1
|
Bombelli S, Grasselli C, Mazzola P, Veronesi V, Morabito I, Zucchini N, Scollo CM, Blanco SI, De Marco S, Torsello B, Vitarelli F, Antolini L, Bianchi C, Leoni V, Bellelli G, Perego RA. Impairment of Renal and Hematopoietic Stem/Progenitor Cell Compartments in Frailty Syndrome: Link With Oxidative Stress, Plasma Cytokine Profiles, and Nuclear DNA Damage. J Gerontol A Biol Sci Med Sci 2024; 79:glae188. [PMID: 39066510 PMCID: PMC11439494 DOI: 10.1093/gerona/glae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 07/28/2024] Open
Abstract
Frailty is an age-related syndrome that drives multiple physiological system impairments in some older adults, and its pathophysiological mechanisms remain unclear. We evaluated whether frailty-related biological processes could impair stem cell compartments, specifically the renal stem compartment, given that kidney dysfunctions are frequent in frailty. A well-characterized in vitro nephrosphere model of human adult renal stem/progenitor cells has been instrumental to and was appropriate for verifying this hypothesis in our current research. Evaluating the effects of plasma from older individuals with frailty (frail plasma) on allogeneic renal stem/progenitor cells, we showed significant functional impairment and nuclear DNA damage in the treated cells of the renal stem compartment. The analysis of the frail plasma revealed mitochondrial functional impairment associated with the activation of oxidative stress and a unique inflammatory mediator profile in frail individuals. In addition, the plasma of frail subjects also contained the highest percentage of DNA-damaged autologous circulating hematopoietic progenitor/stem cells. The integration of both molecular and functional data obtained allowed us to discern patterns associated with frailty status, irrespective of the comorbidities present in the frail individuals. The data obtained converged toward biological conditions that in frailty caused renal and hematopoietic impairment of stem cells, highlighting the possibility of concomitant exhaustion of several stem compartments.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Grasselli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paolo Mazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Acute Geriatric Unit, IRCCS San Gerardo, Monza, Italy
| | - Valentina Veronesi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Center - B4, University of Milano-Bicocca, Monza, Italy
| | - Ivana Morabito
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara M Scollo
- Immunotransfusional Unit, Laboratory of Hematology, IRCCS San Gerardo, Monza, Italy
| | | | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Vitarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Laboratory of Clinical Pathology and Toxicology, Pio XI Hospital, ASST-Brianza, Desio, Italy
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Center - B4, University of Milano-Bicocca, Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valerio Leoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Laboratory of Clinical Pathology and Toxicology, Pio XI Hospital, ASST-Brianza, Desio, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Acute Geriatric Unit, IRCCS San Gerardo, Monza, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Cao J, Yang S, Wang J, Zhang P. Changes in strength performance of highly trained athletes after COVID-19. PLoS One 2024; 19:e0308955. [PMID: 39298453 DOI: 10.1371/journal.pone.0308955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION This study aimed to explore the impact of COVID-19 on strength performance in highly trained athletes. METHOD A force plate was employed to measure squat jump height (SJH), counter-movement jump height (CMJH), and drop jump reactive strength index (DJRSI) in 27 highly trained athletes before infection, and at one week, two weeks, and four weeks post-recovery. Additionally, an Isometric Mid-thigh Pull (IMTP) test was conducted to record maximum isometric strength (MIS) and the rate of force development of the initial phase (RFD 0-50; RFD 0-100). Repeated measures analysis of variance was utilized to compare variations in these indicators across different time points. RESULTS One week post-recovery, SJH (-7.71%, P = 0.005), CMJH (-9.08%, P < 0.001), DJRSI (-28.88%, P < 0.001), MIS (-18.95%, P < 0.001), RFD 0-50 (-64.98%, P < 0.001), and RFD 0-100 (-53.65%, P < 0.001) were significantly lower than pre-infection levels. Four weeks post-recovery, SJH (-2.08%, P = 0.236), CMJH (-3.28%, P = 0.277), and MIS (-3.32%, P = 0.174) did not differ significantly from pre-infection levels. However, DJRSI (-11.24%, P = 0.013), RFD 0-50 (-31.37%, P = 0.002), and RFD 0-100 (-18.99%, P = 0.001) remained significantly lower than pre-infection levels. CONCLUSION After COVID-19, highly trained athletes exhibited a significant reduction in maximum strength, explosive strength, reactive strength, and initial phase force generation capability. By four weeks post-recovery, their maximum and explosive strength had returned to near pre-infection levels, yet their reactive strength and initial phase force generation capability remained significantly impaired.
Collapse
Affiliation(s)
- Jie Cao
- Professional Sports Research Center, Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Agency), Shanghai, China
| | - Shengtao Yang
- Professional Sports Research Center, Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Agency), Shanghai, China
| | - Jinhao Wang
- Professional Sports Research Center, Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Agency), Shanghai, China
| | - Peng Zhang
- Professional Sports Research Center, Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Agency), Shanghai, China
| |
Collapse
|
3
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
4
|
Zhai X, Wu W, Zeng S, Miao Y. Advance in the mechanism and clinical research of myalgia in long COVID. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:142-164. [PMID: 39310121 PMCID: PMC11411160 DOI: 10.62347/txvo6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mortality rates of coronavirus disease 2019 (COVID-19) have significantly decreased. However, a variable proportion of patients exhibit persistent prolonged symptoms of COVID-19 infection (long COVID). This virus primarily attacks respiratory system, but numerous individuals complain persistent skeletal muscle pain or worsening pre-existing muscle pain post COVID-19, which severely affects the quality of life and recovery. Currently, there is limited research on the skeletal muscle pain in long COVID. In this brief review, we review potential pathological mechanisms of skeletal muscle pain in long COVID, and summarize the various auxiliary examinations and treatments for skeletal muscle pain in long COVID. We consider abnormal activation of inflammatory response, myopathy, and neurological damages as pivotal pathological mechanisms of skeletal muscle pain in long COVID. A comprehensive examination is significantly important in order to work out effective treatment plans and relieve skeletal muscle pain. So far, rehabilitation interventions for myalgia in long COVID contain but are not limited to drug, nutraceutical therapy, gut microbiome-targeted therapy, interventional therapy and strength training. Our study provides a potential mechanism reference for clinical researches, highlighting the importance of comprehensive approach and management of skeletal muscle pain in long COVID. The relief of skeletal muscle pain will accelerate rehabilitation process, improve activities of daily living and enhance the quality of life, promoting individuals return to society with profound significance.
Collapse
Affiliation(s)
- Xiuyun Zhai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Weijun Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeNo. 1661, North Shengxin Road, Shanghai 201815, China
| | - Yun Miao
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityNo. 2727, Jinhai Road, Shanghai 201209, China
| |
Collapse
|
5
|
González-Islas D, Flores-Cisneros L, Orea-Tejeda A, Keirns-Davis C, Hernández-López N, Arcos-Pacheco LP, Zurita-Sandoval A, Albarran-López F, García-Castañeda L, Salgado-Fernández F, Hernández-López S, Jiménez-Valentín A, Pérez-García I. The Association between Body Composition Phenotype and Insulin Resistance in Post-COVID-19 Syndrome Patients without Diabetes: A Cross-Sectional, Single-Center Study. Nutrients 2024; 16:2468. [PMID: 39125348 PMCID: PMC11314085 DOI: 10.3390/nu16152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The most frequent body composition alterations in post-COVID-19 syndrome include low muscle mass, dynapenia, sarcopenia, and obesity. These conditions share interconnected pathophysiological mechanisms that exacerbate each other. The relationship between body composition phenotypes and metabolic abnormalities in post-COVID-19 syndrome remains unclear. OBJECTIVE To evaluate the association between body composition phenotypes and insulin resistance (IR) and metabolic abnormalities in non-diabetic individuals with post-COVID-19 syndrome. METHODS A cross-sectional, single-center study involving 483 subjects with post-COVID-19 syndrome following moderate to severe acute COVID-19 requiring hospitalization. Individuals with diabetes, those who declined to participate, or those who could not be contacted were excluded. Body composition phenotypes were classified as normal weight, dynapenia, sarcopenia, dynapenic obesity, and sarcopenic obesity (SO). RESULTS The average age was 52.69 ± 14.75 years; of note, 67.08% were male. The prevalence of body composition phenotypes was as follows: 13.25% were of normal weight, 9.52% had dynapenia, 9.94% had sarcopenia, 43.69% had obesity, 18.84% had dynapenic obesity, and 4.76% had SO. Additionally, 58.18% had IR. Obesity (OR: 2.98, CI95%; 1.64-5.41) and dynapenic obesity (OR: 4.98, CI95%; 1.46-6.88) were associated with IR. CONCLUSION The most common body composition phenotypes were obesity, dynapenic obesity, and dynapenia. Furthermore, obesity and dynapenic obesity were associated with IR in post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Dulce González-Islas
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Laura Flores-Cisneros
- Department of Epidemiological Information Analysis, General Directorate of Epidemiology, Mexico City 01480, Mexico;
| | - Arturo Orea-Tejeda
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Candace Keirns-Davis
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Nadia Hernández-López
- Licenciatura en Nutriología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Laura Patricia Arcos-Pacheco
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Andrea Zurita-Sandoval
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Frida Albarran-López
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Luis García-Castañeda
- Clinical Nutrition Department, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico
| | - Fernanda Salgado-Fernández
- Licenciatura en Nutriología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Samantha Hernández-López
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Angelia Jiménez-Valentín
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| | - Ilse Pérez-García
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (D.G.-I.)
| |
Collapse
|
6
|
Kaur B, Kumar N, Kumari L, Gupta AP, Sharma R, Chopra K, Saxena S. In-vitro antioxidant and anti-inflammatory potential along with p.o. pharmacokinetic profile of key bioactive phytocompounds of Snow Mountain Garlic: a comparative analysis vis-à-vis normal garlic. Inflammopharmacology 2024; 32:1871-1886. [PMID: 38564091 DOI: 10.1007/s10787-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/03/2023] [Indexed: 04/04/2024]
Abstract
Snow mountain garlic (SMG) is a trans-Himalayan medicinal plant used in the traditional medicine system for several ailments, including inflammatory arthritis. Research studies are insufficient to validate its folk medicinal applications. In the present study, the comparative abundance of its key bioactive phytocompounds, viz., S-allyl-L-cysteine (SAC), alliin, and S-methyl-L-cysteine (SMC) against normal garlic were assessed using the LC-MS/MS-MRM method. In addition, the study also explored the antioxidant and anti-inflammatory potency of crude extract of SMG and purified signature phytocompounds (i.e., SMC, SAC, and alliin) in comparison with normal garlic and dexamethasone in LPS-stimulated RAW264.7 macrophage cells. The LC-MS/MS-MRM study revealed significant differences among SMG and normal garlic, viz., alliin 22.8-fold higher in SMG, and SMC could be detected only in SMG. In the bioassays, SMG extract and purified signature phytocompounds significantly downregulated oxidative damage in activated macrophages, boosting endogenous antioxidants' activity. SMG extract-treated macrophages significantly suppressed NF-κB expression and related inflammatory indicators such as cytokines, COX-2, iNOS, and NO. Notably, the observed anti-inflammatory and antioxidant bioactivities of SMG extract were comparable to signature phytocompounds and dexamethasone. In addition, SAC being uniformly found in SMG and normal garlic, its comparative pharmacokinetics was studied to validate the pharmacodynamic superiority of SMG over normal garlic. Significantly higher plasma concentrations (Cmax), half-life (t1/2), and area under curve (AUC) of SAC following SMG extract administration than normal garlic validated the proposed hypothesis. Thus, the abundance of bioactive phytocompounds and their better pharmacokinetics in SMG extract might be underlying its medicinal merits over normal garlic.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Nitish Kumar
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Laxmi Kumari
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ajai P Gupta
- Director, Quality Assurance, Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, New Delhi, 110002, India
| | - Rajni Sharma
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Kanwaljit Chopra
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Shweta Saxena
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India.
| |
Collapse
|
7
|
Abdolmaleki A, Karimian A, Khoshnazar SM, Asadi A, Samarein ZA, Smail SW, Bhattacharya D. The role of Nrf2 signaling pathways in nerve damage repair. Toxicol Res (Camb) 2024; 13:tfae080. [PMID: 38799411 PMCID: PMC11116835 DOI: 10.1093/toxres/tfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Imam Khomeini Highway, Mustafa Khomeini Boulevard, Ibn Sina, Kerman, 9986598, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Zahra Akhavi Samarein
- Department of Counseling, Faculty of Education and Psychology, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, 1235897, Iraq
| | - Deepak Bhattacharya
- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, Sri Radha Krishna Raas Mandir, KedarGouri Road, Bhubaneswar, Odisa 751002, India
| |
Collapse
|
8
|
González-Islas D, Robles-Hernández R, Flores-Cisneros L, Orea-Tejeda A, Galicia-Amor S, Hernández-López N, Valdés-Moreno MI, Sánchez-Santillán R, García-Hernández JC, Castorena-Maldonado A. Association between muscle quality index and pulmonary function in post-COVID-19 subjects. BMC Pulm Med 2023; 23:442. [PMID: 37968677 PMCID: PMC10652568 DOI: 10.1186/s12890-023-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The SARS-CoV2 pandemic impacted many critically ill patients, causing sequelae, affecting lung function, and involving the musculoskeletal system. We evaluated the association between lung function and muscle quality index in severely ill post-COVID-19 patients. METHODS A cross-sectional study was conducted on a post-COVID-19 cohort at a third-level center. The study included patients who had experienced severe-to-critical COVID-19. Anthropometric measurements, such as body mass index (BMI) and handgrip strength, were obtained to calculate the muscle quality index (MQI). Additionally, spirometry, measurements of expiratory and inspiratory pressure, and an assessment of DLCO in the lungs were performed. The MQI was categorized into two groups: low-MQI (below the 50th percentile) and high-MQI (above the 50th percentile), based on sex. Group differences were analyzed, and a multivariate linear regression analysis was performed to assess the association between respiratory function and MQI. RESULTS Among the 748 patients analyzed, 61.96% required mechanical ventilation, and the median hospital stay was 17 days. In patients with a low MQI, it was observed that both mechanical respiratory function and DLCO were lower. The multivariate analysis revealed significantly lower findings in mechanical respiratory function among patients with a low MQI. CONCLUSION The Low-MQI is an independent predictor associated with pulmonary function parameters in subjects with Post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Dulce González-Islas
- Heart Failure and Respiratory Distress Clinic at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Robinson Robles-Hernández
- Department of Research in Tobacco Smoking and COPD at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Laura Flores-Cisneros
- Department of Epidemiological Information Analysis at Dirección General de Epidemiología, Secretaría de Salud, Gobierno de México, Mexico City, 01480, Mexico
| | - Arturo Orea-Tejeda
- Heart Failure and Respiratory Distress Clinic at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico.
| | - Susana Galicia-Amor
- Pulmonary Rehabilitation Department at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Nadia Hernández-López
- Heart Failure and Respiratory Distress Clinic at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Mariana I Valdés-Moreno
- Licenciatura en Nutriología Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México, C.P. 09230, Mexico City, Mexico
| | - Rocío Sánchez-Santillán
- Heart Failure and Respiratory Distress Clinic at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Juan Carlos García-Hernández
- Pulmonary Rehabilitation Department at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Armando Castorena-Maldonado
- Direction for Medical Care in Pneumology at the Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas"|, Mexico City, Mexico
| |
Collapse
|
9
|
Bettiol A, Argento FR, Fini E, Bello F, Di Scala G, Taddei N, Emmi G, Prisco D, Becatti M, Fiorillo C. ROS-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in Giant Cell Arteritis. Thromb Res 2023; 230:1-10. [PMID: 37598635 DOI: 10.1016/j.thromres.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Gerardo Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy.
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| |
Collapse
|
10
|
Félix-Soriano E, Stanford KI. Exerkines and redox homeostasis. Redox Biol 2023; 63:102748. [PMID: 37247469 PMCID: PMC10236471 DOI: 10.1016/j.redox.2023.102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Exercise physiology has gained increasing interest due to its wide effects to promote health. Recent years have seen a growth in this research field also due to the finding of several circulating factors that mediate the effects of exercise. These factors, termed exerkines, are metabolites, growth factors, and cytokines secreted by main metabolic organs during exercise to regulate exercise systemic and tissue-specific effects. The metabolic effects of exerkines have been broadly explored and entail a promising target to modulate beneficial effects of exercise in health and disease. However, exerkines also have broad effects to modulate redox signaling and homeostasis in several cellular processes to improve stress response. Since redox biology is central to exercise physiology, this review summarizes current evidence for the cross-talk between redox biology and exerkines actions. The role of exerkines in redox biology entails a response to oxidative stress-induced pathological cues to improve health outcomes and to modulate exercise adaptations that integrate redox signaling.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
Cusato J, Manca A, Palermiti A, Mula J, Costanzo M, Antonucci M, Chiara F, De Vivo ED, Maiese D, Ferrara M, Bonora S, Di Perri G, D’Avolio A, Calcagno A. COVID-19: Focusing on the Link between Inflammation, Vitamin D, MAPK Pathway and Oxidative Stress Genetics. Antioxidants (Basel) 2023; 12:1133. [PMID: 37237997 PMCID: PMC10215473 DOI: 10.3390/antiox12051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
An uncontrolled inflammatory response during SARS-CoV-2 infection has been highlighted in several studies. This seems to be due to pro-inflammatory cytokines whose production could be regulated by vitamin D, ROS production or mitogen-activated protein kinase (MAPK). Several genetic studies are present in the literature concerning genetic influences on COVID-19 characteristics, but there are few data on oxidative stress, vitamin D, MAPK and inflammation-related factors, considering gender and age. Therefore, the aim of this study was to evaluate the role of single nucleotide polymorphisms in these pathways, clarifying their impact in affecting COVID-19-related clinical features. Genetic polymorphisms were evaluated through real-time PCR. We prospectively enrolled 160 individuals: 139 patients were positive for SARS-CoV-2 detection. We detected different genetic variants able to affect the symptoms and oxygenation. Furthermore, two sub-analyses were performed considering gender and age, showing a different impact of polymorphisms according to these characteristics. This is the first study highlighting a possible contribution of genetic variants of these pathways in affecting COVID-19 clinical features. This may be relevant in order to clarify the COVID-19 etiopathogenesis and to understand the possible genetic contribution for further SARS infections.
Collapse
Affiliation(s)
- Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Martina Costanzo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Miriam Antonucci
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Francesco Chiara
- Laboratory of Clinical Pharmacology S.Luigi A.O.U., Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, Orbassano, 10043 Turin, Italy
| | - Elisa Delia De Vivo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Domenico Maiese
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Micol Ferrara
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| |
Collapse
|
12
|
Lima-Cabello E, Escudero-Feliu J, Peralta-Leal A, Garcia-Fernandez P, Siddique KHM, Singh KB, Núñez MI, León J, Jimenez-Lopez JC. β-Conglutins' Unique Mobile Arm Is a Key Structural Domain Involved in Molecular Nutraceutical Properties of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2023; 24:7676. [PMID: 37108842 PMCID: PMC10143110 DOI: 10.3390/ijms24087676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of β-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tβ5 and tβ7) forms of NLL β5 and β7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete β5 and β7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1β), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tβ5 and tβ7 conglutin proteins did not have these molecular effects. These results suggest that β5 and β7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL β-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL β5 and β7 excellent innovative candidates as functional foods.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Julia Escudero-Feliu
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - Andreina Peralta-Leal
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Pedro Garcia-Fernandez
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, E-18071 Granada, Spain
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- CSIRO Agriculture and Food, Floreat, WA 6014, Australia
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Maria I. Núñez
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, E-18100 Granada, Spain
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, E-18006 Granada, Spain
| | - Jose C. Jimenez-Lopez
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
13
|
Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, Shi Y, Li Y, Zheng Z. Association between composite dietary antioxidant index and handgrip strength in American adults: Data from National Health and Nutrition Examination Survey (NHANES, 2011-2014). Front Nutr 2023; 10:1147869. [PMID: 37063339 PMCID: PMC10102380 DOI: 10.3389/fnut.2023.1147869] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background The Composite Dietary Antioxidant Index (CDAI), a composite score of multiple dietary antioxidants (including vitamin A, C, and E, selenium, zinc, and carotenoids), represents an individual's comprehensive dietary antioxidant intake profile. CDAI was developed based on its combined effect on pro-inflammatory markers Tumor Necrosis Factor-α (TNF-α) and anti-inflammatory effects of Interleukin-1β (IL-1β), which are associated with many health outcomes, including depression, all-cause mortality, colorectal cancer, etc. Handgrip strength is used as a simple measure of muscle strength, not only is it highly correlated with overall muscle strength, but also serves as a diagnostic tool for many adverse health outcomes, including sarcopenia and frailty syndromes. Purpose The association between CDAI and Handgrip strength (HGS) is currently unclear. This study investigated the association between CDAI (including its components) and HGS in 6,019 American adults. Method The research data were selected from the 2011-2014 National Health and Nutrition Survey (NHANES), and a total of 6,019 American adults were screened and included. A weighted generalized linear regression model was used to evaluate CDAI (including its components) and HGS. Results (1) CDAI was significantly positively correlated with HGS (β = 0.009, 0.005∼0.013, P < 0.001), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.084, 0.042∼0.126, P = 0.002) and significant in trend test (P for trend < 0.0100). Gender subgroup analysis showed that male CDAI was significantly positively correlated with HGS (β = 0.015, 0.007∼0.023, P = 0.002), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.131, 0.049∼0.213, P = 0.006) and the trend test was significant (P for trend < 0.0100). There was no correlation between female CDAI and HGS, and the trend test was not statistically significant (P > 0.05). (2) The intake of dietary vitamin E, Zinc and Selenium showed a significant positive correlation with HGS (β = 0.004, 0.002∼0.007, P = 0.006; β = 0.007, 0.004∼0.009, P < 0.001; β = 0.001, 0.001∼0.001, P < 0.001), vitamin A, vitamin C and carotenoid were significantly associated with HGS in the Crude Model, but this significant association disappeared in the complete model with the increase of control variables. Gender subgroup analysis showed that in model 3, male dietary intake levels of vitamin E, Zinc, and Selenium were significantly positively correlated with HGS (β = 0.005, 0.002∼0.009, P = 0.011; β = 0.007, 0.004∼0.011, P = 0.001; β = 0.001, 0.001∼0.001, P = 0.004), the rest of the indicators had no significant correlation with HGS. Among the female subjects, dietary zinc intake was significantly positively correlated with HGS (β = 0.005, 0.001∼0.008, P = 0.008), and there was no significant correlation between other indicators and HGS (P > 0.05). Conclusion There was an association between the CDAI and HGS, but there was a gender difference, and there was an association between the CDAI and HGS in male, but the association was not significant in female. Intake of the dietary antioxidants vitamin E, selenium, and zinc was associated with HGS in male, but only zinc was associated with HGS among dietary antioxidants in female.
Collapse
Affiliation(s)
- Dongzhe Wu
- Department of Physical Education, Central South University, Changsha, China
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Hao Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Wendi Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Chang Qing
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Weiqiang Zhang
- Department of Physical Education, Central South University, Changsha, China
| | - Xiaolin Gao
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Yongjin Shi
- Department of Physical Education and Art, China Agricultural University, Beijing, China
| | - Yanbin Li
- Department of Human Health Science Research, Tokyo Metropolitan University, Tokyo, Japan
| | - Zicheng Zheng
- Human and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
14
|
Ghosh R, Dey R, Sawoo R, Bishayi B. Simultaneous neutralization of TGF-β and IL-6 attenuates Staphylococcus aureus-induced arthritic inflammation through differential modulation of splenic and synovial macrophages. Scand J Immunol 2023; 97:e13252. [PMID: 36597222 DOI: 10.1111/sji.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Septic arthritis is a joint disease caused by Staphylococcus aureus. Different macrophage populations contribute in various ways to control blood-borne infections and induce inflammatory responses. Macrophage tissue-resident niche is necessary for the suppression of chronic inflammation and may contribute to the pathogenesis of septic arthritis. Thus, to obtain a resolution of the disease and restoration of synovial homeostasis, it needs the activation of macrophages that further regulate the inflammatory consequences. The aim of this study was to find out the mechanism by which neutralization of transforming growth factor-beta (TGF-β) and/or interleukin (IL)-6 after induction of septic arthritis could alter the specific macrophage responses in spleen and synovial joints via different cytokines (osteoprotegerin (OPG), osteopontin (OPN), IL-10, IL-12 and CXCL8) cross-talking, and how the response could be modulated by reactive oxygen species vs antioxidant enzyme activities. Dual neutralization of TGF-β and IL-6 is notably effective in eliciting splenic and synovial tissue-resident macrophage responses. Synovial macrophage-derived IL-10 can elicit protection against septic arthritis via regulating receptor-activated nuclear factor Kappa-B ligand (RANKL)/OPG interaction. They also reduced oxidative stress by increasing the activity of antioxidant enzymes including SOD and catalase. Histopathological analysis revealed that dual neutralization of TGF-β and IL-6 prevented bone destruction and osteoclastic activity in septic arthritis by promoting the differential functional response of the splenic and synovial macrophages. Additionally, the macrophage-derived IL-10 can elicit protection against S. aureus-induced septic arthritis via regulating RANKL/OPG interaction. Further studies on STAT3 and STAT4 are needed for the understanding of such cross-talking in resident macrophages of arthritic mice.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Rajen Dey
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Ritasha Sawoo
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| |
Collapse
|
15
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
16
|
The Ameliorative Effect of Thymoquinone on Vincristine-Induced Peripheral Neuropathy in Mice by Modulating Cellular Oxidative Stress and Cytokine. Life (Basel) 2022; 13:life13010101. [PMID: 36676049 PMCID: PMC9860544 DOI: 10.3390/life13010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Thymoquinone (TQ), an active constituent of Nigella sativa, has been reported to exert a broad spectrum of pharmacological effects, including neuroprotective, anticancer, anti-inflammatory, antidiabetic, antiepileptic, antioxidant, and other modulatory roles in inflammation in experimental studies. The present study aims to evaluate the potential effects of TQ on vincristine-induced neuropathy in mice, as well as the possible role of oxidative stress, and pro- and anti-inflammatory cytokine in neuropathy development. A Swiss strain of male albino mice were randomly divided into seven groups, comprising of five animals each. Vincristine sulfate (0.1 mg/kg, i.p.) was administered for 10 consecutive days for the induction of peripheral neuropathy. The animals received their respective treatment of TQ (2.5, 5, and 10 mg/kg, p.o.) and pregabalin (10 mg/kg, p.o.) concurrently with vincristine for 10 days followed by 4 days post treatment. The animals were assessed for pain and related behavior on day 7 and 14 using hot and cold plates, and a rotarod test. TQ preventive treatment attenuated vincristine induced neuropathy in a dose dependent manner evidenced as a significant (p < 0.001) increase in reaction time on the hot plate and the cold plate, and a fall off time on the rotarod test. Further, TQ preventive treatment resulted in a significant (p < 0.001) reduction in the number of flinches and duration of paw elevation in a formalin test. Preventative treatment with TQ abolished the vincristine-induced rise in malondialdehyde and glutathione depletion in sciatic nerve tissue, as well as the blood IL-6 levels. In conclusion, TQ at 2.5, 5, and 10 mg/kg dose produced significant attenuation of neuropathic pain induced by vincristine which may be due to its antinociceptive, antioxidant, and anti-proinflammatory activity.
Collapse
|
17
|
Tarantino U, Visconti VV, Bonanni R, Gatti A, Marcozzi M, Calabrò D, Cariati I. Osteosarcopenia and Long-COVID: a dangerous combination. Ther Adv Musculoskelet Dis 2022; 14:1759720X221130485. [PMID: 36317068 PMCID: PMC9614591 DOI: 10.1177/1759720x221130485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
SARS-CoV-2 has caused a global pandemic and an unprecedented public health crisis, infecting more than 580 million people worldwide. Moreover, recent evidence has suggested the emergence of a new syndrome known as Long-COVID, a term used to describe a diverse set of physical and mental symptoms that persist after a diagnosed SARS-CoV-2 infection. Epidemiological data have identified myalgias, muscle and joint dysfunction, and bone fragility as common sequelae in patients with moderate and severe forms of this disease. Significant musculoskeletal dysfunction has also been detected in some healed patients, although knowledge about pathophysiological mechanisms of Long-COVID is still rather scarce. In this context, SARS-CoV-2 infection has been suggested to amplify the effects of aging on the musculoskeletal system by aggravating the osteosarcopenic state. Based on this evidence, our review focused on the muscle and bone tissue alterations induced by SARS-CoV-2 infection and Long-COVID, summarizing the current knowledge on the underlying biological mechanisms and highlighting the need for a multidisciplinary approach to predict the musculoskeletal targets and long-term consequences of COVID-19 disease.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Rome, Italy,Department of Orthopaedics and Traumatology, ‘Policlinico Tor Vergata’ Foundation, Rome, Italy
| | - Virginia V. Visconti
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Andrea Gatti
- Department of Orthopaedics and Traumatology, ‘Policlinico Tor Vergata’ Foundation, Rome, Italy
| | - Martina Marcozzi
- Department of Orthopaedics and Traumatology, ‘Policlinico Tor Vergata’ Foundation, Rome, Italy
| | - Davide Calabrò
- Department of Orthopaedics and Traumatology, ‘Policlinico Tor Vergata’ Foundation, Rome, Italy
| | | |
Collapse
|
18
|
Yang J, Vamvini M, Nigro P, Ho LL, Galani K, Alvarez M, Tanigawa Y, Renfro A, Carbone NP, Laakso M, Agudelo LZ, Pajukanta P, Hirshman MF, Middelbeek RJW, Grove K, Goodyear LJ, Kellis M. Single-cell dissection of the obesity-exercise axis in adipose-muscle tissues implies a critical role for mesenchymal stem cells. Cell Metab 2022; 34:1578-1593.e6. [PMID: 36198295 PMCID: PMC9558082 DOI: 10.1016/j.cmet.2022.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Exercise training is critical for the prevention and treatment of obesity, but its underlying mechanisms remain incompletely understood given the challenge of profiling heterogeneous effects across multiple tissues and cell types. Here, we address this challenge and opposing effects of exercise and high-fat diet (HFD)-induced obesity at single-cell resolution in subcutaneous and visceral white adipose tissue and skeletal muscle in mice with diet and exercise training interventions. We identify a prominent role of mesenchymal stem cells (MSCs) in obesity and exercise-induced tissue adaptation. Among the pathways regulated by exercise and HFD in MSCs across the three tissues, extracellular matrix remodeling and circadian rhythm are the most prominent. Inferred cell-cell interactions implicate within- and multi-tissue crosstalk centered around MSCs. Overall, our work reveals the intricacies and diversity of multi-tissue molecular responses to exercise and obesity and uncovers a previously underappreciated role of MSCs in tissue-specific and multi-tissue beneficial effects of exercise.
Collapse
Affiliation(s)
- Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriakitsa Galani
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Renfro
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Leandro Z Agudelo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Grove
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
The Effects of COVID-19 on Skeletal Muscles, Muscle Fatigue and Rehabilitation Programs Outcomes. Medicina (B Aires) 2022; 58:medicina58091199. [PMID: 36143878 PMCID: PMC9500689 DOI: 10.3390/medicina58091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Consequences due to infection with SARS-CoV-2 virus can have a direct impact on skeletal muscle, due to the fact that both cardiac and skeletal muscle tissue show robust ACE2(angiotensin-converting enzyme 2) expression, suggesting a potential susceptibility to SARS-CoV-2 infection in both types of tissues. From the articles analyzed we concluded that the musculoskeletal damage is firstly produced by the inflammatory effects, cytokine storm and muscle catabolism. However, myopathy, polyneuropathy and therapies such as corticoids were also considered important factors in muscle fatigue and functional incapacity. Pulmonary rehabilitation programs and early mobilization had a highly contribution during the acute phase and post-illness recovery process and helped patients to reduce dyspnea, increase the capacity of physical effort, overcome psychological disorders and improved the quality of their life. Materials and Methods: We have included in this review 33 articles that contain data on muscle damage following SARS-CoV-2 infection. We used the following keywords to search for articles: SARS-CoV-2, COVID-19, muscle weakness, muscle disease, muscle fatigue, neurological disorders. As a search strategy we used PubMed, Cochrane Database of Systematic Reviews; Database of Abstracts of Reviews of Effects and Health Technology Assessment Database to collect the information. We also have chosen the most recent articles published in the last 5 years. Conclusions: Muscular damage, as well as the decrease in the quality of life, are often a consequence of severe SARS-CoV-2 infection through: systemic inflammation, corticotherapy, prolonged bed rest and other unknown factors. Pulmonary rehabilitation programs and early mobilization had a highly contribution during the acute phase and post-illness recovery process and helped patients to reduce dyspnea, increase the capacity of physical effort, overcome psychological disorders and improve the quality of their life.
Collapse
|
20
|
Jeyaraman M, Selvaraj P, Jeyaraman N, Gollahalli Shivashankar P, Muthu S. Assessment of risk factors in post- COVID-19 patients and its associated musculoskeletal manifestations: A cross-sectional study in India. J Orthop 2022; 33:131-136. [PMID: 35879984 PMCID: PMC9301900 DOI: 10.1016/j.jor.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Musculoskeletal manifestations of COVID-19, post COVID-19, and post COVID-19 vaccination include arthralgia, myalgia, new-onset backache, fatigue, inflammatory arthritis either symmetrical or polyarticular, reactive arthritis, osteoporosis, osteonecrosis of the femoral head, neuropathies, myositis, and myopathies. Almost 15% and 44% of post-COVID-19 patients reported arthralgia and myalgia. We aim to analyze the musculoskeletal manifestations of COVID-19 infection and the factors determining their severity. METHODOLOGY This is a retrospective multicentric cross-sectional study conducted from all the four regions (northern, southern, eastern, and western regions) in India. The recruitment period was from June 1st, 2021, to September 30th, 2021. All patients with COVID-19 positivity in the past were classified into three groups (mild, moderate, and severe). The primary outcome is to find the correlation of musculoskeletal symptoms with disease positivity, severity, and demographic variables. We focused at clinical characteristics and symptoms at the time of admission, as well as comorbidities, laboratory findings, immunological findings, treatments, and outcomes. RESULTS The study was conducted among 2334 subjects across all the regions of India. Out of which 719 were COVID-19 positive individuals. Non-vaccinated were about 62.6% compared to 37.4% vaccinated among COVID-19 positive individuals. The total average musculoskeletal scores calculated were about 15.94 ± 54.86. MSK scores were significantly higher (p < 0.001) among males, uneducated, those with co-morbidities, and non-vaccinated individuals. Multivariate regression analysis showed a 1.63 times higher risk of having COVID-19 infection among smokers, those who don't exercise regularly are 1.25 times at risk of having COVID-19 infection. Similarly, those who have comorbidities are 1.93 times at risk of having COVID-19 infection. Non-vaccinated individuals were 2.33 times at risk of having COVID-19 infection. CONCLUSION Factors such as male sex, non-vaccination, and associated co-morbidities increased the risk of developing severe MSK manifestations upon infection with COVID-19 and needs extended monitoring to control the morbidity due to the same.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX, 78045, USA
| | - Preethi Selvaraj
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Community Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Naveen Jeyaraman
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, Tamil Nadu, India
| | - Prajwal Gollahalli Shivashankar
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Orthopaedics, Mallika Spine Centre, Guntur, Andhra Pradesh, India
| | - Sathish Muthu
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
- Corresponding author. Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India.
| |
Collapse
|
21
|
Yegiazaryan A, Abnousian A, Alexander LJ, Badaoui A, Flaig B, Sheren N, Aghazarian A, Alsaigh D, Amin A, Mundra A, Nazaryan A, Guilford FT, Venketaraman V. Recent Developments in the Understanding of Immunity, Pathogenesis and Management of COVID-19. Int J Mol Sci 2022; 23:9297. [PMID: 36012562 PMCID: PMC9409103 DOI: 10.3390/ijms23169297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Coronaviruses represent a diverse family of enveloped positive-sense single stranded RNA viruses. COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus-2, is a highly contagious respiratory disease transmissible mainly via close contact and respiratory droplets which can result in severe, life-threatening respiratory pathologies. It is understood that glutathione, a naturally occurring antioxidant known for its role in immune response and cellular detoxification, is the target of various proinflammatory cytokines and transcription factors resulting in the infection, replication, and production of reactive oxygen species. This leads to more severe symptoms of COVID-19 and increased susceptibility to other illnesses such as tuberculosis. The emergence of vaccines against COVID-19, usage of monoclonal antibodies as treatments for infection, and implementation of pharmaceutical drugs have been effective methods for preventing and treating symptoms. However, with the mutating nature of the virus, other treatment modalities have been in research. With its role in antiviral defense and immune response, glutathione has been heavily explored in regard to COVID-19. Glutathione has demonstrated protective effects on inflammation and downregulation of reactive oxygen species, thereby resulting in less severe symptoms of COVID-19 infection and warranting the discussion of glutathione as a treatment mechanism.
Collapse
Affiliation(s)
- Aram Yegiazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Logan J. Alexander
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Brandon Flaig
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armin Aghazarian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dijla Alsaigh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arman Amin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Akaash Mundra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anthony Nazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
22
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
23
|
González-Islas D, Sánchez-Moreno C, Orea-Tejeda A, Hernández-López S, Salgado-Fernández F, Keirns-Davis C, Galicia-Amor S, Trejo-Mellado E, Gochicoa-Rangel L, Castorena-Maldonado A. Body composition and risk factors associated with sarcopenia in post-COVID patients after moderate or severe COVID-19 infections. BMC Pulm Med 2022; 22:223. [PMID: 35676657 PMCID: PMC9175169 DOI: 10.1186/s12890-022-02014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background Post-COVID-19 syndrome is characterized by diverse symptoms and abnormalities that persist beyond 12 weeks from the onset of acute COVID-19. Severity disease has been associated with more musculoskeletal alterations such as muscle weakness, dyspnea, and distance walking. The aim was to evaluate the impact of invasive mechanical ventilation (IMV) on body composition and investigate risk factors associated with sarcopenia in post-COVID-19 patients three months after moderate or severe COVID-19 infections. Methods Cross-sectional study. 530 patients with PCR-confirmed diagnoses of moderate to severe COVID-19, > 18 years old, oxygen saturation ≤ 93%, PaO2/FiO2 ratio < 300, who required hospitalization and were discharged were included. We excluded those who died before the follow-up visit, declined to participate, or could not be contacted. Results The mean age was 53.79 ± 12.90 years. IMV subjects had lower phase angle and handgrip strength and higher impedance index, frequency of low muscle mass, and low muscle strength than those without IMV. The risk factors of sarcopenia were > 60 years of age, diabetes, obesity, IMV, and prolonged hospital stay. The multivariate model showed that age > 60 years (OR: 4.91, 95% CI: 2.26–10.63), obesity (OR: 3.73, 95% CI: 1.21–11.54), and interaction between prolonged length of hospital stay and IMV (OR: 2.92; 95% CI: 1.21–7.02) were related to a higher risk of sarcopenia. Conclusion Obesity and the interaction between prolonged length of hospital stay and IMV are associated with a higher risk of sarcopenia at 3 months after severe or moderate COVID-19 infection.
Collapse
Affiliation(s)
- Dulce González-Islas
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Carlos Sánchez-Moreno
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Arturo Orea-Tejeda
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico.
| | - Samantha Hernández-López
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Fernanda Salgado-Fernández
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Candace Keirns-Davis
- Heart Failure and Respiratory Distress Clinic, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502 Col Sec XVI CP 14080 Del Tlalpan, Mexico City, Mexico
| | - Susana Galicia-Amor
- Pulmonary Rehabilitation Department, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Esperanza Trejo-Mellado
- Pulmonary Rehabilitation Department, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Laura Gochicoa-Rangel
- Department of Pulmonary Physiology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Armando Castorena-Maldonado
- Otorhinolaryngology Department, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
24
|
Todoriki S, Hosoda Y, Yamamoto T, Watanabe M, Sekimoto A, Sato H, Mori T, Miyazaki M, Takahashi N, Sato E. Methylglyoxal Induces Inflammation, Metabolic Modulation and Oxidative Stress in Myoblast Cells. Toxins (Basel) 2022; 14:toxins14040263. [PMID: 35448872 PMCID: PMC9030564 DOI: 10.3390/toxins14040263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic sarcopenia is a serious clinical problem associated with physical disability and increased morbidity and mortality. Methylglyoxal (MG) is a highly reactive, dicarbonyl uremic toxin that accumulates in the circulatory system in patients with chronic kidney disease (CKD) and is related to the pathology of uremic sarcopenia. The pathophysiology of uremic sarcopenia is multifactorial; however, the details remain unknown. We investigated the mechanisms of MG-induced muscle atrophy using mouse myoblast C2C12 cells, focusing on intracellular metabolism and mitochondrial injury. We found that one of the causative pathological mechanisms of uremic sarcopenia is metabolic flow change to fatty acid synthesis with MG-induced ATP shortage in myoblasts. Evaluation of cell viability revealed that MG showed toxic effects only in myoblast cells, but not in myotube cells. Expression of mRNA or protein analysis revealed that MG induces muscle atrophy, inflammation, fibrosis, and oxidative stress in myoblast cells. Target metabolomics revealed that MG induces metabolic alterations, such as a reduction in tricarboxylic acid cycle metabolites. In addition, MG induces mitochondrial morphological abnormalities in myoblasts. These changes resulted in the reduction of ATP derived from the mitochondria of myoblast cells. Our results indicate that MG is a pathogenic factor in sarcopenia in CKD.
Collapse
Affiliation(s)
- Sota Todoriki
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Yui Hosoda
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Tae Yamamoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Mayu Watanabe
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8512, Japan;
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan; (S.T.); (Y.H.); (M.W.); (A.S.); (H.S.); (N.T.)
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (T.Y.); (M.M.)
- Correspondence: ; Tel.: +81-22-795-6807
| |
Collapse
|
25
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
27
|
Relationship between myalgia and laboratory parameters in hospitalized patients with COVID-19. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1054978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Hasan LK, Deadwiler B, Haratian A, Bolia IK, Weber AE, Petrigliano FA. Effects of COVID-19 on the Musculoskeletal System: Clinician's Guide. Orthop Res Rev 2021; 13:141-150. [PMID: 34584465 PMCID: PMC8464590 DOI: 10.2147/orr.s321884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic caused by SARS-CoV-2, or COVID-19, continues to impact all facets of daily life. Clinical manifestations of COVID-19 commonly include musculoskeletal symptoms such as myalgias, arthralgias, and neuropathies/myopathies. The inflammatory response and its impact on the respiratory system have been the focus of most studies. However, the literature is more limited regarding the inflammatory response and its implications for other organ systems, specifically the musculoskeletal system. Previous studies have described how systemic inflammation may play a role in bone and joint pathology. Furthermore, it is important to understand the effects current therapeutics used in the treatment of COVID-19 may have on the musculoskeletal system. In this study, we will review the current understanding of the effect COVID-19 has on the musculoskeletal system, provide an overview of musculoskeletal symptoms of patients infected with the virus, and address key issues for clinicians to address during the care of COVID-19 patients.
Collapse
Affiliation(s)
- Laith K Hasan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Brittney Deadwiler
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Aryan Haratian
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ioanna K Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
29
|
Ostrom EL, Valencia AP, Marcinek DJ, Traustadóttir T. High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response. Free Radic Biol Med 2021; 172:82-89. [PMID: 34089788 PMCID: PMC8355059 DOI: 10.1016/j.freeradbiomed.2021.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
High intensity exercise is a popular mode of exercise to elicit similar or greater adaptive responses compared to traditional moderate intensity continuous exercise. However, the molecular mechanisms underlying these adaptive responses are still unclear. The purpose of this pilot study was to compare high and low intensity contractile stimulus on the Nrf2-mediated redox stress response in mouse skeletal muscle. An intra-animal design was used to control for variations in individual responses to muscle stimulation by comparing a stimulated limb (STIM) to the contralateral unstimulated control limb (CON). High Intensity (HI - 100Hz), Low Intensity (LI - 50Hz), and Naïve Control (NC - Mock stimulation vs CON) groups were used to compare these effects on Nrf2-ARE binding, Keap1 protein, and downstream gene and protein expression of Nrf2 target genes. Muscle stimulation significantly increased Nrf2-ARE binding in LI-STIM compared to LI-CON (p = 0.0098), while Nrf2-ARE binding was elevated in both HI-CON and HI-STIM compared to NC (p = 0.0007). The Nrf2-ARE results were mirrored in the downregulation of Keap1, where Keap1 expression in HI-CON and HI-STIM were both significantly lower than NC (p = 0.008) and decreased in LI-STIM compared to LI-CON (p = 0.015). In addition, stimulation increased NQO1 protein compared to contralateral control regardless of stimulation intensity (p = 0.019), and HO1 protein was significantly higher in high intensity compared to the Naïve control group (p = 0.002). Taken together, these data suggest a systemic redox signaling exerkine is activating Nrf2-ARE binding and is intensity gated, where Nrf2-ARE activation in contralateral control limbs were only seen in the HI group. Other research in exercise induced Nrf2 signaling support the general finding that Nrf2 is activated in peripheral tissues in response to exercise, however the specific exerkine responsible for the systemic signaling effects is not known. Future work should aim to delineate these redox sensitive systemic signaling mechanisms.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington School of Medicine, United States
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, United States.
| |
Collapse
|
30
|
Pelosi L, Berardinelli MG, Forcina L, Ascenzi F, Rizzuto E, Sandri M, De Benedetti F, Scicchitano BM, Musarò A. Sustained Systemic Levels of IL-6 Impinge Early Muscle Growth and Induce Muscle Atrophy and Wasting in Adulthood. Cells 2021; 10:1816. [PMID: 34359985 PMCID: PMC8306542 DOI: 10.3390/cells10071816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.
Collapse
Affiliation(s)
- Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Maria Grazia Berardinelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant’Andrea Hospital, “Sapienza” University, 00161 Rome, Italy;
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy;
- Department of Biomedical Sciences, University of Padova, 35121 Padua, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
31
|
Mittal A, Dua A, Gupta S, Injeti E. A research update: Significance of cytokine storm and diaphragm in COVID-19. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100031. [PMID: 34870147 PMCID: PMC8086263 DOI: 10.1016/j.crphar.2021.100031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Emerging research on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) shows that it is spreading to multiple organs in addition to the respiratory system. Though the SARS-CoV2 enters the human body by binding to ACE2 receptors on pulmonary alveolar cells, recent studies indicate that it is spreading to the central nervous system, cardiac and skeletal muscles leading to various pathological conditions in these organs. In particular, the effects of SARS-CoV-2 on triggering the cytokine storm and its consequential effects on skeletal muscles has generated a lot of discussion. The effects of this virus on muscular function especially in susceptible elderly populations is still being explored. However, its effects on diaphragm, a respiratory muscle which plays an important role in determining lung capacity are not completely explored. Currently, as new evidence on using lung ultrasounds to confirm COVID-19 diagnosis is gaining traction, it is necessary to explore the role of diaphragm in treating COVID-19 patients. This article will review the effects of cytokine storm triggered by the SARS-CoV-2 and its resultant effects on skeletal muscle with a specific focus on the diaphragm in order to identify knowledge gaps in effectively treating COVID-19 patients, especially those who are on a mechanical ventilator.
Collapse
Affiliation(s)
- Ashwani Mittal
- Skeletal Muscle Laboratory, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Anita Dua
- Skeletal Muscle Laboratory, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanjeev Gupta
- Skeletal Muscle Laboratory, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Elisha Injeti
- Cedarville University School of Pharmacy, Cedarville, OH, 45314, USA
| |
Collapse
|
32
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
33
|
Bozzi M, Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington's Disease. Int J Mol Sci 2020; 21:ijms21218314. [PMID: 33167595 PMCID: PMC7664236 DOI: 10.3390/ijms21218314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by pathogenic expansions of the triplet cytosine-adenosine-guanosine (CAG) within the Huntingtin gene. These expansions lead to a prolongation of the poly-glutamine stretch at the N-terminus of Huntingtin causing protein misfolding and aggregation. Huntingtin and its pathological variants are widely expressed, but the central nervous system is mainly affected, as proved by the wide spectrum of neurological symptoms, including behavioral anomalies, cognitive decline and motor disorders. Other hallmarks of HD are loss of body weight and muscle atrophy. This review highlights some key elements that likely provide a major contribution to muscle atrophy, namely, alteration of the transcriptional processes, mitochondrial dysfunction, which is strictly correlated to loss of energy homeostasis, inflammation, apoptosis and defects in the processes responsible for the protein quality control. The improvement of muscular symptoms has proven to slow the disease progression and extend the life span of animal models of HD, underlining the importance of a deep comprehension of the molecular mechanisms driving deterioration of muscular tissue.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento Universitario di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
- Correspondence:
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
| |
Collapse
|
34
|
Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, Aguirre F, Tacchi F, Simon F, Cabello-Verrugio C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1617805. [PMID: 33149804 PMCID: PMC7603619 DOI: 10.1155/2020/1617805] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a pathology that contains a broad liver dysfunctions spectrum. These alterations span from noninflammatory isolated steatosis until nonalcoholic steatohepatitis (NASH), a more aggressive form of the disease characterized by steatosis, inflammatory status, and varying liver degrees fibrosis. NAFLD is the most prevalent chronic liver disease worldwide. The causes of NAFLD are diverse and include genetic and environmental factors. The presence of NASH is strongly associated with cirrhosis development and hepatocellular carcinoma, two conditions that require liver transplantation. The liver alterations during NAFLD are well described. Interestingly, this pathological condition also affects other critical tissues and organs, such as skeletal muscle and even the cardiovascular, renal, and nervous systems. Oxidative stress (OS) is a harmful state present in several chronic diseases, such as NAFLD. The purpose of this review is to describe hepatic and extrahepatic dysfunctions in NAFLD. We will also review the influence of OS on the physiopathological events that affect the critical function of the liver and peripheral tissues.
Collapse
Affiliation(s)
- Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Camila Huerta-Salgado
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
35
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
36
|
Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel) 2020; 8:healthcare8040378. [PMID: 33019579 PMCID: PMC7712334 DOI: 10.3390/healthcare8040378] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity has been found to aid the maintenance of health in the elderly. Exercise-induced skeletal muscle contractions lead to the production and secretion of many small proteins and proteoglycan peptides called myokines. Thus, studies on myokines are necessary for ensuring the maintenance of skeletal muscle health in the elderly. This review summarizes 13 myokines regulated by physical activity that are affected by aging and aims to understand their potential roles in metabolic diseases. We categorized myokines into two groups based on regulation by aerobic and anaerobic exercise. With aging, the secretion of apelin, β-aminoisobutyric acid (BAIBA), bone morphogenetic protein 7 (BMP-7), decorin, insulin-like growth factor 1 (IGF-1), interleukin-15 (IL-15), irisin, stromal cell-derived factor 1 (SDF-1), sestrin, secreted protein acidic rich in cysteine (SPARC), and vascular endothelial growth factor A (VEGF-A) decreased, while that of IL-6 and myostatin increased. Aerobic exercise upregulates apelin, BAIBA, IL-15, IL-6, irisin, SDF-1, sestrin, SPARC, and VEGF-A expression, while anaerobic exercise upregulates BMP-7, decorin, IGF-1, IL-15, IL-6, irisin, and VEGF-A expression. Myostatin is downregulated by both aerobic and anaerobic exercise. This review provides a rationale for developing exercise programs or interventions that maintain a balance between aerobic and anaerobic exercise in the elderly.
Collapse
|
37
|
Disser NP, De Micheli AJ, Schonk MM, Konnaris MA, Piacentini AN, Edon DL, Toresdahl BG, Rodeo SA, Casey EK, Mendias CL. Musculoskeletal Consequences of COVID-19. J Bone Joint Surg Am 2020; 102:1197-1204. [PMID: 32675661 PMCID: PMC7508274 DOI: 10.2106/jbjs.20.00847] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients who become infected with SARS-CoV-2 are asymptomatic or have mild symptoms, some patients develop severe symptoms that can permanently detract from their quality of life. SARS-CoV-2 is closely related to SARS-CoV-1, which causes severe acute respiratory syndrome (SARS). Both viruses infect the respiratory system, and there are direct and indirect effects of this infection on multiple organ systems, including the musculoskeletal system. Epidemiological data from the SARS pandemic of 2002 to 2004 identified myalgias, muscle dysfunction, osteoporosis, and osteonecrosis as common sequelae in patients with moderate and severe forms of this disease. Early studies have indicated that there is also considerable musculoskeletal dysfunction in some patients with COVID-19, although long-term follow-up studies have not yet been conducted. The purpose of this article was to summarize the known musculoskeletal pathologies in patients with SARS or COVID-19 and to combine this with computational modeling and biochemical signaling studies to predict musculoskeletal cellular targets and long-term consequences of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Andrea J. De Micheli
- Hospital for Special Surgery, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | | | | | | | | | | | | | | | - Christopher L. Mendias
- Hospital for Special Surgery, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| |
Collapse
|
38
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|