1
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Shrestha UM, Chae HD, Fang Q, Lee RJ, Packiasamy J, Huynh L, Blecha J, Huynh TL, VanBrocklin HF, Levi J, Seo Y. A Feasibility Study of [ 18F]F-AraG Positron Emission Tomography (PET) for Cardiac Imaging-Myocardial Viability in Ischemia-Reperfusion Injury Model. Mol Imaging Biol 2024; 26:869-878. [PMID: 39060882 DOI: 10.1007/s11307-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. PROCEDURE To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. RESULTS The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. CONCLUSIONS Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.
Collapse
Affiliation(s)
- Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA.
| | - Hee-Don Chae
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Qizhi Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Juliet Packiasamy
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Lyna Huynh
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Jelena Levi
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Zoroddu S, Zinellu A, Carru C, Sotgia S. Analytical Insights into Methods for Measuring Ischemia-Modified Albumin. Molecules 2024; 29:4636. [PMID: 39407566 PMCID: PMC11478104 DOI: 10.3390/molecules29194636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt Binding (ACB), Albumin Copper Binding (ACuB), Enzyme-Linked Immunosorbent Assay (ELISA), new techniques such as liquid crystal biosensors (LCB), quantum dot coupled X-ray fluorescence spectroscopy (Q-XRF), mass spectrometry (MS), and electron paramagnetic resonance (EPR) spectroscopy. Each method was thoroughly examined for its analytical performance in terms of sensitivity, specificity, and feasibility. The ACB assay is the most readily implementable method in clinical laboratories for its cost-effectiveness and operational simplicity. On the other hand, the ACuB assay exhibits enhanced sensitivity and specificity, driven by the superior binding affinity of copper to IMA. Furthermore, nanoparticle-enhanced immunoassays and liquid crystal biosensors, while more resource-intensive, significantly improve the analytical sensitivity and specificity of IMA detection, enabling earlier and more accurate identification of ischemic events. Additionally, different biological matrices, such as serum, saliva, and urine, were reviewed to identify the most suitable for accurate measurements in clinical application. Although serum was considered the gold standard, non-invasive matrices such as saliva and urine are becoming increasingly feasible due to advances in technology. This review underscores the role of IMA in clinical diagnostics and suggests how advanced analytical techniques have the potential to significantly enhance patient outcomes in ischemic disease management.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Mohan RD, Kulkarni NV. Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities. Mol Divers 2024:10.1007/s11030-024-10940-7. [PMID: 39102113 DOI: 10.1007/s11030-024-10940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
5
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Li Y, Wang X. The role of DNA and RNA guanosine oxidation in cardiovascular diseases. Pharmacol Res 2024; 204:107187. [PMID: 38657843 DOI: 10.1016/j.phrs.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Cardiovascular diseases (CVD) persist as a prominent cause of mortality worldwide, with oxidative stress constituting a pivotal contributory element. The oxidative modification of guanosine, specifically 8-oxoguanine, has emerged as a crucial biomarker for oxidative stress, providing novel insights into the molecular underpinnings of CVD. 8-Oxoguanine can be directly generated at the DNA (8-oxo-dG) and RNA (8-oxo-G) levels, as well as at the free nucleotide level (8-oxo-dGTP or 8-oxo-GTP), which are produced and can be integrated through DNA replication or RNA transcription. When exposed to oxidative stress, guanine is more readily produced in RNA than in DNA. A burgeoning body of research surrounds 8-oxoguanine, exhibits its accumulation playing a pivotal role in the development of CVD. Therapeutic approaches targeting oxidative 8-Oxoguanine damage to DNA and RNA, encompassing the modulation of repair enzymes and the development of small molecule inhibitors, are anticipated to enhance CVD management. In conclusion, we explore the noteworthy elevation of 8-oxoguanine levels in patients with various cardiac conditions and deliberate upon the formation and regulation of 8-oxo-dG and 8-oxo-G under oxidative stress, as well as their function in CVD.
Collapse
Affiliation(s)
- Yiping Li
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
7
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne) 2024; 15:1359255. [PMID: 38645427 PMCID: PMC11026568 DOI: 10.3389/fendo.2024.1359255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.
Collapse
Affiliation(s)
- Dong-Rong Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Nascimento-Carvalho B, da Silva BD, da Silva MB, Dos-Santos A, Ribeiro TF, da Silva Dias D, de Souza LE, Dutra MRH, Catanozi S, Caldini EG, De Angelis K, Scapini KB, Sanches IC, Irigoyen MC. Aerobic exercise attenuates dysautonomia, cardiac diastolic dysfunctions, and hemodynamic overload in female mice with atherosclerosis. Sci Rep 2024; 14:7835. [PMID: 38570516 PMCID: PMC10991254 DOI: 10.1038/s41598-024-52883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024] Open
Abstract
Cardiovascular risk increases during the aging process in women with atherosclerosis and exercise training is a strategy for management of cardiac risks in at-risk populations. Therefore, the aims of this study were to evaluate: (1) the influence of the aging process on cardiac function, hemodynamics, cardiovascular autonomic modulation, and baroreflex sensitivity in females with atherosclerosis at the onset of reproductive senescence; and (2) the impact of exercise training on age-related dysfunctions in this model. Eighteen Apolipoprotein-E knockout female mice were divided equally into young (Y), middle-aged (MA), and trained middle-aged (MAT). Echocardiographic exams were performed to verify cardiac morphology and function. Cannulation for direct recording of blood pressure and heart rate, and analysis of cardiovascular autonomic modulation, baroreflex sensitivity were performed. The MA had lower cardiac diastolic function (E'/A' ratio), and higher aortic thickness, heart rate and mean arterial pressure, lower heart rate variability and baroreflex sensitivity compared with Y. There were no differences between Y and MAT in these parameters. Positive correlation coefficients were found between aortic wall thickness with hemodynamics data. The aging process causes a series of deleterious effects such as hemodynamic overload and dysautonomia in female with atherosclerosis. Exercise training was effective in mitigating aged-related dysfunctions.
Collapse
Affiliation(s)
- Bruno Nascimento-Carvalho
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil
| | - Bruno Durante da Silva
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil
| | - Maikon Barbosa da Silva
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil
| | - Adriano Dos-Santos
- Human Movement Lab, São Judas Tadeu University (USJT), São Paulo, SP, Brazil
| | | | - Danielle da Silva Dias
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil
- Postgraduate Program in Physical Education, Universidade Federal Do Maranhão, São Luís, MA, Brazil
| | - Leandro Eziquiel de Souza
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil
| | - Marina Rascio Henriques Dutra
- Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP, Brazil
- Physiology Exercise Laboratory, Department of Physiology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elia G Caldini
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Kátia De Angelis
- Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP, Brazil
- Physiology Exercise Laboratory, Department of Physiology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | | | | | - Maria Claudia Irigoyen
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Chu C, Liu S, Nie L, Hu H, Liu Y, Yang J. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomed Pharmacother 2024; 173:116305. [PMID: 38422653 DOI: 10.1016/j.biopha.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Through bioinformatics analysis, this study explores the interactions and biological pathways involving metabolomic products in patients diagnosed with coronary heart disease (CHD). METHODS A comprehensive search for relevant studies focusing on metabolomics analysis in CHD patients was conducted across databases including CNKI, Wanfang, VIP, CBM, PubMed, Cochrane Library, Nature, Web of Science, Springer, and Science Direct. Metabolites reported in the literature underwent statistical analysis and summarization, with the identification of differential metabolites. The pathways associated with these metabolites were examined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular annotation of metabolites and their relationships with enzymes or transporters were elucidated through analysis with the Human Metabolome Database (HMDB). Visual representation of the properties related to these metabolites was achieved using Metabolomics Pathway Analysis (metPA). RESULTS A total of 13 literatures satisfying the criteria for enrollment were included. A total of 91 metabolites related to CHD were preliminarily screened, and 87 effective metabolites were obtained after the unrecognized metabolites were excluded. A total of 45 pathways were involved. Through the topology analysis (TPA) of pathways, their influence values were calculated, and 13 major metabolic pathways were selected. The pathways such as Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism primarily involved the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression. CONCLUSION Multiple pathways, including Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism, were involved in the occurrence of CHD. The occurrence of CHD is primarily associated with the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression.
Collapse
Affiliation(s)
- Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Hongming Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| |
Collapse
|
11
|
Bogdański A, Niziołek P, Kopeć S, Moszak M. Epicardial Adipose Tissue: A Precise Biomarker for Cardiovascular Risk, Metabolic Diseases, and Target for Therapeutic Interventions. Cardiol Rev 2024:00045415-990000000-00230. [PMID: 38477580 DOI: 10.1097/crd.0000000000000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Epicardial adipose tissue (EAT) is located between the heart muscle and visceral pericardium, where it has direct contact with coronary blood vessels. Elevated thickness of this tissue can induce local inflammation affecting the myocardium and the underlying coronary arteries, contributing to various cardiovascular diseases such as coronary artery disease, atrial fibrillation, or heart failure with preserved ejection fraction. Recent studies have identified EAT thickness as a simple and reliable biomarker for certain cardiovascular outcomes. Examples include the presence of atherosclerosis, incident cardiovascular disease (CVD) in individuals with type 2 diabetes mellitus (T2DM), and the prevalence of atrial fibrillation. Furthermore, EAT measurements can help to identify patients with a higher risk of developing metabolic syndrome. Since the EAT thickness can be easily measured using echocardiography, such examinations could serve as a useful and cost-effective preventive tool for assessing cardiovascular health. This review also summarizes therapeutical interventions aimed at reducing EAT. Reducing EAT thickness has been shown to be possible through pharmacological, surgical, or lifestyle-change interventions. Pharmaceutical therapies, including thiazolidinediones, glucagon-like peptide 1-receptor agonists, sodium-glucose cotransporter 2 inhibitors, dipeptidyl peptidase-4 inhibitors, and statins, have been shown to influence EAT thickness. Additionally, EAT thickness can also be managed more invasively through bariatric surgery, or noninvasively through lifestyle changes to diet and exercise routines.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| |
Collapse
|
12
|
Meda JR, Kusima HL, Magitta NF. Angiographic characteristics of coronary artery disease in patients undergoing diagnostic coronary angiography at a tertiary hospital in Tanzania. BMC Cardiovasc Disord 2024; 24:125. [PMID: 38408906 PMCID: PMC10898171 DOI: 10.1186/s12872-024-03773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is an important cause of global burden of disease. There is a paucity of data on the burden and risk factors for CAD in sub-Saharan Africa (SSA), despite the rising trends in the shared risk factors across regions. The recent introduction of cardiac catheterization laboratory services in SSA could shed light on the burden of CAD in the region. We aimed to assess the angiographic characteristics among patients undergoing diagnostic coronary angiography (CAG) at a single tertiary care hospital in Tanzania. METHODS This study was a retrospective chart review. A total of 728 patients ≥ 18 years of age who underwent CAG from January 2020 to December 2022 were recruited into the study. Basic demographic variables, risk factors and clinical characteristics including CAG findings were obtained from the registry. In addition, CAG images were retrieved for assessment of angiographic features. The luminal vessel stenosis was assessed based on eyeballing and the degree of obstruction was agreed by two independent and experienced cardiologists. The coronary stenosis of ≥ 50% was considered significant for obstructive CAD. The study was approved by the local ethics committee. RESULTS Of patients who were recruited into the study, 384 (52.23%) were female. The study participants had a mean age of 59.46 ± 10.83 standard deviation (SD) and mean body mass index (BMI) of 31.18 kg/m2. The prevalence of CAD of any degree was estimated at 24.43% (34.18% in male, 15.50% in female), while that of obstructive CAD was 18.27%. Forty six percent of those with obstructive CAD had multiple vessel disease (MVD). Nearly 77% of patients were found to have ≥ 50-70% luminal stenosis and while those with ≥ 70% luminal coronary artery stenosis constituted 56.65%. Right coronary artery (RCA) was the most commonly affected vessel, accounting for 36.84% when any vessel disease or 56% when single vessel disease were considered. Being 65 years or older and comorbidity with type 2 diabetes (T2D) were independent risk factors for developing CAD. CONCLUSION There is a high prevalence of obstructive CAD among patients undergoing diagnostic CAG in Tanzania, with male gender preponderance and increasingly higher in older age, often with severe disease. A large, prospective study is needed to provide epidemiological and clinical data for developing a locally-relevant cardio-preventive strategy for CAD intervention in Tanzania.
Collapse
Affiliation(s)
- John R Meda
- Department of Internal Medicine, School of Medicine & Dentistry, University of Dodoma, Dodoma, Tanzania
- Department of Cardiology, Benjamin Mkapa Hospital, Dodoma, Tanzania
| | | | - Ng'weina F Magitta
- Department of Internal Medicine, School of Medicine & Dentistry, University of Dodoma, Dodoma, Tanzania.
- Department of Biochemistry & Clinical Pharmacology, Mbeya College of Health & Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania.
| |
Collapse
|
13
|
Oliveira RS, Preto M, Santos G, Silva AM, Vasconcelos V, Martins R. Exploring the Bioactive Potential of Pisolithus (Basidiomycota): Comprehensive Insights into Antimicrobial, Anticancer, and Antioxidant Properties for Innovative Applications. Microorganisms 2024; 12:450. [PMID: 38543501 PMCID: PMC10972124 DOI: 10.3390/microorganisms12030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 11/12/2024] Open
Abstract
Addressing pressing health concerns, modern medical research seeks to identify new antimicrobials to combat drug resistance, novel molecules for cancer treatment, and antioxidants for inflammation-related diseases. Pisolithus (Basidiomycota) is a ubiquitous and widely distributed fungal genus in forest ecosystems, known for establishing ectomycorrhizal associations with a range of host plants, enhancing their growth, and conferring protection against biotic and abiotic stresses. Beyond ecological applications, Pisolithus yields bioactive compounds with medicinal potential. This comprehensive review explores the transversal biological activity of Pisolithus fungi, aiming to provide a thorough overview of their antimicrobial, anticancer, and antioxidant potential. The focus is on elucidating bioactive compounds within Pisolithus to trigger further research for innovative applications. Compounds from Pisolithus displayed antimicrobial activity against a broad spectrum of microorganisms, including antibiotic-resistant bacteria. The efficacy of Pisolithus-derived compounds matched established medications, emphasizing their therapeutic potential. In anticancer research, the triterpene pisosterol stood out with documented cytotoxicity against various cancer cell lines, showcasing promise for novel anticancer therapies. Pisolithus was also recognized as a potential source of antioxidants, with basidiocarps exhibiting high antioxidant activity. In vivo validation and comprehensive studies on a broader range of compounds, together with mechanistic insights into the mode of action of Pisolithus-derived compounds, are compelling areas for future research.
Collapse
Affiliation(s)
- Rui S. Oliveira
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.)
| | - Germana Santos
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (G.S.); (A.M.S.)
| | - Ana Margarida Silva
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (G.S.); (A.M.S.)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.)
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (G.S.); (A.M.S.)
| |
Collapse
|
14
|
Liu C, Ding X, Xie Y, Chen C, Zhao M, Duan Y, Yuan G, Ren J. Isolation and purification of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu peptides and study of their antioxidant effects and mechanisms. Front Pharmacol 2024; 15:1353871. [PMID: 38389921 PMCID: PMC10883310 DOI: 10.3389/fphar.2024.1353871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidative stress is a state of imbalance between oxidant and antioxidant effects in the body, which is closely associated with aging and many diseases. Therefore, the development of antioxidants has become urgent. In this study, we isolated three polypeptides, G-6-Y, P-8-R, and F-10-W, from Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu (E. sessiliflorus), based on the antioxidant and anti-aging properties of Eleutherococcus, and screened the most powerful free radical scavenging peptide P-8-R. Ultraviolet B (UVB)-induced oxidative stress damage in the skin was established to test the efficacy of P-8-R. In cellular experiments, P-8-R not only prevented oxidative stress damage in HaCaT cells, reduced intracellular reactive oxygen species levels, and inhibited the overexpression of matrix metalloproteinases but also inhibited apoptosis via the mitochondria-dependent apoptotic pathway; in animal experiments, P-8-R was able to prevent oxidative stress damage in the skin and reduce skin collagen loss by inhibiting the overexpression of MMPs to prevent mouse skin aging. In conclusion, the present study contributes to an in-depth understanding of the active compounds of Eleutherococcus, which is of great significance for the pharmacodynamic mechanism and industrial development of Eleutherococcus, and P-8-R is likely to become a potential antioxidant and anti-aging drug or skin care cosmetic in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, China
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, China
| | - Chen Chen
- Affiliated Hospital of Yanbian University, Yanji, China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Yanming Duan
- College of Pharmacy, Beihua University, Jilin, China
| | - Guojing Yuan
- College of Pharmacy, Beihua University, Jilin, China
| | - Junxi Ren
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
15
|
Ji Y, Chen J, Pang L, Chen C, Ye J, Liu H, Chen H, Zhang S, Liu S, Liu B, Cheng C, Liu S, Zhong Y. The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction. Cardiovasc Drugs Ther 2024; 38:43-56. [PMID: 36103099 PMCID: PMC10876840 DOI: 10.1007/s10557-022-07378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Inflammation associated endothelial cell (EC) dysfunction is key to atherosclerotic disease. Recent studies have demonstrated a protective role of amitriptyline in cardiomyocytes induced by hypoxia/reoxygenation. However, the mechanism by which amitriptyline regulates the inflammatory reaction in ECs remains unknown. Thus, the aim of this study was to investigate whether amitriptyline protects against inflammation in TNF-α-treated ECs. METHODS HUVECs were incubated with amitriptyline (2.5 μM) or TNF-α (20 ng/ml) for 24 h. EdU, tube formation, transwell, DHE fluorescence staining, and monocyte adhesion assays were performed to investigate endothelial function. Thoracic aortas were isolated from mice, and vascular tone was measured with a wire myograph system. The levels of ICAM-1, VCAM-1, MCP-1, phosphorylated MAPK and NF-κB were detected using western blotting. RESULTS Amitriptyline increased the phosphorylation of nitric oxide synthase (eNOS) and the release of NO. Amitriptyline significantly inhibited TNF-α-induced increases in ASMase activity and the release of ceramide and downregulated TNF-α-induced expression of proinflammatory proteins, including ICAM-1, VCAM-1, and MCP-1 in ECs, as well as the secretion of sICAM-1 and sVCAM-1. TNF-α treatment obviously increased monocyte adhesion and ROS production and impaired HUVEC proliferation, migration and tube formation, while amitriptyline rescued proliferation, migration, and tube formation and decreased monocyte adhesion and ROS production. Additionally, we demonstrated that amitriptyline suppressed TNF-α-induced MAPK phosphorylation as well as the activity of NF-κB in HUVECs. The results showed that the relaxation response of aortic rings to acetylcholine in the WT-TNF-α group was much lower than that in the WT group, and the sensitivity of aortic rings to acetylcholine in the WT-TNF-α group and WT-AMI-TNF-α group was significantly higher than that in the WT-TNF-α group. CONCLUSION These results suggest that amitriptyline reduces endothelial inflammation, consequently improving vascular endothelial function. Thus, the identification of amitriptyline as a potential strategy to improve endothelial function is important for preventing vascular diseases.
Collapse
Affiliation(s)
- Yang Ji
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jing Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Lihua Pang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Changnong Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jinhao Ye
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Hao Liu
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Huanzhen Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Songhui Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Shaojun Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chuanfang Cheng
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Yun Zhong
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
16
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Liu C, Zhang X, Yang H, Zhao M, Liu Y, Zhao R, Li Z, Sun M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int J Pharm 2024; 649:123673. [PMID: 38056796 DOI: 10.1016/j.ijpharm.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Yanhong Liu
- Center for Prenatal Diagnosis, Centre for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin 130061, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
18
|
Wang S, Li H, Liu Q, Ma H, Huang L, Yu L, Wu Z. Hydroxycitric Acid Tripotassium Hydrate Attenuates Monocrotaline and Hypoxia-Induced Pulmonary Hypertension in Rats. Int Heart J 2024; 65:318-328. [PMID: 38556339 DOI: 10.1536/ihj.23-350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1β, IL-6, and TGF-β, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.
Collapse
Affiliation(s)
- Shunjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
- Department of Thoracic Surgery, Qinghai Provincial Red Cross Hospital
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Husai Ma
- Department of Thoracic Surgery, Qinghai Provincial Red Cross Hospital
| | - Lin Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Laishun Yu
- Department of Pulmonary and Critical Care Medicine, Qinghai Provincial People's Hospital
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
19
|
Lu W, Liu Z, Chiara Villamil Orion IR, Qu Y, Ma G. Inhibition of myocardial remodeling through miR-150/TET3 axis after AMI. Mol Biol Rep 2023; 51:32. [PMID: 38155307 DOI: 10.1007/s11033-023-08932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/26/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Current studies have suggested that miRNA is beneficial in inhibiting myocardial remodeling after myocardial infarction (AMI), however, its underlying mechanism is unclear. OBJECTIVES We aimed to investigate whether miR-150 can inhibit myocardial remodeling after myocardial infarction and whether this process is regulated by the miR-150/TET3 pathway. METHODS On the first day, C57BL/6 AMI mice(n = 15) were administrated with miR-150, and another 15 AMI mice were administrated with the same volume of control Agomir. Left ventricular ejection fraction (LVEF%) and myocardial remodeling were compared after one week; TET3 (ten-eleven translocation 3) and VEGF-α (vascular endothelial growth factor-α) were also determined in the infracted heart simultaneously. The neovascularization in the infarcted area at day 21 was compared through CD31 using fluorescence microscopy; Activated monocytes stimulated with LPS were transfected with miR-150. Laser scanning confocal microscopy was used to detect the intracytoplasmic imaging of miR-150 in Ly6Chigh monocytes. Expression of the miR-150 in the monocytes was measured using Q-PCR. After 48 h, the proportion of Ly6Chigh/low monocytes was determined using flow cytometry. Expression of TET3 in Ly6Chigh/low monocytes was measured using Q-PCR and Western blot. After the downregulation of TET3 specifically, the levels of Ly6Chigh/low monocytes were further determined. RESULTS We first observed an increased trend of mice survival rate in the miR-150 injection group, but it didn't reach a statistical difference (66.7% vs. 40.0%, p = 0.272). However, AMI mice administrated with miR-150 displayed better LVEF% (51.78%±2.90% vs. 40.28%±4.20%, p<0.001) and decreased infarct size% (25.47 ± 7.75 vs. 50.39 ± 16.91, p = 0.002). After miR-150 was transfected into monocytes, the percentage of Ly6Clow monocytes increased significantly after 48 h (48.5%±10.1% vs. 42.5%±8.3%, p < 0.001). Finally, Western blot analysis (0.56 ± 0.10/β-actin vs. 0.99 ± 0.12/β-actin, p < 0.001) and real-time PCR (1.09 ± 0.09/GAPDH vs. 2.53 ± 0.15/GAPDH, p < 0.001, p < 0.001) both confirmed decreased expression of TET3 in monocytes after transfection with miR-150. After the downregulation of TET3 specifically, Ly6Clow monocytes showed a significant increase (16.73%±6.45% vs. 6.94%±2.99%, p<0.001, p < 0.001). CONCLUSIONS miR-150 alleviated myocardial remodeling after AMI. Possible mechanisms are ascribed to the regulating of TET3 and VEGF-α in inflammatory monocytes.
Collapse
Affiliation(s)
- Wenbin Lu
- Department of Cardiology, Zhongda Hospital, Southeast University, Dingjiaqiao Road, Nanjing, 210009, China.
| | - Zhuyuan Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Dingjiaqiao Road, Nanjing, 210009, China
| | - I R Chiara Villamil Orion
- Department of Cardiology, Zhongda Hospital, Southeast University, Dingjiaqiao Road, Nanjing, 210009, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, Southeast University, Dingjiaqiao Road, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Dingjiaqiao Road, Nanjing, 210009, China
| |
Collapse
|
20
|
Dincă VG, Diaconu A, Coculescu BI, Dincă AL, Ciuc DM, Bîrlă RD, Marica CD, Tudorache SI, Manole G, Coculescu EC. Adiponectin - stratification biomarker in diastolic cardiac dysfunction. J Enzyme Inhib Med Chem 2023; 38:2171030. [PMID: 36691932 PMCID: PMC9879170 DOI: 10.1080/14756366.2023.2171030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study does not propose to elucidate how adiponectin secretion is regulated, but how its adiponectin concentration is an indicator of heart disease. About adiponectin, it is not known whether it is functionally an enzyme, or very likely a cytokine/chemokine/hormone, secreted by fat cells/adipocytes in the abdomen. Abdominal fat secretes 67 hormones, and all of which cause disease. For example, adiponectin generates diabetes and ischaemic heart disease via dyslipidemia. Based on clinical symptoms, electrocardiographic and echocardiographic parameters, a group of 208 patients with diastolic cardiac dysfunction with or without preserved systolic function, developed on a background of painful chronic ischaemic heart disease, stable angina on exertion, was constituted. The serum levels of adiponectin, total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides were measured. Using the identified values, it was appreciated whether adiponectin correlates with the type of any of the two conditions, so that it can be recognised as a diagnostic and risk stratification marker.
Collapse
Affiliation(s)
- Valeriu-Gabi Dincă
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Adriana Diaconu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Fundeni Clinical Institute, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania,CONTACT Bogdan-Ioan Coculescu Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari Bvd., no. 8, sector 5, Bucharest, Romania
| | - Alexandra-Ligia Dincă
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Diana Mihaela Ciuc
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Rodica Daniela Bîrlă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Sf. Maria Clinical Hospital, Bucharest, Romania
| | - Cristian Daniel Marica
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | | | - Gheorghe Manole
- Faculty of General Nursing, Bioterra University, Bucharest, Romania,Romanian Academy of Medical Sciences
| | - Elena Claudia Coculescu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Lamberto F, Shashikadze B, Elkhateib R, Lombardo SD, Horánszky A, Balogh A, Kistamás K, Zana M, Menche J, Fröhlich T, Dinnyés A. Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122359. [PMID: 37567409 DOI: 10.1016/j.envpol.2023.122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Early embryonic development represents a sensitive time-window during which the foetus might be vulnerable to the exposure of environmental contaminants, potentially leading to heart diseases also later in life. Bisphenol A (BPA), a synthetic chemical widely used in plastics manufacturing, has been associated with heart developmental defects, even in low concentrations. This study aims to investigate the effects of environmentally relevant doses of BPA on developing cardiomyocytes using a human induced pluripotent stem cell (hiPSC)-derived model. Firstly, a 2D in vitro differentiation system to obtain cardiomyocytes from hiPSCs (hiPSC-CMs) have been established and characterised to provide a suitable model for the early stages of cardiac development. Then, the effects of a repeated BPA exposure, starting from the undifferentiated stage throughout the differentiation process, were evaluated. The chemical significantly decreased the beat rate of hiPSC-CMs, extending the contraction and relaxation time in a dose-dependent manner. Quantitative proteomics analysis revealed a high abundance of basement membrane (BM) components (e.g., COL4A1, COL4A2, LAMC1, NID2) and a significant increase in TNNC1 and SERBP1 proteins in hiPSC-CMs treated with BPA. Network analysis of proteomics data supported altered extracellular matrix remodelling and provided a disease-gene association with well-known pathological conditions of the heart. Furthermore, upon hypoxia-reoxygenation challenge, hiPSC-CMs treated with BPA showed higher rate of apoptotic events. Taken together, our results revealed that a long-term treatment, even with low doses of BPA, interferes with hiPSC-CMs functionality and alters the surrounding cellular environment, providing new insights about diseases that might arise upon the toxin exposure. Our study contributes to the current understanding of BPA effects on developing human foetal cardiomyocytes, in correlation with human clinical observations and animal studies, and it provides a suitable model for New Approach Methodologies (NAMs) for environmental chemical hazard and risk assessment.
Collapse
Affiliation(s)
- Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Andrea Balogh
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria; Faculty of Mathematics, University of Vienna, 1090, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720, Szeged, Hungary.
| |
Collapse
|
22
|
Wang N, Liu X, Liu K, Wang K, Zhang H. Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway. iScience 2023; 26:107443. [PMID: 37575200 PMCID: PMC10415933 DOI: 10.1016/j.isci.2023.107443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Several heat shock proteins are implicated in the endogenous cardioprotective mechanisms, but little is known about the role of heat shock protein beta-1 (HSPB1). This study aims to investigate the oxidation state and role of HSPB1 in cardiomyocytes undergoing oxidative stress and underlying mechanisms. Here, we demonstrate that hydrogen peroxide (H2O2) promotes the homo-oxidation of HSPB1. Cys137 residue of HSPB1 is not only required for it to protect cardiomyocytes against oxidative injury but also modulates its oxidation, phosphorylation at Ser15, and distribution to insoluble cell components after H2O2 treatment. Moreover, Cys137 residue is indispensable for HSPB1 to interact with KEAP1, thus regulating its oxidation and intracellular distribution, subsequently promoting the nuclear translocation of NRF2, and increasing the transcription of GLCM, HMOX1, and TXNRD1. Altogether, these findings provide evidence that Cys137 residue is indispensable for HSPB1 to maintain its redox state and antioxidant activity via activating KEAP1/NRF2 signaling cascade in cardiomyocytes.
Collapse
Affiliation(s)
- Nian Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiehong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
23
|
Cheng S, Han Y, Jiang L, Lan Z, Liao H, Guo J. Associations of oxidative balance score and visceral adiposity index with risk of ischaemic heart disease: a cross-sectional study of NHANES, 2005-2018. BMJ Open 2023; 13:e072334. [PMID: 37451720 PMCID: PMC10351262 DOI: 10.1136/bmjopen-2023-072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE Evidence on the association of oxidative balance score (OBS) and visceral adiposity index (VAI) with risk of ischaemic heart disease (IHD) is limited. We aimed to explore the association of OBS and VAI with risk of IHD, and then examined their potential interactive effects. DESIGN A cross-sectional study. SETTING The National Health and Nutrition Examination Survey. PARTICIPANTS A total of 27 867 individuals aged more than 20 years were included in this study. PRIMARY AND SECONDARY OUTCOME MEASURES Multivariable logistic regression analyses were used to estimate ORs and 95% CIs for the associations of OBS and VAI with risk of IHD, including coronary heart disease (CHD), heart attack and angina pectoris. RESULTS Compared with those in the first quintile, participants with highest quintile of OBS had decreased risk of IHD (OR: 0.59, 95% CI: 0.50, 0.69), CHD (OR: 0.65, 95% CI: 0.52, 0.80), heart attack (OR: 0.53, 95% CI: 0.43, 0.66) and angina pectoris (OR: 0.63, 95% CI: 0.48, 0.82); meanwhile, those with highest quintile of VAI had increased risk of IHD (OR: 1.46, 95% CI: 1.22, 1.74), CHD (OR: 1.34, 95% CI: 1.07, 1.67), heart attack (OR: 1.55, 95% CI: 1.24, 1.94) and angina pectoris (OR: 1.40, 95% CI: 1.04, 1.87). Furthermore, we observed a stronger association between OBS and risk of IHD among participants with VAI ≥1.73 (OR: 0.50, 95% CI: 0.40, 0.62). CONCLUSION Our study found the negative association between OBS and risk of IHD, and positive association between VAI and risk of IHD. In addition, we found the interactive effects between VAI and OBS on the risk of IHD, underlining the importance of OBS in IHD prevention among participants with high VAI level.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yuchen Han
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lie Jiang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ziyin Lan
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huanyan Liao
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24098376. [PMID: 37176083 PMCID: PMC10179092 DOI: 10.3390/ijms24098376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Atherosclerosis is a complex pathological condition marked by the accumulation of lipids in the arterial wall, leading to the development of plaques that can eventually rupture and cause thrombotic events. In recent years, hydrogen sulfide (H2S) has emerged as a key mediator of cardiovascular homeostasis, with potential therapeutic applications in atherosclerosis. This systematic review highlights the importance of understanding the complex interplay between H2S, oxygen homeostasis, and atherosclerosis and suggests that targeting H2S signaling pathways may offer new avenues for treating and preventing this condition. Oxygen homeostasis is a critical aspect of cardiovascular health, and disruption of this balance can contribute to the development and progression of atherosclerosis. Recent studies have demonstrated that H2S plays an important role in maintaining oxygen homeostasis by regulating the function of oxygen-sensing enzymes and transcription factors in vascular cells. H2S has been shown to modulate endothelial nitric oxide synthase (eNOS) activity, which plays a key role in regulating vascular tone and oxygen delivery to tissues. The comprehensive analysis of the current understanding of H2S in atherosclerosis can pave the way for future research and the development of new therapeutic strategies for this debilitating condition. PROSPERO ID: 417150.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iași, 700454 Iași, Romania
- Teaching Emergency Hospital "Bagdasar-Arseni" (TEHBA), 041915 Bucharest, Romania
| |
Collapse
|
25
|
Mondal S, Rakhshit S, Pal K, Santra S, Goswami D, Mondal SP, Halder SK, Mondal KC. Production of glutathione from probiotic Bacillus amyloliquefaciens KMH10 using banana peel extract. BIORESOURCE TECHNOLOGY 2023; 376:128910. [PMID: 36940875 DOI: 10.1016/j.biortech.2023.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glutathione, a tri-peptide (glutamate-cysteine-glycine) with the thiol group (-SH), is most efficient antioxidative agent in eukaryotic cells. The present study aimed to isolate an efficient probiotic bacterium having the potential to produce glutathione. The isolated strain Bacillus amyloliquefaciens KMH10 showed antioxidative activity (77.7 ± 2.56) and several other essential probiotic attributes. Banana peel, a waste of banana fruit, is chiefly composed of hemicellulose with various minerals and amino acids. A consortium of lignocellulolytic enzyme was used for the saccharifying banana peel to produce 65.71 g/L sugar to support the optimal glutathione production of 181 ± 4.56 mg/L; i.e., 1.6 folds higher than the control. So, the studied probiotic bacteria could be an effective resource for glutathione; therefore, the stain could be used as natural therapeutics for the prevention/treatment of different inflammation-related gastric ailments and as an effective producer of glutathione using valorized banana waste that has excellent industrial relevance.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Shubham Rakhshit
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Debabrata Goswami
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Saswati Parua Mondal
- Department of Physiology, Bajkul Milani Mahavidyalaya, West Bengal 721626, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India.
| |
Collapse
|
26
|
Shen F, Wu C, Zhong X, Ma E, Peng J, Zhu W, Wo D, Ren DN. Liensinine prevents ischemic injury following myocardial infarction via inhibition of Wnt/β‑catenin signaling activation. Biomed Pharmacother 2023; 162:114675. [PMID: 37044026 DOI: 10.1016/j.biopha.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the leading cause of deaths worldwide, triggering widespread and irreversible damage to the heart. Currently, there are no drugs that can reverse ischemic damage to the myocardium and hence, finding novel therapeutic agents that can limit the extent of myocardial damage following MI is crucial. Liensinine (LSN) is a naturally derived bisbenzylisoquinoline alkaloid that is known to exhibit numerous antioxidative and cardiovascular beneficial effects. However, the role of LSN in MI-induced injury and its underlying mechanisms remain unexplored. PURPOSE Our study aims to evaluate the cardioprotective effects of LSN following MI and its underlying molecular mechanisms. METHODS We constructed murine models of MI in order to examine the potential cardioprotective effects and mechanisms of LSN in protecting against myocardial ischemic damage both in vivo and in vitro. RESULTS Administration with LSN strongly protected against cardiac injuries following MI by decreasing the extent of ischemic damage and improving cardiac function. Additionally, LSN was found to be a potent inhibitor of Wnt/β‑catenin signaling pathway. Hence, the beneficial effects of LSN in preventing oxidative and DNA damage following ischemia was due to its ability to inhibit aberrant activation of Wnt/β‑catenin signaling. CONCLUSIONS Our findings reveal for the first time a novel cardioprotective role of LSN during myocardial infarction and most notably, its ability to protect cardiomyocytes against oxidative stress-induced damage via inhibiting Wnt/β-catenin signaling. Our study therefore suggests new therapeutic potential of LSN or plants that contain the natural alkaloid LSN in ischemic heart diseases.
Collapse
Affiliation(s)
- Fang Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Celiang Wu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaomei Zhong
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
27
|
Diosmin and Bromelain Stimulate Glutathione and Total Thiols Production in Red Blood Cells. Molecules 2023; 28:molecules28052291. [PMID: 36903535 PMCID: PMC10005239 DOI: 10.3390/molecules28052291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.
Collapse
|
28
|
Jin K. Does coronary microvascular dysfunction have a role in cardiovascular oncology? Eur J Prev Cardiol 2023; 30:206-208. [PMID: 36200324 DOI: 10.1093/eurjpc/zwac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Kai Jin
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, Kepple Street, London WC1E 7HT, UK
| |
Collapse
|
29
|
Yang ZW, Fu YB, Wei XB, Fu BQ, Huang JL, Zhang GR, Yu DQ. Optimal threshold of urinary albumin-to-creatinine ratio (UACR) for predicting long-term cardiovascular and noncardiovascular mortality. Int Urol Nephrol 2023:10.1007/s11255-023-03499-z. [PMID: 36757657 DOI: 10.1007/s11255-023-03499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE Traditional cutoff values of urinary albumin-to-creatinine ratio (UACR) for predicting mortality have recently been challenged. In this study, we investigated the optimal threshold of UACR for predicting long-term cardiovascular and non-cardiovascular mortality in the general population. METHODS Data for 25,302 adults were extracted from the National Health and Nutrition Examination Survey (2005-2014). Receiver operating characteristic (ROC) curve analysis was performed to assess the predictive value of UACR for cardiovascular and non-cardiovascular mortality. A Cox regression model was established to examine the association between UACR and cardiovascular and non-cardiovascular mortality. X-tile was used to estimate the optimal cutoff of UACR. RESULTS The UACR had acceptable predictive value for both cardiovascular (AUC (95% CI) for 1-year, 3-year and 5-year mortality, respectively: 0.769 (0.711-0.828), 0.764 (0.722-0.805) and 0.763 (0.730-0.795)) and non-cardiovascular (AUC (95% CI) for 1-year, 3-year and 5-year mortality, respectively: 0.772 (0.681-0.764), 0.708 (0.686-0.731) and 0.708 (0.690-0.725)) mortality. The optimal cutoff values were 16 and 30 mg/g for predicting long-term cardiovascular and non-cardiovascular mortality, respectively. Both cutoffs of UACR had acceptable specificity (0.785-0.891) in predicting long-term mortality, while the new proposed cutoff (16 mg/g) had higher sensitivity. The adjusted hazard ratios of cardiovascular and non-cardiovascular mortality for the high-risk group were 2.50 (95% CI 1.96-3.18, P < 0.001) and 1.92 (95% CI 1.70-2.17, P < 0.001), respectively. CONCLUSIONS Compared to the traditional cutoff value (30 mg/g), a UACR cutoff of 16 mg/g may be more sensitive for identifying patients at high risk for cardiovascular mortality in the general population.
Collapse
Affiliation(s)
- Zhi-Wen Yang
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yan-Bin Fu
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xue-Biao Wei
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Division of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bing-Qi Fu
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jie-Leng Huang
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Guan-Rong Zhang
- Information and Statistics Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan-Qing Yu
- Division of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
30
|
Rasicci DV, Ge J, Milburn GN, Wood NB, Pruznak AM, Lang CH, Previs MJ, Campbell KS, Yengo CM. Cardiac myosin motor deficits are associated with left ventricular dysfunction in human ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H198-H209. [PMID: 36525480 PMCID: PMC9829461 DOI: 10.1152/ajpheart.00272.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.
Collapse
Affiliation(s)
- D. V. Rasicci
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - J. Ge
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - G. N. Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - N. B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - A. M. Pruznak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - C. H. Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - M. J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - K. S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - C. M. Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
31
|
Total impact of oxidative stress genes on cardiovascular events-a 7-year follow-up study. J Appl Genet 2023; 64:319-327. [PMID: 36683124 PMCID: PMC10076362 DOI: 10.1007/s13353-022-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/24/2023]
Abstract
Cardiovascular (CV) events are the number one cause of lifetime disability and deaths worldwide. It is well known that traditional risk factors do not fully correlate with clinical outcomes; therefore, searching for other markers that would explain CV events' occurrence seems essential. Of importance, one of the main factors at the origin of CV events is oxidative stress, causing inflammation and atherosclerotic plaque instability. Therefore, the present study was conducted to evaluate eight carefully selected genetic polymorphisms related to oxidative stress as risk modifiers for CV events. A cohort of 1020 patients with coronary atherosclerosis was analysed in a 7-year follow-up observational study. The following end points were assessed: CV death, myocardial infarction (MI) and a combined end point of CV death/MI/stroke. Our results show that single polymorphisms are not significant cardiovascular disease risk factors, but genetic risk score (GRS), defined as the accumulation of our eight studied polymorphisms, was significantly associated with the three. Specifically, low GRS was associated with a higher risk of CV death, MI and CV death/MI/stroke. In conclusion, when regarding CV events, GRS investigated here can become clinically meaningful and undoubtedly adds to the knowledge in stratifying the risk of CV events.
Collapse
|
32
|
Chai X, Jin Y, Wei Y, Yang R. The effect of vitamin D supplementation on glycemic status and C-reactive protein levels in type 2 diabetic patients with ischemic heart disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32254. [PMID: 36626510 PMCID: PMC9750511 DOI: 10.1097/md.0000000000032254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Vitamin D might be beneficial in diabetic patients with ischemic heart disease through its favorable effect on metabolic profiles and biomarkers of inflammation and oxidative stress. We performed a protocol for systematic review and meta-analysis to assess whether vitamin D supplementation could improve glucose control and inflammation in type 2 diabetic patients with ischemic heart disease. METHODS The proposed systematic review and meta-analysis will conform to the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols. Seven electronic databases including Web of Science, Embase, PubMed, Wanfang Data, Scopus, Science Direct, Cochrane Library were searched in October 2022 by 2 independent reviewers. The risk of bias assessment of the included studies was assessed using the tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (version 5.1.0). Data analysis was performed with Review Manager Software (RevMan Version 5.4, The Cochrane Collaboration, Copenhagen, Denmark). RESULTS This study will provide a high-quality synthesis to assess the effectiveness and safety of vitamin D supplementation on type 2 diabetic patients with ischemic heart disease. CONCLUSION This systematic review may lead to several recommendations, for both patients and researchers, as which is the best therapy for type 2 diabetic patients with ischemic heart disease and how future studies need to be designed, considering what is available now and what is the reality of the patient.
Collapse
Affiliation(s)
- Xuxia Chai
- Department of Clinical Laboratory, Zhangye People’s Hospital Affiliated to Hexi University, Gansu, China
| | - Yonghe Jin
- Department of Clinical Laboratory, Zhangye People’s Hospital Affiliated to Hexi University, Gansu, China
| | - Yongmei Wei
- Department of Clinical Laboratory, Zhangye People’s Hospital Affiliated to Hexi University, Gansu, China
| | - Rong Yang
- Department of Clinical Laboratory, Zhangye People’s Hospital Affiliated to Hexi University, Gansu, China
- * Correspondence: Rong Yang, Department of Clinical Laboratory, Zhangye People’s Hospital Affiliated to Hexi University, Gansu 734000, China (e-mail: )
| |
Collapse
|
33
|
Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1380353. [DOI: 10.1155/2022/1380353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
Collapse
|
34
|
Zhou Q, He X, Zhao X, Fan Q, Lai S, Liu D, He H, He M. Ginsenoside Rg1 Ameliorates Acute Renal Ischemia/Reperfusion Injury via Upregulating AMPK α1 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3737137. [PMID: 36092159 PMCID: PMC9458375 DOI: 10.1155/2022/3737137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Acute renal ischemia/reperfusion (I/R) injury often occurs during kidney transplantation and other kidney surgeries, and the molecular mechanism involves oxidative stress. We hypothesized that ginsenoside Rg1 (Rg1), a saponin derived from ginseng, would protect the renal tissue against acute renal I/R injury by upregulating 5' adenosine monophosphate-activated protein kinase α1 (AMPKα1) expression and inhibiting oxidative stress. The models of acute anoxia/reoxygenation (A/R) damage in normal rat kidney epithelial cell lines (NRK-52E) and acute renal I/R injury in mice were constructed. The results revealed that pretreatment with 25 μM Rg1 significantly increased NRK-52E viability, decreased lactate dehydrogenase (LDH) activity and apoptosis, suppressed reactive oxygen species generation and oxidative stress, stabilized mitochondrial membrane potential and reduced mitochondria permeability transition pore openness, decreased adenosine monophosphate/adenosine triphosphate ratio, and upregulated the expression of AMPKα1, cytochrome b-c1 complex subunit 2, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8, and B-cell lymphoma 2, while downregulating BCL2-associated X protein expression. The effects of Rg1 pretreatment were similar to those of pAD/Flag-AMPKα1. After acute renal I/R injury, serum creatinine, blood urea nitrogen, LDH activity, and oxidative stress in renal tissue significantly increased. Rg1 pretreatment upregulated AMPKα1 expression, which protects against acute renal I/R injury by maintaining renal function homeostasis, inhibiting oxidative stress, and reducing apoptosis. Compound C, a specific inhibitor of AMPK, reversed the effects of Rg1. In summary, Rg1 pretreatment upregulated AMPKα1 expression, inhibited oxidative stress, maintained mitochondrial function, improved energy metabolism, reduced apoptosis, and ultimately protected renal tissue against acute renal I/R injury.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinlan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Xiaoyu Zhao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Qigui Fan
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Songqing Lai
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dan Liu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ming He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
35
|
Vaspin Ameliorates Cardiac Remodeling by Suppressing Phosphoinositide 3-Kinase/Protein Kinase B Pathway to Improve Oxidative Stress in Heart Failure Rats. J Cardiovasc Pharmacol 2022; 80:442-452. [PMID: 36067399 PMCID: PMC9439695 DOI: 10.1097/fjc.0000000000001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/30/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT This study aimed to explore whether vaspin could alleviate cardiac remodeling through attenuating oxidative stress in heart failure rats and to determine the associated signaling pathway. Cardiac remodeling was induced by myocardial infarction, transverse aortic constriction, or angiotensin (Ang) II infusion in vivo, and the neonatal rat cardiomyocytes (NRCMs) and neonatal rat cardiac fibroblasts (NRCFs) were treated with Ang II. Vaspin treatment alleviated fibrosis in myocardial infarction, transverse aortic constriction, and Ang II-treated rats. The Ang II-induced increases of atrial natriuretic peptide and brain natriuretic peptide in NRCMs and Ang II-induced increases of collagen I and collagen III in NRCFs were reduced after vaspin treatment. Vaspin administration inhibited the Ang II-induced increases of phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, superoxide anions, malondialdehyde, and NADPH oxidases activity in NRCMs and NRCFs. The overexpression of PI3K, Akt, or NADPH oxidases 1 reversed the attenuating effects of vaspin on Ang II-induced elevation of atrial natriuretic peptide and brain natriuretic peptide in NRCMs, as well as Ang II-induced increases of collagen I and collagen III in NRCFs. The administration of wortmannin (PI3K inhibitor) or MK2206 (Akt inhibitor) inhibited the oxidative stress induced by Ang II in NRCMs and NRCFs. The above results suggest that vaspin can alleviate cardiac dysfunction and remodeling in heart failure rats. Vaspin attenuates Ang II-induced hypertrophy of NRCMs and fibrosis of NRCFs through suppressing PI3K/Akt pathway to alleviate oxidative stress.
Collapse
|
36
|
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease. DISEASE MARKERS 2022; 2022:6971238. [PMID: 35958279 PMCID: PMC9363224 DOI: 10.1155/2022/6971238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Background Coronary atherosclerotic heart disease (CHD) is a lethal disease with an unstated pathogenic mechanism. Therefore, it is urgent to develop innovative strategies to ameliorate the outcome of CHD patients and explore novel biomarkers connected to the pathogenicity of CHD. Methods The weighted gene coexpression network analysis (WGCNA) was carried out on a coronary atherosclerosis dataset GSE90074 to determine the crucial modules and hub genes for their prospective relationship to CHD. After the different modules associated with CHD have been identified, the Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathway analyses were conducted. The protein-protein interaction (PPI) network was thereafter performed for the critical module using STRING and Cytoscape. Results The yellow module was recognized as the most critical module associated with CHD. The enriched pathways in the yellow module included those related to inflammatory response, positive regulation of extracellular signal-regulated kinase1/2 (ERK1/2) cascade, lipid catabolic process, cellular response to oxidative stress, apoptotic pathway, and NF-kappa B pathway. Further CytoHubba analysis revealed the top five hub genes (MMP14, CD28, CaMK4, RGS1, and DDAH1) associated with CHD development. Conclusions The current study provides the prognosis, novel hub genes, and signaling pathways for treating coronary atherosclerosis. However, their potential biological roles require deeper investigation.
Collapse
|
37
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
38
|
Icariside II, a Naturally Occurring SIRT3 Agonist, Protects against Myocardial Infarction through the AMPK/PGC-1α/Apoptosis Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11081465. [PMID: 36009184 PMCID: PMC9405218 DOI: 10.3390/antiox11081465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Myocardial infarction (MI) refers to the death of cardiomyocytes triggered by a lack of energy due to myocardial ischemia and hypoxia, and silent mating type information regulation 2 homolog 3 (SIRT3) plays an essential role in protecting against myocardial oxidative stress and apoptosis, which are deemed to be the principal causes of MI. Icariside II (ICS II), one of the main active ingredients of Herbal Epimedii, possesses extensive pharmacological activities. However, whether ICS II can protect against MI is still unknown. Therefore, this study was designed to investigate the effect and possible underlying mechanism of ICS II on MI both in vivo and in vitro. The results showed that pretreatment with ICS II not only dramatically mitigated MI-induced myocardial damage in mice but also alleviated H9c2 cardiomyocyte injury elicited by oxygen and glucose deprivation (OGD), which were achieved by suppressing mitochondrial oxidative stress and apoptosis. Furthermore, ICS II elevated the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) expression, thereby activating SIRT3. However, these protective effects of ICS II on MI injury were largely abolished in SIRT3-deficient mice, manifesting that ICS II-mediated cardioprotective effects are, at least partly, due to the presence of SIRT3. Most interestingly, ICS II directly bound with SIRT3, as reflected by molecular docking, which indicated that SIRT3 might be a promising therapeutic target for ICS II-elicited cardioprotection in MI. In conclusion, our findings illustrate that ICS II protects against MI-induced oxidative injury and apoptosis by targeting SIRT3 through regulating the AMPK/PGC-1α pathway.
Collapse
|
39
|
Szewczyk A, Brzezińska-Rojek J, Ośko J, Majda D, Prokopowicz M, Grembecka M. Antioxidant-Loaded Mesoporous Silica-An Evaluation of the Physicochemical Properties. Antioxidants (Basel) 2022; 11:antiox11071417. [PMID: 35883907 PMCID: PMC9312088 DOI: 10.3390/antiox11071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
The dangerous effects of oxidative stress can be alleviated by antioxidants—substances with the ability to prevent damage caused by reactive oxygen species. The adsorption of antioxidants onto nanocarriers is a well-known method that might protect them against rough environ-mental conditions. The aim of this study was to investigate the adsorption and desorption of gallic acid (GA), protocatechuic acid (PCA), chlorogenic acid (CGA), and 4-hydroxybenzoic acid (4-HBA) using commercially available mesoporous silica materials (MSMs), both parent (i.e., SBA-15 and MCM-41) and surface functionalized (i.e., SBA-NH2 and SBA-SH). The MSMs loaded with active compounds were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), thermoporometry (TPM), and powder X-ray diffraction (XRD). High-performance liquid chromatography (HPLC-CAD) was used to evaluate the performance of the adsorption and desorption processes. The antioxidant potential was investigated using the Folin−Ciocalteu (FC) spectrophotometric method. Among the studied MSMs, the highest adsorption of GA was observed for amine-modified SBA-15 mesoporous silica. The adsorption capacity of SBA-NH2 increased in the order of PCA, 4-HBA < GA < CGA. Different desorption effectiveness levels of the adsorbed compounds were observed with the antioxidant capacity preserved for all investigated compounds.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
| | - Joanna Brzezińska-Rojek
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland;
- Correspondence: (M.P.); (M.G.)
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland; (J.B.-R.); (J.O.)
- Correspondence: (M.P.); (M.G.)
| |
Collapse
|
40
|
Serum Concentrations of Ischaemia-Modified Albumin in Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11144205. [PMID: 35887968 PMCID: PMC9324639 DOI: 10.3390/jcm11144205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of novel circulating biomarkers of acute coronary syndrome (ACS) may improve diagnosis and management. We conducted a systematic review and meta-analysis of ischaemia-modified albumin (IMA), an emerging biomarker of ischaemia and oxidative stress, in ACS. We searched PubMed, Web of Science, and Scopus from inception to March 2022, and assessed the risk of bias and certainty of evidence with the Joanna Briggs Institute Critical Appraisal Checklist and GRADE, respectively. In 18 studies (1654 ACS patients and 1023 healthy controls), IMA concentrations were significantly higher in ACS (standard mean difference, SMD = 2.38, 95% CI 1.88 to 2.88; p < 0.001; low certainty of evidence). The effect size was not associated with pre-defined study or patient characteristics, barring the country where the study was conducted. There were no significant differences in effect size between acute myocardial infarction (MI) and unstable angina (UA), and between ST-elevation (STEMI) and non-ST-elevation MI (NSTEMI). However, the effect size was progressively larger in UA (SMD = 1.63), NSTEMI (SMD = 1.91), and STEMI (3.26). Our meta-analysis suggests that IMA might be useful to diagnose ACS. Further studies are warranted to compare the diagnostic performance of IMA vs. established markers, e.g., troponin, and to determine its potential utility in discriminating between UA, NSTEMI, and STEMI (PROSPERO registration number: CRD42021324603).
Collapse
|
41
|
Cai Y, Zhang B, Shalamu A, Gao T, Ge J. Soluble guanylate cyclase (sGC) stimulator vericiguat alleviates myocardial ischemia-reperfusion injury by improving microcirculation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:662. [PMID: 35845490 PMCID: PMC9279818 DOI: 10.21037/atm-22-2583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
Background This study aimed to verify the effect of soluble guanylate cyclase (sGC) stimulator vericiguat on myocardial ischemia-reperfusion injury and explore its mechanism. Methods A myocardial ischemia-reperfusion injury model of mice was established and intravenous administration was performed 2 minutes before reperfusion. Triphenyltetrazolium chloride (TTC) staining and echocardiography were used to verify the effect of vericiguat on myocardial ischemia-reperfusion injury in the infarct area, and immunofluorescence was used to observe myocardial pathological changes at different time points after reperfusion. Quantitative proteomics was conducted to analysis the main differentially expressed proteins after drug intervention. The distribution of endothelial cells and sGC after myocardial ischemia-reperfusion injury in mice was observed by immunofluorescence. RNA sequencing of endothelial cells was used to search for differentially expressed molecules. Thioflavin-S staining was used to observe the effect of vericiguat on improving the nonrecurrence phenomenon and reducing the infarct size after reperfusion. Results The effect of the sGC stimulator vericiguat on myocardial ischemia-reperfusion injury was verified, and myocardial microcirculation significantly increased after drug intervention. Quantitative proteomics found that the protein expression of myocardial tissue in the ischemia-reperfusion area was not significantly different in the drug intervention group, except for increased adenosine triphosphate (ATP) activity. Vericiguat, nitroglycerin, and nitrite did not directly affect apoptosis or cell viability. RNA sequencing of human umbilical vein endothelial cells screened the upregulated antioxidant response. Conclusions SGC stimulator vericiguat ameliorated myocardial ischemia-reperfusion injury through indirect pathways of improving microcirculation.
Collapse
Affiliation(s)
- Yun Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Adilan Shalamu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Tingwen Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
42
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
43
|
Secreted frizzled-related protein 4 exerts anti-atherosclerotic effects by reducing inflammation and oxidative stress. Eur J Pharmacol 2022; 923:174901. [PMID: 35364070 DOI: 10.1016/j.ejphar.2022.174901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Atherosclerosis and its sequelae, such as coronary artery disease (CAD), are the most common diseases worldwide and the leading causes of morbidity and mortality in most countries. Our previous studies have shown that circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with CAD. However, the role of SFRP4 in the development of atherosclerosis remains unclear; thus, the purpose of this study was to determine the effect of SFRP4 on high-fat diet (HFD)-induced atherosclerosis and explore the possible mechanisms. In this study, we found for the first time that administration of recombinant SFRP4 alleviates atherosclerosis in ApoE-/- mice by reducing inflammation and oxidative stress. In addition, the anti-atherosclerotic effect of SFRP4 was associated with inhibition of the Wnt/β-catenin signaling pathway, and Wnt1 overexpression abolished the anti-atherosclerotic effects of SFRP4. Taken together, our results highlight the potential beneficial effect of SFRP4 as a therapeutic agent for atherosclerosis and CAD.
Collapse
|
44
|
Mone P, Izzo R, Marazzi G, Manzi MV, Gallo P, Campolongo G, Cacciotti L, Tartaglia D, Caminiti G, Varzideh F, Santulli G, Trimarco V. L-Arginine Enhances the Effects of Cardiac Rehabilitation on Physical Performance: New Insights for Managing Cardiovascular Patients During the COVID-19 Pandemic. J Pharmacol Exp Ther 2022; 381:197-203. [PMID: 35339987 DOI: 10.1124/jpet.122.001149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac rehabilitation (CR) following acute myocardial infarction (AMI) improves physical capacities and decreases hospitalizations and cardiovascular mortality. L-Arginine is the substrate used by nitric oxide (NO) synthase (NOS) to generate NO and it has been shown to exert its beneficial effects on endothelium driving vasodilatation, reducing inflammation, and ameliorating physical function. We hypothesized that L-Arginine could enhance physical capacities in patients who underwent CR after AMI. We designed a study aimed to assess the effects of L-arginine administration on the physical capacity of patients who underwent coronary revascularization after AMI. The trial was carried out amid the COVID-19 pandemic. Patients were assigned, with a 2:1 ratio, to add to their standard therapy 1 bottle containing 1.66 g of L-arginine or 1 bottle of identical aspect apart from not containing L-arginine, twice a day orally for 3 weeks. Patients performed a 6-minute walking test (6MWT) and were assessed their Borg modified 0-10 rating of perceived exertion (BRPE) before starting and at the end of the treatment. Seventy-five patients receiving L-Arginine, and thirty-five receiving placebo successfully completed the study. The 6MWT distance increased significantly in the L-Arginine group compared to both baseline and placebo (p<0.0001). Additionally, we observed a significant improvement in the BRPE in patients treated with L-arginine but not in the placebo group. Taken together, our data indicate that L-arginine potentiates the response to CR, independently of age, sex, baseline functional capacity, and comorbid conditions. Significance Statement This study shows for the first time that oral supplementation of L-arginine potentiates the response to cardiac rehabilitation after myocardial infarction and cardiac revascularization. Indeed, we observed a significant improvement in two fundamental parameters, namely, the 6-minute walking test and the Borg modified 0-10 rating of perceived exertion. Strikingly, the beneficial effects of L-arginine were independent from age, sex, comorbid conditions, and baseline functional capacity.
Collapse
|
45
|
Yi X, Zhu QX, Wu XL, Tan TT, Jiang XJ. Histone Methylation and Oxidative Stress in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6023710. [PMID: 35340204 PMCID: PMC8942669 DOI: 10.1155/2022/6023710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
Abstract
Oxidative stress occurs when ROS overproduction overwhelms the elimination ability of antioxidants. Accumulated studies have found that oxidative stress is regulated by histone methylation and plays a critical role in the development and progression of cardiovascular diseases. Targeting the underlying molecular mechanism to alter the interplay of oxidative stress and histone methylation may enable creative and effective therapeutic strategies to be developed against a variety of cardiovascular disorders. Recently, some drugs targeting epigenetic modifiers have been used to treat specific types of cancers. However, the comprehensive signaling pathways bridging oxidative stress and histone methylation need to be deeply explored in the contexts of cardiovascular physiology and pathology before clinical therapies be developed. In the present review, we summarize and update information on the interplay between histone methylation and oxidative stress during the development of cardiovascular diseases such as atherosclerosis, coronary artery disease, pulmonary hypertension, and diabetic macro- and microvascular pathologies.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qiu-Xia Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xing-Liang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tuan-Tuan Tan
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
46
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients 2022; 14:nu14051114. [PMID: 35268089 PMCID: PMC8912885 DOI: 10.3390/nu14051114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation.
Collapse
|
47
|
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev 2022; 38:e3502. [PMID: 34614543 DOI: 10.1002/dmrr.3502] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MS) is a chronic non-infective syndrome characterised clinically by a set of vascular risk factors that include insulin resistance, hypertension, abdominal obesity, impaired glucose metabolism, and dyslipidaemia. These risk factors are due to a pro-inflammatory state, oxidative stress, haemodynamic dysfunction, and ischaemia, which overlap in 'dysmetabolic' patients. This review aimed to evaluate the relationship between the traditional components of MS with cardiovascular disease (CVD), inflammation, and oxidative stress. MEDLINE-PubMed, EMBASE, and Cochrane databases were searched. Chronic low-grade inflammatory states and metaflammation are often accompanied by metabolic changes directly related to CVD incidence, such as diabetes mellitus, hypertension, and obesity. Moreover, the metaflammation is characterised by an increase in the serum concentration of pro-inflammatory cytokines, mainly interleukin-1 β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), originating from the chronically inflamed adipose tissue and associated with oxidative stress. The increase of reactive oxygen species overloads the antioxidant systems causing post-translational alterations of proteins, lipids, and DNA leading to oxidative stress. Hyperglycaemia contributes to the increase in oxidative stress and the production of advanced glycosylation end products (AGEs) which are related to cellular and molecular dysfunction. Oxidative stress and inflammation are associated with cellular senescence and CVD. CVD should not be seen only as being triggered by classical MS risk factors. Atherosclerosis is a multifactorial pathological process with several triggering and aetiopathogenic mechanisms. Its medium and long-term repercussions, however, invariably constitute a significant cause of morbidity and mortality. Implementing preventive and therapeutic measures against oxy-reductive imbalances and metaflammation states has unquestionable potential for favourable clinical outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- João Leonardo Silveira Rossi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - University of Marília, Marília, São Paulo, Brazil
- School of Food and Technology of Marilia, Marilia, São Paulo, Brazil
| | - Renan Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, Texas, USA
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Pahimi N, Rasool AHG, Sanip Z, Bokti NA, Yusof Z, W. Isa WYH. An Evaluation of the Role of Oxidative Stress in Non-Obstructive Coronary Artery Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9020051. [PMID: 35200704 PMCID: PMC8878238 DOI: 10.3390/jcdd9020051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Approximately half of all women presenting to the emergency department with angina chest pain do not have obstructive coronary artery disease (CAD) on coronary angiography. This condition is termed non-obstructive coronary artery disease (NOCAD), and includes ischemia with no obstructive coronary artery disease (INOCA) and myocardial infarction with non-obstructive coronary arteries (MINOCA). Oxidative stress has been reported to be involved in the development and progression of CAD. However, a scarcity of studies has assessed a correlation between oxidative stress and NOCAD. Thus, a literature review was performed of available reports on the role of oxidative stress in NOCAD. Possible mechanisms involved in oxidative stress that may contribute to NOCAD were identified and evaluated. A key finding of this literature review was that oxidative stress caused vasoconstriction and endothelial damage, and this results in coronary microvascular dysfunction and vasospasm, which, in turn, lead to the pathogenesis of NOCAD.
Collapse
Affiliation(s)
- Nurnajwa Pahimi
- Pharmacology Vascular Laboratory, Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia; (N.P.); (A.H.G.R.)
- Cardiology Unit, Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.B.); (Z.Y.)
| | - Aida Hanum Ghulam Rasool
- Pharmacology Vascular Laboratory, Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia; (N.P.); (A.H.G.R.)
- Department of Internal Medicine, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Zulkefli Sanip
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Nur Adilah Bokti
- Cardiology Unit, Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.B.); (Z.Y.)
- Department of Internal Medicine, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Zurkurnai Yusof
- Cardiology Unit, Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.B.); (Z.Y.)
- Department of Internal Medicine, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - W. Yus Haniff W. Isa
- Cardiology Unit, Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.B.); (Z.Y.)
- Department of Internal Medicine, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Correspondence: ; Tel.: +60-9767-3987
| |
Collapse
|
49
|
Pardo AC, Zegarra LD, González Arbeláez LF, Ibáñez AM, Díaz RG, Aiello EA, Mosca SM. Cardioprotective effects of N-methylacetazolamide mediated by inhibition of L-type Ca2+ channel current. Biochim Biophys Acta Gen Subj 2022; 1866:130098. [DOI: 10.1016/j.bbagen.2022.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
|
50
|
Arreola-Diaz R, Majluf-Cruz A, Sanchez-Torres LE, Hernandez-Juarez J. The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clin Appl Thromb Hemost 2022; 28:10760296221088576. [PMID: 35317658 PMCID: PMC8950029 DOI: 10.1177/10760296221088576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The antiphospholipid syndrome (APS), a systemic autoimmune disease characterized by a hypercoagulability associated to vascular thrombosis and/or obstetric morbidity, is caused by the presence of antiphospholipid antibodies such as lupus anticoagulant, anti-β-2-glycoprotein 1, and/or anticardiolipin antibodies. In the obstetrical APS, antiphospholipid antibodies induce the production of proinflammatory cytokines and tissue factor by placental tissues and recruited neutrophils. Moreover, antiphospholipid antibodies activate the complement system which, in turn, induces a positive feedback leading to recruitment of neutrophils as well as activation of the placenta. Activation of these cells triggers myometrial contractions and cervical ripening provoking the induction of labor. In thrombotic and obstetrical APS, antiphospholipid antibodies activate endothelial cells, platelets, and neutrophils and they may alter the multimeric pattern and concentration of von Willebrand factor, increase the concentration of thrombospondin 1, reduce the inactivation of factor XI by antithrombin, increase the activation of factor XII, and reduce the activity of tissue plasminogen activator with the subsequent production of plasmin. All these effects result in less permeable clots, denser, thinner, and with more branched fibrin fibers which are more difficult to lysate. As a consequence, thrombosis, the defining clinical criterion of APS, complicates the clinical course of the patient.
Collapse
Affiliation(s)
- R Arreola-Diaz
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - A Majluf-Cruz
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - L E Sanchez-Torres
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - J Hernandez-Juarez
- CONACyT-Facultad de Odontologia, Universidad Autonoma Benito Juarez de Oaxaca, Oaxaca de Juarez, Mexico
| |
Collapse
|