1
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2025; 51:399-416. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Yuan C, Wang B, Wang H, Wang F, Li X, Zhen Y. T-cell receptor dynamics in digestive system cancers: a multi-layer machine learning approach for tumor diagnosis and staging. Front Immunol 2025; 16:1556165. [PMID: 40264789 PMCID: PMC12011560 DOI: 10.3389/fimmu.2025.1556165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Background T-cell receptor (TCR) repertoires provide insights into tumor immunology, yet their variations across digestive system cancers are not well understood. Characterizing TCR differences between colorectal cancer (CRC) and gastric cancer (GC), as well as developing machine learning models to distinguish cancer types, metastatic status, and disease stages are crucial for guiding clinical practices. Methods A cohort study of 143 tumor patients (96 CRC, 47 GC) was conducted. High-throughput TCR sequencing was performed to capture TCR beta (TRB), delta (TRD), and gamma (TRG) chain data. Tissue-specific patterns in TCR repertoire features, such as V-J gene recombination, complementarity-determining region 3 (CDR3) sequences, and motif distributions, were analyzed. Multi-layer machine learning-based diagnostic models were developed by leveraging motif-based feature and deep learning-based feature extraction using ProteinBERT from the 100 most abundant CDR3 sequences per sample. These models were used to differentiate CRC from GC, distinguish between primary and metastatic CRC lesions, and predict disease stages in CRC. Results Tissue-specific differences in TCR repertoires were observed across CRC, GC, and between primary and metastatic lesions, as well as across disease stages in CRC. Distinct V-J gene recombination patterns were identified, with CRC showing enrichment in TRBV*-TRBJ* combinations, while GC exhibited higher levels of γδT-cell-related recombination. Primary and metastatic lesions of CRC patients displayed distinct V-J recombination preferences (e.g., TRBV7-9/TRBJ2-1 higher in metastatic; TRBV20-1/TRBJ1-2 higher in primary) and CDR3 sequence differences, with metastatic having shorter TRG CDR3 lengths (p-value = 0.019). Across CRC stages, later stages (III-IV) showed higher clonal diversity (p-value < 0.05) and stage-specific V-J patterns, alongside distinct CDR3 amino acid preferences at N-terminal (positions 1-2) and central positions (positions 5-12). Multi-dimensional machine learning models demonstrated exceptional diagnostic performance across all classification tasks. For distinguishing CRC from GC, the model achieved an accuracy of 97.9% and an area under the curve (AUC) of 0.996. For differentiating primary from metastatic CRC, the model achieved 100% accuracy with an AUC of 1.000. In predicting CRC disease stages, the model attained an accuracy of 96.9% and an AUC of 0.993. Extensive validation using simulated and publicly available datasets, confirmed the robustness and reliability of the models, demonstrating consistent performance across diverse datasets and experimental conditions. Conclusions Our investigation provides novel insights into TCR repertoire variations in digestive system tumors, and highlight the potential of immune repertoire features as powerful diagnostic tools for understanding cancer progression and potentially improving clinical decision-making.
Collapse
Affiliation(s)
- Changjin Yuan
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Minimally Invasive Surgery, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hong Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Fang Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiangze Li
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Ya’nan Zhen
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Yang L, Fang Z, Zhu J, Li X, Yang B, Liu H, Lou F. The potential of Sijunzi decoction in the fight against gastrointestinal disorders: a review. Front Pharmacol 2025; 16:1464498. [PMID: 40103588 PMCID: PMC11913818 DOI: 10.3389/fphar.2025.1464498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Sijunzi Decoction (SJZD) is a traditional Chinese medicine formula widely used in the treatment of gastrointestinal disorders. Clinical studies have substantiated the efficacy of SJZD in managing conditions such as functional dyspepsia, chronic gastritis, gastric cancer, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Despite its proven effectiveness, the precise mechanisms by which SJZD operates remain incompletely understood. In this study, we undertake a systematic review of both the clinical applications and the mechanistic underpinnings of SJZD in the context of gastrointestinal disease treatment. Research indicates that SJZD functions through a spectrum of mechanisms including the regulation of intestinal flora, alleviation of inflammation, modulation of immune responses, and facilitation of mucosal repair in the treatment of gastrointestinal ailments. This comprehensive analysis aims to provide a clearer understanding of how SJZD benefits patients with gastrointestinal disorders.
Collapse
Affiliation(s)
- Liangjun Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| | - Zheng Fang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| | - Jiajie Zhu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| | - Xiaofang Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| | - Haiyan Liu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| | - Feiyan Lou
- Endoscopy Center, Tongde Hospital of Zhejiang Province (Zhejiang Academy of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Zhang Y, Yan Z, Jiao Y, Feng Y, Zhang S, Yang A. Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis. Helicobacter 2025; 30:e70015. [PMID: 40097330 PMCID: PMC11913635 DOI: 10.1111/hel.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Helicobacter pylori is an extremely common cause of gastritis that can lead to gastric adenocarcinoma over time. Approximately half of the world's population is infected with H. pylori, making gastric cancer the fourth leading cause of cancer-related deaths worldwide. Innate immunity significantly contributes to systemic and local immune responses, maintains homeostasis, and serves as the vital link to adaptive immunity, and in doing so, mediates H. pylori infection outcomes and consequent cancer risk and development. The gastric innate immune system, composed of gastric epithelial and myeloid cells, is uniquely challenged by its need to interact simultaneously and precisely with commensal microbiota, exogenous pathogens, ingested substances, and endogenous exfoliated cells. Additionally, innate immunity can be detrimental by promoting chronic infection and fibrosis, creating an environment conducive to tumor development. This review summarizes and discusses the complex role of innate immunity in H. pylori infection and subsequent gastric oncogenesis, and in doing so, provides insights into how these pathways can be exploited to improve prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Eight‐Year Medical Doctor Program, Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Julián-Flores A, Aguilar-Zárate P, Michel MR, Sepúlveda-Torre L, Torres-León C, Aguilar CN, Chávez-González ML. Exploring the Therapeutic Potential of Medicinal Plants in the Context of Gastrointestinal Health: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:642. [PMID: 40094542 PMCID: PMC11901797 DOI: 10.3390/plants14050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Medicinal plants represent promising sources for the treatment of gastrointestinal disorders because of their abundance in bioactive compounds with therapeutic properties. Throughout history, various plant species have been used to alleviate digestive ailments, and studies have revealed the presence of metabolites with anti-inflammatory, antibacterial, antiviral, antiparasitic, antidiarrheal, antioxidant, and anticancer activities. The secondary metabolites responsible for these properties include alkaloids, terpenoids, and phenolic compounds, with the latter, particularly flavonoids, being the most associated with their bioactivities. Gastrointestinal diseases, such as gastritis, peptic ulcers, gastroesophageal reflux disease, inflammatory bowel disease, irritable bowel syndrome, and gastrointestinal cancer, are caused primarily by bacteria, parasites, viruses, and the consumption of raw or undercooked foods. These conditions significantly impact human health, necessitating the development of safer and more effective therapeutic alternatives. After an extensive literature review, several plant species with widespread use in the treatment of these disorders were identified, including Matricaria chamomilla, Mentha spicata, Melissa officinalis, Artemisia ludoviciana, Flourensia cernua, Phoradendron californicum, and Turnera difusa. This study revealed that the analyzed plants are rich in bioactive compounds, which confer their medicinal properties. However, many other plants commonly used to treat digestive disorders have been scarcely studied, highlighting the need for further research.
Collapse
Affiliation(s)
- Antonio Julián-Flores
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Pedro Aguilar-Zárate
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/I.T. de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico;
| | - Mariela R. Michel
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/I.T. de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico;
| | - Leonardo Sepúlveda-Torre
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Autonomous University of Coahuila, Viesca 27480, Coahuila, Mexico;
| | - Cristóbal N. Aguilar
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Mónica L. Chávez-González
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| |
Collapse
|
6
|
Zheng S, Wang Y, Ni C, Guo R, Qiu X, Chen J, Wang L, Sun X, Chen M, Liu Y, Yuan Y, Gong Y. Helicobacter pylori SlyD stabilizes TPT1 via hnRNPK and enhances OCT1-mediated CDX2 transcriptional activation to drive gastric intestinal metaplasia. BMC Med 2025; 23:71. [PMID: 39915880 PMCID: PMC11803974 DOI: 10.1186/s12916-025-03911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Gastric intestinal metaplasia (GIM) represents an important precancerous lesion in intestinal-type gastric cancer, triggered by persistent Helicobacter pylori (H. pylori) infection. In a previous study, we unveiled SlyD as a novel virulence factor of H. pylori, establishing its role in GIM induction through TPT1. However, the underlying mechanism remains undetermined. METHODS Gastric epithelial cells were stimulated with H. pylori 26695, a SlyD inactivated mutant (ΔSlyD), and purified HpSlyD protein, respectively. Real-time qPCR and western blot were subsequently used to assess the expression levels of hnRNPK, TPT1, OCT1, and GIM markers. RNA sequencing was employed to identify differentially expressed genes associated with H. pylori SlyD infection. Protein stability was evaluated using cycloheximide. Molecular interactions were investigated through co-immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays. Additionally, molecular docking was utilized to predict TPT1 inhibitors. Immunohistochemistry staining was conducted to validate hnRNPK, TPT1, OCT1, and CDX2 expression in gastric tissue samples from both human and Mongolian gerbils. RESULTS H. pylori SlyD upregulates TPT1 and induces the expression of GIM markers through hnRNPK. The interaction between hnRNPK and TPT1 enhances TPT1 protein stability, with H. pylori SlyD intensifying this association. TPT1 promotes the expression of GIM markers mediated via OCT1, which binds to CDX2 promoter region, thereby modulating its transcriptional activity. Dihydroartemisinin has the potential to target TPT1, inhibiting the H. pylori SlyD-induced expression of GIM markers. CONCLUSIONS In vitro and in vivo experiments verified that H. pylori SlyD enhances TPT1 stability through hnRNPK, leading to OCT1-mediated transcriptional activation of CDX2 and the initiation of the GIM process. Our study offers novel perspectives on the pathogenesis of H. pylori-related gastric precancerous conditions.
Collapse
Affiliation(s)
- Shuwen Zheng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chuxuan Ni
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xunan Qiu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Jijun Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Lu Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaohu Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yunen Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
7
|
Dong Y, Han M, Qi Y, Wu Y, Zhou Z, Jiang D, Gai Z. Enhancement of host defense against Helicobacter pylori infection through modulation of the gastrointestinal microenvironment by Lactiplantibacillus plantarum Lp05. Front Immunol 2025; 15:1469885. [PMID: 39896799 PMCID: PMC11782045 DOI: 10.3389/fimmu.2024.1469885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Objective This study aimed to assess the impact of Lactiplantibacillus plantarum Lp05 (Lp05) on the gastrointestinal microbiome and pathophysiological status of mice infected with Helicobacter pylori (H. pylori), exploring its potential as a probiotic treatment for H. pylori infections. Methods In vitro, the interaction between Lp05 and H. pylori was analyzed using laser confocal and scanning electron microscopy. In vivo, C57BL/6 mice infected with H. pylori were treated with Lp05 and divided into six groups: control, model, quadruple therapy, and three dosage levels of Lp05 (2×107, 2×108, 2×109 CFU/mouse/day). Over six weeks, the impact of Lp05 on the gastrointestinal microbiome and physiological markers was assessed. Measurements included digestive enzymes (α-amylase, pepsin, cellulase), inflammatory markers (interleukin-17A, interleukin-23, interleukin-10, interferon-β, interferon-γ, FoxP3, endothelin, IP-10, TGF-β1), oxidative stress markers (catalase, malondialdehyde, superoxide dismutase, myeloperoxidase), and tissue pathology (via modified Warthin-Starry silver and H&E staining). Microbial community structure in the stomach and intestines was evaluated through 16S rRNA gene sequencing. Results In vitro studies showed Lp05 and H. pylori formed co-aggregates, with Lp05 potentially disrupting H. pylori cell structure, reducing its stomach colonization. In vivo, Lp05 significantly lowered gastric mucosal urease activity and serum H. pylori-IgG antibody levels in infected mice (p < 0.01). It also mitigated pathological changes in the stomach and duodenum, decreased inflammatory responses (ET, IL-17A, IL-23, TGF-beta1, and IP-10, p < 0.01 for all), and enhanced antioxidant enzyme activities (CAT and SOD, p < 0.01) while reducing MDA and MPO levels (p < 0.01), combating oxidative stress from H. pylori infection. Lp05 treatment significantly modified the intestinal and gastric microbiota, increasing beneficial bacteria like Lactobacillus and Ligilactobacillus, and decreasing harmful bacteria such as Olsenella, linked to pathological conditions. Conclusion Lp05 effectively modulates the gastrointestinal microbiome, reduces inflammation and oxidative stress, and suppresses H. pylori, promising for probiotic therapies with further research needed to refine its clinical use.
Collapse
Affiliation(s)
- Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, China
| | - Yongmei Qi
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Zhipeng Zhou
- Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Dacheng Jiang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| |
Collapse
|
8
|
Verma J, Anwar MT, Linz B, Backert S, Pachathundikandi SK. The Influence of Gastric Microbiota and Probiotics in Helicobacter pylori Infection and Associated Diseases. Biomedicines 2024; 13:61. [PMID: 39857645 PMCID: PMC11761556 DOI: 10.3390/biomedicines13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The role of microbiota in human health and disease is becoming increasingly clear as a result of modern microbiome studies in recent decades. The gastrointestinal tract is the major habitat for microbiota in the human body. This microbiota comprises several trillion microorganisms, which is equivalent to almost ten times the total number of cells of the human host. Helicobacter pylori is a known pathogen that colonizes the gastric mucosa of almost half of the world population. H. pylori is associated with several gastric diseases, including gastric cancer (GC) development. However, the impact of the gastric microbiota in the colonization, chronic infection, and pathogenesis is still not fully understood. Several studies have documented qualitative and quantitative changes in the microbiota's composition in the presence or absence of this pathogen. Among the diverse microflora in the stomach, the Firmicutes represent the most notable. Bacteria such as Prevotella sp., Clostridium sp., Lactobacillus sp., and Veillonella sp. were frequently found in the healthy human stomach. In contrast, H.pylori is very dominant during chronic gastritis, increasing the proportion of Proteobacteria in the total microbiota to almost 80%, with decreasing relative proportions of Firmicutes. Likewise, H. pylori and Streptococcus are the most abundant bacteria during peptic ulcer disease. While the development of H. pylori-associated intestinal metaplasia is accompanied by an increase in Bacteroides, the stomachs of GC patients are dominated by Firmicutes such as Lactobacillus and Veillonella, constituting up to 40% of the total microbiota, and by Bacteroidetes such as Prevotella, whereas the numbers of H. pylori are decreasing. This review focuses on some of the consequences of changes in the gastric microbiota and the function of probiotics to modulate H. pylori infection and dysbiosis in general.
Collapse
Affiliation(s)
- Jagriti Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Md Tanveer Anwar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Bodo Linz
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
9
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
10
|
Hasanzadeh Haghighi F, Menbari S, Mohammadzadeh R, Pishdadian A, Farsiani H. Developing a potent vaccine against Helicobacter pylori: critical considerations and challenges. Expert Rev Mol Med 2024; 27:e12. [PMID: 39584502 PMCID: PMC11964096 DOI: 10.1017/erm.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 08/07/2024] [Indexed: 11/26/2024]
Abstract
Helicobacter pylori (H. pylori) is closely associated with gastric cancer and peptic ulcers. The effectiveness of antibiotic treatment against H. pylori is diminished by the emergence of drug-resistant strains, side effects, high cost and reinfections. Given the circumstances, it is imperative to develop a potent vaccination targeting H. pylori. Understanding H. pylori's pathogenicity and the host's immune response is essential to developing a vaccine. Furthermore, vaccine evaluation necessitates the careful selection of design formulation. This review article aims to provide a concise overview of the considerations involved in selecting the optimal antigen, adjuvant, vaccine delivery system and laboratory animal model for vaccine formulation. Furthermore, we will discuss some significant obstacles in the realm of developing a potent vaccination against H. pylori.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaho Menbari
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mohammadzadeh
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Neves NCV, de Mello MP, Smith SM, Boylan F, Caliari MV, Castilho RO. Bioactive Properties of Campomanesia lineatifolia: Correlation Between Anti- Helicobacter pylori Activity, Antioxidant Potential and Chemical Composition. PLANTS (BASEL, SWITZERLAND) 2024; 13:3117. [PMID: 39599326 PMCID: PMC11597203 DOI: 10.3390/plants13223117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Helicobacter pylori is found in the stomach of patients with chronic gastritis and peptic ulcers, infecting approximately half of the world's population. Current treatment for H. pylori infection involves a multi-drug therapeutic regime with various adverse effects, which leads to treatment abandonment and contributes to the emergence of resistant strains of H. pylori. Previously, we demonstrated that the essential oil of Campomanesia lineatifolia leaves exhibited an anti-H. pylori activity. In this study, we aimed to evaluate the phenolic content of the phenolic-rich ethanol extract (PEE) from C. lineatifolia and its anti-H. pylori and antioxidant properties. Additionally, the anti-H. pylori activity was assessed in polar and non-polar fractions from PEE, isolated myricitrin (MYR) and a mixture of myricitrin and quercitrin (MYR/QUER) from polar fractions, and aqueous extract (tea) to correlate the responsible fractions or compounds with the observed activity. Broth microdilution assays were performed to assess the anti-H. pylori activity using type cultures (ATCC 49503, NCTC 11638, both clarithromycin-sensitive) and clinical isolate strains (SSR359, clarithromycin-sensitive, and SSR366, clarithromycin-resistant). The antioxidant activity was evaluated using the DPPH assay. The total tannin and flavonoid contents were determined using the hide-powder method, the Folin-Ciocalteu reagent, and the aluminium chloride colourimetric assay, respectively. The tea (MIC 1:100), PEE, polar and non-polar fractions, MYR, and MYR/QUER inhibited the growth of H. pylori strains tested (MIC values ranging from 0.49 to 250 μg/mL). The antioxidant assays revealed that PEE exhibited a higher antioxidant activity (EC50 = 18.47 μg/mL), which correlated to the high phenolic content (tannin and flavonoid, 22.31 and 0.15% w/w, respectively). These findings support the traditional use of C. lineatifolia as a multitarget medicinal plant for treating gastric ulcers and reinforce the potential use of the species as a coadjuvant in therapeutic regimes involving patients with resistant H. pylori infection.
Collapse
Affiliation(s)
- Nívea Cristina Vieira Neves
- GnosiaH, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Institute, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland;
- Departamento de Farmácia, Centro Universitário Santa Rita, Conselheiro Lafaiete 36408-899, Brazil
| | - Morgana Pinheiro de Mello
- GnosiaH, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin 24, D24 NR0A Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Institute, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland;
| | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Rachel Oliveira Castilho
- GnosiaH, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, São Paulo 05449-070, Brazil
| |
Collapse
|
12
|
Xiang Z, Guan H, Zhao X, Xie Q, Hu X, Liu W, Sun X, Zhang S, Li M, Wang C. Characterization of active alkaloids and metabolites in rats after oral administration of Zuojin Pill using UHPLC-Q-TOF-MS combined with bioinformatics and molecular docking analyses. J Pharm Biomed Anal 2024; 249:116340. [PMID: 38986349 DOI: 10.1016/j.jpba.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Zuojin Pill (ZJP), a traditional Chinese medicine prescription composed of Rhizoma Coptidis and Euodiae Fructus in the ratio of 6:1 (w/w), has been widely used for the treatment of gastric disorders. However, an in-depth understanding of in vivo metabolism and distribution profiles of protoberberine alkaloids (PBAs) and indole alkaloids (IDAs) in ZJP is lacking. In this study, a method using ultra-high performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was developed to systematically screen the alkaloids and their metabolites in rat plasma and various tissues after oral administration of ZJP. Furthermore, bioinformatics and molecular docking analyses were conducted to elucidate the contribution of the alkaloids and metabolites enriched in the stomach to the therapeutic effect of ZJP on gastritis. A total of 33 compounds, including 7 prototype alkaloids and 26 metabolites, were chemically defined or tentatively identified in this work. The metabolic pathways of PBAs (hydroxylation, oxidation, reduction, demethylation, demethylenation, glucuronide conjugation, sulfate conjugation) and IDAs (hydroxylation, glucuronide conjugation) were revealed. Notably, 7 prototype alkaloids and 18 metabolites were detected in the stomach, indicating their propensity for gastric distribution. These alkaloids and metabolites showed strong affinities with the 7 hub targets associated with gastritis, such as CCR7, CXCR4, IL6, IFNG, CCL2, TNF, and PTPRC, and could be considered the potential active substances of ZJP for treating gastritis. In conclusion, this study clarified the gastric distribution propensity of PBAs and IDAs and their metabolites, as well as their favorable binding interactions with gastritis-related targets, which could provide essential data for the further study of the pharmacodynamic material basis and gastroprotective mechanism of ZJP.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Wenkang Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xin Sun
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Sitong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
13
|
Huang Y, Chen Y, Ma L, Guo H, Chen H, Qiu B, Yao M, Huang W, Zhu L. The toxic effects of Helicobacter pylori and benzo(a)pyrene in inducing atrophic gastritis and gut microbiota dysbiosis in Mongolian gerbils. Food Sci Nutr 2024; 12:7568-7580. [PMID: 39479696 PMCID: PMC11521681 DOI: 10.1002/fsn3.4368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 11/02/2024] Open
Abstract
Food chemical and microbiological contamination are major global food safety issues. This study investigated the combined effects of the food-borne pathogen Helicobacter pylori (H. pylori) and the pollutant benzo(a)pyrene (Bap) on atrophic gastritis and gut microbiota in Mongolian gerbils. The results demonstrated that simultaneous administration of H. pylori and Bap caused more severe weight loss, DNA damage, and gastritis in Mongolian gerbils compared with those exposed to H. pylori or Bap alone. The combination also significantly increased the serum level of proinflammatory cytokines, including IL-1β (p < .05), IL-6 (p < .0001), and TNF-α (p < .05). Additionally, the H. pylori and Bap combination altered the composition of gut microbiota in Mongolian gerbils: the relative abundance of Lactobacillus and Ligilactobacillus at the genus level (p < .05) was significantly reduced while the relative abundance of Allobaculum and Erysipelotrichaceae enhanced (p < .0001, p < .05). Our study revealed that the synergy of H. pylori and Bap can boost the development of atrophic gastritis and lead to gut microbiota dysbiosis in Mongolian gerbils, which provides essential implications for preventing contaminated foods to sustain life and promote well-being.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical UniversityWenzhouChina
| | - Yunxiang Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Lingfei Ma
- Institute for Health PolicyHangzhou Medical CollegeHangzhouChina
| | - Honggang Guo
- Center of Laboratory AnimalHangzhou Medical CollegeHangzhouChina
| | - Hao Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Weixin Huang
- Shaoxing Tongchuang Biotechnology Co., LtdShaoxingChina
| | - Lian Zhu
- School of Basic Medical Sciences and Forensic MedicineHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
14
|
Zhou J, Guo L, Wang Y, Li L, Guo Y, Duan L, Jiao M, Xi P, Wang P. Development and validation of a risk prognostic model based on the H. pylori infection phenotype for stomach adenocarcinoma. Heliyon 2024; 10:e36882. [PMID: 39281596 PMCID: PMC11401198 DOI: 10.1016/j.heliyon.2024.e36882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common malignancies. Infection of helicobacter pylori (H. pylori) is a major risk factor that leads to the development of STAD. This study constructed a risk model based on the H. pylori-related macrophages for predicting STAD prognosis. Methods The single-cell RNA sequencing (scRNA-seq) dataset and the clinic information and RNA-seq datasets of STAD patients were collected for establishing a prognostic model and for validation. The "Seurat" and "harmony" packages were used to process the scRNA-seq data. Key gene modules were sectioned using the "limma" package and the "WGCNA" package. Kaplan-Meier (KM) and Receiver Operating Characteristic Curve (ROC) analyses were performed with "survminer" package. The "GSVA" package was employed for single sample gene set enrichment analysis (ssGSEA). Cell migration and invasion were measured by carrying out wound healing and trans-well assays. Results A total of 17397 were screened and classified into 8 cell type clusters, among which the macrophage cluster was closely associated with the H. pylori infection. Macrophages were further categorized into four subtypes (including C1, C2, C3, and C4), and highly variable genes of macrophage subtype C4 could serve as an indicator of the prognosis of STAD. Subsequently, we developed a RiskScore model based on six H. pylori -associated genes (TNFRSF1B, CTLA4, ABCA1, IKBIP, AKAP5, and NPC2) and observed that the high-risk patients exhibited poor prognosis, higher suppressive immune infiltration, and were closely associated with cancer activation-related pathways. Furthermore, a nomogram combining the RiskScore was developed to accurately predict the survival of STAD patients. AB CA 1 in the RiskScore model significantly affected the migration and invasion of tumor cells. Conclusion The gene expression profile served as an indicator of the survival for patients with STAD and addressed the clinical significance of using H. pylori-associated genes to treat STAD. The current findings provided novel understandings for the clinical evaluation and management of STAD.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Li Guo
- Department of Geriatrics, South District, 986th Hospital of the People's Liberation Army Air Force, Xi'an, 710054, China
| | - Yuzhen Wang
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Lina Li
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Yahuan Guo
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Lian Duan
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Mi Jiao
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Pan Xi
- Department of Radiotherapy, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Pei Wang
- Department of Anesthesiology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| |
Collapse
|
15
|
Li C, Wang X, Cui S. Impact of high-altitude hypoxia on Helicobacter pylori-induced gastritis pathological manifestations and inflammatory responses. J Physiol Anthropol 2024; 43:17. [PMID: 38970131 PMCID: PMC11225251 DOI: 10.1186/s40101-024-00364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Chronic gastritis caused by Helicobacter pylori (Hp) infection is a common gastrointestinal disorder. Despite the high prevalence of Hp infection and chronic gastritis in the Tibetan Plateau, there is a lack of studies elucidating the influence of plateau hypoxia on Hp-induced gastritis. This study aimed to investigate the impact of high-altitude hypoxia on Hp-induced gastritis, particularly focusing on pathological manifestations and inflammatory responses. METHODS This study was conducted from July 2023 to March 2024 at the Department of Gastroenterology, Affiliated Hospital of Qinghai University. Ninety patients diagnosed with chronic gastritis were enrolled in the study and divided into four groups based on their residential altitude and Hp infection status. Data on endoscopic and pathological characteristics were collected, along with serum oxidative stress and inflammatory markers. RESULTS Patients with Hp gastritis exhibit distinctive features in the gastric mucosa, including diffuse erythema, enlarged folds, and white turbid mucus during endoscopy. Notably, individuals with Hp gastritis at high altitudes show a higher prevalence of diffuse erythema and enlarged folds. Pathological analysis reveals that these patients have elevated gastric mucosal inflammation scores and increased chronic and active inflammation. Furthermore, individuals with Hp gastritis at high altitudes demonstrate elevated levels of serum TNF-α, IL-1β, IL-6, and MDA, as well as reduced serum SOD and GSH-Px activities. CONCLUSIONS High-altitude hypoxia may exacerbate gastric mucosal damage by enhancing oxidative stress and inflammatory response induced by Hp infection.
Collapse
Affiliation(s)
- Chunxia Li
- Clinical Medical College of Qinghai University, Xining, Qinghai Province, China
- Department of Gastroenterology, Qinghai University Affiliated Hospital, Xining, Qinghai Province, China
| | - Xuehong Wang
- Clinical Medical College of Qinghai University, Xining, Qinghai Province, China
- Department of Gastroenterology, Qinghai University Affiliated Hospital, Xining, Qinghai Province, China
| | - Sen Cui
- Clinical Medical College of Qinghai University, Xining, Qinghai Province, China.
- Department of Hematology, Qinghai University Affiliated Hospital, 29 Tongren Road, Xining, Qinghai Province, 810001, China.
| |
Collapse
|
16
|
Yang H, Lin Y, Ma Y, Li J, Li J, Huo Z, Yang P, Zhang C. Screening Probiotics for Anti- Helicobacter pylori and Investigating the Effect of Probiotics on Patients with Helicobacter pylori Infection. Foods 2024; 13:1851. [PMID: 38928794 PMCID: PMC11202727 DOI: 10.3390/foods13121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are natural microbial agents with beneficial properties such as bacteriostatic and anti-infective properties. Lactobacillus plantarum Q21, Q25 and QA85, were isolated from the Chinese specialty fermented food "Jiangshui" and proved to be highly resistant to Helicobacter pylori (p < 0.0001). In vitro results showed that Q21, Q25 and QA85 strongly inhibited H. pylori and could specifically co-aggregate H. pylori in vitro (more than 56%). Strains have the potential to adhere to cells and hinder H. pylori colonization (p < 0.0001). To assess the anti-H. pylori efficacy of strains in vivo, volunteers were recruited and a self-controlled study of probiotic intervention was conducted. Compared to pre-probiotics, volunteers who took Q21, Q25 and QA85 for 1 month showed significant improvement in discomfort, a significant reduction in GSRS scores (p < 0.05), and modulation of inflammatory response (p < 0.05). Q21, Q25 and QA85 resulted in a decreasing trend of H. pylori load in volunteers (454.30 ± 327.00 vs. 328.35 ± 237.19, p = 0.06). However, the strains were not significantly effective in modulating the imbalance of the gut microbiota caused by H. pylori infection. In addition, strains affect metabolic pathways by increasing the levels of O-Phosphoethanolamine and other related metabolites, which may ameliorate associated symptoms. Therefore, Lactobacillus plantarum Q21, Q25 and QA85 can be regarded as a candidate probiotic preparation that exerts direct or indirect anti-H. pylori effects by inhibiting H. pylori activity and colonization, reducing inflammation and discomfort, maintaining homeostasis in the internal environment, affecting the metabolic pathways and repairing the body barrier. They can play a role in relieving H. pylori infection.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Zhang Y, Yang Q, Song B, Tang W, Yu F, Chen H, Ge P, Fang X, Pei B, Sun Q, Li X. Efficacy and safety of Piwei Peiyuan Prescription in the treatment of chronic atrophic gastritis: A multicenter, double-blind, double-simulated, randomized, controlled clinical trial. Medicine (Baltimore) 2024; 103:e37981. [PMID: 38728508 PMCID: PMC11081569 DOI: 10.1097/md.0000000000037981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The incidence of chronic atrophic gastritis (CAG) is on the rise due to the growing pressure in modern social life, increasing bad living habits and emotional disorders (such as anxiety and depression), and the aging of the population. Of note, digestive system diseases are the dominant diseases in the field of traditional Chinese medicine (TCM). Therefore, this study evaluated the efficacy and safety of Piwei Peiyuan Prescription, a TCM prescription, in the treatment of CAG through a multicenter, double-blind, randomized, controlled design. This research was organized by the Second Affiliated Hospital of Anhui University of TCM and simultaneously performed in 6 centers. A total of 120 CAG patients were included and randomized into 2 groups: group A (treatment with Piwei Peiyuan granules plus Weifuchun Simulant) and Group B (treatment with Weifuchun Tablets plus Piwei Peiyuan Simulant). These 2 groups were compared in terms of gastroscopy scores, TCM syndrome scores, and serological indicators at baseline and within 12 weeks after treatment. According to endoscopic biopsy for pathological observation, atrophy (2.56 ± 1.08 vs 3.00 ± 1.00, P = .028) and intestinal epithelial hyperplasia (1.00 ± 1.43 vs 1.69 ± 1.80, P = .043) scores were lower in group A than in group B. For the more, group A had higher effective rates for inflammation, atrophy, and intestinal metaplasia (IM) in various regions of the stomach, especially for atrophy/IM of the gastric angle (64%, P = .034) and atrophy/IM of the lesser curvature of gastric antrum (63%, P = .042) than group B. According to TCM syndrome scores, Piwei Peiyuan Prescription improved the scores of gastric distension (2.30 ± 1.13 vs 2.80 ± 0.99, P = .022), preference for warmth and pressure (1.44 ± 1.06 vs 1.36 ± 1.10, P = .041), and poor appetite and indigestion (0.78 ± 0.66 vs 1.32 ± 0.72, P = .018). GAS, MTL, and PGE2 expression was significantly elevated after treatment with Piwei Peiyuan Prescription (P < .001). Piwei Peiyuan Prescription is effective for CAG treatment with high safety.
Collapse
Affiliation(s)
- Yi Zhang
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Qi Yang
- Department of Spleen and Stomach, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Biao Song
- Department of Spleen and Stomach, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei Tang
- Department of Spleen and Stomach, The Lu’an Hospital of Traditional Chinese Medicine, Lu’an, China
| | - Feng Yu
- Department of Hepatobiliary, Spleen and Stomach, The Jieshou Hospital of Traditional Chinese Medicine, Jieshou, China
| | - Hua Chen
- Department of Spleen and Stomach, The Chuzhou Hospital of Integrated Traditional Chinese and Western Medicine, Chuzhou, China
| | - Ping Ge
- Department of Spleen and Stomach, The Ningguo Hospital of Traditional Chinese Medicine, Ningguo, China
| | - Xusheng Fang
- Department of Spleen and Stomach, The Taihu County Hospital of Traditional Chinese Medicine, Anqing, China
| | - Bei Pei
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Qin Sun
- Department of Spleen and Stomach, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xuejun Li
- Department of Spleen and Stomach, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
19
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Xu L, Liu X, Wu Q, Hua ZL, Yang F, Zhang JF. Phylogenetic analysis of pathogenic genes in Helicobacter species. Shijie Huaren Xiaohua Zazhi 2024; 32:58-70. [DOI: 10.11569/wcjd.v32.i1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Helicobacter bacteria are associated with gastrointestinal diseases, especially Helicobacter pylori (H. pylori). With the isolation of many non-Helicobacter pylori Helicobacters (NHPH) from the liver, intestines, and gallbladder of natural animal reservoirs, NHPH have been potential zoonotic pathogens, but their infection and pathogenic mechanisms are still unclear.
AIM To explore the phylogenetic relationship of Helicobacter species based on their pathogenic genes.
METHODS The present study collected the genomic sequences of 50 strains in genus Helicobacter, including 12 strains of H. pylori and 38 strains of NHPH. Based on 16S rRNA gene and several pathogenic genes (flagella, urease, and virulence factors), MAGA software (Version 11.0) was used to align their sequences and construct phylogenetic trees.
RESULTS The phylogenetic tree of 16S rRNA gene showed that gastric Helicobacter (GH) and enterohepatic Helicobacter species (EHS) were clustered into two large branches, respectively. All of the GH's hosts were mammals, while the hosts of EHS were many wild poultry and mammals. Based on the flagella motility-related genes (flaA, flaB, fliP, fliQ, fliR, fliG, fliM, and fliN), the phylogenetic trees were divided into two major branches (GH and EHS). Similarly, the phylogenetic trees of lipopolysaccharide (LPS) biosynthesis-related genes (lptA, waaC, and waaF) presented two major branches (GH and EHS), too. The urease genes existed in all of the 12 strains of H. pylori, 13 strains of gastric NHPH, and 4 strains of EHS (H. hepaticus, H. muridarum, H. bilis, and H. anseris). However, no significant phylogenetic patterns of GH and EHS were observed in the seven urease genes (ureA, ureB, ureE, ureF, ureG, ureH, and ureI).
CONCLUSION The phylogenetic relationship of Helicobacter species' pathogenic genes is dominated distinctly by the special colonization areas including gastric and enterohepatic niches.
Collapse
Affiliation(s)
- Le Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xing Liu
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Qi Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Lai Hua
- Institute of Tumor Prevention and Control, People's Hospital of Yangzhong City, Zhenjiang 212299, Jiangsu Province, China
| | - Fei Yang
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Jun-Feng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
21
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
22
|
Zheng H, Xia P, Fu W, Ding S. Helicobacter pylori infection and inflammasomes. Helicobacter 2024; 29. [DOI: 10.1111/hel.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/15/2025]
Abstract
AbstractHelicobacter pylori (H. pylori) causes the most prevalent bacterial infection worldwide, and more than half of the world's population is infected with H. pylori. Classified as a group 1 carcinogen of gastric cancer, H. pylori infection causes the most common chronic gastritis, which is able to progress to chronic atrophic gastritis, dysplasia, and even gastric cancer. The inflammasomes are important cytosolic multiprotein complexes to coordinate the host defense against foreign microorganisms and control the inflammatory response. It is also well‐known that inflammasome plays an important role in the occurrence of H. pylori‐induced gastric inflammation. During infection and inflammation, the activation process of inflammasome is tightly regulated by host immune system. However, excessive activation of inflammasome is closely related to the production of excessive cytokines that cause the body injury and resulting in various inflammatory diseases. In this review, we elaborate the activation and assembly mechanisms of inflammasome, the structure of different inflammasome complexes, host factors in vivo and drugs in vitro that regulate inflammasome signaling during H. pylori infection, aiming to provide novel insights and strategies for identifying new therapeutic targets for the treatment of H. pylori‐associated gastric mucosal diseases.
Collapse
Affiliation(s)
- Huiling Zheng
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences Peking University Beijing China
| | - Weiwei Fu
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| | - Shigang Ding
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| |
Collapse
|
23
|
Zheng M, Li Z, Feng Y, Hou S, Zhang J, Kang C. The role of CD14 and CSF1R in osteoarthritis and gastritis. Medicine (Baltimore) 2023; 102:e35567. [PMID: 37904379 PMCID: PMC10615460 DOI: 10.1097/md.0000000000035567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
Osteoarthritis (OA) is a non-inflammatory degenerative joint disease that mainly involves articular cartilage damage and involves the whole joint tissue. Gastritis is a common stomach disorder, typically referring to inflammation or lesions of the gastric mucosa. However, the relationship between CD14 and colony stimulating factor-1 receptor (CSF1R) and these 2 diseases is not yet clear. OA datasets GSE46750, GSE82107 and gastritis datasets GSE54043 profiles were downloaded from gene expression omnibus databases generated by GPL10558 and GPL570.The R package limma was used to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis and comparative toxicogenomics database analysis were performed. TargetScan was used to screen miRNAs regulating central DEGs. A total of 568 DEGs were identified. According to the gene ontology (GO) and biological processes analysis, they were mainly enriched in ATP metabolism negative regulation, toll-like receptor TLR1:TLR2 signaling pathway, and intracellular transport. The enrichment terms for OA and gastritis were similar to the GO and Kyoto encyclopedia of gene and genome enrichment terms of DEGs, mainly enriched in ATP metabolism negative regulation, secretion granules, transmembrane receptor protein kinase activity, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, and TGF-β signaling pathway. In the Metascape enrichment projects, GO enrichment projects showed functions related to cell-cell receptor interaction, cell secretion, and growth. Two core genes were identified through the construction and analysis of the protein-protein interaction network. The core genes (CD14 and CSF1R) exhibited high expression in OA and gastritis samples and low expression in normal samples. Comparative toxicogenomics database analysis revealed associations between core genes (CD14 and CSF1R) and diseases such as OA, osteoporosis, gastritis, juvenile arthritis, diarrhea, and inflammation. CD14 and CSF1R are highly expressed in OA and gastritis, making them potential therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Zheng Li
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, China
| | - Yingfa Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, West Xiàzhuāng, Badachu, Shijingshan District, Beijing, China
| |
Collapse
|
24
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Yin Z, Zhao Y, Tu Y. Ovotransferrin Inhibits TNF-α Induced Inflammatory Response in Gastric Epithelial Cells via MAPK and NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12474-12486. [PMID: 37566483 DOI: 10.1021/acs.jafc.3c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Ovotransferrin (OVT) has been confirmed to have anti-inflammatory activity. However, its effect and mechanism on gastric inflammation are unclear. In this study, the effect and mechanism of the OVT on the tumor necrosis factor-α (TNF-α) induced inflammatory response in gastric epithelial cells (GES-1) were investigated. The enzyme linked immunosorbent assay (ELISA) was used to determine the levels of inflammation cytokines, followed by RNA sequencing to explore the potential pathways of its anti-inflammatory effect, and then it was validated by Western blotting and pathways inhibitors. Results showed that the OVT at concentrations of 50-400 μg/mL displayed nontoxicity against GES-1 cells. Additionally, 100 μg/mL of OVT obviously reduced the secretion of interleukin (IL)-8, IL-6, and TNF-α by 63.02% (630.09/1703.98), 35.53% (935.81/1451.43), and 36.19% (964.60/1511.63), respectively. The results of RNA sequencing exhibited that the OVT significantly influences the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa-light-chain enhancer of activated B cell (NF-κB) pathways, which was verified by the levels of p-IKK, p-IκB, p-P65, p-ERK, p-JNK, and p-P38 protein. IL-8 contents released by GES-1 cells after incubation with inhibitors of NF-κB and MAPK pathways further confirmed that OVT hindered activation of these two pathways. Collectively, these results suggested that OVT was a natural protein with the potential to treat gastric inflammation.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
25
|
Kiran N, Kashi M, Khan S. Association of Collagenous Gastritis With Helicobacter pylori Infection. Cureus 2023; 15:e42172. [PMID: 37602016 PMCID: PMC10439448 DOI: 10.7759/cureus.42172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Helicobacter pylori is the most common infection and is mostly asymptomatic in infected individuals. Only a few cases of collagenous gastritis associated with H. pylori infection have been reported in the previous literature. We report a case of a 54-year-old female presenting with heartburn and epigastric pain associated with bloating, gas, and sometimes constipation. The physical examination was unremarkable with a soft, non-tender, and non-distended abdomen. Upper endoscopy showed erythema in the stomach with non-erosive gastritis. Our patient was diagnosed with H. pylori-associated chronic active gastritis with collagenous gastritis on histologic evaluation of the gastric biopsy specimen. After treatment with H. pylori eradication therapy, patients with collagenous gastritis associated with H. pylori infections showed a significant improvement in collagenous gastritis on endoscopy.
Collapse
Affiliation(s)
- Nfn Kiran
- Pathology and Laboratory Medicine, Staten Island University Hospital, Staten Island, USA
| | - Meena Kashi
- Pathology, Staten Island University Hospital, Staten Island, USA
| | - Shahbaz Khan
- Gastrointestinal, Hepatobiliary and Transplant Pathology, Indiana University School of Medicine, Indianapolis, USA
- Hematopathology, Northwell Health, New York, USA
- Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Pathology and Laboratory Medicine, Staten Island University Hospital, Staten Island, USA
| |
Collapse
|
26
|
Yang H, Wang L, Zhang M, Hu B. The Role of Adhesion in Helicobacter pylori Persistent Colonization. Curr Microbiol 2023; 80:185. [PMID: 37071212 DOI: 10.1007/s00284-023-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023]
Abstract
Helicobacter pylori (H. pylori) has coevolved with its human host for more than 100 000 years. It can safely colonize around the epithelium of gastric glands via their specific microstructures and proteins. Unless patients receive eradication treatment, H. pylori infection is always lifelong. However, few studies have discussed the reasons. This review will focus on the adhesion of H. pylori from the oral cavity to gastric mucosa and summarize the possible binding and translocation characteristics. Adhesion is the first step for persistent colonization after the directional motility, and factors related to adhesion are necessary. Outer membrane proteins, such as the blood group antigen binding adhesin (BabA) and the sialic acid binding adhesin (SabA), play pivotal roles in binding to human mucins and cellular surfaces. And this may offer different perspectives on eradication.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Lixia Wang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China.
| |
Collapse
|
27
|
Altaf S, Alkheraije KA. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. Front Vet Sci 2023; 10:1148964. [PMID: 36950535 PMCID: PMC10025400 DOI: 10.3389/fvets.2023.1148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial pathogens of animals impact food production and human health globally. Food animals act as the major host reservoirs for pathogenic bacteria and thus are highly prone to suffer from several endemic infections such as pneumonia, sepsis, mastitis, and diarrhea, imposing a major health and economical loss. Moreover, the consumption of food products of infected animals is the main route by which human beings are exposed to zoonotic bacteria. Thus, there is excessive and undue administration of antibiotics to fight these virulent causative agents of food-borne illness, leading to emergence of resistant strains. Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections motivated the researchers to discover new alternative therapeutic strategies to eradicate resistant bacterial strains. One of the successful therapeutic approach for the treatment of animal infections, is the application of cell membrane-coated nanoparticles. Cell membranes of several different types of cells including platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped over the nanoparticles to prepare biocompatible nanoformulations. This diversity of cell membrane selection and together with the possibility of combining with an extensive range of nanoparticles, has opened a new opportunistic window for the development of more potentially effective, safe, and immune evading nanoformulations, as compared to conventionally used bare nanoparticle. This article will elaborately discuss the discovery and development of novel bioinspired cell membrane-coated nanoformulations against several pathogenic bacteria of food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and Group A Streptococcus and Group B Streptococcus.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
28
|
Yang H, Mou Y, Hu B. Discussion on the common controversies of Helicobacter pylori infection. Helicobacter 2023; 28:e12938. [PMID: 36436202 DOI: 10.1111/hel.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) can persistently colonize on the gastric mucosa after infection and cause gastritis, atrophy, metaplasia, and even gastric cancer (GC). METHODS Therefore, the detection and eradication of H. pylori are the prerequisite. RESULTS Clinically, there are some controversial issues, such as why H. pylori infection is persistent, why it translocases along with the lesser curvature of the stomach, why there is oxyntic antralization, what the immunological characteristic of gastric chronic inflammation caused by H. pylori is, whether H. pylori infection is associated with extra-gastric diseases, whether chronic atrophic gastritis (CAG) is reversible, and what the potential problems are after H. pylori eradication. What are the possible answers? CONCLUSION In the review, we will discuss these issues from the attachment to eradication in detail.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Liu Y, Shi Y, Han R, Liu C, Qin X, Li P, Gu R. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer. Front Immunol 2023; 14:1139589. [PMID: 37143652 PMCID: PMC10151477 DOI: 10.3389/fimmu.2023.1139589] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Gastric cancer is one of the top causes of cancer-related death globally. Although novel treatment strategies have been developed, attempts to eradicate gastric cancer have been proven insufficient. Oxidative stress is continually produced and continually present in the human body. Increasing evidences show that oxidative stress contributes significantly to the development of gastric cancer, either through initiation, promotion, and progression of cancer cells or causing cell death. As a result, the purpose of this article is to review the role of oxidative stress response and the subsequent signaling pathways as well as potential oxidative stress-related therapeutic targets in gastric cancer. Understanding the pathophysiology of gastric cancer and developing new therapies for gastric cancer depends on more researches focusing on the potential contributors to oxidative stress and gastric carcinogenesis.
Collapse
Affiliation(s)
- Yingying Liu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoge Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Xiaogang Qin
- Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Renjun Gu, ; Pengfei Li, ; Xiaogang Qin,
| |
Collapse
|
30
|
Yu Z, Sheng WD, Yin X, Bin Y. Coptis, Pinellia, and Scutellaria as a promising new drug combination for treatment of Helicobacter pylori infection. World J Clin Cases 2022; 10:12500-12514. [PMID: 36579091 PMCID: PMC9791531 DOI: 10.12998/wjcc.v10.i34.12500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the most important infectious agent and plays an important role in the progression of chronic gastritis and the development of gastric cancer.
AIM To identify efficient therapeutic agents or strategies that can treat H. pylori infection.
METHODS We performed literature analysis, experimental validation, and network pharmacology. First, traditional Chinese medicine (TCM) prescriptions for the treatment of H. pylori infection were obtained from the China National Knowledge Infrastructure, China Biology Medicine, China Science and Technology Journal Database, and WanFang databases. In addition, we conducted a relevant search by Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). Next, we used TCM Inheritance Support System V2.5 to identify core drug combinations in the TCM prescriptions. Then, an H. pylori-associated chronic mouse model of gastritis was established. The antibacterial properties and anti-inflammatory potential of the core drug combination were evaluated by the rapid urease test, modified Warthin-Starry silver staining, histopathological analysis, and enzyme linked immunosorbent assay. Finally, the active compounds, hub targets, and potential signaling pathways associated with the core drug combination were analyzed by network pharmacology.
RESULTS The TCM treatment of H. pylori was mainly based on reinforcing the healthy Qi and eliminating pathogenic factors by simultaneously applying pungent dispersing, bitter descending, cold and warm drugs. The combination of Coptis, Pinellia, and Scutellaria (CPS) was identified as the core drug combination from 207 prescriptions and 168 herbs. This drug combination eradicated H. pylori, alleviated the gastric pathology induced by H. pylori infection, and reduced the expression levels of tumor necrosis factor-α (P = 0.024) and interleukin-1β (P = 0.001). Moreover, a total of 35 compounds and 2807 targets of CPS were identified using online databases. Nine key compounds (tenaxin I, neobaicalein, norwogonin, skullcapflavone II, baicalein, 5,8,2'-trihydroxy-7-methoxyflavone, acacetin, panicolin, and wogonin) and nine hub target proteins (EGFR, PTGS2, STAT3, MAPK3, MAPK8, HSP90AA1, MAPK1, MMP9, and MTOR) were further explored. Seventy-seven signaling pathways were correlated with H. pylori-induced inflammation and carcinogenesis.
CONCLUSION In summary, we showed that CPS is the core drug combination for treating H. pylori infection. Animal experiments demonstrated that CPS has bacteriostatic properties and can reduce the release of inflammatory cytokines in the gastric mucosa. Network pharmacology predictions further revealed that CPS showed complex chemical compositions with multi-target and multi-pathway regulatory mechanisms. Although the results derived from network pharmacology are not necessarily comprehensive, they still expand our understanding of CPS for treating H. pylori infection.
Collapse
Affiliation(s)
- Zhang Yu
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Wu-Dong Sheng
- Department of Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xu Yin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Yu Bin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
31
|
Yang H, Guan L, Hu B. Detection and Treatment of Helicobacter pylori: Problems and Advances. Gastroenterol Res Pract 2022; 2022:4710964. [PMID: 36317106 PMCID: PMC9617708 DOI: 10.1155/2022/4710964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is chronic and etiologically linked to gastric cancer (GC) derived from gastric epithelium. The potential mechanism is complex, covering chronic inflammation, epithelial senescence, NF-κB activation, the cytotoxin-associated gene A protein translocation, and related abnormal signaling pathways. In clinical practice, the test-and-treat strategy, endoscopy-based strategy, and (family-based) screen-and-treat strategy are recommended to detect H. pylori and prevent GC. It has been demonstrated that the decreasing annual incidence of GC is largely attributable to the management of H. pylori. This study reviews the current clinical practice of H. pylori on the detection and eradication, alternative treatment strategies, and related problems and advances, and hopes to contribute to the better clinical management of H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liwen Guan
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Yang H, Zhou X, Hu B. The 'reversibility' of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgrad Med 2022; 134:474-479. [PMID: 35382697 DOI: 10.1080/00325481.2022.2063604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Gram-negative bacterium Helicobacter pylori (H. pylori) infection is lifelong and usually acquired in childhood, which is etiologically linked to gastric cancer (GC). H. pylori gastritis is defined as an infectious disease with varying severity in virtually all infected subjects. Chronic atrophic gastritis (CAG) is the precancerous condition with the decrease or the loss of gastric glands, which can further be replaced by metaplasia or fibrosis. Patients with advanced stages of CAG are at higher risk of GC and should be followed up with a high-quality endoscopy every 3 years. H. pylori infection is the most common cause and its eradication is recommended, which may contribute to the regression of CAG. However, it is controversial whether CAG is reversible after eradication therapy. In the review, we discuss recent studies which provide important insights into whether CAG is 'reversibility' and when it may progress into GC after eradicating H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Zhou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|