1
|
Wu Q, Xie Z, Cao X, Hu D, Sheng L, Guo X, Yan D, Ding C, Li C, Xiao J, Liu C, Wu K, Gong Y, Fan Q, Wang Q, Liu J, Liu Y. Chaihu-Shugan-San Alleviates Post-Stroke Depression in Mice: Mechanistic Insights into Exosome-Mediated Neuroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2025:119700. [PMID: 40154896 DOI: 10.1016/j.jep.2025.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Post-stroke depression (PSD) is common among stroke survivors and negatively impacts recovery. Chaihu-Shugan-San (CSS), a traditional Chinese medicine, has shown therapeutic potential for mood disorders, particularly PSD. Recent studies suggest that CSS's effects may be mediated by exosomes, but the mechanisms remain unclear. AIM OF STUDY This study aimed to evaluate the therapeutic effects of CSS on PSD in mice and investigate the underlying mechanisms, particularly the role of exosomes. MATERIALS AND METHODS Active compounds in CSS were identified from rat serum using liquid chromatography-mass spectrometry (LC-MS) and analyzed through network pharmacology. In vitro, an oxygen-glucose deprivation/reperfusion (OGD/R) BV2 microglia model was used to assess the effects of CSS-containing serum (CSS-S). Exosomes from OGD/R-treated BV2 microglia were isolated, labeled with PKH26, and analyzed using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). In vivo, a photothrombotic stroke (PT) model combined with chronic unpredictable mild stress (CUMS) was used to induce PSD in mice. Behavioral assessments and histological analysis were performed, along with immunofluorescence (IF), ELISA and q-PCR to measure key protein and miR-146 expression in the hippocampus. RESULTS CSS treatment significantly alleviated depressive-like behaviors in the PSD mouse model. Mice treated with high-dose CSS (4.2 g/kg) exhibited increased sucrose preference, reduced immobility in the tail suspension test (TST) and forced swimming test (FST), and enhanced exploratory activity in the open field test (OFT). Histological analysis demonstrated that CSS treatment improved brain tissue integrity, alleviating neuronal damage and reducing neuroinflammation. Exosome analysis revealed that CSS increased the expression of microglia-derived exosomes in the hippocampus, which were shown to carry miR-146. Further examination of miR-146 isoforms in the hippocampal tissue revealed significant changes: miR-146b-3p and miR-146a-5p were upregulated, while miR-146a-3p and miR-146b-5p were downregulated in PSD mice. Treatment with CSS reversed the altered miRNA expression, indicating a potential mechanism for its neuroprotective effects. Additionally, CSS treatment reduced the expression of inflammatory cytokines such as S100A8, IL1β, IL6, and TNF-α, while restoring the levels of angiogenic factors VEGFC and VEGFR3. ELISA measurements showed significant decreases in cyclic AMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) in PSD mice; high-dose CSS notably elevated CREB and BDNF levels and showed comparable effects to fluoxetine in restoring 5-HT and DA levels. Additionally, the calcium signaling pathway was implicated, with altered mRNA expressions of CaMKIIα, CREB, phosphorylated CREB (p-CREB), PDE4D, and BDNF, although fluoxetine demonstrated stronger modulatory effects than CSS. CONCLUSIONS CSS alleviates PSD in mice by modulating exosome-mediated signaling, particularly through the regulation of miR-146. The treatment reversed abnormal miRNA expression, reduced neuroinflammation, and improved synaptic function. These findings highlight CSS's potential as an effective therapeutic strategy for PSD by targeting exosome-mediated neuroprotection and miR-146 regulation.
Collapse
Affiliation(s)
- Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Dan Hu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Lei Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Xueyan Guo
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Dong Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Caixia Ding
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chuanyou Li
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Jing Xiao
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chunyu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Ke Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Yue Gong
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Qiqi Fan
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jinman Liu
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| |
Collapse
|
2
|
Faiq A, Saara A, Muhammad W, Asra K, Fazal MA, Zehra B, Saiqa T, Saima K, Noreen S, Saida H. Antidepressive and anxiolytic effects of a combination of Saffron and Chamomile in rats and their relationship with serotonin using methods. J TRADIT CHIN MED 2025; 45:49-56. [PMID: 39957158 PMCID: PMC11764942 DOI: 10.19852/j.cnki.jtcm.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/15/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVE To explore the potential of combining natural herbs like chamomile and saffron for the management of anxiety and depression. METHODS A rodent model of Major Depressive Disorder (MDD) and anxiety, secondary to streptozotocin-induced diabetes mellitus was made. A total of 6 rat groups were chosen; healthy and diseased controls; and diseased test groups of fluoxetine, saffron, chamomile, and combined saffron and chamomile treated (n = 6/group). Activity by forced swim test (FST), elevated plus maze test (EPMT), and correlations with biochemical markers like serum glucose, tryptophan, C-reactive protein (CRP), brain derived neurotrophic factor (BDNF) and 5-hydrox-ytryptamine 2C receptor (5HT2CR) expression, were assessed at the end of the 3rd week of the treatment. A one-way analysis of variance with a post-hoc Tukey's test was applied. RESULTS The combined herbal treatment group showed significantly better (P <0.05) than all other groups in terms of anti-hyperglycemic effect. All treatments improved the CRP levels; however, the combination group was also significantly better than fluoxetine and the individual herb groups. Only the herb groups showed efficacy in the FST with added benefits of the combination group over the healthy controls and similar trends in the EPMT. However, expression of 5HT2CR was repressed while BDNF was elevated through treatment. CONCLUSION This study shows that in comparison to treatment with a SSRI, and individual herbs, the combination of chamomile and saffron showed overall improved outcomes.
Collapse
Affiliation(s)
- Amin Faiq
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Ahmad Saara
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Wasim Muhammad
- 2 Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Khan Asra
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Manzoor Arain Fazal
- 1 Department of Biological and Biomedical Sciences, the Aga Khan University, Karachi 74800, Pakistan
| | - Batool Zehra
- 3 Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74800, Pakistan
| | - Tabassum Saiqa
- 4 Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi 74800, Pakistan
| | - Khaliq Saima
- 5 Department of Biochemistry, Federal Urdu University of Science, Arts and Technology, Karachi 74800, Pakistan
| | - Samad Noreen
- 6 Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Haider Saida
- 7 Department of Biochemistry, University of Karachi, Karachi 74800, Pakistan
| |
Collapse
|
3
|
Feng Y, Wang W, Zhang Y, Feng Y, Zhao Y, Zhang Z, Wang Y. Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice. CNS Neurosci Ther 2025; 31:e70290. [PMID: 39981856 PMCID: PMC11843474 DOI: 10.1111/cns.70290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 12/09/2024] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE Xiao-Chai-Hu-Tang (XCHT) has been demonstrated to exert an antidepressant effect during long-term clinical practices. However, the potential mechanisms of XCHT remain unknown. This study aims to investigate the effect of XCHT on chronic unpredictable mild stress-induced mice with depressive-like behaviors and to explore the underlying mechanisms. METHODS The active compositions and potential related targets of XCHT in the brain were obtained through UPLC-Q-TOF-MS, network pharmacology, and bioinformatics analyses, verified by experimental validation. Then, the protein-protein interaction (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and molecular docking were used to predict the core targets and mechanisms of XCHT on depression. After being treated with XCHT standard decoction, based on enzyme-linked immunosorbent assay (ELISA), non-targeted metabolism, targeted LC-MS analyses, RNA-seq, quantitative RT-PCR, immunofluorescence, and western blotting were determined to clarify the mechanism of XCHT in the treatment of anxiety and depression disorder. RESULTS In total, 166 active ingredients and 525 related targets of XCHT were detected and selected from the network databases. The inflammatory response and metabolism of neurotransmitters were the main related signaling pathways predicted by KEGG enrichment analyses. Behavioral testing shows that XCHT has antidepressant effects, and untargeted metabolomic studies showed it significantly reduced levels of the neurotoxic substance quinoline acid. Combining the results of molecular docking, RNA-seq, and western blot revealed that XCHT regulated nerve regeneration via BDNF/TrkB/CREB and PI3K/AKT signaling pathways. Immunofluorescence analysis revealed that XCHT downregulated the chronic stress-induced activation of microglia and astrocytes in the hippocampus. CONCLUSION XCHT exerts antidepressant functions by modulating neuroinflammation and neuroregeneration.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenkai Wang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- The Second Clinical Medical College of Guizhou University of Traditional Chinese MedicineGuizhou ProvinceChina
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhaozhou Zhang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yan Wang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- The Second Clinical Medical College of Guizhou University of Traditional Chinese MedicineGuizhou ProvinceChina
| |
Collapse
|
4
|
Tang Q, Chu H, Sun N, Fan X, Han B, Li Y, Yu X, Li L, Wang X, Liu L, Chang H. The effects and mechanisms of chai shao jie yu granules on chronic unpredictable mild stress (CUMS)-induced depressive rats based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119268. [PMID: 39706355 DOI: 10.1016/j.jep.2024.119268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy. AIM OF THE STUDY To explore the effects and mechanisms of CSJY in chronic unpredictable mild stress (CUMS)-induced depression. MATERIALS AND METHODS Rat models of CUMS-induced depression were established, and the rats were randomly allocated into six groups: Control, CUMS, CUMS + Paroxetine (PX), CUMS + CSJY-L, CUMS + CSJY-M, and CUMS + CSJY-H. Throughout the study, the rats' body weight was monitored. Depression-related behaviors were assessed using the sucrose preference test (SPT) and open field test (OFT). High-performance liquid chromatography-mass spectrometry (HPLC-MS) measured monoamine neurotransmitters in the rat cortex and hippocampus. We measured adrenocorticotropic hormone (ACTH), corticosterone (CORT), and corticotropin-release hormone (CRH) levels in rat serum. Additionally, network pharmacology was employed to predict relevant molecular targets and potential mechanisms, followed by in vivo validation. Western blot analysis was conducted to evaluate the protein levels of 5-hydroxytryptamine/serotonin receptor 1A (5-HT1A) and Glutamate (Glu)-related proteins, such as p-GluA1, GluA1, p-GluN1, GluN1, p-GluN2A and GluN2A in the hippocampus. RESULTS In behavioral assessments, CUMS rats exhibited depressive behaviors, which were ameliorated by CSJY or PX treatment. Moreover, CSJY or PX treatment increased serotonin (5-HT) levels. It reduced the kynurenine/tryptophan (KYN/TRP) and gamma-aminobutyric acid/glutamate (GABA/Glu) in the hippocampus and cortex, as well as reduced serum levels of ACTH, CORT and CRH. Furthermore, CSJY or PX administration enhanced the decreased expression of p-GluN1/GluN1 while upregulating 5-HT1A and p-GluA1/GluA1 levels in the CUMS group. CONCLUSION CSJY demonstrated the ability to alleviate depressive behaviors in CUMS-induced depression rats, potentially through the inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, modulation of monoamine neurotransmitters, and glutamatergic neurons. These findings suggest that CSJY could serve as a promising treatment option for depression.
Collapse
Affiliation(s)
- Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Haolin Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Nan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lina Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiuli Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liying Liu
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Hongsheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhao YL, Yi HY, Baba SS, Guo YX, Yuan XC, Hou XM, Liang LL, Huo FQ. Activation of 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Produces Anti-Anxiodepressive Effects in a Rat Model of Neuropathic Pain. Mol Neurobiol 2025; 62:1136-1150. [PMID: 38963532 DOI: 10.1007/s12035-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Chu Z, Gao M, Wang J, Yuan G, Wang M, Gao D. Research progress of traditional Chinese medicine compound "Chaihu Shugan Powder" in the treatment of premenstrual syndrome. Medicine (Baltimore) 2024; 103:e38351. [PMID: 39465719 PMCID: PMC11460882 DOI: 10.1097/md.0000000000038351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This paper aims to conduct a comprehensive and insightful review and analysis of the potential targets and corresponding pathways of Chaihu Shugan Powder (CSP) for the treatment of premenstrual syndrome (PMS) using a network pharmacology approach. The review will encompass traditional applications, active ingredients of Chinese medicines, clinical applications, pharmacological mechanisms, and active ingredients. METHODS The active ingredients, pharmacological mechanisms, and clinical applications of the herbal ingredients in the CSP formulation were summarized by searching the literature, and the main signaling pathways of the CSP formulation for the treatment of PMS were identified by network pharmacological studies. RESULTS CSP is a representative traditional Chinese medicine formula known for its liver detoxification properties and its effectiveness in alleviating depression. It is also recognized as one of the most widely used formulas for treating PMS. In this study, we systematically summarized the active ingredients and pharmacological mechanisms of the 7 traditional Chinese medicine components present in CSP. Through network pharmacology analysis, we identified 75 common targets of CSP relevant to the treatment of PMS. These targets were predominantly concentrated within 17 specific signaling pathways, elucidating the potential molecular mechanisms underlying CSP's therapeutic effects on PMS. CONCLUSION In this paper, we have reviewed CSP and PMS, investigated the potential targets and corresponding pathways of CSP for the treatment of PMS, and systematically summarized the active ingredients and pharmacological mechanisms of 7 herbal components. In addition, 17 pathways of CSP for PMS were identified for future research and clinical application. However, the specific mechanism of action of CSP for the treatment of PMS is only based on literature and online pharmacological studies, and no basic or clinical experiments have been conducted. In addition, CSP has many components with complex and varied interactions, and the effects of certain compounds may be overlooked. Based on the present findings, it is beneficial to further explore the mechanism of action of the new effector compounds and the prospect of their application in basic research and clinical trials. In conclusion, the revelation of new effector compounds and mechanisms of action is conducive to the further clinical application of CSP, the discovery of new targets for PMS, and the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Zhenhan Chu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mingzhou Gao
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Jieqiong Wang
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Guoshan Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Mengxuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Dongmei Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
7
|
Wang Y, Wu LH, Hou F, Wang ZJ, Wu MN, Hölscher C, Cai HY. Mitochondrial calcium uniporter knockdown in hippocampal neurons alleviates anxious and depressive behavior in the 3XTG Alzheimer's disease mouse model. Brain Res 2024; 1840:149060. [PMID: 38851312 DOI: 10.1016/j.brainres.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by emotional disturbance, especially anxiety and depression. More and more evidence shows that the imbalance of mitochondrial Ca2+ (mCa2+) homeostasis has a close connection with the pathogenesis of anxiety and depression. The Mitochondrial Calcium Uniporter (MCU), a key channel of mCa2+ uptake, induces the imbalance of mCa2+ homeostasis and may be a therapeutic target for anxiety and depression of AD. In the present study, we revealed for the first time that MCU knockdown in hippocampal neurons alleviated anxious and depressive behaviors of APP/PS1/tau mice through elevated plus-maze (EPM), elevated zero maze (EZM), sucrose preference test (SPT) and tail suspension test (TST). Western blot analysis results demonstrated that MCU knockdown in hippocampal neurons increased levels of glutamate decarboxylase 67 (GAD67), vesicular GABA transporter (vGAT) and GABAA receptor α1 (GABRA1) and activated the PKA-CREB-BDNF signaling pathway. This study indicates that MCU inhibition has the potential to be developed as a novel therapy for anxiety and depression in AD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Lin-Hong Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Fei Hou
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China.
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China.
| |
Collapse
|
8
|
Zhang X, Fan L, Yang L, Jin X, Liu H, Lei H, Song X, Zhang Z, Zhang F, Song J. DAPK1 mediates cognitive dysfunction and neuronal apoptosis in PSD rats through the ERK/CREB/BDNF signaling pathway. Behav Brain Res 2024; 471:115064. [PMID: 38777261 DOI: 10.1016/j.bbr.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Lifei Fan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Lina Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China
| | - Xuejiao Jin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Hao Lei
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Xiaojia Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| |
Collapse
|
9
|
Yi L, Chen J, Li S, Cui W, Li J, Peng L, Peng C. Efficacy and safety of Chinese patent medicines combined with antidepressants for treatment of depression in adults: A multiple-treatment meta-analysis. J Psychiatr Res 2024; 176:205-212. [PMID: 38878648 DOI: 10.1016/j.jpsychires.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/29/2024]
Abstract
BACKGROUND Combinations of Chinese patent medicines (CPM) with antidepressants (including selective serotonin reuptake inhibitors (SSRI), selective serotonin-norepinephrine reuptake inhibitors (SNRI), tricyclic antidepressants (TCA), and noradrenergic and specific serotonergic antidepressants (NaSSA)) are frequently utilized for treating depression in adults. However, the efficacy and safety of these combination treatments remain to be established. METHODS Systematic search was conducted in seven electronic databases, regulatory websites and international registers of trials from 1994 to 2023 that included adult patients with depressive disorders who received CPM combined with antidepressants. The Multiple-Treatment Meta-Analysis (MTMA) was conducted using a random effects model with Stata/MP17 and R4.3.5 software. Primary outcomes were total efficacy rate, Hamilton Depression Scale (HAMD) score, and Treatment Emergency Symptom Scale (TESS) score. Secondary outcomes included brain-derived neurotrophic factor (BDNF) levels. RESULTS A total of 146 randomized controlled trials (13,754 participants: 6929 in intervention and 6825 in control groups) were included. For total effective rate, Multiple-Treatment Meta-Analysis results showed that the overall effect of combined intervention was better compared with antidepressants alone, where Jieyuanshenkeli (JYASKL) presented the optimal option for improving total efficacy (OR = 5.39, 95% CI [2.60, 11.18], SUCRA = 84.50%). In reduding the HAMD, Shuganjieyujiaonang (SGJYJN) was most likely to reduce the HAMD score (SMD = -2.20, 95% CI [-3.06, -1.33], SUCRA = 86.10%), Jieyuanshenkeli (JYASKL),Tianewangbuxindan (TWBXD), Shuyukeli (SYKL), Anshenbuxinwan (ASBXW) combination intervention did not appear to be statistically superior to antidepressants alone. In theTreatment Emergency Symptom Scale (TESS), Wulinjiaonang induced the most significant reduction in TESS score (SMD = -1.98, 95% CI [-3.59, -0.36], SUCRA = 90.40%). Tianmengjiaonang (TMJN) + Antidepressants(AD) (SUCRA = 88.30%) displayed the highest scores in increasing the levels of BDNF, although not statistically significant compared to Antidepressants(AD) alone (SMD = 1.23, 95% CI [0.90, 1.55]). CONCLUSION Combinations of CPM and antidepressants showed superior efficacy over antidepressants alone. The optimal combinations were determined as Shuganjieyu Jiaonang (SGJYJN)/SSRIs and Jieyuanshenkeli (JYASKL)/SSRIs. In terms of safety, results showed that combination therapy did not show better TESS efficacy than antidepressants alone.Although some of the combination interventions were not superior than antidepressants alone in reducing HAMD scores,our findings provide a potentially significant alternative option for clinical complementary therapy. However, these results require further validation through larger sample sizes, multicenter randomized controlled trials, and real-world data.
Collapse
Affiliation(s)
- Lidan Yi
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing Chen
- Department of Pharmacy, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410011, China
| | - Sini Li
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Cui
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jianhe Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liubao Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ciyan Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
10
|
Xu H, Sun Z, Wang G, Li R. The Impact of Depression on Detrimental Changes in Bone Microstructure in Female Mice. Neuropsychiatr Dis Treat 2024; 20:1421-1433. [PMID: 39049938 PMCID: PMC11268775 DOI: 10.2147/ndt.s454865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background Several clinical studies have examined the connection between depression and bone loss, but the cause-and-effect relationship between the two conditions, especially in animal models, is not well-studied. Methods A total of 32 female mice were, randomly divided into control group (CON, n=19) and depression group (DEP, n=13). The mice in the DEP group were subjected to 21 consecutive days of restraint stress, following depressive-like behaviors were assessment. The femurs were collected using Micro-Computed Tomography (μCT) and histochemical staining. In parallel, levels of serotonin-related proteins in the brain were measured using Western blot analysis, and sex hormone profiles were determined through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results The mice in the DEP group exhibited clear signs of depressive-like behaviors and an increase in serotonin transporter levels (t=-2.435, P< 0.05). In comparison to the CON mice, the DEP mice showed a decrease in bone mineral density (t =3.741, P< 0.05), bone surface area density (t =8.009, P<0.01), percent bone volume (t =4.293, P< 0.05), trabecular number (t =5.844, P<0.01), and connected density (t =11.000, P< 0.05). Additionally, there was an increase in trabecular separation (t =-7.436, P<0.01) in DEP mice. Furthermore, the DEP mice displayed a significant reduction in serum estrogen levels (t =4.340, P< 0.05) and changes in its metabolite (t =-3.325, P< 0.05), while the levels of androgens remained unchanged. Conclusion The restraint stress not only led to the development of depressive-like behaviors but also disrupted the estrogen metabolism pathway, resulting in damage to bone mass and microstructure in female mice. These findings suggest that stress-induced depression may pose a risk for bone loss in female mice by altering estrogen metabolism pathways.
Collapse
Affiliation(s)
- Hong Xu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
12
|
Zhang X, Zhao Q, Wang Y, Mao Y, Sun Y, Bian X. Effectiveness and safety of Chaihu-Shugan-San for treating depression based on clinical cases: An updated systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38668. [PMID: 38941409 PMCID: PMC11466128 DOI: 10.1097/md.0000000000038668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chaihu-Shugan-San (CSS), a Traditional Chinese Medicine formula, has been widely used for treating depression since the Ming Dynasty, as recorded in Jingyue Quanshu, but its effectiveness and safety lack comprehensive and objective evaluation. Based on our meta-analysis, we aimed to adequately evaluate the efficacy and risk of CSS by considering the latest clinical literature. METHODS Multiple databases, including PubMed, Embase, Web of Science, SinoMed, China National Knowledge Infrastructure, Chongqing VIP, and Wanfang, were used to collect clinical data. The quality of the included clinical studies was assessed using the Cochrane Risk of Bias Tool, and the data were meta-analyzed using Review Manager 5.0 and Stata 17. The data were obtained from a genome-wide association study, and Mendelian randomization (MR) was performed using R Software 4.3.2 with the TwoSampleMR and MR Pleiotropy RESidual Sum and Outlier packages. RESULTS A total of 15 studies with 1034 patients and 6 antidepressant drugs were included in this work. Meta-analyses revealed that drug combinations of CSS and antidepressants significantly improved depressive symptoms (weighted mean difference = -4.21; 95% confidence interval [CI]: -5.62--2.81), increased the effective rate (odds ratio [OR] = 3.82; 95% CI: 2.44-6.83), and reduced side effects (OR = -3.55; 95% CI: -5.66--1.43) compared with antidepressant monotherapy. Additionally, compared with antidepressant monotherapy, CSS alone exhibited fewer side effects (95% CI:-9.25--6.95). Like antidepressants, CSS also improved depressive symptoms (weighted mean difference = -0.05; 95% CI: -0.63--0.52) and increased the effective rate (OR = 1.07; 95% CI: 0.52-2.20). Additionally, MR was used to evaluate the safety of traditional antidepressants, as there was a causal association between amitriptyline and body mass index. CONCLUSION This analysis demonstrated that compared with traditional antidepressants, CSS combined with antidepressants was more effective and safer for treating depressed patients. MR showed that a causal relationship may exist between amitriptyline and body mass index. Therefore, clinicians should carefully consider the advantages and potential drawbacks of Traditional Chinese Medicine and classic drugs to serve patients better.
Collapse
Affiliation(s)
- Xiaohang Zhang
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiulong Zhao
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Yang Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqing Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaokun Bian
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| |
Collapse
|
13
|
Ge C, Wang S, Wu X, Lei L. Quercetin attenuates brain apoptosis in mice with chronic unpredictable mild stress-induced depression. Behav Brain Res 2024; 465:114934. [PMID: 38432303 DOI: 10.1016/j.bbr.2024.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Depression is a common psychiatric disorder with limited effective treatments. Research suggests that depression involves apoptosis mechanisms. Quercetin (QUE) has been reported to have anti-apoptotic activities. In this study, we aimed to investigate the effects and mechanisms of QUE in chronic unpredictable mild stress (CUMS)-induced depression. METHODS After establishing mouse models of CUMS-induced depression, the mice were randomly assigned into four groups: control, CUMS, CUMS+QUE, and CUMS+Fluoxetine (FLX). The body weight of the mice was measured during the study. Then, depression-associated behaviors were evaluated using the sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST) and tail suspension test (TST). Apoptosis in the hippocampus and prefrontal cortex was determined using flow cytometry. Bcl-2 and Nrf2 protein expressions in the hippocampus and prefrontal cortex were also detected. Furthermore, Western blot was used to measure the protein levels of p-ERK, ERK, p-CREB, CREB, and Nrf2 in brain tissues. RESULTS QUE or FLX administration increased the body weight of the CUMS mice. Behavioral tests indicated that CUMS mice developed a state of depression, but QUE or FLX treatment improved their depression-associated behaviors. Meanwhile, QUE or FLX treatment decreased apoptosis in the hippocampus and prefrontal cortex. Furthermore, the decreased Nrf2 protein expression, ERK and CREB phosphorylation in CUMS group were enhanced by QUE or FLX administration. CONCLUSION QUE could attenuate brain apoptosis in mice with CUMS-induced depression, and the mechanism may be related to the ERK/Nrf2 pathway, indicating that QUE could be a potential treatment for depression.
Collapse
Affiliation(s)
- Chenjie Ge
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Shiliang Wang
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Xuqi Wu
- Quality Management Division, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China
| | - Lilei Lei
- Department of Psychiatric, HuZhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
14
|
Wang C, Li N, Feng Y, Sun S, Rong J, Xie XH, Xu S, Liu Z. Effects of autotaxin and lysophosphatidic acid deficiencies on depression-like behaviors in mice exposed to chronic unpredictable mild stress. Neurobiol Stress 2024; 30:100632. [PMID: 38601361 PMCID: PMC11004986 DOI: 10.1016/j.ynstr.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.
Collapse
Affiliation(s)
- Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, Hubei, PR China
| | - Ningyuan Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuqi Feng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Xin-hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
15
|
Guo Z, Long T, Yao J, Li Y, Xiao L, Chen M. Potential antidepressant effects of Traditional Chinese botanical drug formula Chaihu-Shugan-San and its active ingredients. Front Pharmacol 2024; 15:1337876. [PMID: 38628641 PMCID: PMC11019007 DOI: 10.3389/fphar.2024.1337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Depression is a severe mental disorder that poses a significant threat to both the physical and mental wellbeing of individuals. Currently, there are various methods for treating depression, including traditional Chinese herbal formulations like Chaihu-Shugan-San (CSS), which have shown effective antidepressant effects in both clinical and animal research. Objective: This review aims to provide a comprehensive synthesis of evidence related to CSS, considering both preclinical and clinical studies, to uncover its potential multi-level, multi-pathway, and multi-target mechanisms for treating depression and identify its active ingredients. Methods: A thorough search was conducted in electronic databases, including PubMed, MEDLINE, Web of Science, Google Scholar, CNKI, and Wanfang, using keywords such as "Chaihu Shugan" and "depression" to retrieve relevant literature on CSS and its active ingredients. The review process adhered to the PRISMA guidelines. Results: This review consolidates the mechanisms underlying antidepressant effects of CSS and its active ingredients. It emphasizes its involvement in the regulation of monoaminergic neurotransmitter systems, synaptic plasticity, and the hypothalamic-pituitary-adrenal axis, among other aspects. Conclusion: CSS exerts a pivotal role in treating depression through various pathways, including the monoaminergic neurotransmitter system, the hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, and the brain-gut axis. This review facilitates a comprehensive understanding of the current state of CSS research, fostering an in-depth exploration of the etiological mechanisms of depression and the potential discovery of novel antidepressant drugs.
Collapse
Affiliation(s)
- Ziyi Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Tianjian Long
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Xiao
- Zunyi Medical University, Zhuhai, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| |
Collapse
|
16
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
17
|
Gong G, Ganesan K, Wang Y, Zhang Z, Liu Y, Wang J, Yang F, Zheng Y. Ononin ameliorates depression-like behaviors by regulating BDNF-TrkB-CREB signaling in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117375. [PMID: 37944872 DOI: 10.1016/j.jep.2023.117375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ononin is a flavonoid compound found in several medicinal plants, including Astragalus membranaceus, Sophora flavescens, and Ononis spinosa. These plants have been traditionally used in various parts of the world for their medicinal properties, including anti-inflammatory, antioxidant, and antitumor effects. Major depression is a common, long-lasting, and recurrent psychiatric disorder with a high suicide rate. Naturally occurring flavonoids treat depression via poorly understood mechanisms. AIM OF THE STUDY The present study aimed to determine whether ononin conferred an antidepressant-like effect in PC12 cell models and chronic mild stress (CMS)-induced depressive rat models and to explore its possible mechanisms. MATERIALS AND METHODS Depression-related behaviors were measured using sucrose preference, tail suspension and open-field tests. Furthermore, to explore these mechanisms, we employed in vitro and in vivo assay methods, including neurite outgrowth, western blotting, quantitative RT-PCR, and staining methods. RESULTS Treatment with ononin or BDNF significantly increased PC12 cells' neuronal growth and differentiation. Furthermore, ononin promotes the activation of TrkB and growth factors and upregulates the PI3K/Akt and BDNF/TrkB/CREB signaling pathways. The in vitro results were consistent with CMS-induced depressive rat models, in which ononin treatment significantly decreased depression-like behaviors and activated TrkB, growth factors, and BDNF/TrkB/CREB signaling pathways in the frontal cortex and hippocampus. Depression-induced microscopic alterations in the frontal cortex and hippocampus of rats with CMS-induced depression were also mitigated following ononin treatment. CONCLUSION Based on these findings, we suggest that ononin is a promising antidepressant candidate for treating depression.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, Guangdong, China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, 999077, Hong Kong Special Administrative Region of China
| | - Yongjie Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Junli Wang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China; Guangdong East Drug and Food & Health Branch, Chaozhou, Guangdong 521041, China.
| |
Collapse
|
18
|
Kim DY, Son SR, Kim JY, Min JW, Kong CH, Park K, Jeon M, Kang WC, Jung SY, Choi JH, Jang DS, Ryu JH. Effects of Artemisia annua L. on postmenopausal syndrome in ovariectomized mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116800. [PMID: 37331451 DOI: 10.1016/j.jep.2023.116800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17β-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), β-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3β, and β-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3β/β-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.
Collapse
Affiliation(s)
- Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
19
|
Qin L, Wang J, Wu X, Song L, Zhang Y, Gong M, Wang Y, Li B. Antidepressant effects of 70% ethanolic extract of Lonicerae japonicae flos and it contained chlorogenic acid via upregulation of BDNF-TrkB pathway in the hippocampus of mice. Brain Res Bull 2023; 204:110796. [PMID: 37863440 DOI: 10.1016/j.brainresbull.2023.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Lonicera japonica flos (LJF) is a common clinical herb with outstanding medicinal and nutritional value. This study aimed to evaluate the antidepressant effects of LJF's active extract and compound chlorogenic acid (CGA) around brain-derived neurotrophic factor(BDNF)-tropomyosin receptor kinase B (TrkB) pathway. The results showed that LJF's extracts and CGA had significant antidepressant effects, and the antidepressant effects of different extracts of LJF were highly positively correlated with the content of CGA (forced swimming test, r = 0.998; tail suspension test, r = 0.934). Moreover, LJF-70% ethanolic extract and CGA improved chronic unpredictable mild stress-induced depressive behavior, upregulated protein expression levels of BDNF and p-TrkB in the hippocampus, restored the damage of hippocampal neurons, and protected liver from damage. In summary, this study demonstrated for the first time that LJF-70% ethanolic extract was the active extract of LJF in antidepressant and CGA was its active compound, and the antidepressant mechanisms mainly involved the upregulation of BDNF-TrkB signaling pathway in the hippocampus of mice.
Collapse
Affiliation(s)
- Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
20
|
Park I, Kim J, Kim M, Lim DW, Jung J, Kim MJ, Song J, Cho S, Um MY. Sargassum horneri Extract Attenuates Depressive-like Behaviors in Mice Treated with Stress Hormone. Antioxidants (Basel) 2023; 12:1841. [PMID: 37891920 PMCID: PMC10604295 DOI: 10.3390/antiox12101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Sargassum horneri, a brown seaweed, is known for its various health benefits; however, there are no reports on its effects on depression. This study aimed to investigate the antidepressant effects of S. horneri ethanol extract (SHE) in mice injected with corticosterone (CORT) and to elucidate the underlying molecular mechanisms. Behavioral tests were conducted, and corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and CORT levels were measured. A fluorometric monoamine oxidase (MAO) enzyme inhibition assay was performed. Neurotransmitters like serotonin, dopamine, and norepinephrine levels were determined. Moreover, the ERK-CREB-BDNF signaling pathway in the prefrontal cortex and hippocampus was evaluated. Behavioral tests revealed that SHE has antidepressant effects by reducing immobility time and increasing time spent in open arms. Serum CRH, ACTH, and CORT levels decreased in the mice treated with SHE, as did the glucocorticoid-receptor expression in their brain tissues. SHE inhibited MAO-A and MAO-B activities. In addition, SHE increased levels of neurotransmitters. Furthermore, SHE activated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. These findings suggest that SHE has antidepressant effects in CORT-injected mice, via the regulation of the hypothalamic-pituitary-adrenal axis and monoaminergic pathway, and through activation of the ERK-CREB-BDNF signaling pathway. Thus, our study suggests that SHE may act as a natural antidepressant.
Collapse
Affiliation(s)
- Inhye Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jiwoo Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Wook Lim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jonghoon Jung
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min Jung Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Junho Song
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
21
|
Li W, Ali T, Mou S, Gong Q, Li N, Hao L, Yu ZJ, Li S. D1R-5-HT2AR Uncoupling Reduces Depressive Behaviours via HDAC Signalling. Neurotherapeutics 2023; 20:1875-1892. [PMID: 37782408 PMCID: PMC10684469 DOI: 10.1007/s13311-023-01436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/03/2023] Open
Abstract
Dopamine and serotonin signalling are associated with major depressive disorder, which is a prevalent life-threatening illness worldwide. Numerous FDA-approved dopamine/serotonin signalling-modifying drugs are available but are associated with concurrent side effects and limited efficacy. Thus, identifying and targeting their signalling pathway is crucial for improving depression treatment. Here, we determined that serotonin receptor 2A (5-HT2AR) abundantly forms a protein complex with dopamine receptor 1 (D1R) in high abundance via its carboxy-terminus in the brains of mice subjected to various chronic stress paradigms. Furthermore, the D1R/5-HT2AR interaction elicited CREB/ERK/AKT modulation during synaptic regulation. An interfering peptide (TAT-5-HT2AR-SV) agitated the D1R/5-HT2AR interaction and attenuated depressive symptoms accompanied by CREB/ERK molecule costimulation. Interestingly, HDAC antagonism but not TrkB antagonism reversed the antidepressant effect of competitive peptides. These findings revealed a novel D1R/5-HT2AR heteroreceptor complex mechanism in the pathophysiology of depression, and their uncoupling ameliorates depressive-like behaviours through HDAC-, and not BDNF-, dependent mechanisms.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ningning Li
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- Precision Medicine Research Centre, Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liangliang Hao
- Hospital of Chengdu, University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, People's Republic of China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Seung HB, Kwon HJ, Kwon CY, Kim SH. Neuroendocrine Biomarkers of Herbal Medicine for Major Depressive Disorder: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:1176. [PMID: 37631092 PMCID: PMC10458856 DOI: 10.3390/ph16081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Major depressive disorder (MDD) is a medical condition involving persistent sadness and loss of interest; however, conventional treatments with antidepressants and cognitive behavioral therapy have limitations. Based on the pathogenesis of MDD, treatments using herbal medicines (HM) have been identified in animal studies. We conducted a systematic review of clinical studies to identify neurobiological outcomes and evaluate the effectiveness of HM in treating MDD. A meta-analysis was performed by searching nine databases from their inception until 12 September 2022, including 31 randomized controlled trials with 3133 participants, to examine the effects of HM on MDD using neurobiological biomarkers and a depression questionnaire scale. Quality assessment was performed using a risk of bias tool. Compared to antidepressants alone, HM combined with an antidepressant significantly increased concentrations of serotonin (SMD = 1.96, 95% CI: 1.24-2.68, p < 0.00001, I2 = 97%), brain-derived neurotrophic factor (SMD = 1.38, 95% CI: 0.92-1.83, p < 0.00001, I2 = 91%), and nerve growth factors (SMD = 2.38, 95% CI: 0.67-4.10, p = 0.006, I2 = 96%), and decreased cortisol concentrations (SMD = -3.78, 95% CI: -4.71 to -2.86, p < 0.00001, I2 = 87%). Although HM or HM with an antidepressant benefits MDD treatment through improving neuroendocrine factors, these findings should be interpreted with caution because of the low methodological quality and clinical heterogeneity of the included studies.
Collapse
Affiliation(s)
- Hye-Bin Seung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Hui-Ju Kwon
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-Eui University College of Korean Medicine, Busan 47227, Republic of Korea;
| | - Sang-Ho Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si 790-826, Republic of Korea
| |
Collapse
|
23
|
Zhu X, Liu Q, Cao M, Feng Z. Reporting quality and risk of bias assessment of animal research on Chaihu-Shugan-San for depression: A systematic review. Heliyon 2023; 9:e19232. [PMID: 37664720 PMCID: PMC10470188 DOI: 10.1016/j.heliyon.2023.e19232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Chaihu-Shugan-San (CSS) is a traditional Chinese medicine formula employed to treat depression. We aim to conduct a reporting quality assessment and risk of bias evaluation of animal research on CSS for depression. Methods To acquire eligible studies, two reviewers searched plentiful databases from inception to October 23rd, 2021. Reporting quality assessment and risk of bias assessment of the included animal studies were evaluated by using Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines and the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of bias tool, respectively. Results The initial search identified 720 records, while only 30 studies were included. The result of the reporting quality assessment was inferior, items 17 and 19 were not reported at all. The details of five items (items 3, 6, 7, 10, and 18) were not reported. The outcome of the risk of bias assessment suggested that half of the entries (5/10) displayed an unclear risk of bias and a high risk of bias. Blinding with regard to performance bias and detection bias revealed an unclear risk of bias (100%), followed by baseline characteristics (76.67%) and sequence generation (60%). Random outcome assessment showed a high risk of bias (100%). Conclusion The included animal studies exhibited methodological defects and imprecise reporting. Hence, the ARRIVE guidelines and SYRCLE's RoB tool should be disseminated among basic medical researchers examining CSS for depression to publish studies with low risk of bias and sufficient reporting so that the animal research can promptly be transformed into clinical research.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Qiong Liu
- Department of Cardiovascular Medicine, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
24
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
25
|
Du Y, Wang YL, Chen L, Li QE, Cheng Y. Anti-depressant-like effects of rannasangpei and its active ingredient crocin-1 on chronic unpredictable mild stress mice. Front Pharmacol 2023; 14:1143286. [PMID: 37007014 PMCID: PMC10060548 DOI: 10.3389/fphar.2023.1143286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Major depressive disorder is one of the most common neuropsychiatric diseases and it is a global public health problem that leads to disabilities. Currently, there is a growing need to explore novel strategy to cure major depressive disorder due to the limitation of available treatments. Rannasangpei (RSNP) is a traditional Tibetan medicine which acts as a therapeutic agent in various acute or chronic diseases, including cardiovascular diseases and neurodegenerative diseases. Crocin-1 a coloring ingredient of saffron which exhibited anti-oxidative and anti-inflammatory properties. Here, we aimed to illustrate whether RSNP and its active ingredient crocin-1 rescue depressive-like phenotypes in chronic unpredictable mild stress (CUMS) induced mouse model of depression. Our results showed that peripheral administration of RSNP or crocin-1 ameliorated the depressive-like behaviors in CUMS-treated mice, as demonstrated by the forced swimming test and tail suspension test. Furthermore, RSNP or crocin-1 treatment reduced oxidative stress in the peripheral blood and hippocampus of the CUMS-treated mice. Additionally, the dysregulated immune system response, as demonstrated by the increased expression of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6) and the decreased expression of the anti-inflammatory factor-interleukin-10 in the prefrontal cortex and/or hippocampus of CUMS-treated mice, were at least partially restored by RSNP or crocin-1 treatment. RSNP or crocin-1 also restored apoptotic protein marker (Bcl-2 and Bax) levels in the prefrontal cortex and hippocampus of the CUMS-treated mice. Moreover, our data indicated that RSNP or crocin-1 increased astrocyte number and brain-derived neurotrophic factor levels in the hippocampus of CUMS-treated mice after RSNP or crocin-1 administration. Taken together, our study for the first time revealed an anti-depressant effect of RSNP and its active ingredient crocin-1 in a mouse model of depression, with involvement of oxidative stress, inflammatory response and apoptotic pathway.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yan-Li Wang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qi-En Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
- *Correspondence: Qi-En Li, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
- NHC Key Laboratory of Birth Defect Research, Prevention and Treatment (Hunan Provincial Maternal and Child Healthcare Hospital), Changsha, Hunan, China
- *Correspondence: Qi-En Li, ; Yong Cheng,
| |
Collapse
|
26
|
Traxoprodil Produces Antidepressant-Like Behaviors in Chronic Unpredictable Mild Stress Mice through BDNF/ERK/CREB and AKT/FOXO/Bim Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1131422. [PMID: 36819781 PMCID: PMC9937761 DOI: 10.1155/2023/1131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Traxoprodil is a selective N-methyl-d-aspartate receptor subunit 2B (NR2B) receptor inhibitor with rapid and long-lasting antidepressant effects. However, the appropriate dosage, duration of administration, and underlying mechanism of traxoprodil's antidepressant effects remain unclear. The purpose of this study is to compare the antidepressant effects of traxoprodil in different doses and different durations of administration and to explore whether traxoprodil exerts antidepressant effects via the brain-derived neurotrophic factor/extracellular signal-regulated kinase/cAMP-response element binding protein (BDNF/ERK/CREB) and protein kinase B/Forkhead box O/building information modelling (AKT/FOXO/Bim) signaling pathway. Mice were randomly divided into control group, chronic unpredictable mild stress (CUMS) + vehicle group, CUMS + traxoprodil (10 mg/kg, 20 mg/kg, and 40 mg/kg) groups, and CUMS + fluoxetine (5 mg/kg) group, followed by a forced swimming test, tail suspension test, and sucrose preference test. Western blotting and immunohistochemistry were used to measure the protein expression of BDNF, p-ERK1/2, p-CREB, NR2B, AKT, FOXO1, FOXO3a, and Bim. Compared with the control group, CUMS treatment increased immobility time; decreased sucrose preference; reduced expression of BDNF, p-ERK1/2, and p-CREB; and increased expression of AKT, FOXO, and Bim in the hippocampus. These alterations were ameliorated by administration of 20 mg/kg or 40 mg/kg of traxoprodil after 7 or 14 days of administration and with 10 mg/kg of traxoprodil or 5 mg/kg of fluoxetine after 21 days of administration. At the 7-day and 14-day timepoints, traxoprodil displayed dose-dependent antidepressant effects, with 20 and 40 mg/kg doses of traxoprodil producing rapid and strong antidepressant effects. However, at 21 days of administration, 10 and 20 mg/kg doses of traxoprodil exerted more pronounced antidepressant effects. The mechanism of traxoprodil's antidepressant effects may be closely related to the BDNF/ERK/CREB and AKT/FOXO/Bim signaling pathway.
Collapse
|
27
|
Luo S, Zhang W, Mao R, Huang X, Liu F, Liao Q, Sun D, Chen H, Zhang J, Tian F. Establishment and verification of a nomogram model for predicting the risk of post-stroke depression. PeerJ 2023; 11:e14822. [PMID: 36751635 PMCID: PMC9899426 DOI: 10.7717/peerj.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The purpose of this study was to establish a nomogram predictive model of clinical risk factors for post-stroke depression (PSD). Patients and Methods We used the data of 202 stroke patients collected from Xuanwu Hospital from October 2018 to September 2020 as training data to develop a predictive model. Nineteen clinical factors were selected to evaluate their risk. Minimum absolute contraction and selection operator (LASSO, least absolute shrinkage and selection operator) regression were used to select the best patient attributes, and seven predictive factors with predictive ability were selected, and then multi-factor logistic regression analysis was carried out to determine six predictive factors and establish a nomogram prediction model. The C-index, calibration chart, and decision curve analyses were used to evaluate the predictive ability, accuracy, and clinical practicability of the prediction model. We then used the data of 156 stroke patients collected by Xiangya Hospital from June 2019 to September 2020 for external verification. Results The selected predictors including work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and the National Institutes of Health Stroke Scale (NIHSS) score. The model showed good prediction ability and a C index of 0.773 (95% confidence interval: [0.696-0.850]). It reached a high C-index value of 0.71 in bootstrap verification, and its C index was observed to be as high as 0.702 (95% confidence interval: [0.616-0.788]) in external verification. Decision curve analyses further showed that the nomogram of post-stroke depression has high clinical usefulness when the threshold probability was 6%. Conclusion This novel nomogram, which combines patients' work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and NIHSS score, can help clinicians to assess the risk of depression in patients with acute stroke much earlier in the timeline of the disease, and to implement early intervention treatment so as to reduce the incidence of PSD.
Collapse
Affiliation(s)
- Shihang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenrui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rui Mao
- Xiangya Hospital, Central South University, Changsha, China
| | - Xia Huang
- The First People’s Hospital of Huaihua, Hunan, Huaihua, China
| | - Fan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hengshu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Tao F, Cai Y, Deng C, Chen Z, Shen Y, Sun H. A narrative review on traditional Chinese medicine prescriptions and bioactive components in epilepsy treatment. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:129. [PMID: 36819494 PMCID: PMC9929833 DOI: 10.21037/atm-22-3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/06/2022] [Indexed: 12/15/2022]
Abstract
Background and Objective In traditional Chinese medicine (TCM), natural drugs and their bioactive components have been widely used to treat epilepsy. Epilepsy is a chronic disease caused by abnormal discharge of brain neurons that leads to brain dysfunction and cognitive impairment. Several factors are involved in the mechanisms of epilepsy, and the current treatments do not seem promising. The potential efficacy of natural drugs with lower toxicity and less side effects have attracted increasing attention. Methods We used the terms, "TCM", "traditional Chinese medicine", "herbal", "epilepsy", "seizure", and the name of each prescription and bioactive components in the review to collect papers about application of TCM in epilepsy treatment from PubMed online database and Chinese database including Chinese National Knowledge Infrastructure (CNKI), Wanfang, and Weipu. Key Content and Findings We summarized some common TCM prescriptions and related active components used for the treatment of epilepsy. Six prescriptions (Chaihu Shugan decoction, Tianma Gouteng decoction, Kangxian capsules, Taohong Siwu decoction, Liujunzi decoction, Compound Danshen dropping pills) and nine main bioactive compounds (Saikosaponin A, Rhynchophylline, Tetramethylpyrazine, Gastrodin, Baicalin and baicalein, α-Asarone, Ginsenoside, Tanshinone, Paeoniflorin) were reviewed to provide a scientific basis for the development of potential antiepileptic drugs (AEDs). Conclusions The pharmacological effects and molecular mechanisms of TCM in the treatment of epilepsy are complex, targeting several pathological aspects of epilepsy. However, the limitations of TCM, such as the lack of standardized treatments, have prevented its clinical application in epilepsy treatment. Thus, additional clinical trials are required to further evaluate the effectiveness and safety of TCM prescriptions and their bioactive components in the future.
Collapse
Affiliation(s)
- Feng Tao
- Nantong University Informatization Center, Nantong University, Nantong, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Cai
- Department of Neurology, People’s Hospital of Binhai County, Yancheng, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
29
|
Jee HJ, Ryu D, Kim S, Yeon SH, Son RH, Hwang SH, Jung YS. Fermented Perilla frutescens Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model. Int J Mol Sci 2022; 24:ijms24010622. [PMID: 36614066 PMCID: PMC9820360 DOI: 10.3390/ijms24010622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep deprivation (SD)-induced stress mice. SD-stressed mice revealed a remarkable increase in the immobility time in both forced swimming test and tail suspension test; this increase was ameliorated by treatment with FPF at doses of 100 and 150 mg/kg. FPF treatment also reduced the level of stress hormones such as corticosterone and adrenocorticotropic hormone. Additionally, FPF increased the levels of serotonin and dopamine which were significantly decreased in the brain tissues of SD-stressed mice. The increased expression of proinflammatory cytokines, such as TNF-α and IL1β, and the decreased expression of brain-derived neurotrophic factor (BDNF) in the stressed mice were significantly reversed by FPF treatment. Furthermore, FPF also increased phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular regulated protein kinase (ERK), and cAMP response element binding protein (CREB). Among the six components isolated from FPF, protocatechuic acid and luteolin-7-O-glucuronide exhibited significant antidepressant-like effects, suggesting that they are major active components. These findings suggest that FPF has therapeutic potential for SD-induced stress, by correcting dysfunction of hypothalamic-pituitary-adrenal axis and modulating the BDNF/TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Hye Jin Jee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- AI-Super Convergence KIURI Translational Research Center, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Suyeon Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Hum Yeon
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Rak Ho Son
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Seung Hwan Hwang
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
30
|
A Chinese Classical Prescription Chaihu Shugan Powder in Treatment of Post-Stroke Depression: An Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010055. [PMID: 36676679 PMCID: PMC9862190 DOI: 10.3390/medicina59010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Post-stroke depression (PSD) is the most common mental health problem after a stroke with an incidence of up to 33%. PSD has a negative impact on the rehabilitation and recovery of motor and cognitive dysfunction after a stroke and significantly increases the chance of the recurrence of neurovascular events. At present, medication is the preferred method of coping with PSD. Modern medicine is still unclear regarding the pathogenesis of PSD, with clinical drug treatment mostly using antidepressants, such as selective serotonin reuptake inhibitor (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs). However, a high proportion of patients fail to show an adequate antidepressant response and have adverse reactions after taking antidepressants. In recent years, as the advantages of traditional Chinese medicine (TCM) in clinical treatment continue to emerge, Chinese herbal and TCM formulae have begun to enter the awareness of Chinese scholars and even scholars around the world. As a classic formula with a history of more than 400 years, Chaihu Shugan powder (CHSG) has great advantages in the clinical treatment of PSD. Based on existing clinical and experimental studies, this article comprehensively analyzes clinical cases, mechanisms of action, and drug and chemical effects of CHSG in the treatment of PSD in order to provide more clinical experience and experimental theoretical support for CHSG in the treatment of PSD.
Collapse
|
31
|
Ma C, Yuan D, Renaud SJ, Zhou T, Yang F, Liou Y, Qiu X, Zhou L, Guo Y. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol 2022; 13:1040591. [PMID: 36339629 PMCID: PMC9627339 DOI: 10.3389/fphar.2022.1040591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chaihu-Shugan-San (CSS) is a traditional botanical drug formula often prescribed to treat depression in oriental countries, but its pharmacotherapeutic mechanism remains unknown. It was recently reported that CSS alters the composition of intestinal microflora and related metabolites such as bile acids (BAs). Since the intestinal microflora affects physiological functions of the brain through the gut-microbiota-brain axis, herein we investigated whether CSS altered BA levels, gut microflora, and depression-like symptoms in chronic unpredictable mild stress (CUMS) mice, a well-established mouse model of depression. Furthermore, we determined whether BA manipulation and fecal microbiota transplantation altered CSS antidepressant actions. We found that the BA chelator cholestyramine impaired the antidepressant effects of CSS, which was partially rescued by dietary cholic acid. CSS increased the relative abundance of Parabacteroides distasonis in the colon of CUMS mice, and increased serum levels of various BAs including hyocholic acid (HCA) and 7-ketodeoxycholic acid (7-ketoDCA). Furthermore, gut bacteria transplantation from CSS-treated mice into untreated or cholestyramine-treated CUMS mice restored serum levels of HCA and 7-ketoDCA, alleviating depression-like symptoms. In the hippocampus, CSS-treated mice had decreased expression of genes associated with BA transport (Bsep and Fxr) and increased expression of brain-derived neurotrophic factor and its receptor, TrkB. Overall, CSS increases intestinal P. distasonis abundance, leading to elevated levels of secondary BAs in the circulation and altered expression of hippocampal genes implicated in BA transport and neurotrophic signaling. Our data strongly suggest that the gut microbiota-brain axis contributes to the potent antidepressant action of CSS by modulating BA metabolism.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Ting Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuligh Liou
- China Xiangya Medical Laboratory, Central South University, Changsha, China
| | - Xinjian Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Gaszner T, Farkas J, Kun D, Ujvári B, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Epigenetic and Neuronal Activity Markers Suggest the Recruitment of the Prefrontal Cortex and Hippocampus in the Three-Hit Model of Depression in Male PACAP Heterozygous Mice. Int J Mol Sci 2022; 23:ijms231911739. [PMID: 36233039 PMCID: PMC9570135 DOI: 10.3390/ijms231911739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience Medical School, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
33
|
Effect of Chaihu Shugan Pills on the Pharmacokinetics of Duloxetine and its Metabolite 4-Hydroxyduloxetine in Beagle Dogs: A Herb-Drug Interaction Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2350560. [PMID: 36034951 PMCID: PMC9402319 DOI: 10.1155/2022/2350560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
The effect of Chaihu Shugan pills (CHSG) on the pharmacokinetics of duloxetine and its metabolite 4-hydroxyduloxetine in beagle dogs was investigated by establishing an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously measure the concentrations of duloxetine and 4-hydroxyduloxetine in beagle dog plasma. Duloxetine and 4-hydroxyduloxetine were separated on the UPLC-C18 column after acetonitrile precipitation and detected by mass spectrometry with multireaction detection mode (MRM). Six adult healthy beagle dogs (weighing 7–9 kg, male and female) were randomly selected and examined for a single-dose administration of duloxetine hydrochloride (2 mg/kg, control group) and oral administration of CHSG (0.3 g/kg) twice daily for 15 consecutive days followed by a single-dose administration of duloxetine hydrochloride (2 mg/kg, experimental group) using the self-control method. All plasma samples were treated in the same way, and then the concentrations of duloxetine and 4-hydroxyduloxetine were determined using the established UPLC-MS/MS method. The obtained data were subjected to DAS 2.0 software to calculate the pharmacokinetic parameters, and SPSS 20.0 software was used to compare the differences between the two groups. Duloxetine and 4-hydroxyduloxetine had a good linear relationship in the ranges of 1–1000 ng/ml and 0.1–100 ng/ml, and the lower limits of quantification (LLOQ) were 1 ng/mL and 0.1 ng/ml, respectively. The precision, accuracy, extraction recovery, matrix effect, and stability meet the requirements of the guiding principles. After combination with CHSG, Cmax and AUC0⟶t of duloxetine decreased by 49.33% and 13.08%, respectively, and t1/2 was shortened to 10.17 h; Cmax and AUC0⟶t of 4-hydroxyduloxetine decreased by 71.47% and 48.78%, respectively, and t1/2 was shortened to 7.97 h. The UPLC-MS/MS method was fully developed to simultaneously measure the plasma concentration of duloxetine and its metabolite 4-hydroxyduloxetine in beagle dogs. CHSG could slow down the absorption of duloxetine, induce the metabolism of duloxetine and 4-hydroxyduloxetine in beagle dogs, and reduce plasma exposure.
Collapse
|
34
|
Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen W, Li L, Zhao J. SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San. Drug Des Devel Ther 2022; 16:2783-2801. [PMID: 36039087 PMCID: PMC9419814 DOI: 10.2147/dddt.s370825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jingjie Zhao, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050, People’s Republic of China, Tel/Fax +86 10-63139096, Email
| |
Collapse
|
35
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M, Li G, Xiao Y, Wei L, Bi H, Gao T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:282. [PMID: 35434037 PMCID: PMC9011256 DOI: 10.21037/atm-22-762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Background Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. Methods The active ingredients of Cordycepssinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. Results Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. Conclusions The active ingredients of Cordycepssinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordycepssinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | | | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tingting Gao
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Zhang S, Jiang M, Yan S, Liang M, Wang W, Yuan B, Xu Q. Network Pharmacology-Based and Experimental Identification of the Effects of Paeoniflorin on Major Depressive Disorder. Front Pharmacol 2022; 12:793012. [PMID: 35185541 PMCID: PMC8847686 DOI: 10.3389/fphar.2021.793012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Major depressive disorder (MDD) is one of the most common psychiatric disorders, the diagnosis and treatment of MDD are major clinical issues. However, there is a lack of effective biomarkers and drugs diagnosis and therapeutics of MDD. In the present study, bioinformatics analysis combined with an experimental verification strategy was used to identify biomarkers and paeoniflorin targets for MDD diagnosis and treatment. Methods: Based on network pharmacology, we obtained potential targets and pathways of paeoniflorin as an antidepressant through multiple databases. We then constructed a protein-protein interaction network and performed enrichment analyses. According to the results, we performed in vivo and in vitro experimental validation. Results: The results showed that paeoniflorin may exert an antidepressant effect by regulating cell inflammation, synaptic function, NF-κB signaling pathway, and intestinal inflammation. Conclusion: NPM1, HSPA8, HSPA5, HNRNPU, and TNF are the targets of paeoniflorin treatment. In addition, we demonstrated that paeoniflorin inhibits inflammatory cytokine production via the p38MAPK/NF-κB pathway and has neuroprotective effects on the synaptic structure. Our findings provide valuable evidence for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Sha Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pediatrics, Affiliate Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingchen Jiang
- Department of Pediatrics, Affiliate Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuxia Yan
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Liang
- Department of Pediatrics, Affiliate Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yuan
- Department of Pediatrics, Affiliate Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyue Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Zhu X, Li T, Hu E, Duan L, Zhang C, Wang Y, Tang T, Yang Z, Fan R. Proteomics Study Reveals the Anti-Depressive Mechanisms and the Compatibility Advantage of Chaihu-Shugan-San in a Rat Model of Chronic Unpredictable Mild Stress. Front Pharmacol 2022; 12:791097. [PMID: 35111057 PMCID: PMC8802092 DOI: 10.3389/fphar.2021.791097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chaihu-Shugan-San is a classical prescription to treat depression. According to the traditional Chinese medicine (TCM) principle, the 2 decomposed recipes in Chaihu-Shugan-San exert synergistic effects, including Shu Gan (stagnated Gan-Qi dispersion) and Rou Gan (Gan nourishment to alleviate pain). However, the specific mechanism of Chaihu-Shugan-San on depression and its compatibility rule remain to be explored. Objective: We aimed to explore the anti-depression mechanisms and analyze the advantage of TCM compatibility of Chaihu-Shugan-San. Methods: The chronic unpredictable mild stress (CUMS) rat model was established. Antidepressant effects were evaluated by sucrose preference test (SPT), and forced swimming test (FST). Tandem Mass Tag (TMT)-based quantitative proteomics of the hippocampus was used to obtain differentially expressed proteins (DEPs). Bioinformatics analysis including Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) networks was utilized to study the DEPs connections. At last, the achieved key targets were verified by western blotting. Results: Chaihu-Shugan-San increased weight gain and food intake, as well as exhibited better therapeutic effects including enhanced sucrose preference and extended immobility time when compared with its decomposed recipes. Proteomics showed Chaihu-Shugan-San, Shu Gan, and Rou Gan regulated 110, 12, and 407 DEPs, respectively. Compared with Shu Gan or Rou Gan alone, the expression of 22 proteins was additionally changed by Chaihu-Shugan-San treatment, whereas the expression of 323 proteins whose expression was changed by Shu Gan or Rou Gan alone were not changed by Chaihu-Shugan-San treatment. Bioinformatics analysis demonstrated that Chaihu-Shugan-San affected neurotransmitter’s release and transmission cycle (e.g., γ-aminobutyric acid (GABA), glutamate, serotonin, norepinephrine, dopamine, and acetylcholine). GABA release pathway is also targeted by the 22 DEPs. Unexpectedly, only 2 pathways were enriched by the 323 DEPs: Metabolism and Cellular responses to external stimuli. Lastly, the expression of Gad2, Vamp2, and Pde2a was verified by western blotting. Conclusions: Chaihu-Shugan-San treats depression via multiple targets and pathways, which may include regulations of 110 DEPs and some neurotransmitter’s transmission cycle. Compared with Shu Gan and Rou Gan, the 22 Chaihu-Shugan-San advanced proteins and the affected GABA pathway may be the advantages of Chaihu-Shugan-San compatibility. This research offers data and theory support for the clinical application of Chaihu-Shugan-San.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Duan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Fan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Zhang M, Bai X. Shugan Jieyu Capsule in Post-Stroke Depression Treatment: From Molecules to Systems. Front Pharmacol 2022; 13:821270. [PMID: 35140618 PMCID: PMC8818889 DOI: 10.3389/fphar.2022.821270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
Post-stroke depression (PSD) is the most common non-cognitive neuropsychiatric complication after stroke, and about a third of patients with stroke have depression. Although a great deal of effort has been made to treat PSD, the efficacy thereof has not been satisfactory, due to the complex pathological mechanism underlying PSD. In Traditional Chinese Medicine (TCM) theory, PSD is considered to be a combination of “stroke” and “Yu Zheng.” The holistic, multi-drug, and multi-objective nature of TCM is consistent with the treatment concept of systems medicine for PSD. TCM has a very long history of being used to treat depression, and various TCM prescriptions have been clinically proven to be effective in improving depression. Among the numerous prescriptions for treating depression, Shugan Jieyu capsule (SG) is one of the classic prescriptions. Additionally, clinical studies have increasingly confirmed that using SG alone or in combination with Western medicine can significantly improve the psychiatric symptoms of PSD patients. Here, we reviewed the mechanism of antidepressant action of SG and its targets in PSD pathologic systems. This review provides further insights into the pharmacological mechanism, drug interaction, and clinical application of TCM prescriptions, as well as a basis for the development of new drugs to treat PSD.
Collapse
|
39
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
40
|
Evsiukova VS, Bazovkina D, Bazhenova E, Kulikova EA, Kulikov AV. Tryptophan Hydroxylase 2 Deficiency Modifies the Effects of Fluoxetine and Pargyline on the Behavior, 5-HT- and BDNF-Systems in the Brain of Zebrafish ( Danio rerio). Int J Mol Sci 2021; 22:ijms222312851. [PMID: 34884655 PMCID: PMC8657639 DOI: 10.3390/ijms222312851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated “surface dwelling” induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Daria Bazovkina
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ekaterina Bazhenova
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elizabeth A. Kulikova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
41
|
Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 2021; 414:113463. [PMID: 34280458 DOI: 10.1016/j.bbr.2021.113463] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) can activate the extracellular regulated protein kinase (ERK)/cAMP response element binding protein (CREB) cascade revealing an important role in antidepressant effects. Here, we studied the neuroprotective effect of baicalin (BA) in mice with chronic unpredictable mild stress (CUMS)-induced via a BDNF/ERK/CREB signaling pathway. Depression was induced via six weeks of CUMS in male ICR mice, and drug therapy was given simultaneously for the last three weeks. Cognitive dysfunctions were then evaluated via sucrose preference test (SPT), open field test (OFT), Morris water maze test (MWM), tail suspension test (TST), and novelty suppressed feeding test (NSF). Western blot and real-time PCR were then used to detect the relative expression of ERK, CREB, p-ERK, and p-CREB. Integrated optical density (IOD) tests of p-ERK and p-CREB were then evaluated via immunofluorescence. The behavior results showed that the cognitive dysfunctions increased in the CUMS group versus the control (CON) group (p < 0.01). There were decreases in fluoxetine (FLU) and BA groups (p < 0.05, p < 0.01). The protein ratios of p-ERK/ERK, p-CREB/CREB and ERK mRNA, and CREB mRNA expression decreased in the CUMS group (p < 0.01) and markedly increased in the FLU and BA groups (p < 0.05, p < 0.01). The IOD value of the p-ERK and p-CREB in the CUMS group was decreased versus the CON group (p < 0.01), and these changes were improved via BA and FLU treatment (p < 0.05, p < 0.01). This study indicated that BA can improve cognitive functions and has antidepressant effects in mice, which may be associated with activation of the BDNF/ERK/CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Jinhu Zhang
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Li Chu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shaodan Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yuan Chen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
42
|
Iñiguez SD, Flores-Ramirez FJ, Themann A, Lira O. Adolescent Fluoxetine Exposure Induces Persistent Gene Expression Changes in the Hippocampus of Adult Male C57BL/6 Mice. Mol Neurobiol 2021; 58:1683-1694. [PMID: 33241493 PMCID: PMC7933079 DOI: 10.1007/s12035-020-02221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antidepressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during adolescence (postnatal day [PD] 35-49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway, and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dysregulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life exposure to this antidepressant medication.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Francisco J Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
43
|
Yin Q, Du T, Yang C, Li X, Zhao Z, Liu R, Yang B, Liu B. Gadd45b is a novel mediator of depression-like behaviors and neuroinflammation after cerebral ischemia. Biochem Biophys Res Commun 2021; 554:107-113. [PMID: 33784505 DOI: 10.1016/j.bbrc.2021.03.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Poststroke depression (PSD) is an important consequence after stroke, with a negative impact on stroke outcome. Recent evidence points to a modulatory role of Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in depression. Herein, we evaluated the antidepressant efficacy and mechanism underlying the potent therapeutic effects of Gadd45b after cerebral ischemia. METHODS Adult male Sprague-Dawley rats were subjected to cerebral ischemia by permanent middle cerebral artery occlusion (MCAO). The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were performed after completing MCAO to study the antidepressant-like effects. The expression of brain-derived neurotrophic factor (BDNF) and neuroinflammation were determined in the hippocampus. RESULTS We showed that Gadd45b knockdown induced depression-like behaviors after cerebral ischemia, including increased immobility time in the FST and TST and reduced sucrose preference. Gadd45b knockdown enhanced the expression of pro-inflammatory cytokines IL-6 and TNF-α, accompanying with decreased protein levels of BDNF in the hippocampus. Moreover, the levels of phosphorylated ERK and CREB, which have been implicated in events downstream of BDNF signaling, were also decreased after cerebral ischemia. CONCLUSION Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.
Collapse
Affiliation(s)
- Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital, School of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Chunlin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Xiaoli Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Zeyu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Rutao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
44
|
Feng ST, Wang XL, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ, Zhang Y. Efficacy of Traditional Chinese Medicine Combined with Selective Serotonin Reuptake Inhibitors on the Treatment for Parkinson’s Disease with Depression: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:627-643. [DOI: 10.1142/s0192415x21500282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depression is a common neuropsychiatric symptom of Parkinson’s disease (PD), resulting in a lower quality of life and cognitive impairment in PD patients. Traditional Chinese medicine (TCM) formulas have been widely used in neurodegenerative disease and neuropsychic disorders to improve life quality of patients in ethnomedicine. TCM formulas combined with selective serotonin reuptake inhibitors (SSRIs) also have a positive effect on depressed PD compared with SSRIs as reported by several clinical studies. However, the results are discordant and failed to be conclusive. We aim to evaluate the efficacy of TCM formulas combined with SSRIs for depressed PD in this systematic review. We searched literatures from PubMed, Web of Science, Medline, Embase, Google Scholar, Chinese National Knowledge Infrastructure, Wanfang Database, and VIP Information Database before July 2020. We included randomized controlled trials investigating the efficacy of TCM formulas combined with SSRIs on depressed PD patients. This analysis was according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. Eleven randomized clinical trials involving 861 subjects were enrolled in this analysis. The overall results showed that TCM formulas combined with SSRIs significantly improved the depression score [weighted mean difference (WMD): −4.920, 95% confidence interval (CI): (−5.999, −3.840); [Formula: see text]¡ 0.001] and had a statistical significance on Unified Parkinson’s Disease Rating Scale II score [WMD: −1.209, 95% CI: (−1.561, −0.857); [Formula: see text] < 0.001]. Furthermore, we observed that Chai-Hu-Shu-Gan Powder combined with SSRIs had a significant improvement on the depressive symptom in PD compared to the SSRIs alone [WMD: −5.390, 95% CI: (−7.66, −3.11); [Formula: see text] < 0.001]. No severe side events were reported in these included trials. This systematic review provided the evidences that TCM formulas combined with SSRIs might be helpful and safe in the treatment of depression of PD, including Chai-Hu-Shu-Gan Powder. Also, more randomized double-blinded trials with reliable design are required in the future.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhi-Peng Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
45
|
Xu YH, Wang XX, Wang MJ, Liu YY, Xue Z, Chen JX. Influence of progestational stress on BDNF and NMDARs in the hippocampus of male offspring and amelioration by Chaihu Shugan San. Biomed Pharmacother 2021; 135:111204. [PMID: 33548869 DOI: 10.1016/j.biopha.2020.111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Progestational stress has been proven to be a risk for the neural development of offspring, especially in the hippocampus. However, whether Chaihu Shugan San (CSS) can ameliorate hippocampal neural development via the regulation of brain-derived neurotrophic factor (BDNF), and N-methyl-D-aspartate receptors (NMDAR) 2A (NR2A) and 2B (NR2B), and the mechanism of such action remains unclear. METHODS Thirty-six female rats were randomly allocated into control, chronic immobilization stress (CIS) and CSS groups according to the random number table, respectively. The male offspring were fed for 21 days after birth then randomly divided into the same three groups (6 rats/group) as the female rats. Female rats, except for the control group, underwent 21-day CIS to established a progestational stress anxiety-like model which was evaluated by body weight, the elevated plus-maze (EPM) test and serum dopamine (DA) measured using an enzyme-linked immunosorbent assay (ELISA). The expression levels of estrogen receptors (ERα/ERβ) and progesterone receptor (PR) in female rat ovaries were quantified by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The hippocampal tissue in the 21-day offspring was observed by hematoxylin-eosin (HE) staining. The concentration of BDNF, NR2A, and NR2B were measured by RT-qPCR and immunohistochemistry in the CA3 and dentate gyrus (DG) regions of offsprings' hippocampus. RESULTS Compared with the female control group, significant differences in body weight, EPM test and DA concentration were observed in the CIS group, meanwhile, the concentration of ERα (P < 0.05), PR (P < 0.05) and ERβ in the ovaries were decreased. In the offsprings' hippocampus of the CIS group, the chromatin of the nucleus was edge set and with condensed and irregular morphology nucleus, and the cytoplasm was unevenly stained with spaces around the cells, moreover, the expression levels of BDNF, NR2A, and NR2B were also declined (P < 0.05). However, Chaihu Shugan San reversed these changes, especially the BDNF in the DG region (P < 0.05), and NR2A and NR2B in the CA3 and DG region (P < 0.05). CONCLUSIONS CSS could ameliorate the neural development of the hippocampus in offspring damaged by anxiety-like progestational stress in female rats via regulating the expression levels of ERα, ERβ, and PR in female rat ovaries and BDNF, NR2A, and NR2B in the hippocampus of their offspring.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gestational Age
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Male
- Neurogenesis/drug effects
- Ovary/drug effects
- Ovary/metabolism
- Plant Extracts/pharmacology
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Rats
Collapse
Affiliation(s)
- Ya-Hui Xu
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xing Wang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Ming-Jing Wang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
46
|
Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR. Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model. Antioxidants (Basel) 2020; 9:antiox9090895. [PMID: 32967207 PMCID: PMC7555254 DOI: 10.3390/antiox9090895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Ribes diacanthum Pall, a native Mongolian medicinal plant, has been reported to show antioxidant activities due to its polyphenol and flavonoid content, and is especially rich in the ethyl acetate fraction from an 80% methanol extraction (RDP). We assessed the cytoprotective effect of RDP on glutamate-caused oxidative stress and apoptosis in mouse hippocampal neuronal cells (HT-22 cells). Cell viability was significantly recovered by RDP treatment. Also, RDP effectively decreased the glutamate-induced production of intracellular reactive oxygen species (ROS). In flow cytometric analysis, apoptotic cells and the mitochondrial membrane potential were suppressed by RDP. In the Western blotting analysis, we found that RDP not only decreased the release of apoptotic proteins but also recovered anti-apoptotic protein. Additionally, RDP enhanced the antioxidant defense system by regulating the expression of antioxidant enzymes. Furthermore, treatment with RDP activated the BDNF/TrkB pathway. In accordance with the in vitro results, RDP meliorated memory deficit by defending hippocampal neuronal cells against oxidative damage in scopolamine-injected mice. Taken together, our present study showed that RDP exerted antioxidant and neuroprotective actions against oxidative stress. Therefore, RDP might facilitate the development of candidates for functional health foods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Dai-Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Kun Jong Lee
- Department of Food and Nutrition, Soongeui Women’s College, Seoul 04628, Korea;
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and technology, Seoul 01811, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837; Fax: +82-42-821-8887
| |
Collapse
|
47
|
Baek SY, Kim MR. Neuroprotective Effect of Carotenoid-Rich Enteromorpha prolifera Extract via TrkB/Akt Pathway against Oxidative Stress in Hippocampal Neuronal Cells. Mar Drugs 2020; 18:md18070372. [PMID: 32707633 PMCID: PMC7404284 DOI: 10.3390/md18070372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Mee Ree Kim
- Correspondence: ; Tel.: +82-42-821-6837; Fax: +82-42-821-8887
| |
Collapse
|