1
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
2
|
Ahmed AI, Dowidar MF, Negm AF, Abdellatif H, Alanazi A, Alassiri M, Samy W, Mekawy DM, Abdelghany EMA, El-Naseery NI, Ibrahem MA, Albadawi EA, Salah W, Eldesoqui M, Tîrziu E, Bucur IM, Arisha AH, Khamis T. Bone marrow mesenchymal stem cells expressing Neat-1, Hotair-1, miR-21, miR-644, and miR-144 subsided cyclophosphamide-induced ovarian insufficiency by remodeling the IGF-1-kisspeptin system, ovarian apoptosis, and angiogenesis. J Ovarian Res 2024; 17:184. [PMID: 39267091 PMCID: PMC11396253 DOI: 10.1186/s13048-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
Ovarian insufficiency is one of the common reproductive disorders affecting women with limited therapeutic aids. Mesenchymal stem cells have been investigated in such disorders before yet, the exact mechanism of MSCs in ovarian regeneration regarding their epigenetic regulation remains elusive. The current study is to investigate the role of the bone marrow-derived mesenchymal stem cells (BM-MSCs) lncRNA (Neat-1 and Hotair1) and miRNA (mir-21-5p, mir-144-5p, and mir-664-5p) in mitigating ovarian granulosa cell apoptosis as well as searching BM-MSCs in altering the expression of ovarian and hypothalamic IGF-1 - kisspeptin system in connection to HPG axis in a cyclophosphamide-induced ovarian failure rat model. Sixty mature female Sprague Dawley rats were divided into 3 equal groups; control group, premature ovarian insufficiency (POI) group, and POI + BM-MSCs. POI female rat model was established with cyclophosphamide. The result revealed that BM-MSCs and their conditioned media displayed a significant expression level of Neat-1, Hotair-1, mir-21-5p, mir-144-5p, and mir-664-5p. Moreover, BM-MSCs transplantation in POI rats improves; the ovarian and hypothalamic IGF-1 - kisspeptin, HPG axis, ovarian granulosa cell apoptosis, steroidogenesis, angiogenesis, energy balance, and oxidative stress. BM-MSCs expressed higher levels of antiapoptotic lncRNAs and microRNAs that mitigate ovarian insufficiency.
Collapse
Affiliation(s)
- Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed F Dowidar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa F Negm
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Alanazi
- Collage of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Medical Sciences, College of Science and Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Walaa Samy
- Medical biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, 11829, Egypt
| | - Eman M A Abdelghany
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Ibrahem
- Obstetrics and Gynecology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Ali Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Wed Salah
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O.Box 71666, Riyadh, 11597, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, "King Mihai I" from Timisoara [ULST], Aradului St. 119, Timisoara, 300645, Romania.
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City, 11829, Egypt.
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Eirin A, Thaler R, Glasstetter LM, Xing L, Zhu XY, Osborne AC, Mondesir R, Bhagwate AV, Lerman A, van Wijnen AJ, Lerman LO. Obesity-driven mitochondrial dysfunction in human adipose tissue-derived mesenchymal stem/stromal cells involves epigenetic changes. Cell Death Dis 2024; 15:387. [PMID: 38824145 PMCID: PMC11144257 DOI: 10.1038/s41419-024-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.
Collapse
Grants
- AG062104 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK122734 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R56 DK129240 NIDDK NIH HHS
- DK129240 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 DK129240 NIDDK NIH HHS
- HL158691 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK120292 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Urology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Osborne
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ronscardy Mondesir
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Aditya V Bhagwate
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:248-269. [PMID: 38282709 PMCID: PMC10817798 DOI: 10.12336/biomatertransl.2023.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
While bone tissue is known for its inherent regenerative abilities, various pathological conditions and trauma can disrupt its meticulously regulated processes of bone formation and resorption. Bone tissue engineering aims to replicate the extracellular matrix of bone tissue as well as the sophisticated biochemical mechanisms crucial for effective regeneration. Traditionally, the field has relied on external agents like growth factors and pharmaceuticals to modulate these processes. Although efficacious in certain scenarios, this strategy is compromised by limitations such as safety issues and the transient nature of the compound release and half-life. Conversely, bioactive elements such as zinc (Zn), magnesium (Mg) and silicon (Si), have garnered increasing interest for their therapeutic benefits, superior stability, and reduced biotic risks. Moreover, these elements are often incorporated into biomaterials that function as multifaceted bioactive components, facilitating bone regeneration via release on-demand. By elucidating the mechanistic roles and therapeutic efficacy of the bioactive elements, this review aims to establish bioactive elements as a robust and clinically viable strategy for advanced bone regeneration.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
McGonagle D, David P, Macleod T, Watad A. Predominant ligament-centric soft-tissue involvement differentiates axial psoriatic arthritis from ankylosing spondylitis. Nat Rev Rheumatol 2023; 19:818-827. [PMID: 37919337 DOI: 10.1038/s41584-023-01038-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Since the original description of spondyloarthritis 50 years ago, results have demonstrated similarities and differences between ankylosing spondylitis (AS) and axial psoriatic arthritis (PsA). HLA-B27 gene carriage in axial inflammation is linked to peri-fibrocartilaginous sacroiliac joint osteitis, as well as to spinal peri-entheseal osteitis, which is often extensive and which provides a crucial anatomical and immunological differentiation between the AS and PsA phenotypes. Specifically, HLA-B27-related diffuse bone marrow oedema (histologically an osteitis) and bone marrow fatty corners detected via magnetic resonance imaging, as well as radiographic changes such as sacroiliitis, vertebral squaring, corner erosions and Romanus lesions, all indicate initial bone phenotypes in HLA-B27+ axial disease. However, in much of PsA with axial involvement, enthesitis primarily manifests in ligamentous soft tissue as 'ligamentitis', with characteristic lesions that include para-syndesmophytes and sacroiliac joint bony sparing. Like axial PsA, diffuse idiopathic skeletal hyperostosis phenotypes, which can be indistinguishable from PsA, exhibit a thoracic and cervical spinal ligamentous soft-tissue tropism, clinically manifesting as syndesmophytosis that is soft-tissue-centric, including paravertebral soft-tissue ossification and sacroiliac soft-ligamentous ossification instead of joint-cavity fusion. The enthesis bone and soft tissues have radically different immune cell and stromal compositions, which probably underpins differential responses to immunomodulatory therapy, especially IL-23 inhibition.
Collapse
Affiliation(s)
- Dennis McGonagle
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.
| | - Paula David
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| | - Tom Macleod
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| | - Abdulla Watad
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
7
|
Shin SH, Lee YH, Rho NK, Park KY. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol 2023; 14:1195272. [PMID: 37234413 PMCID: PMC10206231 DOI: 10.3389/fphys.2023.1195272] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Skin aging is a multifaceted process that involves intrinsic and extrinsic mechanisms that lead to various structural and physiological changes in the skin. Intrinsic aging is associated with programmed aging and cellular senescence, which are caused by endogenous oxidative stress and cellular damage. Extrinsic aging is the result of environmental factors, such as ultraviolet (UV) radiation and pollution, and leads to the production of reactive oxygen species, ultimately causing DNA damage and cellular dysfunction. In aged skin, senescent cells accumulate and contribute to the degradation of the extracellular matrix, which further contributes to the aging process. To combat the symptoms of aging, various topical agents and clinical procedures such as chemical peels, injectables, and energy-based devices have been developed. These procedures address different symptoms of aging, but to devise an effective anti-aging treatment protocol, it is essential to thoroughly understand the mechanisms of skin aging. This review provides an overview of the mechanisms of skin aging and their significance in the development of anti-aging treatments.
Collapse
Affiliation(s)
- Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Nark-Kyoung Rho
- Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
10
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
11
|
Barisón MJ, Nogoceke R, Josino R, Horinouchi CDDS, Marcon BH, Correa A, Stimamiglio MA, Robert AW. Functionalized Hydrogels for Cartilage Repair: The Value of Secretome-Instructive Signaling. Int J Mol Sci 2022; 23:ijms23116010. [PMID: 35682690 PMCID: PMC9181449 DOI: 10.3390/ijms23116010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome—a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells—of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.
Collapse
|
12
|
Molnar V, Pavelić E, Vrdoljak K, Čemerin M, Klarić E, Matišić V, Bjelica R, Brlek P, Kovačić I, Tremolada C, Primorac D. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes (Basel) 2022; 13:genes13060949. [PMID: 35741711 PMCID: PMC9222975 DOI: 10.3390/genes13060949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
With the insufficient satisfaction rates and high cost of operative treatment for osteoarthritis (OA), alternatives have been sought. Furthermore, the inability of current medications to arrest disease progression has led to rapidly growing clinical research relating to mesenchymal stem cells (MSCs). The availability and function of MSCs vary according to tissue source. The three primary sources include the placenta, bone marrow, and adipose tissue, all of which offer excellent safety profiles. The primary mechanisms of action are trophic and immunomodulatory effects, which prevent the further degradation of joints. However, the function and degree to which benefits are observed vary significantly based on the exosomes secreted by MSCs. Paracrine and autocrine mechanisms prevent cell apoptosis and tissue fibrosis, initiate angiogenesis, and stimulate mitosis via growth factors. MSCs have even been shown to exhibit antimicrobial effects. Clinical results incorporating clinical scores and objective radiological imaging have been promising, but a lack of standardization in isolating MSCs prevents their incorporation in current guidelines.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Pavelić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Kristijan Vrdoljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Martin Čemerin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Emil Klarić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Vid Matišić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | | | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Correspondence:
| |
Collapse
|
13
|
Fan LL, Du R, Liu JS, Jin JY, Wang CY, Dong Y, He WX, Yan RQ, Xiang R. Loss of RTN3 phenocopies chronic kidney disease and results in activation of the IGF2-JAK2 pathway in proximal tubular epithelial cells. Exp Mol Med 2022; 54:653-661. [PMID: 35596061 PMCID: PMC9166791 DOI: 10.1038/s12276-022-00763-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play roles in neurodegenerative diseases, but little is known about its function in the kidneys. The aim of the present study was to clarify the roles of RTN3 in chronic kidney disease (CKD) and kidney fibrosis. In this study, RTN3 levels were measured in kidney tissues from healthy controls and CKD or kidney fibrosis patients. An RTN3-null mouse model was generated to explore the pathophysiological roles of RTN3 in the kidneys. The underlying mechanisms were studied in primary proximal tubular epithelial cells and HEK293 cells in vitro. The results showed that (1) a reduction in RTN3 in mice induces CKD and kidney fibrosis; (2) decreased RTN3 expression is found in patients with CKD; (3) RTN3 plays critical roles in regulating collagen biosynthesis and mitochondrial function; and (4) mechanistically, RTN3 regulates these phenotypes by interacting with GC-Rich Promoter Binding Protein 1 (GPBP1), which activates the IGF2-JAK2-STAT3 pathway. Our study indicates that RTN3 might play crucial roles in CKD and kidney fibrosis and that a reduction in RTN3 in the kidneys might be a risk factor for CKD and kidney fibrosis. A protein (RTN3) known to be involved in neurodegenerative diseases may play a causative role in kidney fibrosis or scarring, and chronic kidney disease (CKD). An estimated 20% of CKD cases may have genetic causes and identifying the genes involved may help find better treatments. Ri-Qiang Yan at the University of Connecticut Health, Farmington, USA, and Rong Xian at Central South University, China, noticed that mice in which the gene coding for RTN3 was inactivated had kidney fibrosis. The researchers showed that RTN3 levels were also lower in kidney tissues of patients with CKD than in healthy individuals and that RTN3 levels were inversely proportional to disease progression. Further investigation showed that decreased RTN3 caused extra collagen deposition and misshapen mitochondria, the cellular powerhouses, in the kidney. These results identify a potential novel risk factor for CKD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ran Du
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ji-Shi Liu
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jie-Yuan Jin
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chen-Yu Wang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wan-Xia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States
| | - Ri-Qiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States.
| | - Rong Xiang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China. .,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
14
|
Adamičková A, Gažová A, Adamička M, Chomaničová N, Valašková S, Červenák Z, Šalingová B, Kyselovič J. Molecular basis of the effect of atorvastatin pretreatment on stem cell therapy in chronic ischemic diseases – critical limb ischemia. Physiol Res 2021. [DOI: 10.33549//physiolres.934718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Collapse
Affiliation(s)
| | - A Gažová
- 5th Dept. Int. Med., Fac. Med., Comenius Univ. Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Adamičková A, Gažová A, Adamička M, Chomaničová N, Valašková S, Červenák Z, Šalingová B, Kyselovič J. Molecular basis of the effect of atorvastatin pretreatment on stem cell therapy in chronic ischemic diseases - critical limb ischemia. Physiol Res 2021; 70:S527-S533. [PMID: 35199541 PMCID: PMC9054177 DOI: 10.33549/physiolres.934718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Collapse
Affiliation(s)
- A Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
17
|
Kanawa M, Igarashi A, Fujimoto K, Saskianti T, Nakashima A, Higashi Y, Kurihara H, Kato Y, Kawamoto T. The Identification of Marker Genes for Predicting the Osteogenic Differentiation Potential of Mesenchymal Stromal Cells. Curr Issues Mol Biol 2021; 43:2157-2166. [PMID: 34940124 PMCID: PMC8929155 DOI: 10.3390/cimb43030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.
Collapse
Affiliation(s)
- Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Akira Igarashi
- Division of Advanced Technology and Development, BML, Inc., Saitama 350-1101, Japan;
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan; (K.F.); (T.S.); (Y.K.)
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan; (K.F.); (T.S.); (Y.K.)
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan
| | - Tania Saskianti
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan; (K.F.); (T.S.); (Y.K.)
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Yukihito Higashi
- Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan; (K.F.); (T.S.); (Y.K.)
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan; (K.F.); (T.S.); (Y.K.)
- Writing Center, Hiroshima University, Higashi-Hiroshima 739-8512, Japan
- Correspondence: ; Tel.: +81-82-424-6207
| |
Collapse
|
18
|
Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2475-2491. [PMID: 33757314 PMCID: PMC8504958 DOI: 10.1177/0271678x211000894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic strokes are highly prevalent in the elderly population and are a leading cause of mortality and morbidity worldwide. The risk of ischemic stroke increases in advanced age, corresponding with a noted decrease in circulating insulin growth factor-1 (IGF-1). IGF-1 is a known neuroprotectant involved in embryonic development, neurogenesis, neurotransmission, cognition, and lifespan. Clinically, several studies have shown that reduced levels of IGF-1 correlate with increased mortality rate, poorer functional outcomes, and increased morbidities following an ischemic stroke. In animal models of ischemia, administering exogenous IGF-1 using various routes of administration (intranasal, intravenous, subcutaneous, or topical) at various time points prior to and following insult attenuates neurological damage and accompanying behavioral changes caused by ischemia. However, there are some contrasting findings in select clinical and preclinical studies. This review discusses the role of IGF-1 as a determinant factor of ischemic stroke outcomes, both within the clinical settings and preclinical animal models. Furthermore, the review provides insight on the role of IGF-1 in mechanisms and cellular processes that contribute to stroke damage.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - M Noa Valcarcel-Ares
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
19
|
Characterization of Scleraxis and SRY-Box 9 from Adipose-Derived Stem Cells Culture Seeded with Enthesis Scaffold in Hypoxic Condition. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of mesenchymal stem cells can add local improvements potential to enthesis tissue regeneration based on tropical activity through secretions of growth factors, cytokines, and vesicles (e.g. exosomes), collectively known as secretomes. This study aims to analyze secretomes characterization from adipose-derived mesenchymal stem cells seeded with enthesis tissue scaffold in hypoxic conditions and to analyze the influence of hypoxic environment to the characterization of secretomes. This is an in-vitro study using a Randomized Control Group Post-Test Only design. This study using Adipose Stem Cells (ASCs) were cultured in hypoxia (Oxygen 5%) and Normoxia (21%) condition. The scaffolds are fresh-frozen enthesis tissue and was seeded in the treatment group and compared to control. The evaluation of Scleraxis (Scx) and SRY-box (Sox9) was measured using ELISA on the 2nd, 4th, and 6th days. Comparison of Scx levels between each evaluation time showed a positive trend in a group with scaffold in hypoxia condition although it has no significant differences (p=0.085), with the highest level on day 6, that is 13,568 ng/ml. Conversely, the comparison of Sox9 showed significant differences (p=0.02) in a group with scaffold in hypoxia condition, with the highest level on day 4, that is 28,250 ng/ml. The use of enthesis scaffold seeded in adipose-derived mesenchymal stem cells in hypoxic conditions shows a positive trend as regenerative effort of injured enthesis tissue through Scleraxis and Sox9 secretomes induction.
Collapse
|
20
|
Maharajan N, Cho GW, Choi JH, Jang CH. Regenerative Therapy Using Umbilical Cord Serum. In Vivo 2021; 35:699-705. [PMID: 33622862 DOI: 10.21873/invivo.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Regenerative medicine is a branch of medicine that incorporates tissue-engineering, biomaterials, and cell therapy approaches to replace or repair damaged cells and tissues. Umbilical cord serum (UCS) is an important liquid component of cord blood, which has a reliable source of innumerable growth factors and biologically active molecules. Usually, serum can be prepared from different sources of blood. In therapeutic application, cord serum can be prepared and used in the form of eye drops for the treatment of severe dry eye diseases, ocular burns, glaucoma, persistent corneal epithelial defects and neurotrophic keratitis. In addition, cord serum combined with synthetic bio scaffold materials is used to regenerate different types of tissues including tympanic membrane regeneration, bone regeneration and nerve regeneration. Absence of animal origin viruses and bacteria, lack of xenoproteins and cost-effective features make cord serum a feasible choice as replacement of fetal bovine serum in cell culture techniques. Thus, this review emphasizes the role of cord serum in regenerative therapy and clinical uses.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji Hyun Choi
- Department of Obstetrics and Gynecology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
22
|
Khattab MS, AbuBakr HO, El Iraqi KG, AbdElKader NA, Kamel MM, Salem KH, Steitz J, Afify M. Intra-iliac bone marrow injection as a novel alternative to intra-tibial inoculation in rat model. Stem Cell Res Ther 2021; 12:336. [PMID: 34112243 PMCID: PMC8194056 DOI: 10.1186/s13287-021-02413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Intra-bone marrow injection (IBMI) in rats is adopted in many studies for stem cell and hematopoietic cell transplantation. IBMI in the tibia or the femur results in severe distress to the animal. Therefore, this study aims to evaluate intra-iliac injections as an alternative approach for IBMI. Methods Twenty-seven Sprague Dawley rats were assigned into 3 groups, 9 rats each, for 4 weeks. The control group rats were not injected. Tibia group rats were injected intra-tibial and the iliac group rats were injected intra-iliac with saline. Behavioral, radiological, histopathological, and stress evaluation was performed. Total bilirubin, cortisol, and insulin-like growth factor-1 (IGF1) were measured. Results Behavioral measurements revealed deviation compared to control, in both injected groups, on the 1st and 2nd week. By the 3rd week, it was equivalent to control in the iliac group only. Bilirubin and cortisol levels were increased by intra-tibial injection compared to intra-iliac injection. The IGF-1 gene expression increased compared to control at 1st and 2nd weeks in intra-iliac injection and decreased by intra-tibial injection at 2nd week. The thickness of the iliac crest was not different from the control group, whereas there were significant differences between the control and tibia groups. Healing of the iliac crest was faster compared to the tibia. In the 3rd week, the tibia showed fibrosis at the site of injection whereas the iliac crest showed complete bone reconstruction. Conclusion Intra-iliac injections exert less distress on animals, and by 3 weeks, they regained their normal activity in comparison to intra-tibial injections.
Collapse
Affiliation(s)
- Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Cairo University, Giza, Egypt
| | - Kassem G El Iraqi
- Department of Veterinary Hygiene and Management, Cairo University, Giza, Egypt
| | - Naglaa A AbdElKader
- Department of Surgery, Anesthesiology & Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mervat M Kamel
- Department of Veterinary Hygiene and Management, Cairo University, Giza, Egypt
| | - Khaled Hamed Salem
- Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt.,Department of Orthopedic Surgery, RWTH Aachen University Faculty of Medicine, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, RWTH Aachen University Faculty of Medicine, Aachen, Germany
| | - Mamdouh Afify
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
23
|
Chen S, Jing J, Yuan Y, Feng J, Han X, Wen Q, Ho TV, Lee C, Chai Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep 2021; 32:108007. [PMID: 32783935 PMCID: PMC7461627 DOI: 10.1016/j.celrep.2020.108007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Stem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown. Using single-cell RNA sequencing, we show heterogeneity among Gli1+ MSCs and identify a subpopulation of Runx2+/Gli1+ cells in the adult mouse incisor. These Runx2+/Gli1+ cells are strategically located between MSCs and transit-amplifying cells (TACs). They are not stem cells but help to maintain the MSC niche via IGF signaling to regulate TAC proliferation, differentiation, and incisor growth rate. ATAC-seq and chromatin immunoprecipitation reveal that Runx2 directly binds to Igfbp3 in niche cells. This Runx2-mediated IGF signaling is crucial for regulating the MSC niche and maintaining tissue homeostasis to support continuous growth of the adult mouse incisor, providing a model for analysis of the molecular regulation of the MSC niche.
Collapse
Affiliation(s)
- Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Chelsea Lee
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
24
|
Cellular Response to Individual Components of the Platelet Concentrate. Int J Mol Sci 2021; 22:ijms22094539. [PMID: 33926125 PMCID: PMC8123700 DOI: 10.3390/ijms22094539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Platelet concentrates and especially their further product platelet lysate, are widely used as a replacement for cell culturing. Platelets contain a broad spectrum of growth factors and bioactive molecules that affect cellular fate. However, the cellular response to individual components of the human platelet concentrate is still unclear. The aim of this study was to observe cellular behavior according to the individual components of platelet concentrates. The bioactive molecule content was determined. The cells were supplemented with a medium containing 8% (v/v) of platelet proteins in plasma, pure platelet proteins in deionized water, and pure plasma. The results showed a higher concentration of fibrinogen, albumin, insulin growth factor I (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF), in the groups containing plasma. On the other hand, chemokine RANTES and platelet-derived growth factor bb (PDGF-bb), were higher in the groups containing platelet proteins. The groups containing both plasma and plasma proteins showed the most pronounced proliferation and viability of mesenchymal stem cells and fibroblasts. The platelet proteins alone were not sufficient to provide optimal cell growth and viability. A synergic effect of platelet proteins and plasma was observed. The data indicated the importance of plasma in platelet lysate for cell growth.
Collapse
|
25
|
Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts. Stem Cells Int 2021; 2021:8843179. [PMID: 33833810 PMCID: PMC8012132 DOI: 10.1155/2021/8843179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is regarded as the most common chronic metabolic bone condition in humans. In osteoporosis, bone mesenchymal stem cells (MSCs) have reduced cellular function. Regenerative medicine using adipose-derived stem cell (ADSC) transplantation can promote the growth and strength of new bones, improve bone stability, and reduce the risk of fractures. Various methods have been attempted to differentiate ADSCs to functioning specialized cells for prospective clinical application. However, commonly used therapies have resulted in damage to the donor site and morbidity, immune reactions, carcinogenic generation, and postoperative difficulties. Photobiomodulation (PBM) improves ADSC differentiation and proliferation along with reducing clinical difficulties such as treatment failures to common drug therapies and late initiation of treatment. PBM is a noninvasive, nonthermal treatment that encourages cells to produce more energy and to undergo self-repair by using visible green and red and invisible near-infrared (NIR) radiation. The use of PBM for ADSC proliferation and differentiation has been widely studied with multiple outcomes observed due to laser fluence and wavelength dependence. In this article, the potential for differentiating ADSCs into osteoblasts and the various methods used, including biological induction, chemical induction, and PBM, will be addressed. Likewise, the optimal laser parameters that could improve the proliferation and differentiation of ADSC, translating into clinical success, will be commented on.
Collapse
|
26
|
Growth and Differentiation of Circulating Stem Cells After Extensive Ex Vivo Expansion. Tissue Eng Regen Med 2021; 18:411-427. [PMID: 33625723 PMCID: PMC8169750 DOI: 10.1007/s13770-021-00330-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Stem cell therapy is gaining momentum as an effective treatment strategy for degenerative diseases. Adult stem cells isolated from various sources (i.e., cord blood, bone marrow, adipose tissue) are being considered as a realistic option due to their well-documented therapeutic potentials. Our previous studies standardized a method to isolate circulating multipotent cells (CMCs) that are able to sustain long term in vitro culture and differentiate towards mesodermal lineages. Methods: In this work, long-term cultures of CMCs were stimulated to study in vitro neuronal and myogenic differentiation. After induction, cells were analysed at different time points. Morphological studies were performed by scanning electron microscopy and specific neuronal and myogenic marker expression were evaluated using RT-PCR, flow cytometry and western blot. For myogenic plasticity study, CMCs were transplanted into in vivo model of chemically-induced muscle damage. Results: After neurogenic induction, CMCs showed characteristic dendrite-like morphology and expressed specific neuronal markers both at mRNA and protein level. The calcium flux activity of CMCs under stimulation with potassium chloride and the secretion of noradrenalin confirmed their ability to acquire a functional phenotype. In parallel, the myogenic potential of CMCs was confirmed by their ability to form syncytium-like structures in vitro and express myogenic markers both at early and late phases of differentiation. Interestingly, in a rat model of bupivacaine-induced muscle damage, CMCs integrated within the host tissue taking part in tissue repair. Conclusion: Overall, collected data demonstrated long-term cultured CMCs retain proliferative and differentiative potentials suggesting to be a good candidate for cell therapy.
Collapse
|
27
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
28
|
Jing J, Feng J, Li J, Zhao H, Ho TV, He J, Yuan Y, Guo T, Du J, Urata M, Sharpe P, Chai Y. Reciprocal interaction between mesenchymal stem cells and transit amplifying cells regulates tissue homeostasis. eLife 2021; 10:e59459. [PMID: 33480845 PMCID: PMC7822593 DOI: 10.7554/elife.59459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023] Open
Abstract
Interaction between adult stem cells and their progeny is critical for tissue homeostasis and regeneration. In multiple organs, mesenchymal stem cells (MSCs) give rise to transit amplifying cells (TACs), which then differentiate into different cell types. However, whether and how MSCs interact with TACs remains unknown. Using the adult mouse incisor as a model, we present in vivo evidence that TACs and MSCs have distinct genetic programs and engage in reciprocal signaling cross talk to maintain tissue homeostasis. Specifically, an IGF-WNT signaling cascade is involved in the feedforward from MSCs to TACs. TACs are regulated by tissue-autonomous canonical WNT signaling and can feedback to MSCs and regulate MSC maintenance via Wnt5a/Ror2-mediated non-canonical WNT signaling. Collectively, these findings highlight the importance of coordinated bidirectional signaling interaction between MSCs and TACs in instructing mesenchymal tissue homeostasis, and the mechanisms identified here have important implications for MSC-TAC interaction in other organs.
Collapse
Affiliation(s)
- Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologyChengduChina
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Hu Zhao
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologyChengduChina
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Mark Urata
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Paul Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College LondonLondonUnited Kingdom
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
29
|
Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells 2020; 10:cells10010033. [PMID: 33379312 PMCID: PMC7823915 DOI: 10.3390/cells10010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
A multimodal therapeutic approach involving radiotherapy is required when treating head and neck squamous cell carcinoma. However, radiotherapy is restricted due to its high risk for damages to the surrounding healthy tissue of the treated area. Tissue regeneration and wound healing is promoted by the survival and regenerative capacities of tissue-resident or invading stem cells. Mesenchymal stem cells (MSCs) exhibit a promising therapeutic potential in the field of cell-based tissue engineering and regenerative medicine due to their immunomodulatory properties and differentiation capacity. However, the generation of MSCs for therapeutic applications is still a major challenge. We aimed to produce highly homogeneous induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) in an autologous manner from initially isolated human mucosa mesenchymal stem cells (mMSCs) of the upper respiratory tract. Therefore, mMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) by non-integrative chromosomal technologies and differentiated into corresponding iP-MSCs. We demonstrated that mMSCs and iP-MSCs show similar cell characteristics in terms of morphology, clonogenic potential, differentiation, and surface phenotype. Moreover, iP-MSCs demonstrated related immunosuppressive capacity as mMSCs including the secretion of cytokines, and T cell inhibition. Therefore, generating iP-MSCs in an autologous manner may be a novel personalized treatment option in regenerative medicine.
Collapse
|
30
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chem Rev 2020; 120:11056-11092. [PMID: 32558555 PMCID: PMC7676498 DOI: 10.1021/acs.chemrev.0c00126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs. This can be attributed to novel approaches in the bioprinting of stem cells. There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs. While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment. To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate. The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs. This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.
Collapse
Affiliation(s)
- Lauren N. West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Jihoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
32
|
Ihsan IS, Karsari D, Ertanti N, Dinaryanti A, Nugraha AP, Purwati P, Sudjarwo SA, Rantam FA. The distribution pattern and growth factor level in platelet-rich fibrin incorporated skin-derived mesenchymal stem cells: An in vitro study. Vet World 2020; 13:2097-2103. [PMID: 33281342 PMCID: PMC7704299 DOI: 10.14202/vetworld.2020.2097-2103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) in PRF incorporated with SMSCs. Materials and Methods: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-β using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). Results: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). Conclusion: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- β, which may prove to have potential in enhancing wound healing.
Collapse
Affiliation(s)
- Igo Syaiful Ihsan
- Master Student of Vaccinology and Immunotherapeutica, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Deya Karsari
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Nora Ertanti
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Aristika Dinaryanti
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Doctoral Student of Medical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Purwati Purwati
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia.,Department of Health, Vocational Faculty, Airlangga University, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Pharmacology, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia.,Department of Microbiology, Virology Laboratory, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
33
|
Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BYH, Ma M, Cooper WN, Vidal-Puig A, Ozanne SE, Medina-Gómez G, Constância M. Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 2020; 16:e1009069. [PMID: 33057429 PMCID: PMC7678979 DOI: 10.1371/journal.pgen.1009069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/20/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023] Open
Abstract
The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.
Collapse
Affiliation(s)
- Constanze M. Hammerle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gemma V. Brierley
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Nicola M. Smith
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Warren E. Zimmer
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Haydn M. Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Yoichi Sekita
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Brian Y. H. Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Wendy N. Cooper
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922-Alcorcón, Madrid, Spain
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Sagaradze GD, Basalova NA, Efimenko AY, Tkachuk VA. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front Cell Dev Biol 2020; 8:576176. [PMID: 33102483 PMCID: PMC7546871 DOI: 10.3389/fcell.2020.576176] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells that are tightly regulated by the specific microenvironment, or the stem cell niche, function to maintain tissue homeostasis and regeneration after damage. This demands the existence of specific niche components that can preserve the stem cell pool in injured tissues and restore the microenvironment for their subsequent appropriate functioning. This role may belong to mesenchymal stromal cells (MSCs) due to their resistance to damage signals and potency to be specifically activated in response to tissue injury and promote regeneration by different mechanisms. Increased amount of data indicate that activated MSCs are able to produce factors such as extracellular matrix components, growth factors, extracellular vesicles and organelles, which transiently substitute the regulatory signals from missing niche cells and restrict the injury-induced responses of them. MSCs may recruit functional cells into a niche or differentiate into missing cell components to endow a niche with ability to regulate stem cell fates. They may also promote the dedifferentiation of committed cells to re-establish a pool of functional stem cells after injury. Accumulated evidence indicates the therapeutic promise of MSCs for stimulating tissue regeneration, but the benefits of administered MSCs demonstrated in many injury models are less than expected in clinical studies. This emphasizes the importance of considering the mechanisms of endogenous MSC functioning for the development of effective approaches to their pharmacological activation or mimicking their effects. To achieve this goal, we integrate the current ideas on the contribution of MSCs in restoring the stem cell niches after damage and thereby tissue regeneration.
Collapse
Affiliation(s)
- Georgy D Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya A Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Yu Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Stemness regulation of the adrenal mixed corticomedullary tumorigenesis-a case-control study. Neoplasia 2020; 22:263-271. [PMID: 32438306 PMCID: PMC7240194 DOI: 10.1016/j.neo.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mixed corticomedullary tumor is an adrenal tumor intermixed with cortical and medullary cells. It is extremely rare with unclear tumorigenesis. We reported a 32-year-old female, manifested with typical Cushing’s syndrome and hypertension, to be diagnosed with right huge adrenal mixed corticomedullary tumor (8.8 cm). Right adrenalectomy was done to document the tumor intimately admixed with adrenal cortical adenoma and pheochromocytoma by biochemistry and immunohistochemistry. A case-control study was designed to explore the tumorigenesis of mixed corticomedullary tumor by whole exome sequencing. Expression of the stemness markers was controlled by a tissue array of 80 adrenal tumors. Overall, 1559 identical variants coexisted in parts of adrenal cortical adenoma and pheochromocytoma, which mainly (85.8%) originated from germline mutations. These enriched mutations were engaged in stemness control, coherent with substantial expression of the stemness markers (SOX2, CD44 and OCT4) in both parts. The differential stemness expressions were demonstrated in other adrenal tumors as well. The germline mutations were also enriched in signaling involving cancer proliferation, hypoxia inducible factor-1, focal adhesion and extracellular matrix receptor interaction. Somatic mutations affecting mitogen-activated protein kinase signaling, glycolysis and the citrate cycle were found in some tumor elements. This is the first study to verify the rare mixed corticomedullary tumor by molecular and genetic evidence to link with its phenotype. Germline mutations involving the stemness regulation and cancer proliferative signaling may drive intermixed tumor formation. Somatic mutations related to glycolysis and the citrate cycle may contribute to greater tumor outgrowth.
Collapse
|
36
|
Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X, Chen Q, Lv M, Chang Y, Peng J, Hou M, Huang X, Zhang X. miRNA-98-5p Targeting IGF2BP1 Induces Mesenchymal Stem Cell Apoptosis by Modulating PI3K/Akt and p53 in Immune Thrombocytopenia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:764-776. [PMID: 32428701 PMCID: PMC7232042 DOI: 10.1016/j.omtn.2020.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Immune thrombocytopenia (ITP) is a common hematological autoimmune disease, in which defective mesenchymal stem cells (MSCs) are potentially involved. Our previous study suggested that MSCs in ITP patients displayed enhanced apoptosis. MicroRNAs (miRNAs) play important roles in ITP by affecting megakaryopoiesis, platelet production and immunoregulation, whereas the roles of miRNAs in ITP-MSCs remain unknown. In a previous study, we performed microarray analysis to obtain mRNA and miRNA profiles of ITP-MSCs. In the present study, we reanalyze the data and identify miR-98-5p as a candidate miRNA contributing to MSC deficiency in ITP. miR-98-5p acts through targeting insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and the subsequent downregulation of insulin-like growth factor 2 (IGF-2) causes inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in the process of MSC deficiency. Furthermore, miR-98-5p upregulates p53 by inhibiting β-transducin repeat-containing protein (β-TrCP)-dependent p53 ubiquitination. Moreover, miR-98-5p overexpression impairs the therapeutic effect of MSCs in ITP mice. All-trans retinoic acid (ATRA) protects MSCs from apoptosis by downregulating miR-98-5p, thus providing a potential therapeutic approach for ITP. Our findings demonstrate that miR-98-5p is a critical regulator of ITP-MSCs, which will help us thoroughly understand the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yan Su
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Chencong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Gaochao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China.
| |
Collapse
|
37
|
Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res 2020; 68:S131-S138. [PMID: 31842576 DOI: 10.33549/physiolres.934345] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases are characterized by reduced blood supply to a tissue or an organ due to obstruction of blood vessels. The most serious and most common ischemic diseases include ischemic heart disease, ischemic stroke, and critical limb ischemia. Revascularization is the first choice of therapy, but the cell therapy is being introduced as a possible way of treatment for no-option patients. One of the possibilities of cell therapy is the use of mesenchymal stem cells (MSCs). MSCs are easily isolated from bone marrow and can be defined as non-hematopoietic multipotent adult stem cells population with a defined capacity for self-renewal and differentiation into cell types of all three germ layers depending on their origin. Since 1974, when Friedenstein and coworkers (Friedenstein et al. 1974) first time isolated and characterized MSCs, MSC-based therapy has been shown to be safe and effective. Nevertheless, many scientists and clinical researchers want to improve the success of MSCs in regenerative therapy. The secret of successful cell therapy may lie, along with the homing, in secretion of biologically active molecules including cytokines, growth factors, and chemokines known as MSCs secretome. One of the intracellular signalling mechanism includes the activity of phosphatidylinositol-3-kinase (phosphoinositide 3-kinase) (PI3K) - protein kinase B (serine-threonine protein kinase Akt) (Akt) pathway. This PI3K/Akt pathway plays key roles in many cell types in regulating cell proliferation, differentiation, apoptosis, and migration. Pre-conditioning of MSCs could improve efficacy of signalling mechanism.
Collapse
Affiliation(s)
- A Samakova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
38
|
Influence of Maitake ( Grifola frondosa) Particle Sizes on Human Mesenchymal Stem Cells and In Vivo Evaluation of Their Therapeutic Potential. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8193971. [PMID: 32258147 PMCID: PMC7091544 DOI: 10.1155/2020/8193971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/20/2019] [Accepted: 02/21/2020] [Indexed: 01/03/2023]
Abstract
Maitake (Grifola frondosa) mushroom has received an enormous amount of attention as a dietary supplement due to its high nutritional values. The particle sizes of G. frondosa mushrooms were monitored by a classifying mill. β-Glucans are the bioactive component of the mushroom, and it was revealed through Fourier transform infrared spectroscopy (FTIR), proton and carbon nuclear magnetic resonance (1H and 13C-NMR), matrix-assisted laser desorption/ionization, and time-of-flight (MALDI-TOF) spectrometry. The biocompatibility of G. frondosa particles, as well as induced osteogenesis of hMSCs, was evaluated through WST-1 assay and alizarin staining (ARS) technique, respectively. Notably, enhanced cell viability was noted in the presence of G. frondosa. Significantly improved calcium deposition has observed from hMSCs with G. frondosa, suggesting to their mineralization potential. The expression of osteogenic related gene markers was examined in the presence of G. frondosa through real-time polymerase chain reaction (qPCR) technique. The upregulation of osteogenic gene markers in the presence of G. frondosa particles was indicating their superior osteogenic potential. Besides, G. frondosa also activated the secretion of various kinds of proteins from the hMSCs indicating their potential for tissue engineering applications. Enhanced secretion of different immunoglobulins was observed in rat serum in the presence of G. frondosa, further demonstrating their therapeutic nature. Therefore, G. frondosa is effective for enhanced osteogenesis and can be utilized as a natural, edible, and osteogenic agent.
Collapse
|
39
|
Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4791786. [PMID: 32190665 PMCID: PMC7073503 DOI: 10.1155/2020/4791786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.
Collapse
|
40
|
Brooks AES, Iminitoff M, Williams E, Damani T, Jackson-Patel V, Fan V, James J, Dunbar PR, Feisst V, Sheppard HM. Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells (ASC) Are a Heterogeneous Population That Demonstrate Rapid Culture-Induced Changes. Front Pharmacol 2020; 10:1695. [PMID: 32153389 PMCID: PMC7044177 DOI: 10.3389/fphar.2019.01695] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Human adipose-derived mesenchymal stromal cells (ASC) are showing clinical promise for the treatment of a range of inflammatory and degenerative conditions. These lipoaspirate-derived cells are part of the abundant and accessible source of heterogeneous stromal vascular fraction (SVF). They are typically isolated and expanded from the SVF via adherent cell culture for at least 2 weeks and as such represent a relatively undefined population of cells. We isolated ex vivo ASC directly from lipoaspirate using a cocktail of antibodies combined with immunomagnetic bead sorting. This method allowed for the rapid enrichment of a defined and untouched ex vivo ASC population (referred to as MACS-derived ASC) that were then compared to culture-derived ASC. This comparison found that MACS-derived ASC contain a greater proportion of cells with activity in in vitro differentiation assays. There were also significant differences in the secretion levels of some key paracrine molecules. Moreover, when the MACS-derived ASC were subjected to adherent tissue culture, rapid changes in gene expression were observed. This indicates that culturing cells may alter the clinical utility of these cells. Although MACS-derived ASC are more defined compared to culture-derived ASC, further investigations using a comprehensive multicolor flow cytometry panel revealed that this cell population is more heterogeneous than previously appreciated. Additional studies are therefore required to more precisely delineate phenotypically distinct ASC subsets with the most therapeutic potential. This research highlights the disparity between ex vivo MACS-derived and culture-derived ASC and the need for further characterization.
Collapse
Affiliation(s)
- Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Megan Iminitoff
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eloise Williams
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Vicky Fan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynecology, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Vaughan Feisst
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Sagaradze G, Basalova N, Kirpatovsky V, Ohobotov D, Nimiritsky P, Grigorieva O, Popov V, Kamalov A, Tkachuk V, Efimenko A. A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 2019; 10:342. [PMID: 31753023 PMCID: PMC6873442 DOI: 10.1186/s13287-019-1479-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023] Open
Abstract
Background Injury of stem cell niches may disturb tissue homeostasis and regeneration coordinated by specific niche components. Yet, the mechanisms of stem cell niche restoration remain poorly understood. Herein, we examined the role of mesenchymal stromal cells (MSCs) as pivotal regulators of stem cell niche recovery focusing on the effects of their secretome. Methods The spermatogonial stem cell (SSC) niche was selected as a model. SSC niches were injured by inducing abdominal cryptorchidism in rats. Briefly, testes of anesthetized rats were elevated into the abdominal cavity through the inguinal canal for 14 days. After descent of testes, MSC or MSC secretome treatment was applied to the animals by local subtunical injections. Results Local administration of MSC or MSC secretome was sufficient to recover spermatogenesis and production of functional germ cells. The effects of MSC and their secreted components were comparable, leading to restoration of Sertoli cell pools and recovery of Leydig cell secretory functions. Conclusion Our data suggest that MSCs mimic the functions of lost supportive cells within the stem cell niche, transiently providing paracrine stimuli for target cells and triggering tissue regenerative processes after damage.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nataliya Basalova
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir Kirpatovsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Research Institute of Urology and Interventional Radiology named N.A. Lopatkin - branch FSBI National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Dmitry Ohobotov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Grigorieva
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Armais Kamalov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anastasia Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation. .,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
42
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Allahdadi KJ, de Santana TA, Santos GC, Azevedo CM, Mota RA, Nonaka CK, Silva DN, Valim CXR, Figueira CP, dos Santos WLC, do Espirito Santo RF, Evangelista AF, Villarreal CF, dos Santos RR, de Souza BSF, Soares MBP. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 2019; 10:146. [PMID: 31113444 PMCID: PMC6530133 DOI: 10.1186/s13287-019-1223-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Survival and therapeutic actions of bone marrow-derived mesenchymal stem cells (BMMSCs) can be limited by the hostile microenvironment present during acute spinal cord injury (SCI). Here, we investigated whether BMMSCs overexpressing insulin-like growth factor 1 (IGF-1), a cytokine involved in neural development and injury repair, improved the therapeutic effects of BMMSCs in SCI. METHODS Using a SCI contusion model in C57Bl/6 mice, we transplanted IGF-1 overexpressing or wild-type BMMSCs into the lesion site following SCI and evaluated cell survival, proliferation, immunomodulation, oxidative stress, myelination, and functional outcomes. RESULTS BMMSC-IGF1 transplantation was associated with increased cell survival and recruitment of endogenous neural progenitor cells compared to BMMSC- or saline-treated controls. Modulation of gene expression of pro- and anti-inflammatory mediators was observed after BMMSC-IGF1 and compared to saline- and BMMSC-treated mice. Treatment with BMMSC-IGF1 restored spinal cord redox homeostasis by upregulating antioxidant defense genes. BMMSC-IGF1 protected against SCI-induced myelin loss, showing more compact myelin 28 days after SCI. Functional analyses demonstrated significant gains in BMS score and gait analysis in BMMSC-IGF1, compared to BMMSC or saline treatment. CONCLUSIONS Overexpression of IGF-1 in BMMSC resulted in increased cell survival, immunomodulation, myelination, and functional improvements, suggesting that IGF-1 facilitates the regenerative actions of BMMSC in acute SCI.
Collapse
Affiliation(s)
- Kyan James Allahdadi
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Thaís Alves de Santana
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Girlaine Café Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Carine Machado Azevedo
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
| | - Roberta Alves Mota
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Carolina Kymie Nonaka
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Daniela Nascimento Silva
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | - Cláudio Pereira Figueira
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
| | - Washington Luis Conrado dos Santos
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Renan Fernandes do Espirito Santo
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | | | - Cristiane Flora Villarreal
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- Federal University of Bahia, UFBA, Salvador, BA Brazil
| | - Ricardo Ribeiro dos Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
| | - Bruno Solano Freitas de Souza
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
- São Rafael Hospital, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia 40296-710 Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ Brazil
| |
Collapse
|
44
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
45
|
Solarek W, Koper M, Lewicki S, Szczylik C, Czarnecka AM. Insulin and insulin-like growth factors act as renal cell cancer intratumoral regulators. J Cell Commun Signal 2019; 13:381-394. [PMID: 30929166 PMCID: PMC6732138 DOI: 10.1007/s12079-019-00512-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
The risk of renal cell carcinoma development is correlated with obesity and type II diabetes. Since insulin and insulin-like growth factors play a key role during development of both metabolic diseases, these molecules may be important in RCC pathophysiology We investigated the effect of insulin and IGFs on RCC cells using in vitro model with 786-O, 769-P, Caki-1, Caki-2, ACHN cancer cell lines. Cancer cells were compared with normal kidney cells - PCS-400-010 and HEK293. The growth, viability of cells as well as migration rate were assessed upon hormonal stimulation. The insulin receptor and Insulin-like growth factor 1 receptor presence were evaluated and the expression of 84 genes related to insulin signaling pathway. In all RCC cell lines IGF-1R expression was confirmed in contrast to IR, which was expressed only in control HEK293 cell line. Insulin and IGFs stimulated RCC cells growth and migration rate. Insulin, IGF-1 and IGF-2 triggered both IR and IGF-1R phosphorylation. Analyzed RCC did not secret insulin, IGF-1 or IGF-2 and were not activated in autocrine-paracrine signaling loop. Insulin and IGFs stimulations triggered down-regulation of PI3K-Akt-mTOR and Ras-MAPK pathway gens, as well as DOK2-3, INS, FRS3, IRS1-2, IGF1R - genes encoding insulin receptor-associated proteins. In conclusion, we showed that IGFs and insulin may play a stimulatory role for renal cancer cells, thus they can possibly affect renal cancer tumorigenesis and progression on cellular level.
Collapse
Affiliation(s)
- Wojciech Solarek
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, Warsaw, 04-141, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michal Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Slawomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, Warsaw, 04-141, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Oncology, European Health Centre, Otwock, Poland.,Medical Center for Postgraduate Education, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, Warsaw, 04-141, Poland.
| |
Collapse
|
46
|
Insulin-Like Growth Factor Binding Protein-6 Promotes the Differentiation of Placental Mesenchymal Stem Cells into Skeletal Muscle Independent of Insulin-Like Growth Factor Receptor-1 and Insulin Receptor. Stem Cells Int 2019; 2019:9245938. [PMID: 30911300 PMCID: PMC6397983 DOI: 10.1155/2019/9245938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/16/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022] Open
Abstract
As mesenchymal stem cells (MSCs) are being investigated for regenerative therapies to be used in the clinic, delineating the roles of the IGF system in MSC growth and differentiation, in vitro, is vital in developing these cellular therapies to treat degenerative diseases. Muscle differentiation is a multistep process, starting with commitment to the muscle lineage and ending with the formation of multinucleated fibers. Insulin-like growth factor binding protein-6 (IGFBP-6), relative to other IGFBPs, has high affinity for IGF-2. However, the role of IGFBP-6 in muscle development has not been clearly defined. Our previous studies showed that in vitro extracellular IGFBP-6 increased myogenesis in early stages and could enhance the muscle differentiation process in the absence of IGF-2. In this study, we identified the signal transduction mechanisms of IGFBP-6 on muscle differentiation by placental mesenchymal stem cells (PMSCs). We showed that muscle differentiation required activation of both AKT and MAPK pathways. Interestingly, we demonstrated that IGFBP-6 could compensate for IGF-2 loss and help enhance the muscle differentiation process by triggering predominantly the MAPK pathway independent of activating either IGF-1R or the insulin receptor (IR). These findings indicate the complex interactions between IGFBP-6 and IGFs in PMSC differentiation into the skeletal muscle and that the IGF signaling axis, specifically involving IGFBP-6, is important in muscle differentiation. Moreover, although the major role of IGFBP-6 is IGF-2 inhibition, it is not necessarily the case that IGFBP-6 is the main modulator of IGF-2.
Collapse
|
47
|
Taketani H, Nishikawa T, Nakajima H, Kodo K, Sugimoto S, Aoi W, Horike SI, Meguro-Horike M, Ishiba H, Seko Y, Umemura A, Yamaguchi K, Moriguchi M, Yasui K, Itoh Y. Aging-associated impairment in metabolic compensation by subcutaneous adipose tissue promotes diet-induced fatty liver disease in mice. Diabetes Metab Syndr Obes 2019; 12:1473-1492. [PMID: 31692556 PMCID: PMC6711723 DOI: 10.2147/dmso.s214093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome, and its progression is associated with aging-associated impairment in metabolic homeostasis. Recently, energy metabolism in adipose tissue has been the subject of renewed interest, because significant energy expenditure can be induced in cells derived from white adipose tissue progenitors, in addition to brown adipose tissue (BAT). Here we evaluated whether aging-associated change in various adipose tissue depots affects the progression of NAFLD. METHODS Six-week-old male C57BL/6NCrSlc mice were fed control chow (C) or high-fat diet (60% fat; HF) for 12 or 24 weeks (12w/C, 12w/HF, 24w/C and 24w/HF groups, respectively) or switched from C to HF diet at 18 weeks of age (24w/C/HF group) and fed for a further 24 weeks. Some 24w/HF mice received a subcutaneous transplantation of adipose progenitors (106 cells/mouse) from young donor mice. Basal energy expenditure, glucose tolerance, and liver and adipose tissue histology were then evaluated. In addition, features of senescence and the capacity of adipose progenitors to "brown" were compared in mice of various ages. RESULTS 12w/HF mice demonstrated compensation in the forms of hypertrophy of interscapular classical BAT and the appearance of subcutaneous beige adipocytes, consistent with improved metabolic homeostasis. In contrast, 24w/HF and 24w/C/HF mice developed obesity, glucose intolerance, and severe NAFLD, with accelerated senescence and loss of adipose progenitors in subcutaneous fat tissues. Recruitment of adipose progenitors ameliorated these findings in 24w/HF mice. CONCLUSION Impaired metabolic compensation in adipose tissue resulted in the progression of NAFLD, which was associated with aging-related deterioration in adipose progenitors. A new approach targeting adipose tissue progenitors might represent a potential strategy for the prevention of NAFLD.
Collapse
Affiliation(s)
- Hiroyoshi Taketani
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Correspondence: Taichiro NishikawaKyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachidouri Hirokouji Agaru, Kamigyo-ku, Kyoto602-8566, JapanTel +81 75 251 5519Fax +81 75 251 1017Email
| | - Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shin-ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Hiroshi Ishiba
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohichiroh Yasui
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
48
|
Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis. Cell Mol Bioeng 2018; 11:321-336. [PMID: 31579283 DOI: 10.1007/s12195-018-0543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Stem cell-based therapies represent a valid approach to restore cardiac function due to their beneficial effect in reducing scar area formation and promoting angiogenesis. However, their translation into the clinic is limited by the poor differentiation and inability to secrete sufficient therapeutic factors. To address this issue, several strategies such as genetic modification and biophysical preconditioning have been used to enhance the efficacy of stem cells for cardiac tissue repair. Methods In this study, a biomimetic approach was used to mimic the natural mechanical stimulation of the myocardium tissue. Specifically, human adipose-derived stem cells (hASCs) were cultured on a thin gelatin methacrylamide (GelMA) hydrogel disc and placed on top of a beating cardiomyocyte layer. qPCR studies and metatranscriptomic analysis of hASCs gene expression were investigated to confirm the correlation between mechanical stimuli and cardiomyogenic differentiation. In vivo intramyocardial delivery of pre-conditioned hASCs was carried out to evaluate their efficacy to restore cardiac function in mice hearts post-myocardial infarction. Results The cyclic strain generated by cardiomyocytes significantly upregulated the expression of both mechanotransduction and cardiomyogenic genes in hASCs as compared to the static control group. The inherent angiogenic secretion profile of hASCs was not hindered by the mechanical stimulation provided by the designed biomimetic system. Finally, in vivo analysis confirmed the regenerative potential of the pre-conditioned hASCs by displaying a significant improvement in cardiac function and enhanced angiogenesis in the peri-infarct region. Conclusion Overall, these findings indicate that cyclic strain provided by the designed biomimetic system is an essential stimulant for hASCs cardiomyogenic differentiation, and therefore can be a potential solution to improve stem-cell based efficacy for cardiovascular repair.
Collapse
|
49
|
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev Rep 2018; 14:484-499. [DOI: 10.1007/s12015-018-9817-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|