascorbic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures and brain pathology in young DKO mice could be prevented with AA supplementation in drinking water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for 2-3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures, with death occurring between 12 and 21 days later. These results provide direct evidence for an indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain function and neuronal health. We speculate that the functional crosstalk between GSH and AA plays an important role in regulating glutamatergic neurotransmission and in protecting against excitotoxicity-induced brain damage.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-785-4694; Fax: +1-203-724-6023
| | - Katherine D. Holland
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Howard G. Shertzer
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel W. Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Departments of Pediatrics and Molecular & Developmental Biology, Cincinnati Children’s Research Center, Cincinnati, OH 45229, USA
| | - Timothy P. Dalton
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
28
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
29
|
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs. J Neurosci 2023; 43:28-55. [PMID: 36446587 PMCID: PMC9838713 DOI: 10.1523/jneurosci.0884-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the Drosophila antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies.SIGNIFICANCE STATEMENT Distinct olfactory neuron classes in Drosophila develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.
Collapse
|
30
|
Tavassoli Z, Giahi M, Janahmadi M, Hosseinmardi N. Glial cells inhibition affects the incidence of metaplasticity in the hippocampus of Pentylentetrazole-induced kindled rats. Epilepsy Behav 2022; 135:108907. [PMID: 36095872 DOI: 10.1016/j.yebeh.2022.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is characterized by the unpredictability but recurrence of seizures caused by the synchronized aberrant firing of neuronal populations. It has been shown that astrocytes (one of the most prominent glial cells) are ideally positioned to induce or contribute to neural network synchronization. Although astrocytes cannot generate action potentials, they have the capacity to sense and respond to neuronal activity, which allows them to function as homeostatic regulators of synaptic interactions. Considering the necessity of astrocyte-neuron bidirectional interactions in synaptic transmission and plasticity, in the current study, the role of astrocytes in synaptic metaplasticity and resultant behavioral seizures induced by Pentylentetrazole (PTZ) was assessed. Rats were kindled by intraperitoneal (i.p.) injection of PTZ (30 mg/kg/48 h). A glial cell inhibitor, Fluorocitrate (FC), was injected into the right lateral cerebral ventricle of the rat 30 min before PTZ during kindling progress. The maximal seizure stage (SS), stage 2 and 4 latency (S2L, S4L), stage 4 and 5 duration (S4D, S5D), and seizure duration (SD) were all assessed 20 min after PTZ administration by observation. Following Schaffer collateral stimulation, in vivo field, potential recordings from the CA1 area of the hippocampus were employed to assess the metaplasticity induced in kindled rats. The inhibition of glial cells during the kindling process significantly lowered SS, S4D&S5D and increased S4L (Two-way ANOVA, Bonferroni Posttest, P < 0.05, P < 0.01, and P < 0.001). In comparison to the control group, electrophysiological data demonstrated that HFS-induced LTP in kindled animals was decreased (Unpaired t-test, P < 0.05). Glial cell inhibition prevented PTZ's effect on LTP. Our data imply that kindling altered CA1 pyramidal neurons' vulnerability to synaptic plasticity. This shift in neuronal plasticity (metaplasticity) is mediated in part by glial cells and is important in the formation of seizure symptoms. As a result, glial cell inhibition was found to alleviate seizure behavior.
Collapse
Affiliation(s)
- Zohreh Tavassoli
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Giahi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Kandeda AK, Nodeina S, Mabou ST. An aqueous extract of Syzygium cumini protects against kainate-induced status epilepticus and amnesia: evidence for antioxidant and anti-inflammatory intervention. Metab Brain Dis 2022; 37:2581-2602. [PMID: 35916986 DOI: 10.1007/s11011-022-01052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Temporal lobe epilepsy is the most common drug-resistant epilepsy. To cure epilepsy, drugs must target the mechanisms at the origin of seizures. Thus, the present investigation aimed to evaluate the antiepileptic- and anti-amnesic-like effects of an aqueous extract of Syzygium cumini against kainate-induced status epilepticus in mice, and possible mechanisms of action. Mice were divided into 7 groups and treated as follows: normal group or kainate group received po distilled water (10 mL/kg), four test groups received Syzygium cumini (28.8, 72, 144, and 288 mg/kg, po), and the positive control group treated intraperitoneally (ip) with sodium valproate (300 mg/kg). An extra group of normal mice was treated with piracetam (200 mg/kg, po). Treatments were administered 60 min before the induction of status epilepticus with kainate (15 mg/kg, ip), and continued daily throughout behavioral testing. Twenty-four hours after the induction, T-maze and Morris water maze tasks were successively performed. The animals were then sacrificed and some markers of oxidative stress and neuroinflammation were estimated in the hippocampus. The extract significantly prevented status epilepticus and mortality. In the T-maze, the aqueous extract markedly increased the time spent and the number of entries in the discriminated arm. In the Morris water maze, the extract significantly increased the time spent in the target quadrant during the retention phase. Furthermore, the aqueous extract induced a significant reduction of oxidative stress and neuroinflammation. These results suggest that the aqueous extract of Syzygium cumini has antiepileptic- and anti-amnesic-like effects, likely mediated in part by antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Saleh Nodeina
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Symphorien Talom Mabou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
32
|
Chang A, Chang Y, Wang SJ. Rutin prevents seizures in kainic acid-treated rats: evidence of glutamate levels, inflammation and neuronal loss modulation. Food Funct 2022; 13:10401-10414. [PMID: 36148811 DOI: 10.1039/d2fo01490d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rutin, a naturally derived flavonoid molecule with known neuroprotective properties, has been demonstrated to have anticonvulsive potential, but the mechanism of this effect is still unclear. The current study aimed to investigate the probable antiseizure mechanisms of rutin in rats using the kainic acid (KA) seizure model. Rutin (50 and 100 mg kg-1) and carbamazepine (100 mg kg-1) were administered daily by oral gavage for 7 days before KA (15 mg kg-1) intraperitoneal (i.p.) injection. Seizure behavior, neuronal cell death, glutamate concentration, excitatory amino acid transporters (EAATs), glutamine synthetase (GS), glutaminase, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, N-methyl-D-aspartate (NMDA) receptor subunits GluN2A and GluN2B, activated astrocytes, and inflammatory and anti-inflammatory molecules in the hippocampus were evaluated. Supplementation with rutin attenuated seizure severity in KA-treated rats and reversed KA-induced neuronal loss and glutamate elevation in the hippocampus. Decreased glutaminase and GluN2B, and increased EAATs, GS, GluA1, GluA2 and GluN2A were observed with rutin administration. Rutin pretreatment also suppressed activated astrocytes, downregulated the protein levels of inflammatory molecules [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high mobility group Box 1 (HMGB1), interleukin-1 receptor 1 (IL-1R1), and Toll-like receptor-4 (TLR-4)] and upregulated anti-inflammatory molecule interleukin-10 (IL-10) protein expression. Taken together, the results indicate that the preventive treatment of rats with rutin attenuated KA-induced seizures and neuronal loss by decreasing glutamatergic hyperactivity and suppressing the IL-1R1/TLR4-related neuroinflammatory cascade.
Collapse
Affiliation(s)
- Anna Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 22060, Taiwan
| | - Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 22060, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
33
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
34
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
35
|
Göverti D, Büyüklüoğlu N, Kaya H, Yüksel RN, Yücel Ç, Göka E. Neuronal pentraxin-2 (NPTX2) serum levels during an acute psychotic episode in patients with schizophrenia. Psychopharmacology (Berl) 2022; 239:2585-2591. [PMID: 35482070 DOI: 10.1007/s00213-022-06147-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuronal pentraxin-2 (NPTX2, an immediate-early gene), which regulates synapse activity and neuroplasticity, plays an essential role in the neurodevelopmental process. NPTX2 possibly enhances the accumulation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPAR) on the postsynaptic membranes and stimulates excitatory synaptogenesis. We aimed to evaluate the plasma concentrations of NPTX2 of patients with schizophrenia in acute psychotic episodes compared with matched community-based controls. METHODS Ninety-three (93) patients diagnosed with schizophrenia according to DSM-5 and 83 healthy controls were included. The patients, all of which were in acute psychotic episodes, were recruited from the inpatient clinic. The patients were assessed by the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression- Severity (CGIS) scale, whereas the healthy subjects were evaluated with Structured Clinical Interview for DSM-5 (SCID-5) to exclude any major psychiatric diagnoses. RESULTS NPTX2 serum concentrations were significantly higher in the schizophrenia group (p < 0.001). NPTX2 levels negatively correlated with age (p = 0.004) and PANSS-positive symptom scores (p < 0.001). The most determinant factors in predicting the change in NPTX2 levels were PANSS-positive symptom and general psychopathology scores. CONCLUSIONS We conclude that NPTX2 could be involved in schizophrenia pathophysiology and valuable as a synapse-derived and glutamate-related biomarker. Further studies in larger samples assessing NPTX2 levels in remitted schizophrenia patients and combining neuroimaging techniques and cognitive evaluations with blood samples are needed.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, University of Health Sciences, Erenkoy Mental Health and Neurologic Disorders Training and Research Hospital, Istanbul, Turkey.
| | - Nihan Büyüklüoğlu
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Rabia Nazik Yüksel
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, University of Health Sciences, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
36
|
Kim S, Park S, Choi TG, Kim SS. Role of Short Chain Fatty Acids in Epilepsy and Potential Benefits of Probiotics and Prebiotics: Targeting “Health” of Epileptic Patients. Nutrients 2022; 14:nu14142982. [PMID: 35889939 PMCID: PMC9322917 DOI: 10.3390/nu14142982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The WHO’s definition of health transcends the mere absence of disease, emphasizing physical, mental, and social well-being. As this perspective is being increasingly applied to the management of chronic diseases, research on gut microbiota (GM) is surging, with a focus on its potential for persistent and noninvasive dietary therapeutics. In patients with epilepsy (PWE), a chronic lack of seizure control along with often neglected psychiatric comorbidities greatly disrupt the quality of life. Evidence shows that GM-derived short chain fatty acids (SCFAs) may impact seizure susceptibility through modulating (1) excitatory/inhibitory neurotransmitters, (2) oxidative stress and neuroinflammation, and (3) psychosocial stress. These functions are also connected to shared pathologies of epilepsy and its two most common psychiatric consequences: depression and anxiety. As the enhancement of SCFA production is enabled through direct administration, as well as probiotics and prebiotics, related dietary treatments may exert antiseizure effects. This paper explores the potential roles of SCFAs in the context of seizure control and its mental comorbidities, while analyzing existing studies on the effects of pro/prebiotics on epilepsy. Based on currently available data, this study aims to interpret the role of SCFAs in epileptic treatment, extending beyond the absence of seizures to target the health of PWE.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Preliminary Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Siyeon Park
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA;
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
37
|
Chen Y, Chen J, Chen Y, Li Y. miR-146a/KLF4 axis in epileptic mice: a novel regulator of synaptic plasticity involving STAT3 signaling. Brain Res 2022; 1790:147988. [PMID: 35728661 DOI: 10.1016/j.brainres.2022.147988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study is aimed to investigate the mechanism of miR-146a/KLF4 axis regarding epilepsy seizure and synaptic plasticity. METHODS Pentylenetetrazol (PTZ)-kindling mouse model of epilepsy was established and evaluated by Racine's scale. PTZ-treated mice were subjected to stereotactic injection of miR-146a antagomir and pre-KLF4 to verify the role of miR-146a and KLF4 in mice. Primary hippocampal neurons from fetal mouse were isolated and identified through immunofluorescence for microtubule-associated protein (MAP)-2. Cellular models of epilepsy were prepared using magnesium-free extracellular fluid and then the neurons were transfected with miR-146a antagomir, miR-146a agomir, miR-146a agomir + pre-KLF4, AG490 (an inhibitor of STAT3 signal pathway) or miR-146a agomir + AG490. The binding site between miR-146a and KLF4 was predicted and identified. The expression levels of miR-146a, KLF4, CREB, Synaptotagmin-11 (SYT11), and STAT3-related proteins were measured in addition to the morphology of neurons and length of neurite. The severity of synaptic plasticity was assessed according to the levels of CREB and SYT11. RESULTS The expression of miR-146a was elevated and KLF4 expression was decreased in epileptic mice. Stereotactic injection of miR-146a antagomir and pre-KLF4 reduced the seizure scores of epileptic mice. Transfection of miR-146a antagomir or pre-KLF4 could attenuate synaptic plasticity in epileptic mice and epileptic cellular models. miR-146a can negatively regulate KLF4 in epileptic cellular models to mediate synaptic plasticity. Epilepsy was attenuated in AG490 and miR-146a agomir + AG490 groups compared with that in Model group. CONCLUSION miR-146a inhibits KLF4 to activate STAT3, thus promoting synaptic plasticity in epileptic mice.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China.
| | - Juan Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| | - Yu Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| | - Yuan Li
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China
| |
Collapse
|
38
|
Homeostatic plasticity and excitation-inhibition balance: The good, the bad, and the ugly. Curr Opin Neurobiol 2022; 75:102553. [PMID: 35594578 DOI: 10.1016/j.conb.2022.102553] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the significance of the synaptic excitation/inhibition (E/I) balance in the context of homeostatic plasticity, whose primary goal is thought to maintain neuronal firing rates at a set point. We first provide an overview of the processes through which patterned input activity drives synaptic E/I tuning and maturation of circuits during development. Next, we emphasize the importance of the E/I balance at the synaptic level (homeostatic control of message reception) as a means to achieve the goal (homeostatic control of information transmission) at the network level and consider how compromised homeostatic plasticity associated with neurological diseases leads to hyperactivity, network instability, and ultimately improper information processing. Lastly, we highlight several pathological conditions related to sensory deafferentation and describe how, in some cases, homeostatic compensation without appropriate sensory inputs can result in phantom perceptions.
Collapse
|
39
|
Nobili P, Shen W, Milicevic K, Bogdanovic Pristov J, Audinat E, Nikolic L. Therapeutic Potential of Astrocyte Purinergic Signalling in Epilepsy and Multiple Sclerosis. Front Pharmacol 2022; 13:900337. [PMID: 35586058 PMCID: PMC9109958 DOI: 10.3389/fphar.2022.900337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy and multiple sclerosis (MS), two of the most common neurological diseases, are characterized by the establishment of inflammatory environment in the central nervous system that drives disease progression and impacts on neurodegeneration. Current therapeutic approaches in the treatments of epilepsy and MS are targeting neuronal activity and immune cell response, respectively. However, the lack of fully efficient responses to the available treatments obviously shows the need to search for novel therapeutic candidates that will not exclusively target neurons or immune cells. Accumulating knowledge on epilepsy and MS in humans and analysis of relevant animal models, reveals that astrocytes are promising therapeutic candidates to target as they participate in the modulation of the neuroinflammatory response in both diseases from the initial stages and may play an important role in their development. Indeed, astrocytes respond to reactive immune cells and contribute to the neuronal hyperactivity in the inflamed brain. Mechanistically, these astrocytic cell to cell interactions are fundamentally mediated by the purinergic signalling and involve metabotropic P2Y1 receptors in case of astrocyte interactions with neurons, while ionotropic P2X7 receptors are mainly involved in astrocyte interactions with autoreactive immune cells. Herein, we review the potential of targeting astrocytic purinergic signalling mediated by P2Y1 and P2X7 receptors to develop novel approaches for treatments of epilepsy and MS at very early stages.
Collapse
Affiliation(s)
- Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Weida Shen
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Katarina Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Jelena Bogdanovic Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolic
- Department of Neurophysiology, University of Belgrade, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
40
|
Hanke JM, Schindler KA, Seiler A. On the relationships between epilepsy, sleep, and Alzheimer's disease: A narrative review. Epilepsy Behav 2022; 129:108609. [PMID: 35176650 DOI: 10.1016/j.yebeh.2022.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Epilepsy, sleep, and Alzheimer's disease (AD) are tightly and potentially causally interconnected. The aim of our review was to investigate current research directions on these relationships. Our hope is that they may indicate preventive measures and new treatment options for early neurodegeneration. We included articles that assessed all three topics and were published during the last ten years. We found that this literature corroborates connections on various pathophysiological levels, including sleep-stage-related epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cognition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed overview of these topics and we discuss promising diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Julie M Hanke
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Andrea Seiler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland.
| |
Collapse
|
41
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
42
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
44
|
Yang L, Wang Y, Chen X, Zhang C, Chen J, Cheng H, Zhang L. Risk Factors for Epilepsy: A National Cross-Sectional Study from National Health and Nutrition Examination Survey 2013 to 2018. Int J Gen Med 2021; 14:4405-4411. [PMID: 34408479 PMCID: PMC8364967 DOI: 10.2147/ijgm.s323209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The purpose of this study is to investigate the risk factors of epilepsy based on the National Health and Nutrition Examination Survey (NHANES). Methods The data in this study was obtained from the NHANES database between 2013 and 2018. It included 14,290 participants aged between 20 and 80. We defined people with epilepsy (PWE) when they self-reported took at least one treatment medication for seizures or epilepsy. Analysis of risk factors for epilepsy mainly includes Student’s t-test, chi-square test, univariate and multivariate logistic regression analysis. Results People aged 40–59 shared 1.8 times the risk of epilepsy than those who aged 20–39, P=0.034. People who never married had a 2.8-fold higher risk of epilepsy than those who married/living with partner, P<0.001. The risk of epilepsy in subjects with very good/good general health was 0.4 times than that of subjects with fair/poor general health, P<0.001. Moreover, subjects without sleep disorders had a 0.4-fold higher risk of epilepsy than those who had sleep disorders, P=0.042. Conclusion People who are older, unmarried, and have sleep disorders are at higher risk of epilepsy. In addition, good/good general health condition is associated with a lower risk of epilepsy.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, People's Republic of China
| | - Xun Chen
- Department of cognitive neurolinguistics, School of Foregin Language, East China University of Science and Techonology, Shanghai, 200237, People's Republic of China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of HeFei, Hefei, People's Republic of China
| | - Junhui Chen
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, People's Republic of China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihua Zhang
- Department of Pathology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
45
|
Tilelli CQ, Flôres LR, Cota VR, Castro OWD, Garcia-Cairasco N. Amygdaloid complex anatomopathological findings in animal models of status epilepticus. Epilepsy Behav 2021; 121:106831. [PMID: 31864944 DOI: 10.1016/j.yebeh.2019.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Temporal lobe epileptic seizures are one of the most common and well-characterized types of epilepsies. The current knowledge on the pathology of temporal lobe epilepsy relies strongly on studies of epileptogenesis caused by experimentally induced status epilepticus (SE). Although several temporal lobe structures have been implicated in the epileptogenic process, the hippocampal formation is the temporal lobe structure studied in the greatest amount and detail. However, studies in human patients and animal models of temporal lobe epilepsy indicate that the amygdaloid complex can be also an important seizure generator, and several pathological processes have been shown in the amygdala during epileptogenesis. Therefore, in the present review, we systematically selected, organized, described, and analyzed the current knowledge on anatomopathological data associated with the amygdaloid complex during SE-induced epileptogenesis. Amygdaloid complex participation in the epileptogenic process is evidenced, among others, by alterations in energy metabolism, circulatory, and fluid regulation, neurotransmission, immediate early genes expression, tissue damage, cell suffering, inflammation, and neuroprotection. We conclude that major efforts should be made in order to include the amygdaloid complex as an important target area for evaluation in future research on SE-induced epileptogenesis. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Cristiane Queixa Tilelli
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil.
| | - Larissa Ribeiro Flôres
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil
| | - Vinicius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Campus Santo Antônio, Universidade Federal de São João del-Rei, Praça Frei Orlando, 170, Centro, São João Del Rei, MG 36307-352, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Campus A. C. Simões, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL 57072-970, Brazil
| | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, School of Medicine, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
46
|
Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci Bull 2021; 38:209-222. [PMID: 34324145 PMCID: PMC8821741 DOI: 10.1007/s12264-021-00753-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
Collapse
|
47
|
Uchino K, Kawano H, Tanaka Y, Adaniya Y, Asahara A, Deshimaru M, Kubota K, Watanabe T, Katsurabayashi S, Iwasaki K, Hirose S. Inhibitory synaptic transmission is impaired at higher extracellular Ca 2+ concentrations in Scn1a +/- mouse model of Dravet syndrome. Sci Rep 2021; 11:10634. [PMID: 34017040 PMCID: PMC8137694 DOI: 10.1038/s41598-021-90224-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Dravet syndrome (DS) is an intractable form of childhood epilepsy that occurs in infancy. More than 80% of all patients have a heterozygous abnormality in the SCN1A gene, which encodes a subunit of Na+ channels in the brain. However, the detailed pathogenesis of DS remains unclear. This study investigated the synaptic pathogenesis of this disease in terms of excitatory/inhibitory balance using a mouse model of DS. We show that excitatory postsynaptic currents were similar between Scn1a knock-in neurons (Scn1a+/- neurons) and wild-type neurons, but inhibitory postsynaptic currents were significantly lower in Scn1a+/- neurons. Moreover, both the vesicular release probability and the number of inhibitory synapses were significantly lower in Scn1a+/- neurons compared with wild-type neurons. There was no proportional increase in inhibitory postsynaptic current amplitude in response to increased extracellular Ca2+ concentrations. Our study revealed that the number of inhibitory synapses is significantly reduced in Scn1a+/- neurons, while the sensitivity of inhibitory synapses to extracellular Ca2+ concentrations is markedly increased. These data suggest that Ca2+ tethering in inhibitory nerve terminals may be disturbed following the synaptic burst, likely leading to epileptic symptoms.
Collapse
Affiliation(s)
- Kouya Uchino
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroyuki Kawano
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Yuna Adaniya
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ai Asahara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Masanobu Deshimaru
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan.
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shinichi Hirose
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
48
|
Effect of Allopregnanolone on Spatial Memory and Synaptic Proteins in Animal Model of Metabolic Syndrome. Brain Sci 2021; 11:brainsci11050644. [PMID: 34063474 PMCID: PMC8156862 DOI: 10.3390/brainsci11050644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Metabolic Syndrome (MetS) is considered a common disorder, especially with a sedentary lifestyle and unhealthy food consumption. Cognitive impairment is one of the MetS consequences that worsens the quality of life of the patients. The study aimed to assess the therapeutic effect of the neurosteroid Allopregnalonone on spatial memory and, therefore, the expression of two synaptic plasticity markers in the hippocampus. Thirty-two male rats were divided into four groups: control groups, MetS, and MetS + Allopregnalone. Spatial memory has been evaluated by the Y-maze task and blood pressure measured by the rat tail method. Biochemical evaluation of serum glucose, insulin, lipid profile, and hippocampal expression of Synaptophysin and Associated Protein 43 (GAP-43) were performed for assessing Allopregnanolone on serum and hippocampal markers. Allopregnanolone therapy improved working spatial memory, hypertension, and biochemical markers measured in the serum and hippocampus.
Collapse
|
49
|
Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Jafarzadehgharehziaaddin M. Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 2021; 172:31-42. [PMID: 33848614 DOI: 10.1016/j.brainresbull.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Spinal Cord Injury (SCI), triggers neurodegenerative changes in the spinal cord, and simultaneously alters oscillatory manifestations of motor cortex. However, these disturbances may not be limited to motor areas and other parts such as hippocampus, which is vital in the neurogenesis and cognitive function, may be affected in the neurogenic and oscillatory manners. Addressing this remarkable complication of SCI, we evaluated the hippocampal neurogenesis and rhythms through acute phase of SCI. In the present study, we used 40 male rats (Sham.W1 = 10, SCI.W1 = 10, Sham.W2 = 10, SCI.W2 = 10), and findings revealed that contusive SCI declines hippocampal rhythms (Delta, Theta, Beta, Gamma) power and max-frequency. Also, there was a significant decrease in the DCX + and BrdU + cells of the dentate gyrus; correlated significantly with rhythms power decline. Considering the TUNEL assay analysis, there were significantly greater apoptotic cells, in the CA1, CA3, and DG regions of injured animals. Furthermore, according to the western blotting analysis, the expression of receptors (NMDA, GABAA, Muscarinic1), which are essential in the neurogenesis and generation of rhythms significantly attenuated following SCI. Our study demonstrated that acute SCI, alters the power and max-frequency of hippocampal rhythms parallel with changes in the hippocampal neurogenesis, apoptosis, and receptors expression.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
50
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|