1
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
2
|
Hara Y, Mizukami H, Yamazaki K, Yamada T, Igawa A, Takeuchi Y, Sasaki T, Kushibiki H, Murakami K, Kudoh K, Ishido K, Hakamada K. Dual epigenetic changes in diabetes mellitus-associated pancreatic ductal adenocarcinoma correlate with downregulation of E-cadherin and worsened prognosis. J Pathol Clin Res 2023; 9:354-366. [PMID: 37246239 PMCID: PMC10397378 DOI: 10.1002/cjp2.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for pancreatic ductal adenocarcinoma (PDAC) that promotes the promoter methylation of CDH1. It is still unclear whether DM can exert other epigenetic effects, such as altering microRNA (miR) expression, in PDAC. The expression of miR-100-5p is known to be changed in DM patients and can suppress the expression of E-cadherin. In this study, the correlation between DM status and dual epigenetic changes was evaluated in PDAC specimens from patients who underwent radical surgical resection. A total of 132 consecutive patients with PDAC were clinicopathologically evaluated. E-cadherin and nuclear β-catenin expression was measured using immunohistochemistry. DNA and miRs were extracted from the main tumor site on formalin-fixed paraffin-embedded tissue sections. TaqMan miR assays were applied to assess miR-100-5p expression. Bisulfite modification was conducted on the extracted DNA, which was then subjected to methylation-specific polymerase chain reaction. Immunohistochemistry revealed that decreased E-cadherin expression and increased nuclear β-catenin expression were significantly associated with DM and poor tumor cell differentiation. The presence of long-duration DM (≥3 years) was a significant factor contributing to CDH1 promoter methylation (p < 0.01), while miR-100-5p expression was proportionally correlated with the preoperative HbA1c level (R = 0.34, p < 0.01), but not the duration of DM. The subjects with high miR-100-5p expression and CDH1 promoter methylation showed the highest level of vessel invasion and prevalence of tumor size ≥30 mm. PDAC subjects with dual epigenetic changes showed poorer overall survival (OS) than those with a single epigenetic change. miR-100-5p expression ≥4.13 and CDH1 promoter methylation independently predicted poor OS and disease-free survival (DFS) in the multivariate analysis. OS and DFS worsened in DM subjects with both HbA1c ≥ 6.5% and DM duration ≥3 years. Thus, DM is associated with two modes of epigenetic change by independent mechanisms and worsens prognosis.
Collapse
Affiliation(s)
- Yutaro Hara
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takahiro Yamada
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Akiko Igawa
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kotaro Murakami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
3
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
4
|
Tellez CS, Grimes MJ, Juri DE, Do K, Willink R, Dye WW, Wu G, Picchi MA, Belinsky SA. Flavored E-cigarette product aerosols induce transformation of human bronchial epithelial cells. Lung Cancer 2023; 179:107180. [PMID: 36989612 PMCID: PMC10159902 DOI: 10.1016/j.lungcan.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES E-cigarettes are the most commonly used nicotine containing products among youth. In vitro studies support the potential for e-cigarettes to cause cellular stress in vivo; however, there have been no studies to address whether exposure to e-liquid aerosols can induce cell transformation, a process strongly associated with pre-malignancy. We examined whether weekly exposure of human bronchial epithelial cell (HBEC) lines to e-cigarette aerosols would induce transformation and concomitant changes in gene expression and promoter hypermethylation. MATERIALS AND METHODS An aerosol delivery system exposed three HBEC lines to unflavored e-liquid with 1.2% nicotine, 3 flavored products with nicotine, or the Kentucky reference cigarette once a week for 12 weeks. Colony formation in soft agar, RNA-sequencing, and the EPIC Beadchip were used to evaluate transformation, genome-wide expression and methylation changes. RESULTS Jamestown e-liquid aerosol induced transformation of HBEC2 and HBEC26, while unflavored and Blue Pucker transformed HBEC26. Cigarette smoke aerosol transformed HBEC4 and HBEC26 at efficiencies up to 3-fold greater than e-liquids. Transformed clones exhibited extensive reprogramming of the transcriptome with common and distinct gene expression changes observed between the cigarette and e-liquids. Transformation by e-liquids induced alterations in canonical pathways implicated in lung cancer that included axonal guidance and NRF2. Gene methylation, while prominent in cigarette-induced transformed clones, also affected hundreds of genes in HBEC2 transformed by Jamestown. Many genes with altered expression or epigenetic-mediated silencing were also affected in lung tumors from smokers. CONCLUSIONS These studies show that exposure to e-liquid aerosols can induce a pre-malignant phenotype in lung epithelial cells. While the Food and Drug Administration banned the sale of flavored cartridge-based electric cigarettes, consumers switched to using flavored products through other devices. Our findings clearly support expanding studies to evaluate transformation potency for the major categories of e-liquid flavors to better inform risk from these complex mixtures.
Collapse
Affiliation(s)
- Carmen S. Tellez
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Marcie J. Grimes
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Daniel E. Juri
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Kieu Do
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Randy Willink
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Wendy W. Dye
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Guodong Wu
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Maria A. Picchi
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Steven A. Belinsky
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| |
Collapse
|
5
|
Kazemizadeh H, Kashefizadeh A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin Transl Oncol 2022; 25:1156-1166. [PMID: 36495467 DOI: 10.1007/s12094-022-03039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
As the largest cause of cancer-related deaths worldwide, pulmonary cancer is the most common form of the disease. Several genetic, epigenetic, and environmental factors come into play during the multi-step mechanism of tumorigenesis. The heterogeneity that makes discovering successful therapeutics for pulmonary cancer problematic is significantly influenced by the epigenetic landscape, including DNA methylation, chromatin architecture, histone modifications, and noncoding RNA control. Clinical activity of epigenetic-targeted medicines has been reported in hematological tumors, and these compounds may also have therapeutic effects in solid tumors. Over the course of the past few years, some researchers have successfully modified the expression of genes in cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) technique. The utilization of this technology allows for the induction of site-specific mutagenesis, epigenetic alterations, and the regulation of gene expression. This study will present an overview of the primary epigenetic alterations seen in pulmonary cancer, as well as a summary of therapeutic implications for targeting epigenetics in the management of pulmonary cancer, with a particular emphasis on the technique known as CRISPR/Cas9.
Collapse
Affiliation(s)
- Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
7
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
8
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
9
|
Wang W, Li W, Zhang H. An Overview of DNA Methylation Indicators for the Course of Oral Precancer. Appl Bionics Biomech 2022; 2022:6468773. [PMID: 36060560 PMCID: PMC9439927 DOI: 10.1155/2022/6468773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a physiologically epigenetic alteration that happens when a methyl group is introduced to a CpG dinucleotide in the gene-regulating sequence of DNA. However, the majority of oral cancers have a well-defined precancerous stage; there are few clinical and morphological parameters for detecting and signalling the progression of precancerous to malignant tumours. DNA methylation forms are dynamic and reversible, allowing them to adjust to environmental or therapeutic changes. We did an extensive investigation to compile the data supporting aberrant DNA methylation forms as a possible biomarker for prediction. According to two longitudinal studies, p16 hypermethylation was considerably higher in precancerous lesions that progressed to cancer than in lesions that shrank. Most of the studies examined for this study were tiny cross-sectional research with scant validation and inadequately specified control groups. Existing evidence suggests that DNA methylation sequences can be relevant as a diagnostic biomarker for OPS development; however, sample size and research design restrictions make it difficult to draw definitive conclusions. Strong studies, including extensive epigenome-wide methylation scans of OPS with longitudinal monitoring, are necessary in this study in order to corroborate the recently discovered signals and discover new risk loci and disease progression molecular pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Wei Li
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Hongyi Zhang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
10
|
Wise JTF, Salazar-González RA, Habil MR, Doll MA, Hein DW. Expression of arylamine N-acetyltransferase 2 activity in immortalized human bronchial epithelial cells. Toxicol Appl Pharmacol 2022; 442:115993. [PMID: 35353990 PMCID: PMC9112076 DOI: 10.1016/j.taap.2022.115993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 01/30/2023]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 μM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of β-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 μM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.
Collapse
Affiliation(s)
- James T F Wise
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mariam R Habil
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
11
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
12
|
Bukowska B, Sicińska P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. Int J Mol Sci 2021; 22:ijms222413453. [PMID: 34948252 PMCID: PMC8707600 DOI: 10.3390/ijms222413453] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.
Collapse
|
13
|
Fukuizumi A, Noro R, Seike M, Miyanaga A, Minegishi Y, Omori M, Hirao M, Matsuda K, Kunugi S, Nishiwaki K, Morimoto M, Motohashi H, Ohwada H, Usuda J, Gemma A. CADM1 and SPC25 Gene Mutations in Lung Cancer Patients With Idiopathic Pulmonary Fibrosis. JTO Clin Res Rep 2021; 2:100232. [PMID: 34746885 PMCID: PMC8551854 DOI: 10.1016/j.jtocrr.2021.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction To investigate the genomic profiles of patients with lung cancer with idiopathic pulmonary fibrosis (IPF-LC), mechanism of carcinogenesis, and potential therapeutic targets. Methods We analyzed 29 matched, surgically resected, cancerous and noncancerous lung tissues (19 IPF-LC and 10 non–IPF-LC) by whole-exome sequencing and bioinformatics analysis and established a medical-engineering collaboration with the Department of Engineering of the Tokyo University of Science. Results In IPF-LC, CADM1 and SPC25 were mutated at a frequency of 47% (9 of 19) and 53% (10 of 19), respectively. Approximately one-third of the IPF-LC cases (7 of 19; 36%) had both mutations. Pathway analysis revealed that these two genes are involved in transforming growth factor-β1 signaling. CADM1 and SPC25 gene mutations decreased the expression of CADM1 and increased that of SPC25 revealing transforming growth factor-β1–induced epithelial-to-mesenchymal transition and cell proliferation in lung cancer cells. Furthermore, treatment with paclitaxel and DNMT1 inhibitor suppressed SPC25 expression. Conclusions CADM1 and SPC25 gene mutations may be novel diagnostic markers and therapeutic targets for IPF-LC.
Collapse
Affiliation(s)
- Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Miwako Omori
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mamiko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Nishiwaki
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Masahiro Morimoto
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Haruka Motohashi
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hayato Ohwada
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
14
|
Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA. Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 2021; 184:67-82. [PMID: 34390580 PMCID: PMC8557423 DOI: 10.1093/toxsci/kfab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues. Levels of the carcinogenic carbonyl formaldehyde were 32- to 95-fold greater, while acrolein was similar across the shisha aerosols generated by charcoal heating compared to cigarettes and cigarillos. Electric-mediated aerosol generation dramatically increased acrolein to levels exceeding those in cigarettes and cigarillos by up to 43-fold. Equivalent cytotoxic-mediated cell death and dose response for genotoxicity through induction of mutagenicity and DNA strand breaks was seen between cigarettes and cigarillos, while minimal to no effect was observed with shisha tobacco products. In contrast, increased potency of TPM from cigarillos compared to cigarettes for inducing oxidative stress via reactive oxygen radicals and lipid peroxidation across cell lines was evident, while positivity was seen for shisha tobacco products albeit at much lower levels. Together, these studies provide new insight into the potential harmful effects of cigarillos for causing tobacco-associated diseases. The high level of carbonyls in shisha products, that in turn is impacted by the heating mechanism, reside largely in the gas phase which will distribute throughout the respiratory tract and systemic circulation to likely increase genotoxic stress.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Loryn M Phillips
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Cindy L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Randy Willink
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Shosei Kishida
- Departments of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
15
|
Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin Cancer Biol 2021; 76:3-16. [PMID: 34242741 DOI: 10.1016/j.semcancer.2021.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development. The formation of these reactive metabolites entails metabolism of the parent PAHs by cytochrome P4501A1/1B1 (CYP1A1/1B1) and epoxide hydrolase enzymes. These reactive metabolites then react with DNA to form DNA adducts, which contribute to key gene mutations, such as the tumor suppressor gene, p53 and are linked to pulmonary carcinogenesis. PAH exposure also leads to upregulation of CYP1A1 transcription by binding to the aryl hydrocarbon receptor (AHR) and eliciting transcription of the CYP1A1 promoter, which comprises specific xenobiotic-responsive element (XREs). While hepatic and pulmonary CYP1A1/1B1 metabolize PAHs to DNA-reactive metabolites, the hepatic CYP1A2, however, may protect against lung tumor development by suppressing both liver and lung CYP1A1 enzymes. Further analysis of these enzymes has shown that PAH-exposure also induces sustained transcription of CYP1A1, which is independent of the persistence of the parent PAH. CYP1A2 enzyme plays an important role in the sustained induction of hepatic CYP1A1. PAH exposure may further contribute to pulmonary carcinogenesis by producing epigenetic alterations. DNA methylation, histone modification, long interspersed nuclear element (LINE-1) activation, and non-coding RNA, specifically microRNA (miRNA) alterations may all be induced by PAH exposure. The relationship between PAH-induced enzymatic reactive metabolite formation and epigenetic alterations is a key area of research that warrants further exploration. Investigation into the potential interplay between these two mechanisms may lead to further understanding of the mechanisms of PAH carcinogenesis. These mechanisms will be crucial for the development of effective targeted therapies and early diagnostic tools.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Grady Gastelum
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
16
|
Tellez CS, Picchi MA, Juri D, Do K, Desai DH, Amin SG, Hutt JA, Filipczak PT, Belinsky SA. Chromatin remodeling by the histone methyltransferase EZH2 drives lung pre-malignancy and is a target for cancer prevention. Clin Epigenetics 2021; 13:44. [PMID: 33632299 PMCID: PMC7908796 DOI: 10.1186/s13148-021-01034-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Trimethylation of lysine 27 and dimethylation of lysine 9 of histone-H3 catalyzed by the histone methyltransferases EZH2 and G9a impede gene transcription in cancer. Our human bronchial epithelial (HBEC) pre-malignancy model studied the role of these histone modifications in transformation. Tobacco carcinogen transformed HBEC lines were characterized for cytosine DNA methylation, transcriptome reprogramming, and the effect of inhibiting EZH2 and G9a on the transformed phenotype. The effects of targeting EZH2 and G9a on lung cancer prevention was assessed in the A/J mouse lung tumor model. Results Carcinogen exposure induced transformation and DNA methylation of 12–96 genes in the four HBEC transformed (T) lines that was perpetuated in malignant tumors. In contrast, 506 unmethylated genes showed reduced expression in one or more HBECTs with many becoming methylated in tumors. ChIP-on-chip for HBEC2T identified 327 and 143 genes enriched for H3K27me3 and H3K9me2. Treatment of HBEC2T and HBEC13T with DZNep, a lysine methyltransferase inhibitor depleted EZH2, reversed transformation, and induced transcriptional reprogramming. The EZH2 small molecule inhibitor EPZ6438 also affected transformation and expression in HBEC2T, while a G9a inhibitor, UNC0642 was ineffective. Genetic knock down of EZH2 dramatically reduced carcinogen-induced transformation of HBEC2. Only DZNep treatment prevented progression of hyperplasia to adenomas in the NNK mouse lung tumor model through reducing EZH2 and affecting the expression of genes regulating cell growth and invasion. Conclusion These studies demonstrate a critical role for EZH2 catalyzed histone modifications for premalignancy and its potential as a target for chemoprevention of lung carcinogenesis.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA.
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Daniel Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Dhimant H Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Shantu G Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Julie A Hutt
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Piotr T Filipczak
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA.
| |
Collapse
|
17
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
18
|
Tessema M, Tassew DD, Yingling CM, Do K, Picchi MA, Wu G, Petersen H, Randell S, Lin Y, Belinsky SA, Tesfaigzi Y. Identification of novel epigenetic abnormalities as sputum biomarkers for lung cancer risk among smokers and COPD patients. Lung Cancer 2020; 146:189-196. [PMID: 32559455 DOI: 10.1016/j.lungcan.2020.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Smoking is a common risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Although COPD patients have higher risk of lung cancer compared to non-COPD smokers, the molecular links between these diseases are not well-defined. This study aims to identify genes that are downregulated by cigarette smoke and commonly repressed in COPD and lung cancer. MATERIALS AND METHODS Primary human airway epithelial cells (HAEC) were exposed to cigarette-smoke-extract (CSE) for 10-weeks and significantly suppressed genes were identified by transcriptome array. Epigenetic abnormalities of these genes in lung adenocarcinoma (LUAD) from patients with or without COPD were determined using genome-wide and gene-specific assays and by in vitro treatment of cell lines with trichostatin-A or 5-aza-2-deoxycytidine. RESULTS The ten most commonly downregulated genes following chronic CSE exposure of HAEC and show promoter hypermethylation in LUAD were selected. Among these, expression of CCNA1, SNCA, and ZNF549 was significantly reduced in lung tissues from COPD compared with non-COPD cases while expression of CCNA1 and SNCA was further downregulated in tumors with COPD. The promoter regions of all three genes were hypermethylated in LUAD but not normal or COPD lungs. The reduced expression and aberrant promoter hypermethylation of these genes in LUAD were independently validated using data from the Cancer Genome Atlas project. Importantly, SNCA and ZNF549 methylation detected in sputum DNA from LUAD (52% and 38%) cases were more prevalent compared to cancer-free smokers (26% and 15%), respectively (p < 0.02). CONCLUSIONS Our data show that suppression of CCNA1, SNCA, and ZNF549 in lung cancer and COPD occurs with or without promoter hypermethylation, respectively. Detecting methylation of these and previously identified genes in sputum of cancer-free smokers may serve as non-invasive biomarkers for early detection of lung cancer among high risk smokers including COPD patients.
Collapse
Affiliation(s)
- Mathewos Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA.
| | - Dereje D Tassew
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA; Currently, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Christin M Yingling
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Hans Petersen
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Scott Randell
- Department of Cell and Molecular Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Yong Lin
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, M, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA; Currently, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
20
|
Korenjak M, Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci 2019; 110:3622-3629. [PMID: 31594033 PMCID: PMC6890429 DOI: 10.1111/cas.14210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating data from large-scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost-prohibitive and time-consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell-based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell-based selective barrier-bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure-driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell-based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.
Collapse
Affiliation(s)
- Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
21
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
22
|
Rynning I, Neca J, Vrbova K, Libalova H, Rossner P, Holme JA, Gützkow KB, Afanou AKJ, Arnoldussen YJ, Hruba E, Skare Ø, Haugen A, Topinka J, Machala M, Mollerup S. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol Sci 2019; 166:51-64. [PMID: 30010986 PMCID: PMC6204768 DOI: 10.1093/toxsci/kfy183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jiri Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Helena Libalova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jørn A Holme
- Division of Infection Control, Environment and Health, Department of Air and Noise
| | - Kristine B Gützkow
- Division of Infection Control, Department of Molecular Biology, Norwegian Institute of Public Health, N-0304 Oslo, Norway
| | - Anani K Johnny Afanou
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Yke J Arnoldussen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Eva Hruba
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| |
Collapse
|
23
|
Teneng I, Picchi MA, Leng S, Dagucon CP, Ramalingam S, Tellez CS, Belinsky SA. DNA-PKc deficiency drives pre-malignant transformation by reducing DNA repair capacity in concert with reprogramming the epigenome in human bronchial epithelial cells. DNA Repair (Amst) 2019; 79:1-9. [PMID: 31055244 PMCID: PMC6551272 DOI: 10.1016/j.dnarep.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
The expression of DNA-dependent protein kinase catalytic subunit (DNA-PKc) is highly variable in smokers and reduced enzyme activity has been associated with risk for lung cancer. An in vitro model of lung pre-malignancy was used to evaluate the role of double-strand break DNA repair capacity in transformation of hTERT/CDK4 immortalized human bronchial epithelial cells (HBECs) and reprograming of the epigenome. Here we show that knockdown of DNA-PKc to levels simulating haploinsufficiency dramatically reduced DNA repair capacity following challenge with bleomycin and significantly increased transformation efficiency of HBEC lines exposed weekly for 12 weeks to this radiomimetic. Transformed HBEC lines with wild type or knockdown of DNA-PKc showed altered expression of more than 1,000 genes linked to major cell regulatory pathways involved in lung cancer. While lung cancer driver mutations were not detected in transformed clones, more than 300 genes that showed reduced expression associated with promoter methylation in transformed clones or predictive for methylation in malignant tumors were identified. These studies support reduced DNA repair capacity as a key factor in the initiation and clonal expansion of pre-neoplastic cells and double-strand break DNA damage as causal for epigenetic mediated silencing of many lung cancer-associated genes. The fact that DNA damage, repair, and epigenetic silencing of genes are causal for many other cancers that include colon and prostate extends the generalizability and impact of these findings.
Collapse
Affiliation(s)
- Ivo Teneng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Suresh Ramalingam
- Department of Hematology and Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
24
|
Liu X, Li H, Wu ML, Wu J, Sun Y, Zhang KL, Liu J. Resveratrol Reverses Retinoic Acid Resistance of Anaplastic Thyroid Cancer Cells via Demethylating CRABP2 Gene. Front Endocrinol (Lausanne) 2019; 10:734. [PMID: 31736873 PMCID: PMC6828648 DOI: 10.3389/fendo.2019.00734] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Cellular retinoic acid binding protein 2 (CRABP2) mediates retinoic acid/RA anti-cancer pathways. Resveratrol effectively reverses RA tolerance and upregulates CRABP2 expression of anaplastic thyroid cancer cell line THJ-11T. As DNA methylation is responsible for CRABP2 silencing, the CRABP2 methylation status of THJ-11T cells and the demethylating effect of resveratrol on this gene are elucidated. Materials and methods: The statuses of CRABP2 expression and methylation and the levels of DNA methyltransferases (DNMTs) DNMT1, DNMT3A, and DNMT3B of THJ-11T cells were examined before and after resveratrol treatment via multiple experimental methods. The human medulloblastoma UW228-2 cell line was cited as the control of CRABP2 methylation and gemcitabine as the demethylator control. Results: RT-PCR, immunocytochemical staining and Western blotting showed that resveratrol significantly increased the CRABP2 expression and RA sensitivity of THJ-11T and UW228-2 cells. Bisulfite sequencing showed five CpG methylation sites at the CRABP2 promoter region of both cell lines, which were partially (3/5) demethylated by resveratrol and totally (5/5) by gemcitabine. DNMT1, DNMT3A, and DNMT3B were reduced in UW228-2 cells and DNMT1 and DNMT3A were reduced in THJ-11T cells after resveratrol treatment in a time-related fashion. Conclusion: Resveratrol is able to erase CRABP2 methylation and can thereby increase the RA sensitivity of THJ-11T and UW228-2 cells. This study demonstrates the additional value of the natural polyphenolic compound resveratrol as a demethylator in cancer treatments.
Collapse
Affiliation(s)
- Xin Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiao Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Kai-Li Zhang
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Kai-Li Zhang
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Research Center, South China University School of Medicine, Guangzhou, China
- Jia Liu
| |
Collapse
|
25
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
26
|
Wang G, Das J, Ahmed S, Nemr CR, Zhang L, Poudineh M, Sargent EH, Kelley SO. Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis. ACS Sens 2018; 3:1765-1772. [PMID: 30080023 DOI: 10.1021/acssensors.8b00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of new tools for tracking the activity of human DNA methyltransferases is an important goal given the role of this enzyme as a cancer biomarker and epigenetic modulator. However, analysis of the human DNA (cytosine-5)-methyltransferase 1 (Dnmt1) activity is challenging, especially in crude samples, because of the low activity and large size of the enzyme. Here, we report a new approach to Dnmt analysis that combines nanostructured electrodes with a digest-and-amplify strategy that directly monitors Dnmt1 activity with high sensitivity. Nanostructured electrodes are required for the function of the assay to promote the accessibility of the electrode for human Dnmt1. Moreover, DNA-templated deposition of silver nanoparticles (for signal amplification) is combined with DNA Exonuclease I digestion to yield optimal target-to-control signals. We achieve high sensitivity for the detection of human Dnmt1, and particularly Dnmt1 from crude cell lysates. Specifically, the detection limit of our electrochemical assay is 20 pM, which is 2 orders of magnitude lower than previously reported methods. In crude lysates, we detected Dnmt1 from as few as five colorectal cancer cells (HCT116). With biopsy samples, we were able to distinguish colorectal tumor tissue from healthy adjacent tissue using only 10 μg of sample. The strategy enables analysis of an important marker underlying the epigenetic basis of cancerous transformation.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Carine R. Nemr
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Libing Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, ON M5S3M2, Canada
| |
Collapse
|
27
|
Aberrant expression of vimentin predisposes oral premalignant lesion derived cells towards transformation. Exp Mol Pathol 2018; 105:243-251. [PMID: 30189187 DOI: 10.1016/j.yexmp.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/23/2018] [Accepted: 08/30/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We have previously reported the aberrant expression of vimentin in human oral premalignant lesions and a 4-Nitroquinoline 1-oxide (4NQO) model of rat lingual carcinogenesis. Hence, we wanted to understand whether the expression of vimentin in early stage contributes to the process of transformation. STUDY DESIGN Vimentin was stably expressed in oral premalignant lesion derived cells (vimentin negative) and various transformation related phenotypic assays were performed. Since vimentin alone failed to transform the cells, an additional carcinogenic stimulus benzo[a]pyrene (BP) was used. Concomitantly, immunohistochemistry (IHC) was performed on oral leukoplakia and tumor tissues for studying the expression of vimentin and E-cadherin. RESULTS Exogenous expression of vimentin led to the appearance of EMT and stemness-related signatures. Further, upon BP treatment, vimentin expressing clones showed an increase in vitro and in vivo transformation efficiency. Importantly, high vimentin-low E-cadherin expression significantly correlated with the grade of dysplasia, as also with the lymph node metastasis in oral tumors. CONCLUSION Our study suggests that the expression of vimentin in early stages may be beneficial, although not sufficient to achieve transformation. Further, high vimentin-low E-cadherin expression, if validated in more number of early oral lesions, may prove useful in the identification of high risk human premalignant lesions.
Collapse
|
28
|
Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Sci Rep 2018; 8:10577. [PMID: 30002487 PMCID: PMC6043565 DOI: 10.1038/s41598-018-28911-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Besides genetic modifications, rapidly growing evidence has linked environmental pollutants with epigenetic variations. To date, only a few studies have been performed on DNA methylation changes of polycyclic aromatic hydrocarbons (PAH), which showed contradictory results. These discrepancies might be partially explained by differences in used agents. Generally in in vitro studies, a single compound is used, while in humans environmental studies, multi-residue exposure is investigated. The present study aimed to study epigenetic alterations induced by multi-residue exposure to PAH. Female Long Evans rats were exposed to a mixture of 16 US-EPA priority PAH, 3 times per week over a 90-day period. The livers were used to assess the (hydroxy)methylation status of genomic DNA/RNA, together with reduced and oxidized forms of glutathione. The results of this study demonstrate that a multi-residue exposure to PAH affects glutathione status, DNA (hydroxy)methylation, and RNA (hydroxy)methylation, together with DNA PAH-adducts formation. In addition, a non-monotonic response relationship was demonstrated between PAH concentration, the levels of glutathione and DNA (hydroxy)methylation levels at environmental relevant doses. This hormetic response gives a novel insight concerning the toxicity of environmental pollutants such as PAH and the biological response that may be different depending on the level of exposure.
Collapse
|
29
|
Hong Y, Hong SH, Oh YM, Shin SH, Choi SS, Kim WJ. Identification of lung cancer specific differentially methylated regions using genome-wide DNA methylation study. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Jiang CL, He SW, Zhang YD, Duan HX, Huang T, Huang YC, Li GF, Wang P, Ma LJ, Zhou GB, Cao Y. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget 2018; 8:1369-1391. [PMID: 27901495 PMCID: PMC5352062 DOI: 10.18632/oncotarget.13622] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.
Collapse
Affiliation(s)
- Cheng-Lan Jiang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Shui-Wang He
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yun-Dong Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - He-Xian Duan
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Chao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Li-Ju Ma
- Clinical Medicine Research Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
31
|
Saito T, Mizukami H, Umetsu S, Uchida C, Inaba W, Abe M, Takahashi K, Kudo K, Itabashi C, Yagihashi S, Hakamada K. Worsened outcome in patients with pancreatic ductal carcinoma on long-term diabetes: association with E-cadherin1 (CDH1) promoter methylation. Sci Rep 2017; 7:18056. [PMID: 29273724 PMCID: PMC5741711 DOI: 10.1038/s41598-017-18438-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Prevalence of pancreatic ductal carcinoma (PDC) is nearly twice in patients with diabetes mellitus, but the reason for this close association remains obscure. Recently promoter methylation of E-cadherin1 (CDH1) and CDKN2A genes, encoding E-cadherin and P16 respectively, are invoked in development of PDC. It is still unclear whether diabetes affects such epigenetic changes and malignant behavior in PDC. In this study, we studied whether diabetes influences the clinico-pathological profile and methylation status of CDH1 and CDKN2A genes in patients with PDC. PDC subjects were divided into 3 groups; 59 cases without diabetes (non-DM), 17 cases with short-term diabetes (short-DM)(diabetes duration 3 yrs>) and 33 cases with long-term diabetes (long-DM)(≧3 yrs). Compared to non-DM or short-DM, long-DM was associated with a higher histological grade of malignancy and a higher tumor stage. Promoter methylation of both CDH1 and CDKN2A was encountered more frequently in PDC patients with long-DM than non-DM or short DM. Cases with CDH1 promoter methylation showed reduced E-cadherin expression and worsened survival. We consider that the presence of long-DM has a negative impact on the prognosis of PDC patients which may be relevant to a high frequency of promoter methylation of CDH1.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.,Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Satoko Umetsu
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.,Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Chiaki Uchida
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.,Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Makoto Abe
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuhiro Kudo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Chieko Itabashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
32
|
Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, Sandoval J. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res 2017. [PMID: 28644958 DOI: 10.1016/j.trsl.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients. Of particular relevance is the identification of epigenetic biomarkers in lung cancer, one of the most prevalent and deadly types of cancer. DNA methylation of SHOX2 and RASSF1A could be used as diagnostic markers to differentiate between normal and tumor samples. MicroRNA and long noncoding RNA signatures associated with lung cancer development or tobacco smoke have also been identified. In addition to the field of biomarkers, therapeutic approaches using DNA methylation and histone deacetylation inhibitors are being tested in clinical trials for several cancer types. Moreover, new DNA editing techniques based on zinc finger and CRISPR/Cas9 technologies allow specific modification of aberrant methylation found in oncogenes or tumor suppressor genes. We envision that epigenomics will translate into the clinical field and will have an impact on lung cancer diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Josep Mari-Alexandre
- Unit of Inherited Cardiovascular Diseases, Sudden Death and Mechanisms of Disease, Health Research Institute La Fe, Valencia, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain
| | - Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Health Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain.
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
33
|
Yun Y, Gao R, Yue H, Guo L, Li G, Sang N. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11401-11411. [PMID: 28901751 DOI: 10.1021/acs.est.7b02857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Secondary inorganic aerosols (SIA), particularly sulfate aerosols, are central particulate matter (PM) constituents of severe haze formation in China and exert profound impacts on human health; however, our understanding of the mechanisms by which sulfate aerosols cause malignancy in lung carcinogenesis remains incomplete. Here, we show that exposure to secondary inorganic aerosols induced the invasion and migration of lung epithelial cells, and that (NH4)2SO4 exerted the most serious effects in vitro and promoted lung tumor metastasis in vivo. This action was associated with alterations of phenotype markers in the epithelial-to-mesenchymal transition (EMT), such as the up-regulation of fibronectin (Fn1) and the down-regulation of E-cadherin (E-cad). Hypoxia-inducible factor 1α (HIF-1α)-Snail signaling, regulated by the generation of reactive oxygen species (ROS), was involved in the (NH4)2SO4-induced EMT, and the potent antioxidant N-acetylcysteine (NAC) inhibited the activation of HIF-1α-Snail and blocked the EMT, cell invasion, and migration in response to (NH4)2SO4. Additionally, CpG hypermethylation in the E-cad promoter regions partly contributed to the (NH4)2SO4-regulated E-cad repression, and the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) restored the (NH4)2SO4-induced down-regulation of E-cad. Our findings reveal a potential mechanistic basis for exploring the association between sulfate aerosol exposure and increased malignancy during lung carcinogenesis, and suggest new approaches for the treatment, improvement, and prevention of lung cancer resulting from sulfate aerosol exposure in severe haze-fog.
Collapse
Affiliation(s)
- Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Lin Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| |
Collapse
|
34
|
Duruisseaux M, Esteller M. Lung cancer epigenetics: From knowledge to applications. Semin Cancer Biol 2017; 51:116-128. [PMID: 28919484 DOI: 10.1016/j.semcancer.2017.09.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Advances in our understanding of the genomics of lung cancer have led to substantial progress in the treatment of specific molecular subsets. Immunotherapy also emerges as a major breakthrough in lung cancer treatment. However, challenges remain as a consensual approach for early lung cancer detection remains elusive while primary or secondary drug resistance eventually leads to treatment failure in all patients with advanced disease. Furthermore, a large portion of patients are still treated with conventional chemotherapy that is only modestly effective. The last two decades have seen exponential developments in the epigenetic understanding of lung cancer. Epigenetic alterations in DNA methylation, non-coding RNA expression, chromatin modeling and post transcriptional regulators are key events in each step of lung cancer pathogenesis. Here, we review the central role epigenetic disruptions play in lung cancer carcinogenesis and the acquisition of cancerous phenotype and aggressive behavior as well as in the resistance to therapy. Epigenetic disruptions could represent reliable biomarkers for lung cancer risk assessment, early diagnosis, prognosis stratification, molecular classification and prediction of treatment efficacy. The therapeutic potential of epigenetics targeted drugs in combination with chemotherapy, targeted therapy and/or immunotherapy is currently being intensively investigated. We suggest that integration of tissue-derived or circulating epigenetic biomarkers and epidrugs in clinical trial design will translate epigenetic knowledge of lung cancer into the clinic and improve lung cancer patient outcomes.
Collapse
Affiliation(s)
- Michaël Duruisseaux
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Department of Respiratory Medecine, Hôpital Louis-Pradel, Hospices civils de Lyon, 28 avenue du Doyen Lépine, 69677, Lyon cedex, France.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
35
|
Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A, O'Hagan HM, Murphy L, Zahnow CA, Gabrielson E, Velculescu VE, Easwaran HP, Baylin SB. Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations. Cancer Cell 2017; 32:360-376.e6. [PMID: 28898697 PMCID: PMC5596892 DOI: 10.1016/j.ccell.2017.08.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells for transformation by a single oncogene. The smoke-induced chromatin changes include initial repressive polycomb marking of genes, later manifesting abnormal DNA methylation by 10 months. At this time, cells exhibit epithelial-to-mesenchymal changes, anchorage-independent growth, and upregulated RAS/MAPK signaling with silencing of hypermethylated genes, which normally inhibit these pathways and are associated with smoking-related non-small cell lung cancer. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adenosquamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.
Collapse
Affiliation(s)
- Michelle Vaz
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen Y Hwang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Kagiampakis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashwini Patil
- Krieger School of Arts and Sciences, Baltimore, MD 21218, USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Lauren Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hariharan P Easwaran
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
36
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
37
|
He Z, Li D, Ma J, Chen L, Duan H, Zhang B, Gao C, Li J, Xing X, Zhao J, Wang S, Wang F, Zhang H, Li H, Chen S, Zeng X, Wang Q, Xiao Y, Zheng Y, Chen W. TRIM36 hypermethylation is involved in polycyclic aromatic hydrocarbons-induced cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:93-103. [PMID: 28359976 DOI: 10.1016/j.envpol.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Long term exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the increasing risk of lung cancer. To identify differentially hypermethylated genes associated with PAHs-induced carcinogenicity, we performed genome-wide DNA methylation analysis in 20 μM benzo(a)pyrene (BaP)-transformed human bronchial epithelial (HBE) cells at different stages of cell transformation. Several methylated genes (CNGA4, FLT1, GAREM1, SFMBT2, TRIM36) were differentially hypermethylated and their mRNA was suppressed in cells at both pre-transformed and transformed stages. Similar results were observed in HBE cells transformed by 20 μg/mL coke oven emissions (COEs) mixture collected from a coking manufacturing facility. In particular, hypermethylation of TRIM36 and suppression of TRIM36 expression were gradually enhanced over the time of COEs treatment. We developed bisulfite pyrosequencing assay and assessed TRIM36 methylation quantitatively. We found that hypermethylation of TRIM36 and reduced gene expression was prevalent in several types of human cancers. TRIM36 hypermethylation appeared in 90.0% (23/30) of Non-Small Cell Lung Cancer (NSCLCs) tissues compared to their paired adjacent tissues with an average increase of 1.32 fold. Furthermore, an increased methylation rate (5.90% v.s 7.38%) and reduced levels of TRIM36 mRNA were found in peripheral lymphocytes (PBLCs) of 151 COEs-exposed workers. In all subjects, TRIM36 hypermethylation was positively correlated with the level of urinary 1-hydroxypyrene (P < 0.001), an internal exposure marker of PAHs, and the DNA damage (P = 0.013). These findings suggest that aberrant hypermethylation of TRIM36 might be involved in the acquisition of malignant phenotype and could be served as a biomarker for risk assessment of PAHs exposure.
Collapse
Affiliation(s)
- Zhini He
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junxiang Ma
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Gao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangping Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiyao Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, China.
| |
Collapse
|
38
|
Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food Chem Toxicol 2017; 109:703-713. [PMID: 28476633 DOI: 10.1016/j.fct.2017.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs.
Collapse
Affiliation(s)
- Trevor J Fish
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
39
|
Liu C, Lv D, Li M, Zhang X, Sun G, Bai Y, Chang D. Hypermethylation of miRNA-589 promoter leads to upregulation of HDAC5 which promotes malignancy in non-small cell lung cancer. Int J Oncol 2017; 50:2079-2090. [DOI: 10.3892/ijo.2017.3967] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 11/06/2022] Open
|
40
|
Pogribny IP, Beland FA, Rusyn I. The role of microRNAs in the development and progression of chemical-associated cancers. Toxicol Appl Pharmacol 2016; 312:3-10. [DOI: 10.1016/j.taap.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
|
41
|
Bersaas A, Arnoldussen YJ, Sjøberg M, Haugen A, Mollerup S. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells. Toxicol In Vitro 2016; 35:55-65. [PMID: 27221058 DOI: 10.1016/j.tiv.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells.
Collapse
Affiliation(s)
- Audun Bersaas
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Yke Jildouw Arnoldussen
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Mari Sjøberg
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway
| | - Steen Mollerup
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033 Oslo, Norway.
| |
Collapse
|
42
|
Tellez CS, Juri DE, Do K, Picchi MA, Wang T, Liu G, Spira A, Belinsky SA. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis. Cancer Res 2016; 76:4741-51. [PMID: 27302168 DOI: 10.1158/0008-5472.can-15-3367] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Teresa Wang
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Gang Liu
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Avrum Spira
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
43
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
44
|
Cheng YW, Lin FCF, Chen CY, Hsu NY. Environmental exposure and HPV infection may act synergistically to induce lung tumorigenesis in nonsmokers. Oncotarget 2016; 7:19850-62. [PMID: 26918347 PMCID: PMC4991423 DOI: 10.18632/oncotarget.7628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Most studies of lung tumorigenesis have focused on smokers rather than nonsmokers. In this study, we used human papillomavirus (HPV)-positive and HPV-negative lung cancer cells to test the hypothesis that HPV infection synergistically increases DNA damage induced by exposure to the carcinogen benzo[a]pyrene (B[a]P), and contributes to lung tumorigenesis in nonsmokers. DNA adduct levels induced by B[a]P in HPV-positive cells were significantly higher than in HPV-negative cells. The DNA adduct formation was dependent on HPV E6 oncoprotein expression. Gene and protein expression of two DNA repair genes, XRCC3 and XRCC5, were lower in B[a]P-treated E6-positive cells than in E6-negative lung cancer cells. The reduced expression was also detected immunohistochemically and was caused by increased promoter hypermethylation. Moreover, mutations of p53 and epidermal growth factor receptor (EGFR) genes in lung cancer patients were associated with XRCC5 inactivation. In sum, our study indicates that HPV E6-induced promoter hypermethylation of the XRCC3 and XRCC5 DNA repair genes and the resultant decrease in their expression increases B[a]P-induced DNA adducts and contributes to lung tumorigenesis in nonsmokers.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nan-Yung Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
46
|
Tan X, Xu X, Zeisberg M, Zeisberg EM. DNMT1 and HDAC2 Cooperate to Facilitate Aberrant Promoter Methylation in Inorganic Phosphate-Induced Endothelial-Mesenchymal Transition. PLoS One 2016; 11:e0147816. [PMID: 26815200 PMCID: PMC4729486 DOI: 10.1371/journal.pone.0147816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/09/2016] [Indexed: 12/17/2022] Open
Abstract
While phosphorus in the form of inorganic or organic phosphate is critically involved in most cellular functions, high plasma levels of inorganic phosphate levels have emerged as independent risk factor for cardiac fibrosis, cardiovascular morbidity and decreased life-expectancy. While the link of high phosphate and cardiovascular disease is commonly explained by direct cellular effects of phospho-regulatory hormones, we here explored the possibility of inorganic phosphate directly eliciting biological responses in cells. We demonstrate that human coronary endothelial cells (HCAEC) undergo an endothelial-mesenchymal transition (EndMT) when exposed to high phosphate. We further demonstrate that such EndMT is initiated by recruitment of aberrantly phosphorylated DNMT1 to the RASAL1 CpG island promoter by HDAC2, causing aberrant promoter methylation and transcriptional suppression, ultimately leading to increased Ras-GTP activity and activation of common EndMT regulators Twist and Snail. Our studies provide a novel aspect for known adverse effects of high phosphate levels, as eukaryotic cells are commonly believed to have lost phosphate-sensing mechanisms of prokaryotes during evolution, rendering them insensitive to extracellular inorganic orthophosphate. In addition, our studies provide novel insights into the mechanisms underlying specific targeting of select genes in context of fibrogenesis.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- * E-mail:
| |
Collapse
|
47
|
Chen W, Padilla MT, Xu X, Desai D, Krzeminski J, Amin S, Lin Y. Quercetin inhibits multiple pathways involved in interleukin 6 secretion from human lung fibroblasts and activity in bronchial epithelial cell transformation induced by benzo[a]pyrene diol epoxide. Mol Carcinog 2015; 55:1858-1866. [PMID: 26609631 DOI: 10.1002/mc.22434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
Abstract
The interaction between epithelial and stromal cells through soluble factors such as cytokines plays an important role in carcinogenesis. Breaking this cancer-promoting interaction poses an opportunity for cancer prevention. The tumor-promoting function of interleukin 6 (IL-6) has been documented; however, the underlying mechanisms of this function in lung carcinogenesis are not well elucidated. Here, we show that benzo[a]pyrene diol epoxide (BPDE, the active metabolite of cigarette smoke carcinogen benzo[a]pyrene)-induced human bronchial epithelial cell (HBEC) transformation was enhanced by IL-6 in vitro. The carcinogen/IL-6-transformed cells exhibited higher expression of STAT3 (signal transducer and activator of transcription 3) when compared with cells transformed by BPDE alone. Constitutive STAT3 activation drove cell proliferation and survival through anti-apoptosis gene expression. We further show that quercetin, a dietary compound having preventive properties for lung cancer, decreased BPDE-stimulated IL-6 secretion from human lung fibroblasts through inhibition of the NF-κB and ERK pathways. The inhibition was accomplished at clinically achievable concentrations of the compound. Finally, quercetin blocked IL-6-induced STAT3 activation in HBECs, and IL-6 enhancement of HBEC transformation by BPDE was abolished by quercetin treatment. Altogether, our data reveal novel mechanisms for IL-6 in lung carcinogenesis and for the preventive role of quercetin in the process. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace -----Respiratory Research Institute, Albuquerque, New Mexico.
| | - Mabel T Padilla
- Molecular Biology and Lung Cancer Program, Lovelace -----Respiratory Research Institute, Albuquerque, New Mexico
| | - Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace -----Respiratory Research Institute, Albuquerque, New Mexico
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace -----Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
48
|
Wu BK, Mei SC, Brenner C. RFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation. Cell Cycle 2015; 13:3222-31. [PMID: 25485502 DOI: 10.4161/15384101.2014.950886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci targeting sequence (RFTS) is an N-terminal domain of DNMT1 that inhibits DNA-binding and catalytic activity, suggesting that RFTS deletion would result in a gain of DNMT1 function. However, a substantial body of data suggested that RFTS is required for DNMT1 activity. Here, we demonstrate that deletion of RFTS alters DNMT1-dependent DNA methylation during malignant transformation. Compared to full-length DNMT1, ectopic expression of hyperactive DNMT1-ΔRFTS caused greater malignant transformation and enhanced promoter methylation with condensed chromatin structure that silenced DAPK and DUOX1 expression. Simultaneously, deletion of RFTS impaired DNMT1 chromatin association with pericentromeric Satellite 2 (SAT2) repeat sequences and produced DNA demethylation at SAT2 repeats and globally. To our knowledge, RFTS-deleted DNMT1 is the first single factor that can reprogram focal hypermethylation and global hypomethylation in parallel during malignant transformation. Our evidence suggests that the RFTS domain of DNMT1 is a target responsible for epigenetic changes in cancer.
Collapse
Affiliation(s)
- Bo-Kuan Wu
- a Department of Biochemistry; Carver College of Medicine ; University of Iowa ; Iowa City , IA USA
| | | | | |
Collapse
|
49
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
50
|
miR-138-1* regulates aflatoxin B1-induced malignant transformation of BEAS-2B cells by targeting PDK1. Arch Toxicol 2015; 90:1239-49. [DOI: 10.1007/s00204-015-1551-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/09/2015] [Indexed: 01/16/2023]
|