1
|
Grasberger H, Dumitrescu AM, Liao XH, Swanson EG, Weiss RE, Srichomkwun P, Pappa T, Chen J, Yoshimura T, Hoffmann P, França MM, Tagett R, Onigata K, Costagliola S, Ranchalis J, Vollger MR, Stergachis AB, Chong JX, Bamshad MJ, Smits G, Vassart G, Refetoff S. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179. Nat Genet 2024; 56:877-888. [PMID: 38714869 PMCID: PMC11472772 DOI: 10.1038/s41588-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliott G Swanson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Theodora Pappa
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Phillip Hoffmann
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Rebecca Tagett
- Michigan Medicine BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X Chong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Center of Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, and Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Kang HS, Grimm SA, Liao XH, Jetten AM. GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression. Cell Mol Life Sci 2024; 81:65. [PMID: 38281222 PMCID: PMC10822819 DOI: 10.1007/s00018-024-05113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Kang HS, Grimm SA, Liao XH, Jetten AM. Role of GLIS3 in thyroid development and in the regulation of gene expression in thyroid specific Glis3KO mice. RESEARCH SQUARE 2023:rs.3.rs-3044388. [PMID: 37461635 PMCID: PMC10350233 DOI: 10.21203/rs.3.rs-3044388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as Slc5a5 (Nis), become also expressed. We further show that Glis3KO mice do not display any major changes in prenatal thyroid gland morphology indicating that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of thyroid-specific Glis3 knockout (Glis3-Pax8Cre) mice fed either a normal or low-iodine diet (ND or LID) revealed that, in contrast to ubiquitous Glis3KO mice, thyroid follicular cell proliferation and the expression of cell cycle genes were not repressed suggesting that the inhibition of thyroid follicular cell proliferation in ubiquitous Glis3KO mice is related to loss of GLIS3 function in other cell types. However, the expression of several thyroid hormone biosynthesis-, extracellular matrix (ECM)-, and inflammation-related genes was still suppressed in Glis3-Pax8Cre mice particularly under conditions of high blood levels of thyroid stimulating hormone (TSH). We further demonstrate that treatment with TSH, protein kinase A (PKA) or adenylyl cyclase activators or expression of constitutively active PKA enhances GLIS3 protein and activity, suggesting that GLIS3 transcriptional activity is regulated in part by TSH/TSHR-mediated activation of the PKA pathway. This mechanism of regulation provides an explanation for the dramatic increase in GLIS3 protein expression and the subsequent induction of GLIS3 target genes, including several thyroid hormone biosynthetic genes, in thyroid follicular cells of mice fed a LID.
Collapse
|
4
|
Liang J, Qian J, Yang L, Chen X, Wang X, Lin X, Wang X, Zhao B. Modeling Human Thyroid Development by Fetal Tissue-Derived Organoid Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105568. [PMID: 35064652 PMCID: PMC8948548 DOI: 10.1002/advs.202105568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Indexed: 05/29/2023]
Abstract
Euthyroidism is of profound importance for lifetime health. However, the early diagnosis or therapeutics of thyroid developmental defects has not been established, mainly due to limited understanding of human thyroid development and a lack of recapitulating research model. Herein, the authors elaborate the cell atlas and potential regulatory signaling of the evolution of heterogeneous thyrocyte population from 12 to 16 gestational weeks. Moreover, they establish a long-term culture of human fetal thyroid organoids (hFTOs) system, which retains the fetal thyroid lineages and molecular signatures, as well as the ability to generate functional human thyroid follicles post mice renal transplantation. Notably, cAMP signaling activation in hFTOs by forskolin boosts the maturation of follicle and thus thyroid hormone T4 secretion, which recapitulates the key developmental events of fetal thyroid. Employing this ex vivo system, it is found that enhanced chromatin accessibility at thyroid maturation genes (such as TPO and TG) loci permits the transcription for hormone production. This study provides the cell atlas of and an organoid model for human thyroid development, which will facilitate thyroid research and prospective medicine.
Collapse
Affiliation(s)
- Jianqing Liang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200438China
| | - Jun Qian
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic MedicinePeking Union Medical CollegeBeijing100730China
| | - Li Yang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200438China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai200011China
| | - Xiaoning Wang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversitySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510000China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200438China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic MedicinePeking Union Medical CollegeBeijing100730China
| | - Bing Zhao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
5
|
Kushchayeva Y, Kushchayev S, Jensen K, Brown RJ. Impaired Glucose Metabolism, Anti-Diabetes Medications, and Risk of Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14030555. [PMID: 35158824 PMCID: PMC8833385 DOI: 10.3390/cancers14030555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary An epidemiologic link exists between obesity, insulin resistance, diabetes, and some cancers, such as breast cancer and colon cancer. The prevalence of obesity and diabetes is increasing, and additional epidemiologic data suggest that there may be a link between obesity and risk of thyroid abnormalities. Factors that may link obesity and diabetes with thyroid proliferative disorders include elevated circulating levels of insulin, increased body fat, high blood sugars, and exogenous insulin use. However, mechanisms underlying associations of obesity, diabetes, and thyroid proliferative disorders are not yet fully understood. The present manuscript reviews and summarizes current evidence of mechanisms and epidemiologic associations of obesity, insulin resistance, and use of anti-diabetes medications with benign and malignant proliferative disorders of the thyroid. Abstract The prevalence of obesity is progressively increasing along with the potential high risk for insulin resistance and development of type 2 diabetes mellitus. Obesity is associated with increased risk of many malignancies, and hyperinsulinemia has been proposed to be a link between obesity and cancer development. The incidence of thyroid cancer is also increasing, making this cancer the most common endocrine malignancy. There is some evidence of associations between obesity, insulin resistance and/or diabetes with thyroid proliferative disorders, including thyroid cancer. However, the etiology of such an association has not been fully elucidated. The goal of the present work is to review the current knowledge on crosstalk between thyroid and glucose metabolic pathways and the effects of obesity, insulin resistance, diabetes, and anti-hyperglycemic medications on the risk of thyroid cancer development.
Collapse
Affiliation(s)
- Yevgeniya Kushchayeva
- Diabetes and Endocrinology Center, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| | - Sergiy Kushchayev
- Department of Radiology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Kirk Jensen
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Rebecca J. Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Wang H, Mao M, Liu D, Duan L. Association between subclinical hyperthyroidism and a PRKAR1A gene variant in Carney complex patients: A case report and systematic review. Front Endocrinol (Lausanne) 2022; 13:951133. [PMID: 36213268 PMCID: PMC9538310 DOI: 10.3389/fendo.2022.951133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is currently controversial whether subclinical hyperthyroidism is associated with PRKAR1A gene variants. We describe a man with subclinical hyperthyroidism and a PRKAR1A gene variant who was diagnosed with Carney complex (CNC), and we performed a systematic review of published studies to assess the association between PRKAR1A gene variants and the risk of subclinical hyperthyroidism. DESIGN AND METHODS The PubMed, EMBASE, OVID, Science Direct, and gray literature electronic databases were searched for articles published from January 2002 to May 2021 using predefined keywords and inclusion and exclusion criteria. Data on thyroid function from selected studies were extracted and analyzed. RESULTS We identified a CNC patient with a subclinical hyperthyroidism phenotype combined with multiple components and genetic sequenced data. In a subsequent systematic review, twenty selected studies (14 case studies and 6 series studies) enrolling 23 individuals were included in the final analysis. The patient's thyroid function data were qualitative in 11 cases and quantitative in 12 cases. The prevalence of subclinical hyperthyroidism in the CNC patients with a PRKAR1A gene variant, including our patient, was markedly higher than that in the normal population (12.5% vs. 2%). CONCLUSIONS The findings of this systematic review provide helpful evidence that PRKAR1A gene variants and subclinical hyperthyroidism are related and suggest that subclinical hyperthyroidism may be a neglected phenotype of PRKAR1A gene variants and a novel component of CNC patients. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO, identifier CRD42021197655.
Collapse
Affiliation(s)
- Hongyang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Infirmary, Chongqing Mechanical Senior Technician School (Chongqing Mechanical Technician College), Chongqing, China
| | - Min Mao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Duan
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University (Jie er Hospital), Chongqing, China
- *Correspondence: Lian Duan,
| |
Collapse
|
7
|
Ashraf S, Ashraf N, Yilmaz G, Harmancey R. Crosstalk between beta-adrenergic and insulin signaling mediates mechanistic target of rapamycin hyperactivation in liver of high-fat diet-fed male mice. Physiol Rep 2021; 9:e14958. [PMID: 34231324 PMCID: PMC8261682 DOI: 10.14814/phy2.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. While increased nutrient intake and sympathetic activity have been associated with the disease, the pathogenesis of NAFLD remains incompletely understood. We investigated the impact of the interaction of high dietary fat and sugar intake with increased beta-adrenergic receptor (β-AR) signaling on the activity of nutrient-sensing pathways and fuel storage in the liver. C57BL/6J mice were fed a standard rodent diet (STD), a high-fat diet (HFD), a high-fat/high-sugar Western diet (WD), a high-sugar diet with mixed carbohydrates (HCD), or a high-sucrose diet (HSD). After 6 week on diets, mice were treated with isoproterenol (ISO) and the activity of liver mTOR complex 1 (mTORC1)-related signaling analyzed by immunoblotting and correlated with tissue triglyceride and glycogen contents. ISO-stimulated AKT- and ERK-mediated activation of mTORC1 in STD-fed mice. Consumption of all four high-calorie diets exacerbated downstream activation of ribosomal protein S6 kinase beta-1 (S6K1) in response to ISO. S6K1 activity was greater with the fat-enriched HFD and WD and correlated with the presence of metabolic syndrome and a stronger activation of AKT and ERK1/2 pathways. Fat-enriched diets also increased triglyceride accumulation and inhibited glycogen mobilization under β-AR stimulation. In conclusion, crosstalk between β-AR and insulin signaling may contribute to HFD-induced hepatic steatosis through ERK1/2- and AKT-mediated hyperactivation of the mTORC1/S6K1 axis. The findings provide further rationale for the development of therapies aimed at targeting augmented β-AR signaling in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | | | - Gizem Yilmaz
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Romain Harmancey
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
8
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
9
|
Scoville DW, Kang HS, Jetten AM. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol Ther 2020; 215:107632. [PMID: 32693112 PMCID: PMC7606550 DOI: 10.1016/j.pharmthera.2020.107632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
GLI-Similar 3 (GLIS3) is a member of the GLIS subfamily of Krüppel-like zinc finger transcription factors that functions as an activator or repressor of gene expression. Study of GLIS3-deficiency in mice and humans revealed that GLIS3 plays a critical role in the regulation of several biological processes and is implicated in the development of various diseases, including hypothyroidism and diabetes. This was supported by genome-wide association studies that identified significant associations of common variants in GLIS3 with increased risk of these pathologies. To obtain insights into the causal mechanisms underlying these diseases, it is imperative to understand the mechanisms by which this protein regulates the development of these pathologies. Recent studies of genes regulated by GLIS3 led to the identification of a number of target genes and have provided important molecular insights by which GLIS3 controls cellular processes. These studies revealed that GLIS3 is essential for thyroid hormone biosynthesis and identified a critical function for GLIS3 in the generation of pancreatic β cells and insulin gene transcription. These observations raised the possibility that the GLIS3 signaling pathway might provide a potential therapeutic target in the management of diabetes, hypothyroidism, and other diseases. To develop such strategies, it will be critical to understand the upstream signaling pathways that regulate the activity, expression and function of GLIS3. Here, we review the recent progress on the molecular mechanisms by which GLIS3 controls key functions in thyroid follicular and pancreatic β cells and how this causally relates to the development of hypothyroidism and diabetes.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Woeller CF, Roztocil E, Hammond C, Feldon SE. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2020; 60:4336-4345. [PMID: 31622470 PMCID: PMC6798326 DOI: 10.1167/iovs.19-27865] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate the molecular pathways that drive thyroid stimulating hormone receptor (TSHR)–induced cellular proliferation in orbital fibroblasts (OFs) from thyroid eye disease (TED) patients. Methods Orbital fibroblasts from TED and non-TED patients were treated with TSH and changes in gene expression and proliferation were measured. To determine the role of TSHR, TSHR-specific siRNA was used to deplete TSHR levels. Proliferation was measured by bromodeoxyuridine (BrdU) incorporation. PI3K/Akt activation was analyzed by Western blot. The PI3K inhibitor LY294002 was used to investigate PI3K/Akt signaling in OF proliferation. Expression of TSHR, inflammatory cytokines, proliferation related genes and miR-146a and miR-155 were measured by qPCR. Results Orbital fibroblasts from TED patients proliferate significantly more than non-TED OFs in response to TSH. TSH-induced proliferation was dependent upon TSHR expression and required the PI3K/Akt signaling cascade. TSHR activation stimulated miR-146a and miR-155 expression. TED OFs produced significantly more miR-146a and miR-155 than non-TED OFs. MiR-146a and miR-155 targets, ZNRF3 and PTEN, which both limit cell proliferation, were decreased in TSH treated OFs. Conclusions These data reveal that TSHR signaling in TED OFs stimulates proliferation directly through PI3K/Akt signaling and indirectly through induction of miR-146a and miR-155. MiR-146a and miR-155 enhance TED OF proliferation by reducing expression of target genes that normally block cell proliferation. TSHR-dependent expression of miR-146a and miR-155 may explain part of the fibroproliferative pathology observed in TED.
Collapse
Affiliation(s)
- Collynn F Woeller
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Christine Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| |
Collapse
|
11
|
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P, Vigneri P. Activation of the IGF Axis in Thyroid Cancer: Implications for Tumorigenesis and Treatment. Int J Mol Sci 2019; 20:E3258. [PMID: 31269742 PMCID: PMC6651760 DOI: 10.3390/ijms20133258] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
The Insulin-like growth factor (IGF) axis is one of the best-established drivers of thyroid transformation, as thyroid cancer cells overexpress both IGF ligands and their receptors. Thyroid neoplasms encompass distinct clinical and biological entities as differentiated thyroid carcinomas (DTC)-comprising papillary (PTC) and follicular (FTC) tumors-respond to radioiodine therapy, while undifferentiated tumors-including poorly-differentiated (PDTC) or anaplastic thyroid carcinomas (ATCs)-are refractory to radioactive iodine and exhibit limited responses to chemotherapy. Thus, safe and effective treatments for the latter aggressive thyroid tumors are urgently needed. Despite a strong preclinical rationale for targeting the IGF axis in thyroid cancer, the results of the available clinical studies have been disappointing, possibly because of the crosstalk between IGF signaling and other pathways that may result in resistance to targeted agents aimed against individual components of these complex signaling networks. Based on these observations, the combinations between IGF-signaling inhibitors and other anti-tumor drugs, such as DNA damaging agents or kinase inhibitors, may represent a promising therapeutic strategy for undifferentiated thyroid carcinomas. In this review, we discuss the role of the IGF axis in thyroid tumorigenesis and also provide an update on the current knowledge of IGF-targeted combination therapies for thyroid cancer.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| |
Collapse
|
12
|
Shibata S. Role of Pendrin in the Pathophysiology of Aldosterone-Induced Hypertension. Am J Hypertens 2019; 32:607-613. [PMID: 30982848 DOI: 10.1093/ajh/hpz054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/14/2022] Open
Abstract
The recent advances in genetics and molecular biology have resulted in the characterization of key components that critically regulate renal NaCl transport and blood pressure. Pendrin is a Cl-/HCO3- exchanger that is highly expressed in thyroid, inner ear, and kidney. In the kidney, it is selectively present at the apical membrane in non-α intercalated cells of the connecting tubules and cortical collecting duct. Besides its role in acid/base homeostasis, accumulating studies using various genetically modified animals have provided compelling evidence that pendrin regulates extracellular fluid volume and electrolyte balance at the downstream of aldosterone signaling. We have shown that angiotensin II and aldosterone cooperatively control pendrin abundance partly through mammalian target of rapamycin signaling and mineralocorticoid receptor dephosphorylation, which is necessary for the kidney to prevent extracellular fluid loss and electrolyte disturbances under physiologic perturbations. In line with the experimental observations, several clinical data indicated that the impaired pendrin function can cause fluid and electrolyte abnormalities in humans. The purpose of this review is to provide an update on the recent progress regarding the role of pendrin in fluid and electrolyte homeostasis, as well as in the pathophysiology of hypertension associated with mineralocorticoid receptor signaling.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Owonikoko TK, Zhang G, Lallani SB, Chen Z, Martinson DE, Khuri FR, Lonial S, Marcus A, Sun SY. Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS One 2019; 14:e0206309. [PMID: 30807575 PMCID: PMC6390992 DOI: 10.1371/journal.pone.0206309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Signaling through mTOR and somatostatin pathway is implicated in thyroid cancer development. METHOD We evaluated everolimus, an mTOR inhibitor and pasireotide, a multi receptor somatostatin analogue as potential therapy of thyroid cancer focusing on the in vitro and in vivo efficacy, as well as possible mechanism to explain any observed interaction. RESULTS Both everolimus and pasireotide inhibit the growth of thyroid cancer cell lines in vitro with varied efficacy that correlates with tumor origin and somatostatin receptor (SSTR) expression profile of the cell lines. In vitro activity of everolimus show positive correlation with the expression of SSTR types 1, 4 and 5 (CC: 0.9; 0.85, 0.87) while pasireotide activity show negative correlation with SSTR2 (CC: -0.87). Although there is greater modulation of pS6 when pasireotide is combined with everolimus, there is no significant abrogation of the expected feedback upregulation of AKT induced by everolimus. Also, the combination is not significantly better than each agent alone in short and long term in vitro assays. Continuous administration of everolimus at a low dose as opposed to high intermittent dosing schedule has greater antitumor efficacy against thyroid cancer xenografts in vivo. Pasireotide LAR has modest in vivo efficacy and the combination of everolimus and pasireotide LAR achieve greater tumor growth inhibition than each agent alone in TPC-1 xenograft model of thyroid cancer (p = 0.048). CONCLUSION Our findings provide support for the clinical evaluation of everolimus and pasireotide in thyroid cancer and other neuroendocrine tumors.
Collapse
Affiliation(s)
- Taofeek K. Owonikoko
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Guojing Zhang
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shenila B. Lallani
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zhengjia Chen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Deborah E. Martinson
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Fadlo R. Khuri
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Sagar Lonial
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Adam Marcus
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci 2018; 19:ijms19123814. [PMID: 30513575 PMCID: PMC6321330 DOI: 10.3390/ijms19123814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine tumor. Although the majority of TCs show good prognoses, a minor proportion are aggressive and refractory to conventional therapies. So far, the molecular mechanisms underlying TC pathogenesis are incompletely understood. Evidence suggests that TC cells and their precursors are responsive to insulin and insulin-like growth factors (IGFs), and often overexpress receptors for insulin (IR) and IGF-1 (IGF-1R). IR exists in two isoforms, namely IR-A and IR-B. The first binds insulin and IGF-2, unlike IR-B, which only binds insulin. IR-A is preferentially expressed in prenatal life and contributes to development through IGF-2 action. Aggressive TC overexpresses IR-A, IGF-2, and IGF-1R. The over-activation of IR-A/IGF-2 loop in TC is associated with stem-like features and refractoriness to some targeted therapies. Importantly, both IR isoforms crosstalk with IGF-1R, giving rise to the formation of hybrids receptors (HR-A or HR-B). Other interactions have been demonstrated with other molecules such as the non-integrin collagen receptor, discoidin domain receptor 1 (DDR1), and the receptor for the hepatocyte growth factor (HGF), Met. These functional networks provide mechanisms for IR signaling diversification, which may also exert a role in TC stem cell biology, thereby contributing to TC initiation and progression. This review focuses on the molecular mechanisms by which deregulated IR isoforms and their crosstalk with other molecules and signaling pathways in TC cells and their precursors may contribute to thyroid carcinogenesis, progression, and resistance to conventional treatments. We also highlight how targeting these alterations starting from TC progenitors cells may represent new therapeutic strategies to improve the clinical management of advanced TCs.
Collapse
|
15
|
Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci 2018; 75:3473-3494. [PMID: 29779043 PMCID: PMC6123274 DOI: 10.1007/s00018-018-2841-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
16
|
Ock S, Ahn J, Lee SH, Kim HM, Kang H, Kim YK, Kook H, Park WJ, Kim S, Kimura S, Jung CK, Shong M, Holzenberger M, Abel ED, Lee TJ, Cho BY, Kim HS, Kim J. Thyrocyte-specific deletion of insulin and IGF-1 receptors induces papillary thyroid carcinoma-like lesions through EGFR pathway activation. Int J Cancer 2018; 143:2458-2469. [PMID: 30070361 DOI: 10.1002/ijc.31779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023]
Abstract
Insulin and insulin-like growth factor (IGF)-1 signaling in the thyroid are thought to be permissive for the coordinated regulation by thyroid-stimulating hormone (TSH) of thyrocyte proliferation and hormone production. However, the integrated role of insulin receptor (IR) and IGF-1 receptor (IGF-1R) in thyroid development and function has not been explored. Here, we generated thyrocyte-specific IR and IGF-1R double knockout (DTIRKO) mice to precisely evaluate the coordinated functions of these receptors in the thyroid of neonates and adults. Neonatal DTIRKO mice displayed smaller thyroids, paralleling defective folliculogenesis associated with repression of the thyroid-specific transcription factor Foxe1. By contrast, at postnatal day 14, absence of IR and IGF-1R paradoxically induced thyrocyte proliferation, which was mediated by mTOR-dependent signaling pathways. Furthermore, we found elevated production of TSH during the development of follicular hyperplasia at 8 weeks of age. By 50 weeks, all DTIRKO mice developed papillary thyroid carcinoma (PTC)-like lesions that correlated with induction of the ErbB pathway. Taken together, these data define a critical role for IR and IGF-1R in neonatal thyroid folliculogenesis. They also reveal an important reciprocal relationship between IR/IGF-1R and TSH/ErbB signaling in the pathogenesis of thyroid follicular hyperplasia and, possibly, of papillary carcinoma.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jihyun Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Woo Jin Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Korea
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University, Daejeon, Korea
| | - Martin Holzenberger
- INSERM and Sorbonne University, Saint-Antoine Research Center, Paris, France
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bo Youn Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
17
|
Patyra K, Jaeschke H, Löf C, Jännäri M, Ruohonen ST, Undeutsch H, Khalil M, Kero A, Poutanen M, Toppari J, Chen M, Weinstein LS, Paschke R, Kero J. Partial thyrocyte-specific Gα s deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice. FASEB J 2018; 32:fj201800211R. [PMID: 29799790 DOI: 10.1096/fj.201800211r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the Gs- and Gq/11-mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of Gs-protein α subunit (Gαs) in adult mice [tamoxifen-inducible Gs protein α subunit deficient (iTGαsKO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGαsKO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGαsKO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGαsKO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gαs in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gαs deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gαs expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/Gs/cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gαs deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.
Collapse
Affiliation(s)
- Konrad Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Holger Jaeschke
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Christoffer Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Meeri Jännäri
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Henriette Undeutsch
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moosa Khalil
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary,
Alberta, Canada
| | - Andreina Kero
- Department of Pediatrics, Turku University Hospital, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Finland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralf Paschke
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jukka Kero
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Finland
| |
Collapse
|
18
|
Roof AK, Gutierrez-Hartmann A. Consider the context: Ras/ERK and PI3K/AKT/mTOR signaling outcomes are pituitary cell type-specific. Mol Cell Endocrinol 2018; 463:87-96. [PMID: 28445712 DOI: 10.1016/j.mce.2017.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Conserved signaling pathways are critical regulators of pituitary homeostasis and, when dysregulated, contribute to adenoma formation. Pituitary adenomas are typically benign and rarely progress to malignant cancer. Pituitary and other neuroendocrine cell types often display non-proliferative responses to ERK and PI3K, in contrast to non-endocrine cell types which typically proliferate in response to ERK and PI3K activation. These differences likely contribute to the infrequent progression to malignancy in many endocrine tumors. In this review, we highlight the Ras/ERK and PI3K/AKT/mTOR signaling pathways in each pituitary cell type, as well as in other endocrine tissues. Furthermore, we provide evidence that a balance of ERK and PI3K signaling is required to maintain pituitary homeostasis. It is unlikely that one sole oncogene will be identified as being responsible for sporadic pituitary adenoma formation. This review emphasizes the necessity to consider endocrine cell-specific contexts and the interplay of signaling pathways to define the mechanisms underlying pituitary tumorigenesis.
Collapse
Affiliation(s)
- Allyson K Roof
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Arthur Gutierrez-Hartmann
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
19
|
Jitsukawa S, Kamekura R, Kawata K, Ito F, Sato A, Matsumiya H, Nagaya T, Yamashita K, Kubo T, Kikuchi T, Sato N, Hasegawa T, Kiyonari H, Mukumoto Y, Takano KI, Himi T, Ichimiya S. Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression. J Pathol 2017; 243:342-353. [PMID: 28771744 DOI: 10.1002/path.4951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy and its prevalence has recently been increasing worldwide. We previously reported that the level of sorting nexin 5 (Snx5), an endosomal translocator, is preferentially decreased during the progression of well-differentiated thyroid carcinoma into poorly differentiated carcinoma. To address the functional role of Snx5 in the development and progression of thyroid carcinoma, we established Snx5-deficient (Snx5-/- ) mice. In comparison to wild-type (Snx5+/+ ) mice, Snx5-/- mice showed enlarged thyroid glands that consisted of thyrocytes with large irregular-shaped vacuoles. Snx5-/- thyrocytes exhibited a higher growth potential and higher sensitivity to thyroid-stimulating hormone (TSH). A high content of early endosomes enriched with TSH receptors was found in Snx5-/- thyrocytes, suggesting that loss of Snx5 caused retention of the TSH receptor (TSHR) in response to TSH. Similar data were found for internalized EGF in primary thyrocytes. The increased TSH sensitivities in Snx5-/- thyrocytes were also confirmed by results showing that Snx5-/- mice steadily developed thyroid tumors with high metastatic potential under high TSH. Furthermore, a thyroid cancer model using carcinogen and an anti-thyroidal agent revealed that Snx5-/- mice developed metastasizing thyroid tumors with activation of MAP kinase and AKT pathways, which are postulated to be major pathways of malignant progression of human thyroid carcinoma. Our results suggest that thyrocytes require Snx5 to lessen tumorigenic signaling driven by TSH, which is a major risk factor for thyroid carcinoma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumie Ito
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Matsumiya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Nagaya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiji Yamashita
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoki Kikuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Kang HS, Kumar D, Liao G, Lichti-Kaiser K, Gerrish K, Liao XH, Refetoff S, Jothi R, Jetten AM. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest 2017; 127:4326-4337. [PMID: 29083325 DOI: 10.1172/jci94417] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division-related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development.
Collapse
Affiliation(s)
| | | | - Grace Liao
- 1, Immunity, Inflammation and Disease Laboratory
| | | | - Kevin Gerrish
- 3, Molecular Genomics Core, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | | | - Samuel Refetoff
- 4, Department of Medicine, and.,5, Department of Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Raja Jothi
- 2, Epigenetics and Stem Cell Biology Laboratory, and
| | | |
Collapse
|
21
|
Kheder S, Sisley K, Hadad S, Balasubramanian SP. Effects of prolonged exposure to low dose metformin in thyroid cancer cell lines. J Cancer 2017; 8:1053-1061. [PMID: 28529619 PMCID: PMC5436259 DOI: 10.7150/jca.16584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is generally associated with an excellent prognosis, but there is significant long-term morbidity with standard treatment. Some sub-types however have a poor prognosis. Metformin, an oral anti-diabetic drug is shown to have anti-cancer effects in several types of cancer (breast, lung and ovarian cancer). The proposed mechanisms include activation of the Adenosine Mono-phosphate-activated Protein Kinase (AMPK) pathway and inhibition of the mTOR pathway (which promotes growth and proliferation). By inhibiting hepatic gluconeogenesis and increasing glucose uptake by muscles, metformin decreases blood glucose and circulating Insulin levels. Aims: Explore the effect of metformin on the growth and proliferation of thyroid cancer cell lines. Methods: The effects of metformin on thyroid cancer cell lines (FTC-133, K1E7, RO82-W-1, 8305C and TT) and normal thyroid follicular cells (Nthy-ori 3-1) were investigated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay for cell proliferation; clonogenic assays; FACS analysis for apoptosis and cell cycle, H2A.X phosphorylation (γH2AX) assay for DNA repair and scratch assay for cell migration. Results: Metformin inhibited cell proliferation and colony formation at 0.03 mM and above and inhibited cell migration at 0.3 mM. At concentrations of 0.1 mM and above metformin increased the percentage of apoptotic cells and induced cell cycle arrest in G0/G1 phase at minimum concentration of 0.3 mM. Unlike previous reports, no effect on DNA repair response was demonstrated. Conclusion: Metformin suppressed growth of all thyroid cancer cell lines, at concentrations considered to be within in the therapeutic range for diabetic patients on metformin (<0.3 mM).
Collapse
Affiliation(s)
- Safar Kheder
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX
| | - Karen Sisley
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX
| | - Sirwan Hadad
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX
| | | |
Collapse
|
22
|
Oosting M, Kerstholt M, Ter Horst R, Li Y, Deelen P, Smeekens S, Jaeger M, Lachmandas E, Vrijmoeth H, Lupse M, Flonta M, Cramer RA, Kullberg BJ, Kumar V, Xavier R, Wijmenga C, Netea MG, Joosten LAB. Functional and Genomic Architecture of Borrelia burgdorferi-Induced Cytokine Responses in Humans. Cell Host Microbe 2016; 20:822-833. [PMID: 27818078 DOI: 10.1016/j.chom.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/25/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Despite the importance of immune variation for the symptoms and outcome of Lyme disease, the factors influencing cytokine production during infection with the causal pathogen Borrelia burgdorferi remain poorly understood. Borrelia infection-induced monocyte- and T cell-derived cytokines were profiled in peripheral blood from two healthy human cohorts of Western Europeans from the Human Functional Genomics Project. Both non-genetic and genetic host factors were found to influence Borrelia-induced cytokine responses. Age strongly impaired IL-22 responses, and genetic studies identified several independent QTLs that impact Borrelia-induced cytokine production. Genetic, transcriptomic, and functional validation studies revealed an important role for HIF-1α-mediated glycolysis in the cytokine response to Borrelia. HIF-1α pathway activation and increase in glycolysis-derived lactate was confirmed in Lyme disease patients. In conclusion, functional genomics approaches reveal the architecture of cytokine production induced by Borrelia infection of human primary leukocytes and suggest a connection between cellular glucose metabolism and Borrelia-induced cytokine production.
Collapse
Affiliation(s)
- Marije Oosting
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Mariska Kerstholt
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands; Genomics Coordination Center, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Sanne Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu," 400012 Cluj-Napoca, Romania
| | - Mirela Flonta
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu," 400012 Cluj-Napoca, Romania
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, NH 03755-1404, USA
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Ramnik Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev 2015; 41:707-13. [PMID: 26138515 DOI: 10.1016/j.ctrv.2015.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Thyroid carcinoma (TC) is the most common endocrine malignancy. The pathogenesis of TC is complex and involves multiple genetic events that lead to activation of oncogenic pathways such as the MAP kinase (MAPK) pathway and the PI3K/Akt/mTOR pathway. The PI3K/Akt pathway has emerged as an important player in the pathogenesis of TC, particularly in follicular and advanced anaplastic or poorly differentiated TC. Because these patients have a poor prognosis, particularly when their tumors become resistant to the conventional treatment with radioactive iodine, efforts have been made to identify possible targets for therapy within these pathways. Orally available drugs targeting the PI3K/Akt/mTOR pathway are being used with success in treatment of several types of malignant tumors. There is an increasing amount of preclinical and clinical data supporting that this pathway may represent a promising target for systemic therapy in TC. The present review focuses on the most recent developments on the role of the PI3K/Akt pathway in the pathogenesis of non-medullary TC and will provide insight into how this pathway can be targeted either alone or in the context of multimodal therapeutic strategies for treatment of advanced TC.
Collapse
Affiliation(s)
- Mirela S Petrulea
- Department of Endocrinology, University of Medicine and Pharmacy Cluj-Napoca Iuliu Hatieganu, 3-5 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Theo S Plantinga
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Jan W Smit
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | - Carmen E Georgescu
- Department of Endocrinology, University of Medicine and Pharmacy Cluj-Napoca Iuliu Hatieganu, 3-5 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands..
| |
Collapse
|
24
|
Czarnecka AM, Kornakiewicz A, Lian F, Szczylik C. Future perspectives for mTOR inhibitors in renal cell cancer treatment. Future Oncol 2015; 11:801-17. [DOI: 10.2217/fon.14.303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ABSTRACT Everolimus is a mTOR inhibitor that demonstrates antitumor and antiangiogenic activities. In a randomized Phase III trial, patients with metastatic renal cell carcinoma who progressed on sunitinib/sorafenib were treated with everolimus and showed significant improvement in progression-free survival compared with best supportive care. Novel approaches in treatment are expected to ensure less toxic therapies and increase efficacy of everolimus. To provide a new perspective for mTOR inhibitor research and therapy, we discuss renal cell carcinoma cancer stem cells as a potential target for mTOR inhibitors and present new concepts on emerging antiangiogenic therapies. Finally, we point why systems biology approach with reverse molecular engineering may also contribute to the field of drug discovery in renal cell carcinoma.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine Atlanta, GA 30322, USA
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
25
|
Differential transcriptional and protein expression of thyroid-stimulating hormone receptor in ovarian carcinomas. Int J Gynecol Cancer 2015; 24:851-6. [PMID: 24844218 DOI: 10.1097/igc.0000000000000139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Thyroid-stimulating hormone (TSH) regulates normal thyroid function by binding to its receptor (thyroid-stimulating hormone receptor -TSHR) that is expressed at the surface of thyroid cells. Recently, it has been demonstrated that TSHR is abundantly expressed in several tissues apart from the thyroid, among them the normal ovarian surface epithelium. The role of TSHR expression outside the thyroid is not completely understood. The current study examines possible alterations of TSHR expression in ovarian carcinomas and its implication in ovarian carcinogenesis. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction and immunohistochemistry analysis of TSHR expression were performed in 34 ovarian carcinoma specimens and 10 normal ovarian tissues (controls). RESULTS Significant reduction in TSHR messenger RNA (mRNA) expression was detected in ovarian carcinomas (mean [SD]: 0.518 [0.0934] vs normal, 49.4985 [89.1626]; P < 0.001, Mann-Whitney U test), whereas TSHR protein levels were significantly increased (percentage of positive cells: cancer, 73.55% [20.09%], vs normal, 54.54% [21.14%]; intensity: cancer, 2.52 [0.508], vs normal 1 [0]; P = 0.012, Mann-Whitney U test). No significant differences in TSHR mRNA were found according to history of thyroid disease. CONCLUSIONS Our study describes for the first time alterations in TSHR expression both at mRNA and protein levels in ovarian carcinomas. The discrepancy between the decreased levels of the TSHR mRNA and the increased protein expression has already been described in thyroid carcinomas and might be due to alterations in its degradation by the ubiquitin system or other unknown mechanisms. Further analysis could elucidate the role of these findings in ovarian carcinogenesis.
Collapse
|
26
|
Alonso-Gordoa T, Díez JJ, Durán M, Grande E. Advances in thyroid cancer treatment: latest evidence and clinical potential. Ther Adv Med Oncol 2015; 7:22-38. [PMID: 25553081 PMCID: PMC4265091 DOI: 10.1177/1758834014551936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Advanced thyroid carcinoma is an infrequent tumor entity with limited treatment possibilities until recently. The extraordinary improvement in the comprehension of genetic and molecular alterations involving the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositide 3-kinase/Akt/mammalian target of rapamycin signaling and interacting pathways that are involved in tumor survival, proliferation, differentiation, motility and angiogenesis have been the rationale for the development of new effective targeted therapies. Data coming from phase II clinical trials have confirmed the efficacy of those targeted agents against receptors in cell membrane and cytoplasmic molecules. Moreover, four of those investigational drugs, vandetanib, cabozantinib, sorafenib and lenvatinib, have reached a phase III clinical trial with favorable results in progression-free survival and overall survival in medullary thyroid carcinoma and differentiated thyroid carcinoma. Further analysis for an optimal approach has been conducted according to mutational profile and tumor subtypes. However, consistent results are still awaited and the research for adequate prognostic and predictive biomarkers is ongoing. The following report offers a comprehensive review from the rationale to the basis of targeted agents in the treatment of thyroid carcinoma. In addition, current and future therapeutic developments by the inhibition of further molecular targets are discussed in this setting.
Collapse
Affiliation(s)
- T Alonso-Gordoa
- Medical Oncology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - J J Díez
- Endocrinology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - M Durán
- Surgery Department, Rey Juan Carlos University Hospital, Mostoles, Spain
| | - Enrique Grande
- Servicio de Oncología Médica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Km 9100, 28034 Madrid, Spain
| |
Collapse
|
27
|
Malaguarnera R, Chen KY, Kim TY, Dominguez JM, Voza F, Ouyang B, Vundavalli SK, Knauf JA, Fagin JA. Switch in signaling control of mTORC1 activity after oncoprotein expression in thyroid cancer cell lines. J Clin Endocrinol Metab 2014; 99:E1976-87. [PMID: 25029414 PMCID: PMC4184069 DOI: 10.1210/jc.2013-3976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid growth is regulated by TSH and requires mammalian target of rapamycin (mTOR). Thyroid cancers frequently exhibit mutations in MAPK and/or phosphoinositol-3-kinase-related kinase effectors. OBJECTIVE The objective of the study was to explore the contribution of RET/PTC, RAS, and BRAF to mTOR regulation and response to mTOR inhibitors. METHODS PCCL3 cells conditionally expressing RET/PTC3, HRAS(G12V), or BRAF(V600E) and human thyroid cancer cells harboring mutations of these genes were used to test pathways controlling mTOR and its requirement for growth. RESULTS TSH/cAMP-induced growth of PCCL3 cells requires mTOR, which is stimulated via protein kinase A in a MAPK kinase (MEK)- and AKT-independent manner. Expression of RET/PTC3, HRAS(G12V), or BRAF(V600E) in PCCL3 cells induces mTOR but does not entirely abrogate the cAMP-mediated control of its activity. Acute oncoprotein-induced mTOR activity is regulated by MEK and AKT, albeit to differing degrees. By contrast, mTOR was not activated by TSH/cAMP in human thyroid cancer cells. Tumor genotype did not predict the effects of rapamycin or the mTOR kinase inhibitor AZD8055 on growth, with the exception of a PTEN-null cell line. Selective blockade of MEK did not influence mTOR activity of BRAF or RAS mutant cells. Combined MEK and mTOR kinase inhibition was synergistic on growth of BRAF- and RAS-mutant thyroid cancer cells in vitro and in vivo. CONCLUSION Thyroid cancer cells lose TSH/cAMP dependency of mTOR signaling and cell growth. mTOR activity is not decreased by the MEK or AKT inhibitors in the RAS or BRAF human thyroid cancer cell lines. This may account for the augmented effects of combining the mTOR inhibitors with selective antagonists of these oncogenic drivers.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Human Oncology and Pathogenesis Program (R.M., K.-Y.C., T.-Y.K., J.M.D., F.V., S.K.V., J.A.K., J.A.F.) and Department of Medicine (J.A.K., J.A.F.), Memorial Sloan-Kettering Cancer Center, New York, New York 10065; and Division of Endocrinology (B.O.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Plantinga TS, Heinhuis B, Gerrits D, Netea MG, Joosten LAB, Hermus ARMM, Oyen WJG, Schweppe RE, Haugen BR, Boerman OC, Smit JWA, Netea-Maier RT. mTOR Inhibition promotes TTF1-dependent redifferentiation and restores iodine uptake in thyroid carcinoma cell lines. J Clin Endocrinol Metab 2014; 99:E1368-75. [PMID: 24712572 PMCID: PMC5393487 DOI: 10.1210/jc.2014-1171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONCEPT Redifferentiation of thyroid carcinoma cells has the potential to increase the efficacy of radioactive iodine therapy in treatment-refractory, nonmedullary thyroid carcinoma (TC), leading to an improved disease outcome. Mammalian target of rapamycin (mTOR) is a key regulator of cell fate affecting survival and differentiation, with autophagy and inflammation as prominent downstream pathways. METHODS The effects of mTOR inhibition were studied for its redifferentiation potential of the human TC cell lines BC-PAP, FTC133, and TPC1 by assessment of mRNA and protein expression of thyroid-specific genes and by performance of iodine uptake assays. RESULTS In thyroid transcription factor 1 (TTF1)-expressing cell lines, mTOR inhibition promoted redifferentiation of TC cells by the up-regulation of human sodium-iodine symporter mRNA and protein expression. Furthermore, these cells exhibited markedly elevated iodine uptake capacity. Surprisingly, this redifferentiation process was not mediated by autophagy induced during mTOR inhibition or by inflammatory mediators but through transcriptional effects at the level of TTF1 expression. Accordingly, small interfering RNA inhibition of TTF1 completely abrogated the induction of human sodium-iodine symporter by mTOR inhibition. CONCLUSION The present study has identified the TTF1-dependent molecular mechanisms through which the inhibition of mTOR leads to the redifferentiation of TC cells and subsequently to increased radioactive iodine uptake.
Collapse
Affiliation(s)
- Theo S Plantinga
- Departments of Internal Medicine (T.S.P., B.H., M.G.N., L.A.B.J., A.R.M.M.H., J.W.A.S., R.T.N.-M.) and Nuclear Medicine (D.G., W.J.G.O., O.C.B.) and Division of Endocrinology (T.S.P., A.R.M.M.H., J.W.A.S., R.T.N.-M.), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; and Division of Endocrinology, Diabetes, and Metabolism (R.E.S., B.R.H.), University of Colorado Denver, Aurora, Colorado 80045
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yu CY, Liang GB, Du P, Liu YH. Lgr4 promotes glioma cell proliferation through activation of Wnt signaling. Asian Pac J Cancer Prev 2014; 14:4907-11. [PMID: 24083766 DOI: 10.7314/apjcp.2013.14.8.4907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The key signaling networks regulating glioma cell proliferation remain poorly defined. The leucine-rich repeat containing G-protein coupled receptor 4 (Lgr4) has been implicated in intestinal, gastric, and epidermal cell functions. We investigated whether Lgr4 functions in glioma cells and found that Lgr4 expression was significantly increased in glioma tissues. In addition, Lgr4 overexpression promoted while its knockdown using small interfering RNA oligos inhibited glioma cell proliferation. In addition, Wnt/β-catenin signaling was activated in cells overexpressing Lgr4. Therefore, our results revealed that Lgr4 activates Wnt/β-catenin signaling to regulate glioma cell proliferation.
Collapse
Affiliation(s)
- Chun-Yong Yu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China E-mail :
| | | | | | | |
Collapse
|
30
|
Pringle DR, Vasko VV, Yu L, Manchanda PK, Lee AA, Zhang X, Kirschner JM, Parlow AF, Saji M, Jarjoura D, Ringel MD, La Perle KMD, Kirschner LS. Follicular thyroid cancers demonstrate dual activation of PKA and mTOR as modeled by thyroid-specific deletion of Prkar1a and Pten in mice. J Clin Endocrinol Metab 2014; 99:E804-12. [PMID: 24512487 PMCID: PMC4010710 DOI: 10.1210/jc.2013-3101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid cancer is the most common form of endocrine cancer, and it is a disease whose incidence is rapidly rising. Well-differentiated epithelial thyroid cancer can be divided into papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although FTC is less common, patients with this condition have more frequent metastasis and a poorer prognosis than those with PTC. OBJECTIVE The objective of this study was to characterize the molecular mechanisms contributing to the development and metastasis of FTC. DESIGN We developed and characterized mice carrying thyroid-specific double knockout of the Prkar1a and Pten tumor suppressor genes and compared signaling alterations observed in the mouse FTC to the corresponding human tumors. SETTING The study was conducted at an academic research laboratory. Human samples were obtained from academic hospitals. PATIENTS Deidentified, formalin-fixed, paraffin-embedded (FFPE) samples were analyzed from 10 control thyroids, 30 PTC cases, five follicular variant PTC cases, and 10 FTC cases. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURES Mouse and patient samples were analyzed for expression of activated cAMP response element binding protein, AKT, ERK, and mammalian target of rapamycin (mTOR). Murine FTCs were analyzed for differential gene expression to identify genes associated with metastatic progression. RESULTS Double Prkar1a-Pten thyroid knockout mice develop FTC and recapitulate the histology and metastatic phenotype of the human disease. Analysis of signaling pathways in FTC showed that both human and mouse tumors exhibited strong activation of protein kinase A and mTOR. The development of metastatic disease was associated with the overexpression of genes required for cell movement. CONCLUSIONS These data imply that the protein kinase A and mTOR signaling cascades are important for the development of follicular thyroid carcinogenesis and may suggest new targets for therapeutic intervention. Mouse models paralleling the development of the stages of human FTC should provide important new tools for understanding the mechanisms of FTC development and progression and for evaluating new therapeutics.
Collapse
Affiliation(s)
- Daphne R Pringle
- Departments of Molecular, Virology, Immunology, and Medical Genetics (D.R.P., P.K.M., A.A.L., J.M.K., L.S.K.) and Veterinary Biosciences (K.M.D.L.P.), Center for Biostatistics (L.Y., X.Z., D.J.), and Division of Endocrinology, Diabetes, and Metabolism (M.S., M.D.R., L.S.K.), The Ohio State University, Columbus, Ohio 43210; Department of Pediatrics (V.V.V.), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814; and National Hormone and Peptide Program (A.F.P.), Harbor-UCLA Medical Center, Torrance, California 90509
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sastre-Perona A, Santisteban P. Wnt-independent role of β-catenin in thyroid cell proliferation and differentiation. Mol Endocrinol 2014; 28:681-95. [PMID: 24645679 DOI: 10.1210/me.2013-1377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin pathway has been associated with thyroid cell growth and tumorigenesis. However, little is known regarding its involvement in the response to the key regulators of thyroid cell proliferation and differentiation. Here we show that TSH and IGF-1 increase β-catenin nuclear accumulation and its transcriptional activity in differentiated thyroid cells. This effect takes place in a Wnt-independent manner because TSH and IGF-1, through the activation of protein kinase A and protein kinase B/Akt, phosphorylate β-catenin at S552 and S675, which results in β-catenin release from E-cadherin at the adherens junctions. Nuclear β-catenin regulates thyroid cell proliferation, because its silencing or the overexpression of a dominant-negative form of T-cell factor 4 resulted in reduced levels of cyclin D1 and DNA synthesis. Furthermore, the β-catenin silencing markedly reduced the expression of Pax8, the main transcription factor involved in epithelial thyroid cell differentiation. Finally, we observed that β-catenin physically interacts with the transcription factor Pax8, increasing its transcriptional activity on the sodium iodide symporter (NIS) gene, a critical gene required for thyroid cell physiology. Taken together, our findings show that β-catenin plays a not yet described role in thyroid function including a functional interaction with Pax8.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | | |
Collapse
|
32
|
Galofré JC, Chacón AM, Latif R. Targeting thyroid diseases with TSH receptor analogs. ACTA ACUST UNITED AC 2013; 60:590-8. [DOI: 10.1016/j.endonu.2012.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
33
|
Ock S, Ahn J, Lee SH, Kang H, Offermanns S, Ahn HY, Jo YS, Shong M, Cho BY, Jo D, Abel ED, Lee TJ, Park WJ, Lee IK, Kim J. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter. FASEB J 2013; 27:4899-908. [PMID: 23982142 DOI: 10.1096/fj.13-231381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although thyroid-stimulating hormone (TSH) is known to be a major regulator of thyroid hormone biosynthesis and thyroid growth, insulin-like growth factor 1 (IGF-1) is required for mediating thyrocyte growth in concert with TSH in vitro. We generated mice with thyrocyte-selective ablation of IGF-1 receptor (TIGF1RKO) to explore the role of IGF-1 receptor signaling on thyroid function and growth. In 5-wk-old TIGF1RKO mice, serum thyroxine (T4) concentrations were decreased by 30% in concert with a 43% down-regulation of the monocarboxylate transporter 8 (MCT8), which is involved in T4 secretion. Despite a 3.5-fold increase in circulating concentrations of TSH, thyroid architecture and size were normal. Furthermore, thyrocyte area was increased by 40% in WT thyroids after 10 d TSH injection, but this effect was absent in TSH-injected TIGF1RKO mice. WT mice treated with methimazole and sodium perchlorate for 2 or 6 wk exhibited pronounced goiter development (2.0 and 5.4-fold, respectively), but in TIGF1RKO mice, goiter development was completely abrogated. These data reveal an essential role for IGF-1 receptor signaling in the regulation of thyroid function and TSH-stimulated goitrogenesis.
Collapse
Affiliation(s)
- Sangmi Ock
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University, 224-1 Heuk Seok-dong, Dongjak-ku Seoul 156-755, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cantara S, D'Angeli F, Toti P, Lignitto L, Castagna MG, Capuano S, Prabhakar BS, Feliciello A, Pacini F. Expression of the ring ligase PRAJA2 in thyroid cancer. J Clin Endocrinol Metab 2012; 97:4253-9. [PMID: 22948757 DOI: 10.1210/jc.2012-2360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In thyroid cells, binding of TSH to its receptor increases cAMP levels, sustaining thyrocytes growth and hormone production. The main cAMP effector enzyme is protein kinase A (PKA). Praja2 is a widely expressed RING (Really Interesting New Gene) ligase, which degrades the regulatory subunits of PKA, thus controlling the strength and duration of PKA signaling in response to cAMP. Differentiated thyroid cancer expresses a functional TSH receptor, and its growth and progression are positively regulated by TSH and cAMP signaling. AIM We aimed to analyze the expression of praja2 in a group of 36 papillary thyroid cancer (PTC), 14 benign nodules, and six anaplastic thyroid cancers (ATC). METHODS We measured praja2 mRNA levels by quantitative RT-PCR and praja2 expression by Western blot and immunohistochemistry. Possible association between praja2 mRNA and the presence of known mutations was evaluated. RESULTS We found a statistical significant increase of mRNA levels in PTC tissue samples, compared with benign nodules and ATC. In particular, mRNA levels were maximal in differentiated thyroid cancer (PTC), progressively decreasing in more aggressive tumors, ATC having the lowest amount of praja2 mRNA. Accordingly, higher levels of praja2 protein were detected in lysates from PTC, compared with ATC. By immunohistochemistry, in PTC sections we observed a marked increase of cytoplasmic praja2 signal, which significantly decreased in less differentiated thyroid tumors, completely disappearing in ATC. Studies in cultured cells stably expressing RET/PTC1 oncogene or mutant BRAF revealed a direct correlation between praja2 mRNA levels and malignant phenotype of transformed cells. Similar results were obtained using thyroid cancer tissues carrying the same mutations. CONCLUSIONS praja2 is markedly overexpressed in differentiated thyroid cancer, and its levels inversely correlate with the malignant phenotype of the tumor. Thus, praja2 is a novel cancer-related gene whose expression is linked to the histotype and mutational status of the thyroid tumor.
Collapse
Affiliation(s)
- Silvia Cantara
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Endocrinology, and Metabolism and Biochemistry, Policlinico Santa Maria alle Scotte, Viale Bracci 1, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pringle DR, Yin Z, Lee AA, Manchanda PK, Yu L, Parlow AF, Jarjoura D, La Perle KMD, Kirschner LS. Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocr Relat Cancer 2012; 19:435-46. [PMID: 22514108 PMCID: PMC3667702 DOI: 10.1530/erc-11-0306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy in the population, and the incidence of this cancer is increasing at a rapid rate. Although genetic analysis of papillary thyroid cancer (PTC) has identified mutations in a large percentage of patients, the genetic basis of follicular thyroid cancer (FTC) is less certain. Thyroid cancer, including both PTC and FTC, has been observed in patients with the inherited tumor predisposition Carney complex, caused by mutations in PRKAR1A. In order to investigate the role of loss of PRKAR1A in thyroid cancer, we generated a tissue-specific knockout of Prkar1a in the thyroid. We report that the resulting mice are hyperthyroid and developed follicular thyroid neoplasms by 1 year of age, including FTC in over 40% of animals. These thyroid tumors showed a signature of pathway activation different from that observed in other models of thyroid cancer. In vitro cultures of the tumor cells indicated that Prkar1a-null thyrocytes exhibited growth factor independence and suggested possible new therapeutic targets. Overall, this work represents the first report of a genetic mutation known to cause human FTC that exhibits a similar phenotype when modeled in the mouse. In addition to our knowledge of the mechanisms of human follicular thyroid tumorigenesis, this model is highly reproducible and may provide a viable mechanism for the further clinical development of therapies aimed at FTC.
Collapse
Affiliation(s)
- Daphne R. Pringle
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Zhirong Yin
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Audrey A. Lee
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Parmeet K. Manchanda
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210
| | - Alfred F. Parlow
- National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, California 90509
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210
| | - Krista M. D. La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Lawrence S. Kirschner
- Department of Molecular, Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
36
|
Kemmochi S, Yamamichi S, Shimamoto K, Onda N, Hasumi K, Suzuki K, Mitsumori K, Shibutani M. Lac color inhibits development of rat thyroid carcinomas through targeting activation of plasma hyaluronan-binding protein. Exp Biol Med (Maywood) 2012; 237:728-38. [DOI: 10.1258/ebm.2012.011319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coccid-derived natural food colorants contain active ingredients that potentiate inhibition of tissue proteolysis mediated by activation of plasma hyaluronan-binding protein (PHBP). In the present study, we examined the effect of lac color (LC) and cochineal extract (CE), representative coccid-derived colorants containing laccaic acid and carminic acid as active ingredients, in an intracapsular invasion model of experimental thyroid cancers using rats. One week after initiation with N-bis(hydroxypropyl)nitrosamine, male F344/NSIc rats were fed a powdered diet containing 5.0% LC or 3.0% CE during promotion with 0.15% sulfadimethoxine (SDM) in the drinking water for 13 weeks. Capsular invasive carcinomas (CICs) and lung metastases were decreased by LC treatment and accompanied by transcript downregulation on angiogenesis and PHBP-related tissue proteolysis in CICs. In contrast, CE upregulated angiogenesis-related genes in CICs. PHBP was expressed in capsular macrophages and thyroid proliferative lesions with increased intensity in CICs, and LC decreased PHBP-expressing CICs. The size of CICs and their proliferation activity, however, were unchanged compared with those treated with SDM alone. Suppression of cancer by invasion by LC was more evident after an eight-week treatment, exhibiting a profound decrease in tenascin-C-positive early invasive foci and marked reductions in capsular inflammation and fibrosis. These results suggest that LC and CE exerted dissimilar effects on CIC development, the former suppressing the initial step of neoplastic cell invasion into the capsule by targeting PHBP activity of macrophages and neoplastic cells on tissue proteolysis involving inflammatory responses and angiogenesis, and the latter promoting angiogenesis of developed CICs at later stages.
Collapse
Affiliation(s)
- Sayaka Kemmochi
- Laboratory of Veterinary Pathology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
| | - Shingo Yamamichi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509
| | - Keisuke Shimamoto
- Laboratory of Veterinary Pathology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
| | - Nobuhiko Onda
- Research and Development Division, Corporate R&D Center, Olympus Corporation, Hachioji-shi, Tokyo 192-8512, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509
| | | | | | | |
Collapse
|
37
|
Abstract
INTRODUCTION The thyrotropin receptor (TSHR) is essential for thyroid growth and for the production of thyroid hormones. It is unique among the glycoprotein hormone receptors, in that some of the TSHRs undergo cleavage and shedding of the alpha subunit. AREAS COVERED This review discusses the structure and function of the TSHR, followed by an evaluation of its role in thyroid disease. Possible limitations of the TSHR as a therapeutic target are also discussed. EXPERT OPINION The TSHR is involved in a number of hereditary and acquired disorders of the thyroid making it of potential importance as a therapeutic target in thyroid disease. Expression of the TSHR in several non-thyroidal tissues and the development of systemic manifestations of thyroid disease suggest that the TSHR is also of interest as a therapeutic target outside the thyroid.
Collapse
Affiliation(s)
- Samer El-Kaissi
- Specialized Diabetes and Endocrine Centre, King Fahad Medical City, Dabab Street, P.O. Box 59046, Riyadh 11525, Saudi Arabia.
| | | |
Collapse
|
38
|
Souza ECLD, Ferreira ACF, Carvalho DPD. The mTOR protein as a target in thyroid cancer. Expert Opin Ther Targets 2011; 15:1099-112. [PMID: 21702716 DOI: 10.1517/14728222.2011.594044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) protein is a downstream effector of the phosphatidilinositol-3 kinase (PI3K)/Akt pathway, which regulates not only cell proliferation and viability, but also iodide uptake in thyroid cells. Genetic alterations in the PI3K/Akt/mTOR pathway are common during thyroid cancer progression, and thus, these proteins are attractive targets for cancer therapy. So far, specific mTOR inhibitors, such as rapamycin analogs, have been developed and studied as anti-cancer agents. AREAS COVERED This review discusses evidence that justifies the potential use of mTOR signaling pathway inhibitors as therapeutic agents for thyroid cancer. EXPERT OPINION In the near future, mTOR-targeted drugs might represent a new approach for the therapy of thyroid cancer patients; rapamycin analogs have already been developed and are currently being clinically tested. Besides the antiproliferative action of mTOR inhibition, the stimulatory effect on thyroid iodide uptake can also be useful in the treatment of recurrent thyroid cancer. Therefore, if rapamycin analogs are able to increase iodide uptake in thyroid cancer, either alone or in combination with other agents, this will represent a new approach for the treatment of thyroid cancer, which may possibly improve the treatment of patients in which radioiodine therapy is not effective.
Collapse
Affiliation(s)
- Elaine Cristina Lima de Souza
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS - Bloco G - Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brasil
| | | | | |
Collapse
|
39
|
Dorsa KK, Santos MVD, Silva MRDD. Enhancing T3 and cAMP responsive gene participation in the thermogenic regulation of fuel oxidation pathways. ACTA ACUST UNITED AC 2011; 54:381-9. [PMID: 20625650 DOI: 10.1590/s0004-27302010000400007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/09/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We sought to identify glycolysis, glycogenolysis, lipolysis, Krebs cycle, respiratory chain, and oxidative phosphorylation enzymes simultaneously regulated by T3 and cAMP. MATERIALS AND METHODS We performed in silico analysis of 56 promoters to search for cis-cAMP (CREB) and cis-thyroid (TRE) response elements, considering UCP1, SERCA2 and glyceraldehyde 3-phosphate dehydrogenase as reference. Only regulatory regions with prior in vitro validation were selected. RESULTS 29/56 enzymes presented potential TREs in their regulatory sequence, and some scored over 0.80 (better predictive value 1): citrate synthase, phosphoglucose isomerase, succinate dehydrogenases A/C, UCP3, UCP2, UCP4, UCP5, phosphoglycerate mutase, glyceraldehyde 3-P dehydrogenase, glucokinase, malate dehydrogenase, acyl-CoA transferase (thiolase), cytochrome a3, and lactate dehydrogenase. Moreover, some enzymes have not yet been described in the literature as genomically regulated by T3. CONCLUSION Our results point to other enzymes which may possibly be regulated by T3 and CREB, and speculate their joint roles in contributing to the optimal thermogenic acclimation.
Collapse
|
40
|
Ock S, Lee SH, Ahn J, Lee TJ, Cho CH, Abel ED, Kimura S, Kim J. Conditional deletion of insulin receptor in thyrocytes does not affect thyroid structure and function. Endocr J 2011; 58:1013-9. [PMID: 21908931 PMCID: PMC3471790 DOI: 10.1507/endocrj.ej11-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroid-stimulating hormone (TSH) is the primary regulator of thyroid growth and function acting via cyclic AMP signaling cascades. In cultured thyrocytes, insulin and/or insulin-like growth factor-1 (IGF-1) are required for mediating thyrocyte proliferation in concert with TSH. To determine the role of insulin signaling in thyroid, growth in vivo, mice with thyrocyte-selective ablation of the insulin receptor (IR) were generated by crossing mice homozygous for a floxed IR allele with transgenic mice in which thyrocyte-specific expression of Cre recombinase was driven by the human thyroid peroxidase (TPO) gene promoter. Immunohistochemistry and Western blot analysis confirmed near complete loss of IR expression in the thyroid of thyrocyte IR knockout mice. These mice are viable and have no obvious thyroid dysfunction and macro- and microscopic thyroid morphology was normal. Thus, insulin signaling in thyrocytes does not play an essential role in the architecture and function of the thyroid in vivo.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jihyun Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Korea
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
- Corresponding author: Jaetaek Kim, M.D., Ph.D., Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, 156-755, Korea, Phone: 82-2-6299-1397, Fax: 82-2-6299-1390,
| |
Collapse
|
41
|
KEMMOCHI S, FUJIMOTO H, WOO GH, HIROSE M, NISHIKAWA A, MITSUMORI K, SHIBUTANI M. Preventive Effects of Calcitriol on the Development of Capsular Invasive Carcinomas in a Rat Two-Stage Thyroid Carcinogenesis Model. J Vet Med Sci 2011; 73:655-64. [DOI: 10.1292/jvms.10-0415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sayaka KEMMOCHI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | | | - Gye-Hyeong WOO
- Division of Pathology, National Institute of Health Sciences
| | | | | | - Kunitoshi MITSUMORI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto SHIBUTANI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
42
|
Roger PP, van Staveren WCG, Coulonval K, Dumont JE, Maenhaut C. Signal transduction in the human thyrocyte and its perversion in thyroid tumors. Mol Cell Endocrinol 2010; 321:3-19. [PMID: 19962425 DOI: 10.1016/j.mce.2009.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022]
Abstract
The study of normal signal transduction pathways regulating the proliferation and differentiation of a cell type allows to predict and to understand the perversions of these pathways which lead to tumorigenesis. In the case of the human thyroid cell, three cascades are mostly involved in tumorigenesis: The pathways and genetic events affecting them are described. Caveats in the use of models and the interpretation of results are formulated and the still pending questions are outlined.
Collapse
Affiliation(s)
- Pierre P Roger
- I.R.I.B.H.M., Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, B - 1070 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
43
|
Blancquaert S, Wang L, Paternot S, Coulonval K, Dumont JE, Harris TE, Roger PP. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4. Mol Endocrinol 2010; 24:1453-68. [PMID: 20484410 DOI: 10.1210/me.2010-0087] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How cAMP-dependent protein kinases [protein kinase A (PKA)] transduce the mitogenic stimulus elicited by TSH in thyroid cells to late activation of cyclin D3-cyclin-dependent kinase 4 (CDK4) remains enigmatic. Here we show in PC Cl3 rat thyroid cells that TSH/cAMP, like insulin, activates the mammalian target of rapamycin (mTOR)-raptor complex (mTORC1) leading to phosphorylation of S6K1 and 4E-BP1. mTORC1-dependent S6K1 phosphorylation in response to both insulin and cAMP required amino acids, whereas inhibition of AMP-activated protein kinase and glycogen synthase kinase 3 enhanced insulin but not cAMP effects. Unlike insulin, TSH/cAMP did not activate protein kinase B or induce tuberous sclerosis complex 2 phosphorylation at T1462 and Y1571. However, like insulin, TSH/cAMP produced a stable increase in mTORC1 kinase activity that was associated with augmented 4E-BP1 binding to raptor. This could be caused in part by T246 phosphorylation of PRAS40, which was found as an in vitro substrate of PKA. Both in PC Cl3 cells and primary dog thyrocytes, rapamycin inhibited DNA synthesis and retinoblastoma protein phosphorylation induced by TSH and insulin. Although rapamycin reduced cyclin D3 accumulation, the abundance of cyclin D3-CDK4 complexes was not affected. However, rapamycin inhibited the activity of these complexes by decreasing the TSH and insulin-mediated stimulation of activating T172 phosphorylation of CDK4. We propose that mTORC1 activation by TSH, at least in part through PKA-dependent phosphorylation of PRAS40, crucially contributes to mediate cAMP-dependent mitogenesis by regulating CDK4 T172-phosphorylation.
Collapse
Affiliation(s)
- Sara Blancquaert
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Ago K, Saegusa Y, Nishimura J, Dewa Y, Kemmochi S, Kawai M, Harada T, Mitsumori K, Shibutani M. Involvement of glycogen synthase kinase-3β signaling and aberrant nucleocytoplasmic localization of retinoblastoma protein in tumor promotion in a rat two-stage thyroid carcinogenesis model. ACTA ACUST UNITED AC 2010; 62:269-80. [DOI: 10.1016/j.etp.2009.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/04/2009] [Accepted: 04/18/2009] [Indexed: 10/20/2022]
|
45
|
Raef H, Al-Rijjal R, Al-Shehri S, Zou M, Al-Mana H, Baitei EY, Parhar RS, Al-Mohanna FA, Shi Y. Biallelic p.R2223H mutation in the thyroglobulin gene causes thyroglobulin retention and severe hypothyroidism with subsequent development of thyroid carcinoma. J Clin Endocrinol Metab 2010; 95:1000-6. [PMID: 20089614 DOI: 10.1210/jc.2009-1823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Dyshormonogenesis due to genetic defect in thyroglobulin (Tg) synthesis and secretion can lead to congenital hypothyroidism. OBJECTIVES The aim of the study was to analyze the TG gene for the presence of mutations and to study the underlying mechanisms leading to dyshormonogenesis. CASES Two siblings aged 25 and 31 yr presented with recurrent goitrous hypothyroidism with undetectable serum Tg. The older sibling was diagnosed with follicular variant of papillary thyroid carcinoma (FVPTC) at age 21 and metastatic FVPTC 8 yr later. METHODS The entire coding region of TG gene was sequenced. BRAF, RAS, and P53 mutations or PAX8/PPAR-gamma rearrangement were screened in the FVPTC. Tg expression was studied by immunohistochemistry. RESULTS Biallelic c.6725G>A (p.R2223H) and c.6396C>T (p.S2113L) sequence variations were detected in both patients and monoallelic variations in their family members. The c.6396C>T (p.S2113L) sequence variation was found in 14% of 100 population controls, whereas c.6725G>A variation was not present in the controls. Two previously reported polymorphisms (c.2200T>G and c.3082A>G) were present in all the family members. Strong cytoplasmic immunostaining of Tg was observed in the hyperplastic thyroid epithelial cells and weak or no staining in the follicular lumen. Cytoplasmic staining was localized in the endoplasmic reticulum. Reduced staining was found in the FVPTC. Neither RAS, BRAF, or P53 gene mutation nor a PAX8/PPAR-gamma rearrangement was detected in the tumor tissue. CONCLUSIONS Biallelic c.6725G>A (p.R2223H) mutation causes Tg retention in the endoplasmic reticulum, resulting in dyshormonogenesis. Prolonged TSH stimulation may promote malignant transformation and development of thyroid cancer. The c.6396C>T (p.S2113L) is a novel polymorphism.
Collapse
Affiliation(s)
- Hussein Raef
- Department of Genetics (MBC-03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Musnier A, Blanchot B, Reiter E, Crépieux P. GPCR signalling to the translation machinery. Cell Signal 2009; 22:707-16. [PMID: 19887105 DOI: 10.1016/j.cellsig.2009.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and beta-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a "GPCR signature" impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.
Collapse
Affiliation(s)
- Astrid Musnier
- BIOS group, INRA, UMR, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | |
Collapse
|
48
|
Effects of PI3K catalytic subunit and Akt isoform deficiency on mTOR and p70S6K activation in myoblasts. Biochem Biophys Res Commun 2009; 390:252-7. [PMID: 19799871 DOI: 10.1016/j.bbrc.2009.09.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/24/2009] [Indexed: 11/21/2022]
Abstract
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110alpha, p110beta, and simultaneous knockdown of p110alpha and p110beta resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110beta-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110alpha or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.
Collapse
|
49
|
Haymart MR, Glinberg SL, Liu J, Sippel RS, Jaume JC, Chen H. Higher serum TSH in thyroid cancer patients occurs independent of age and correlates with extrathyroidal extension. Clin Endocrinol (Oxf) 2009; 71:434-9. [PMID: 19067720 PMCID: PMC4852738 DOI: 10.1111/j.1365-2265.2008.03489.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND It has previously been shown that higher serum TSH is associated with increased thyroid cancer incidence and advanced-stage disease. In the healthy adult population, mean TSH increases with age. As age over 45 years is a known prognostic indicator for thyroid cancer, it is important to know whether higher TSH in patients with thyroid cancer occurs independent of age. OBJECTIVE To determine the relationship between higher TSH, cancer and age. DESIGN A retrospective cohort study. PATIENTS AND METHODS A total of 1361 patients underwent thyroid surgery between May 1994 and December 2007 at a single institution. Of these patients, 954 had pathological data, preoperative TSH and complete surgical history available. Data were analysed in relation to age and TSH. RESULTS Mean TSH was significantly higher in cancer patients regardless of age < 45 years or >or= 45 years (P = 0.046 and P = 0.027, respectively). When examining age groups < 20, 20-44, 45-59 and >or= 60 years, there was a trend of rising mean TSH with age. Despite the rise in the benign subgroups, mean TSH was consistently higher in those with cancer vs. those without. On multivariate analysis, higher TSH was independently associated with cancer (P = 0.039) and pathological features of Hashimoto's thyroiditis (P = 0.001) but not with age (P = 0.557). On multivariate analysis of high-risk features associated with poor prognosis, there was a significant association between higher TSH and extrathyroidal extension (P = 0.002), whereas there was no clear relationship with age, tumour size > 4 cm, and distant metastases. CONCLUSION Independent of age, thyroid cancer incidence correlates with higher TSH. Higher TSH is associated with extrathyroidal extension of disease.
Collapse
Affiliation(s)
- Megan R Haymart
- Division of Metabolism, Endocrinology, and Diabetes (MEND), University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Modification of dietary copper levels on the early stage of tumor-promotion with propylthiouracil in a rat two-stage thyroid carcinogenesis model. Chem Biol Interact 2009; 180:262-70. [DOI: 10.1016/j.cbi.2009.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 11/21/2022]
|