1
|
Yang X, Dai L, Yan F, Ma Y, Guo X, Jenis J, Wang Y, Zhang J, Miao X, Shang X. The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155772. [PMID: 38852474 DOI: 10.1016/j.phymed.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Fengyuan Yan
- The First People`s Hospital of Lanzhou City, Lanzhou 730050, PR China
| | - Yudong Ma
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiao Guo
- College of Tibetan Medicine, Qinghai University, Xining 810016, PR China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Kuboyama T, Hotta K, Asanuma M, Ge YW, Toume K, Yamazaki T, Komatsu K. Quality assessment of Rheum species cultivated in Japan by focusing on M2 polarization of microglia. J Nat Med 2023; 77:699-711. [PMID: 37347410 DOI: 10.1007/s11418-023-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 06/23/2023]
Abstract
In traditional Japanese medicine, Rhei Rhizoma is used as a purgative, blood stasis-resolving and antipsychotic drug. The latter two properties are possibly related to anti-inflammatory effects. Microglia regulate inflammation in the central nervous system. M1 microglia induce inflammation, while M2 microglia inhibit inflammation and show neurotrophic effects. This study investigated the effects from water extracts of roots of cultivated Rheum species in Nagano Prefecture, Japan (strain C, a related strain to a Japanese cultivar, 'Shinshu-Daio'; and strain 29, a Chinese strain) and 3 kinds of Rhei Rhizoma available in the Japanese market, and also examined their constituents on the polarization of cultured microglia. All extracts significantly decreased M1 microglia, and strains C and 29 significantly increased M2 microglia. Furthermore, the extracts of both strains significantly increased the M2/M1 ratio. Among the constituents of Rhei Rhizoma, ( +)-catechin (2), resveratrol 4'-O-β-D-(6″-O-galloyl) glucopyranoside (5), isolindleyin (8), and physcion (15) significantly increased the M2/M1 ratio. The contents of the constituents in water extract of each strain were quantified using HPLC. The extracts of strains C and 29 contained relatively large amounts of 2 and 5; and 2, 8, and 15, respectively. This study showed the water extracts of roots of cultivated Rheum strains in Japan had the effects of M2 polarization of microglia, suggesting that these strains become the candidate to develop anti-inflammatory Rhei Rhizoma. Moreover, the suitable chemical composition to possess anti-inflammatory activity in the brain was clarified for the future development of new type of Rhei Rhizoma.
Collapse
Affiliation(s)
- Tomoharu Kuboyama
- Laboratory of Pharmacognosy, Daiichi University of Pharmacy, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka, 815-8511, Japan.
| | - Kenichiro Hotta
- Section of Pharmacognosy, Division of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mai Asanuma
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yue-Wei Ge
- School of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, China
| | - Kazufumi Toume
- Section of Pharmacognosy, Division of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takuma Yamazaki
- Pharmaceutical Affairs Division, Health and Welfare, Department of Nagano Prefecture, 692-2 Habashita, Minami-Nagano, Nagano, 380-8570, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Division of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
5
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
6
|
Staykov H, Lazarova M, Hassanova Y, Stefanova M, Tancheva L, Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci 2022; 72:1018-1025. [PMID: 35174445 DOI: 10.1007/s12031-022-01979-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.
Collapse
Affiliation(s)
- Hristian Staykov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria.
| | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Rumen Nikolov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| |
Collapse
|
7
|
Huo S, Ren J, Ma Y, Ozathaley A, Yuan W, Ni H, Li D, Liu Z. Upregulation of TRPC5 in hippocampal excitatory synapses improves memory impairment associated with neuroinflammation in microglia knockout IL-10 mice. J Neuroinflammation 2021; 18:275. [PMID: 34836549 PMCID: PMC8620645 DOI: 10.1186/s12974-021-02321-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the transient receptor potential canonical (TRPC) protein family are widely distributed in the hippocampus of mammals and exert respective and cooperative influences on the functions of neurons. The relationship between specific TRPC subtypes and neuroinflammation is receiving increasing attention. METHODS Using Cx3cr1CreERIL-10-/- transgenic mice and their littermates to study the relationship between TRPC channels and memory impairment. RESULTS We demonstrated that Cx3cr1CreERIL-10-/- mice displayed spatial memory deficits in object location recognition (OLR) and Morris water maze (MWM) tasks. The decreased levels of TRPC4 and TRPC5 in the hippocampal regions were verified via reverse transcription polymerase chain reaction, western blotting, and immunofluorescence tests. The expression of postsynaptic density protein 95 (PSD95) and synaptophysin in the hippocampus decreased with an imbalance in the local inflammatory environment in the hippocampus. The number of cells positive for ionized calcium-binding adaptor molecule 1 (Iba1), a glial fibrillary acidic protein (GFAP), increased with the high expression of interleukin 6 (IL-6) in Cx3cr1CreERIL-10-/- mice. The nod-like receptor protein 3 (NLRP3) inflammasome was also involved in this process, and the cytokines IL-1β and IL-18 activated by NLRP3 were also elevated by western blotting. The co-localization of TRPC5 and calmodulin-dependent protein kinase IIα (CaMKIIα) significantly decreased TRPC5 expression in excitatory neurons. AAV9-CaMKIIα-TRPC5 was used to upregulate TRPC5 in excitatory neurons in the hippocampus. CONCLUSIONS The results showed that the upregulation of TRPC5 improved the memory performance of Cx3cr1CreERIL-10-/- mice related to inhibiting NLRP3 inflammasome-associated neuroinflammation.
Collapse
Affiliation(s)
- Shiji Huo
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Yunqing Ma
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Ahsawle Ozathaley
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Wenjian Yuan
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China
| | - Hong Ni
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dong Li
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China
| | - Zhaowei Liu
- Medical School, Nankai University, No.94, Weijin Road, Nankai District, Tianjin, 300071, China.
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Liu Y, Li H, Hu J, Wu Z, Meng J, Hayashi Y, Nakanishi H, Qing H, Ni J. Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury. Mol Neurobiol 2021; 59:717-730. [PMID: 34762231 DOI: 10.1007/s12035-021-02594-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Regulation of microglial activation and neuroinflammation are critical factors in the pathogenesis of ischemic brain injury. Interest in protease-activated receptor 2 (PAR2) as a pharmaceutical target for various diseases is creasing. However, it is unclear the expression and functions of PAR2 in hypoxia-ischemic (HI) brain injury. Mice with HI and cells with oxygen-glucose deprivation and reoxygenation (OGD/R) were studied. Immunoblot and qRT-PCR were used to study the differential gene expression in cultured microglia and neurons. Immunofluorescent staining was used to study the expression pattern of PAR2 in the HI brain and phagocytotic activity of microglia after OGD/R. In neonatal mice brain after HI, we found PAR2 expression was abundant in neurons, but barely in microglia from the contralateral side of cortex and hippocampus. Conversely, PAR2 expression was barely in neurons while significantly increased in activated microglia from the ipsilateral side of cortex and hippocampus. The activations of PAR2 were increased in both microglia and neuron in a cell model of OGD/R. PAR2 activation mediated the cross-talk between microglia and neurons including the following: microglial PAR2 mediated inflammatory responses that induced neuronal damage; neuronal PAR2 regulated chemokines that recruited activated microglia to damage area; microglia PAR2 controlled the phagocytosis of degenerating neurons. These data suggested differential expression and distinct roles of PAR2 in microglia and neurons after HI injury; thereby, interventions targeting PAR2 may provide insights into the inflammatory-related diseases.
Collapse
Affiliation(s)
- Yicong Liu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100081, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jie Meng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Garcia-Contreras M, Thakor AS. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov 2021; 7:98. [PMID: 33972507 PMCID: PMC8110535 DOI: 10.1038/s41420-021-00471-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), are driven by neuroinflammation triggered by activated microglial cells; hence, the phenotypic regulation of these cells is an appealing target for intervention. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) may be a potential therapeutic candidate to treat NDs given their immunomodulatory properties. Evidence suggests that the mechanism of action of hAD-MSCs is through their secretome, which includes secreted factors such as cytokines, chemokines, or growth factors as well as extracellular vesicles (EVs). Recently, EVs have emerged as important mediators in cell communication given, they can transfer proteins, lipids, and RNA species (i.e., miRNA, mRNA, and tRNAs) to modulate recipient cells. However, the therapeutic potential of hAD-MSCs and their secreted EVs has not been fully elucidated with respect to human microglia. In this study, we determined the therapeutic potential of different hAD-MSCs doses (200,000, 100,000, and 50,000 cells) or their secreted EVs (50, 20, or 10 µg/ml), on human microglial cells (HMC3) that were activated by lipopolysaccharides (LPS). Upregulation of inducible nitric oxide synthase (iNOS), an activation marker of HMC3 cells, was prevented when they were cocultured with hAD-MSCs and EVs. Moreover, hAD-MSCs inhibited the secretion of proinflammatory factors, such as IL-6, IL-8, and MCP-1, while their secreted EVs promoted the expression of anti-inflammatory mediators such as IL-10 or TIMP-1 in activated microglia. The present data therefore support a role for hAD-MSCs and their secreted EVs, as potential therapeutic candidates for the treatment of NDs.
Collapse
Affiliation(s)
- Marta Garcia-Contreras
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Pap R, Pandur E, Jánosa G, Sipos K, Agócs A, Deli J. Lutein Exerts Antioxidant and Anti-Inflammatory Effects and Influences Iron Utilization of BV-2 Microglia. Antioxidants (Basel) 2021; 10:antiox10030363. [PMID: 33673707 PMCID: PMC7997267 DOI: 10.3390/antiox10030363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lutein is a tetraterpene carotenoid, which has been reported as an important antioxidant and it is widely used as a supplement. Oxidative stress participates in many human diseases, including different types of neurodegenerative disorders. Microglia, the primary immune effector cells in the central nervous system, are implicated in these disorders by producing harmful substances such as reactive oxygen species (ROS). The protective mechanisms which scavenge ROS include enzymes and antioxidant substances. The protective effects of different carotenoids against oxidative stress have been described previously. Our study focuses on the effects of lutein on antioxidant enzymes, cytokines and iron metabolism under stress conditions in BV-2 microglia. We performed cell culture experiments: BV-2 cells were treated with lutein and/or with H2O2; the latter was used for inducing oxidative stress in microglial cells. Real-time PCR was performed for gene expression analyses of antioxidant enzymes, and ELISA was used for the detection of pro- and anti-inflammatory cytokines. Our results show that the application of lutein suppressed the H2O2-induced ROS (10′: 7.5 ng + 10 µM H2O2, p = 0.0002; 10 ng/µL + 10 µM H2O2, p = 0.0007), influenced iron utilization and changed the anti-inflammatory and pro-inflammatory cytokine secretions in BV-2 cells. Lutein increased the IL-10 secretions compared to control (24 h: 7.5 ng/µL p = 0.0274; 10 ng/µL p = 0.0008) and to 10 µM H2O2-treated cells (24 h: 7.5 ng/µL + H2O2, p = 0.0003; 10 ng/µL + H2O2, p = 0.0003), while it decreased the TNFα secretions compared to H2O2 treated cells (24 h: 7.5 ng/µL + H2O2, p < 0.0001; 10 ng/µL + H2O2, p < 0.0001). These results contribute to understanding the effects of lutein, which may help in preventing or suppressing ROS-mediated microglia activation, which is related to neuronal degeneration in oxidative stress scenario.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary; (R.P.); (E.P.); (G.J.); (K.S.)
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
11
|
Zhang T, Shi L, Li Y, Mu W, Zhang H, Li Y, Wang X, Zhao W, Qi Y, Liu L. Polysaccharides extracted from Rheum tanguticum ameliorate radiation-induced enteritis via activation of Nrf2/HO-1. JOURNAL OF RADIATION RESEARCH 2021; 62:46-57. [PMID: 33140083 PMCID: PMC7779360 DOI: 10.1093/jrr/rraa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Indexed: 05/21/2023]
Abstract
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. The Nrf2/HO-1 pathway is a critical endogenous antioxidant stress pathway, but its precise role in radiation-induced enteritis remains to be clarified. Polysaccharides extracted from Rheum tanguticum (RTP) can protect the intestinal cells from radiation-induced damage, but the underlying mechanism is unknown. SD rats and IEC-6 cells were exposed to 12 or 10 Gy X-ray radiation. Rat survival, and histopathological and immunohistochemical profiles were analyzed at different time points. Indicators of oxidative stress and inflammatory response were also assessed. Cell viability, apoptosis and Nrf2/HO-1 expression were evaluated at multiple time points. Significant changes were observed in the physiological and biochemical indexes of rats after radiation, accompanied by significant oxidative stress response. The mRNA and protein expression of Nrf2 peaked at 12 h after irradiation, and HO-1 expression peaked at 48 h after irradiation. RTP administration reduced radiation-induced intestinal damage, upregulated Nrf2/HO-1, improved physiological indexes, significantly decreased apoptosis and inflammatory factors, and upregulated HO-1, particularly at 48 h after irradiation. In conclusion, Nrf2 is activated in the early stage of radiation-induced intestinal injury and plays a protective role. RTP significantly ameliorates radiation-induced intestinal injury via the regulation of Nrf2 and its downstream protein HO-1.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Yan Li
- Xi'an beilin Pharmaceutical Co., LTD, 710038,China
| | - Wei Mu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - HaoMeng Zhang
- Department of Thyroid & Breast, The Affiliated Hospital of Northwest University ·XI'AN NO.3 Hospital, 710038, China
| | - Yang Li
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - XiaoYan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, 150001, China
| | - WeiHe Zhao
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - YuHong Qi
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| |
Collapse
|
12
|
Suganya K, Liu QF, Koo BS. Santalum album extract exhibits neuroprotective effect against the TLR3-mediated neuroinflammatory response in human SH-SY5Y neuroblastoma cells. Phytother Res 2020; 35:1991-2004. [PMID: 33166007 DOI: 10.1002/ptr.6942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/25/2020] [Accepted: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Neuroinflammation is an inflammatory response in the nervous system that is associated with various neurological diseases including Alzheimer's diseases and others. Many studies evaluated the anti-inflammatory potential of Santalum album (S. album) extract, but none of them analyzed its effects against neuroinflammatory response in vitro. In addition, the precise mechanism underlying the anti-inflammatory effect of the extract has not yet been elucidated. Therefore, in this study, we investigated the effect of S. album extract on modulation of toll-like receptor 3 (TLR3) agonist polyinosnic-polycytidylic acid (PolyI:C)-induced neuroinflammatory response in human neuroblastoma cells. The TLR3-mediated immune response was differentially modulated by S. album extract in SH-SY5Y cells. In addition, treatment of cells with the conditioned medium (CM) of S. album extract significantly increased the mRNA levels of IFN-β, IFN-α, MxA and OAS-1 and decreased IL-6, CXCL8, CCL2 and IP-10. S. album extract has indirectly affected the expression of IFNs and inflammatory cytokines in SH-SY5Y cells. Furthermore, the extract was able to modulate PolyI:C-induced inflammatory response in Caco2 cells. Overall, S. album was capable to attenuate PolyI:C-induced neuroinflammatory effect through the induction of TLR2, TLR4 and the modulation of TLR negative regulators of the TRAF3, IRF3 and NF-κB pathways.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeogju, Republic of Korea.,Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Quan Feng Liu
- Department of Oriental Medicine, Dongguk University, Gyeogju, Republic of Korea.,Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeogju, Republic of Korea.,Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Chen DB, Gao HW, Peng C, Pei SQ, Dai AR, Yu XT, Zhou P, Wang Y, Cai B. Quinones as preventive agents in Alzheimer's diseases: focus on NLRP3 inflammasomes. J Pharm Pharmacol 2020; 72:1481-1490. [PMID: 32667050 DOI: 10.1111/jphp.13332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a hidden neurological degenerative disease, which main clinical manifestations are cognitive dysfunction, memory impairment and mental disorders. Neuroinflammation is considered as a basic response of the central nervous system. NLRP3 (Nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3) inflammasome is closely related to the occurrence of neuroinflammation. Activation of the NLRP3 inflammasome results in the release of cytokines, pore formation and ultimately pyroptosis, which has demonstrated one of the critical roles in AD pathogenesis. Inhibition of the activity of NLRP3 is one of the focuses of the research. Therefore, NLRP3 represents an attractive pharmacological target, and discovery compounds with good NLRP3 inhibitory activity are particularly important. KEY FINDINGS Quinones have good neuroprotective effects and prevent AD, which may be related to their regulation of inflammatory response. The molecular docking was used to explore 12 quinones with AD prevention and treatment and NLRP3. Docking results showed that the combination of anthraquinones and NLRP3 were the best, and the top two chemical compounds were Purpurin and Rhein, which are the most promising NLRP3 inhibitors. SUMMARY These quinones may provide the theoretical basis for finding lead compounds for novel neuroprotective agents.
Collapse
Affiliation(s)
- Da-Bao Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hua-Wu Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shao-Qiang Pei
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - An-Ran Dai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue-Ting Yu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
14
|
Qi X, Guo H, Sun C, Tian Y, Ding M, Yang Y, Jin H. Clinical significance of progranulin correlated with serum soluble Oxford 40 ligand in primary Sjögren's syndrome. Medicine (Baltimore) 2020; 99:e19967. [PMID: 32358369 PMCID: PMC7440338 DOI: 10.1097/md.0000000000019967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to investigate the association between the expressions of serum progranulin (PGRN) and serum soluble Oxford 40 ligand (sOX40L) and determine their clinical significances in primary Sjögren's syndrome (pSS).The present study included a total of 68 patients with pSS and 50 healthy controls. Demographic data and clinical basic information were collected. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum levels of PGRN, sOX40L and interleukins. Spearman's correlation coefficient and Mann-Whitney U test were used to determine the correlation between PGRN, and sOX40L and the association between PGRN and sOX40L and disease activity and disease severity.Serum interleukin (IL)-4, IL-6, IL-10, PGRN, and sOX40L levels were significantly higher in pSS patients as compared to the healthy controls. A positive correlation was observed between PGRN and sOX40L. Patients with elevated levels of PGRN or sOX40L exhibited higher disease activity compared to those with lower levels. Patients with III to IV stages of pSS or multiple system damage showed higher serum levels of PGRN and sOX40L.Elevated serum PGRN, and sOX40L levels were relevant with disease activity and severity in patients with pSS.
Collapse
|
15
|
Gupta DP, Park SH, Yang HJ, Suk K, Song GJ. Neuroprotective and Anti-Neuroinflammatory Effects of a Poisonous Plant Croton Tiglium Linn. Extract. Toxins (Basel) 2020; 12:toxins12040261. [PMID: 32316571 PMCID: PMC7232518 DOI: 10.3390/toxins12040261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is involved in various neurological diseases. Activated microglia secrete many pro-inflammatory factors and induce neuronal cell death. Thus, the inhibition of excessive proinflammatory activity of microglia leads to a therapeutic effect that alleviates the progression of neuronal degeneration. In this study, we investigated the effect of Croton tiglium (C. tiglium) Linn. extract (CTE) on the production of pro- and anti-inflammatory mediators in microglia and astrocytes via RT-PCR, Western blot, and nitric oxide assay. Neurotoxicity was measured by cell viability assay and GFP image analysis. Phagocytosis of microglia was measured using fluorescent zymosan particles. CTE significantly inhibited the production of neurotoxic inflammatory factors, including nitric oxide and tumor necrosis factor-α. In addition, CTE increased the production of the neurotrophic factor, brain-derived neurotrophic factor, and the M2 phenotype of microglia. The culture medium retained after CTE treatment increased the survival of neurons, thereby indicating the neuroprotective effect of CTE. Our findings indicated that CTE inhibited pro-inflammatory response and increased the neuroprotective ability of microglia. In conclusion, although CTE is known to be a poisonous plant and listed on the FDA poisonous plant database, it can be used as a medicine if the amount is properly controlled. Our results suggested the potential benefits of CTE as a therapeutic agent for different neurodegenerative disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sung Hee Park
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do 25601, Korea
- Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Korea
- Correspondence: ; Tel.: +82-32-280-6532
| |
Collapse
|
16
|
Meng X, Ma J, Kang SY, Jung HW, Park YK. Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chin Med 2020; 15:24. [PMID: 32190104 PMCID: PMC7066842 DOI: 10.1186/s13020-020-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Jowiseungki decoction (JSD) is a prescription commonly used for the treatment of diabetic complications or diabetic nephropathy (DN) in traditional medicine clinics. However, the underlying therapeutic mechanisms of JSD are still unclear. Methods Streptozotocin (STZ)-induced DN mice were administered 100 and 500 mg/kg JSD for 4 weeks, and the therapeutic mechanisms and targets of JSD were analyzed by network pharmacology and gut microbiota analyses. Results JSD significantly decreased the increase in food and water intake, urine volume, fasting blood glucose, serum glucose and triglyceride levels, and urinary albumin excretion. JSD administration significantly increased the decrease in insulin secretion and creatinine clearance and reduced the structural damage to the kidney tissues. Moreover, JSD administration significantly inhibited the expression of protein kinase C-alpha (PKC-α), transforming growth factor beta-1 (TGF-β1), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in the kidney tissues of DN mice, while it significantly increased the phosphorylation of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). In the network pharmacological analysis, JSD obviously influenced phosphatase binding, protein serine/threonine kinase, and mitogen-activated protein kinase (MAPK)-related signaling pathways. Our data suggest that JSD can improve symptoms in STZ-induced DN mice through the inhibition of kidney dysfunction, in particular, by regulating the PKCα/PI3K/Akt and NF-κB/α-SMA signaling pathways. Gut microbiota analysis can help to discover the pharmaco-mechanisms of the influence of JSD on bacterial diversity and flora structures in DN. Conclusion JSD can improve the symptoms of DN, and the underlying mechanism of this effect is renal protection through the inhibition of fibrosis and inflammation. JSD can also change bacterial diversity and community structures in DN.
Collapse
Affiliation(s)
- Xianglong Meng
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea.,Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619 China
| | - Junnan Ma
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Seok Yong Kang
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Hyo Won Jung
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Yong-Ki Park
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| |
Collapse
|
17
|
Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8409329. [PMID: 31885820 PMCID: PMC6914903 DOI: 10.1155/2019/8409329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by impairments in the cognitive domains associated with orientation, recording, and memory. This pathology results from an abnormal deposition of the β-amyloid (Aβ) peptide and the intracellular accumulation of neurofibrillary tangles. Mitochondrial dysfunctions play an important role in the pathogenesis of AD, due to disturbances in the bioenergetic properties of cells. To date, the usual therapeutic drugs are limited because of the diversity of cellular routes in AD and the toxic potential of these agents. In this context, alpha-lipoic acid (α-LA) is a well-known fatty acid used as a supplement in several health conditions and diseases, such as periphery neuropathies and neurodegenerative disorders. It is produced in several cell types, eukaryotes, and prokaryotes, showing antioxidant and anti-inflammatory properties. α-LA acts as an enzymatic cofactor able to regulate metabolism, energy production, and mitochondrial biogenesis. In addition, the antioxidant capacity of α-LA is associated with two thiol groups that can be oxidised or reduced, prevent excess free radical formation, and act on improvement of mitochondrial performance. Moreover, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6. Regarding the pharmacokinetic profile, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic. However, α-LA has low risk in prolonged use, although its therapeutic potential, interactions with other substances, and adverse reactions have not been well established in clinical trials with populations at higher risk for diseases of aging. Thus, this review aimed to describe the pharmacokinetic profile, bioavailability, therapeutic efficacy, safety, and effects of combined use with centrally acting drugs, as well as report in vitro and in vivo studies that demonstrate the mitochondrial mechanisms of α-LA involved in AD protection.
Collapse
|
18
|
Evidence That the Anti-Inflammatory Effect of Rubiadin-1-methyl Ether Has an Immunomodulatory Context. Mediators Inflamm 2019; 2019:6474168. [PMID: 31780865 PMCID: PMC6874871 DOI: 10.1155/2019/6474168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the latest therapeutic developments, no effective treatments for handling critical conditions such as acute lung injuries have yet been found. Such conditions, which may result from lung infections, sepsis, multiple trauma, or shock, represent a significant challenge in intensive care medicine. Seeking ways to better deal with this challenge, the scientific community has recently devoted much attention to small molecules derived from natural products with anti-inflammatory and immunomodulatory effects. Aims In this context, we investigated the anti-inflammatory effect of Rubiadin-1-methyl ether isolated from Pentas schimperi, using an in vitro model of RAW 264.7 macrophages induced by LPS and an in vivo model of acute lung injury (ALI) induced by LPS. Methods The macrophages were pretreated with the compound and induced by LPS (1 μg/mL). After 24 h, using the supernatant, we evaluated the cytotoxicity, NOx, and IL-6, IL-1β, and TNF-α levels, as well as the effect of the compound on macrophage apoptosis. Next, the compound was administered in mice with acute lung injury (ALI) induced by LPS (5 mg/kg), and the pro- and anti-inflammatory parameters were analyzed after 12 h using the bronchoalveolar lavage fluid (BALF). Results Rubiadin-1-methyl ether was able to inhibit the pro-inflammatory parameters studied in the in vitro assays (NOx, IL-6, and IL-1β) and, at the same time, increased the macrophage apoptosis rate. In the in vivo experiments, this compound was capable of decreasing leukocyte infiltration; fluid leakage; NOx; IL-6, IL-12p70, IFN-γ, TNF-α, and MCP-1 levels; and MPO activity. In addition, Rubiadin-1-methyl ether increased the IL-10 levels in the bronchoalveolar lavage fluid (BALF). Conclusions These findings support the evidence that Rubiadin-1-methyl ether has important anti-inflammatory activity, with evidence of an immunomodulatory effect.
Collapse
|
19
|
Fontinele LL, Heimfarth L, Pereira EWM, Rezende MM, Lima NT, Barbosa Gomes de Carvalho YM, Afonso de Moura Pires E, Guimarães AG, Bezerra Carvalho MT, de Souza Siqueira Barreto R, Campos AR, Antoniolli AR, Antunes de Souza Araújo A, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Anti-hyperalgesic effect of (-)-α-bisabolol and (-)-α-bisabolol/β-Cyclodextrin complex in a chronic inflammatory pain model is associated with reduced reactive gliosis and cytokine modulation. Neurochem Int 2019; 131:104530. [PMID: 31425746 DOI: 10.1016/j.neuint.2019.104530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Chronic pain is a continuous or recurring pain which exceeds the normal course of recovery to an injury or disease. According to the origin of the chronic pain, it can be classified as inflammatory or neuropathic. This study aimed to evaluate the antinociceptive and anti-inflammatory effect of (-)-α-bisabolol (BIS) alone and complexed with β-cyclodextrin (βCD) in preclinical models of chronic pain. Chronic pain was induced by Freund's Complete Adjuvant (FCA) or partial lesion of the sciatic nerve (PLSN). Swiss mice were treated with BIS, BIS-βCD (50 mg/kg, p.o) or vehicle (control) and mechanical hyperalgesia, thermal hyperalgesia, muscle strength and motor coordination were evaluated. In addition, levels of TNF-α and IL-10 and expression of the ionized calcium-binding adapter protein (IBA-1) were assessed in the spinal cord of the mice. The complexation efficiency of BIS in βCD was evaluated by High-Performance Liquid Chromatography. BIS and BIS-βCD reduced (p < 0.001) mechanical and thermal hyperalgesia. No alterations were found in force and motor coordination. In addition, BIS and BIS-βCD inhibited (p < 0.05) TNF-α production in the spinal cord and stimulated (p < 0.05) the release of IL-10 in the spinal cord in PLSN-mice. Further, BIS and BIS-βCD reduced IBA-1 immunostaining. Therefore, BIS and BIS-βCD attenuated hyperalgesia, deregulated cytokine release and inhibited IBA-1 expression in the spinal cord in the PLSN model. Moreover, our results show that the complexation of BIS in βCD reduced the therapeutic dose of BIS. We conclude that BIS is a promising molecule for the treatment of chronic pain.
Collapse
|
20
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|