1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Zhao Z, Zhu L, Luo Y, Xu H, Zhang Y. Collateral lethality: A unique type of synthetic lethality in cancers. Pharmacol Ther 2025; 265:108755. [PMID: 39581504 DOI: 10.1016/j.pharmthera.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Genetic interactions play crucial roles in cell-essential functions. Intrinsic genetic defects in tumors typically involve gain-of- and loss-of-function mutations in tumor suppressor genes (TSGs) and oncogenes, respectively, providing potential antitumor vulnerabilities. Moreover, tumor cells with TSG deficiencies exhibit heightened sensitivity to the inhibition of compensatory pathways. Synthetic and collateral lethality are two strategies used for exploiting novel drug targets in multiple types of cancer. Collateral lethality is a unique type of synthetic lethality that occurs when passenger genes are co-deleted in neighboring TSGs. Although synthetic lethality has already been successfully demonstrated in clinical practice, antitumor therapeutics based on collateral lethality are predominantly still in the preclinical phase. Therefore, screening for potential genetic interactions within the cancer genome has emerged as a promising approach for drug development. Here, the two conceptual therapeutic strategies that involve the deletion or inactivation of cancer-specific TSGs are discussed. Moreover, existing approaches for screening and identifying potential gene partners are also discussed. Particularly, this review highlights the current advances of "collateral lethality" in the preclinical phase and addresses the challenges involved in translating them into therapeutic applications. This review provides insights into these strategies as new opportunities for the development of personalized antitumor therapies.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Luo
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Heng Xu
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Huang R, Ji F, Huang L, Qin Y, Liang Z, Huang M, Li C, Ban J. Efficacy and safety of angiogenesis inhibitors combined with poly ADP ribose polymerase inhibitors in the maintenance treatment of advanced ovarian cancer: a meta-analysis. Front Oncol 2024; 14:1477105. [PMID: 39624625 PMCID: PMC11609078 DOI: 10.3389/fonc.2024.1477105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION This meta-analysis was performed to evaluate the efficacy and safety of angiogenesis inhibitors (Ais) combined with poly ADP ribose polymerase inhibitors (PARPi) in the maintenance treatment of advanced ovarian cancer (OC). MATERIALS AND METHODS A systematic search was conducted in four databases (Pubmed, Embase, Web of Science, and Cochrane) for articles published from the inception of the databases until January 15, 2024. The focus of the search was on articles investigating the combination of Ais with PARPi in the maintenance treatment of ovarian cancer. Meta-analyses were conducted to assess the objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and the risk of Grade ≥ 3 adverse events (Grade≥ 3 AEs). RESULTS Totally nine studies were included for meta-analysis. The overall pooled ORR of Ais combined with PARPi was 57% (95% CI, 35% to 77%). Subgroup analyses showed that the ORR for patients with platinum-resistant recurrent ovarian cancer, platinum-sensitive recurrent ovarian cancer and newly diagnosed advanced ovarian cancer were 30% (95% CI, 12% to 52%), 70% (95% CI, 61% to 78%) and 59% (95% CI, 55% to 63%), respectively. The median PFS was 5.8 months (95% CI, 5.3 to 7.1), 12.4 months (95% CI, 10.6 to 13.2) and 22.4 months (95% CI, 21.5 to 24.2), respectively. The median OS was 15.5 months (95% CI, 12.3 to 24.8), 40.8 months (95% CI, 33.4 to 45.2) and 56.3 months (95% CI, 49.0 to 62.0), respectively. The rate Grade≥ 3 TRAEs rate was found to be 0.22 (95% CI, 0.13 to 0.33). CONCLUSIONS Our results confirmed that PARPi plus Ais was a feasible and safe option for the maintenance treatment of advanced ovarian cancer. The combination therapy should be recommended as the first-line maintenance treatment for patients with advanced ovarian cancer. PARPi plus Ais yielded more favorable oncological prognosis for patients with platinum-sensitive recurrent ovarian cancer, compared to patients with platinum-resistant recurrent ovarian cancer. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024543590, identifier CRD42024543590.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Ban
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
4
|
Carucci M, Clamp A, Zhou C, Hurt C, Glasspool R, Monaghan PJ, Thirkettle S, Wheatley M, Mahmood M, Narasimham M, Cox T, Morrison H, Campbell S, Nelson A, Holland-Hart D, Hopewell-Kelly N, Thomas A, Porter C, Slusarczyk M, Irving A, Dive C, Adams R, Jayson GC. The VALTIVE1 study protocol: a study for the validation of Tie2 as the first tumour vascular response biomarker for VEGF inhibitors. BMC Cancer 2024; 24:1309. [PMID: 39448911 PMCID: PMC11515440 DOI: 10.1186/s12885-024-13073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Anti-angiogenic, VEGF inhibitors (VEGFi) increase progression-free survival (PFS) and, in some cases, overall survival in many solid tumours. However, their use has been compromised by a lack of informative biomarkers. We have shown that plasma Tie2 is the first tumour vascular response biomarker for VEGFi in ovarian, colorectal and gall bladder cancer: If plasma Tie2 concentrations do not change after 9 weeks of treatment with a VEGFi, the patient does not benefit, whereas a confirmed reduction of at least 10% plasma Tie2 defines a vascular response with a hazard ratio (HR) for PFS of 0.56. The aim of the VALTIVE1 study is to validate the utility of plasma Tie2 as a vascular response biomarker and to optimise the Tie2-definition of vascular response so that the subsequent randomised discontinuation VALTIVE2 study can be powered optimally. METHODS VALTIVE1 is a multi-centre, single arm, non-interventional biomarker study, with a sample size of 205 participants (176 bevacizumab-treated participants + 29 participants receiving bevacizumab and olaparib/PARPi), who are 16 years or older, have FIGO stage IIIc/IV ovarian cancer on treatment with first-line platinum-based chemotherapy and bevacizumab. Their blood plasma samples will be collected before, during, and after treatment and the concentration of Tie2 will be determined. The primary objective is to define the PFS difference between Tie2-defined vascular responders and Tie2-defined vascular non-responders in patients receiving bevacizumab for high-risk Ovarian Cancer. Secondary objectives include defining the relationship between Tie2-defined vascular progression and disease progression assessed according to RECIST 1.1 criteria and assessing the impact of PARPi on the plasma concentration of Tie2 and, therefore, the decision-making utility of Tie2 as a vascular response biomarker for bevacizumab during combined bevacizumab-PARPi maintenance. DISCUSSION There is an urgent need to establish a test that tells patients and their doctors when VEGFi are working and when they stop working. The data generated from this study will be used to design a second trial aiming to prove conclusively the value of the Tie2 test. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04523116. Registered on 21 Aug 2020.
Collapse
Affiliation(s)
- Margherita Carucci
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK.
| | - Andrew Clamp
- The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Cong Zhou
- Cancer Research National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Chris Hurt
- University of Southampton, Southampton, UK
| | - Rosalind Glasspool
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Tracy Cox
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Susan Campbell
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Annmarie Nelson
- Marie Curie Research Centre, Cardiff University, Cardiff, UK
| | | | | | - Abin Thomas
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Catharine Porter
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Magdalena Slusarczyk
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Alys Irving
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Caroline Dive
- Cancer Research National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Richard Adams
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Gordon C Jayson
- The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
5
|
Cognet G, Muir A. Identifying metabolic limitations in the tumor microenvironment. SCIENCE ADVANCES 2024; 10:eadq7305. [PMID: 39356752 PMCID: PMC11446263 DOI: 10.1126/sciadv.adq7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Solid tumors are characterized by dysfunctional vasculature that limits perfusion and delivery of nutrients to the tumor microenvironment. Limited perfusion coupled with the high metabolic demand of growing tumors has led to the hypothesis that many tumors experience metabolic stress driven by limited availability of nutrients such as glucose, oxygen, and amino acids in the tumor. Such metabolic stress has important implications for the biology of cells in the microenvironment, affecting both disease progression and response to therapies. Recently, techniques have been developed to identify limiting nutrients and resulting metabolic stresses in solid tumors. These techniques have greatly expanded our understanding of the metabolic limitations in tumors. This review will discuss these experimental tools and the emerging picture of metabolic limitations in tumors arising from recent studies using these approaches.
Collapse
Affiliation(s)
- Guillaume Cognet
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Kotecha RR, Doshi SD, Knezevic A, Chaim J, Chen Y, Jacobi R, Zucker M, Reznik E, McHugh D, Shah NJ, Feld E, Aggen DH, Rafelson W, Xiao H, Carlo MI, Feldman DR, Lee CH, Motzer RJ, Voss MH. A Phase 2 Trial of Talazoparib and Avelumab in Genomically Defined Metastatic Kidney Cancer. Eur Urol Oncol 2024; 7:804-811. [PMID: 37945488 PMCID: PMC11074239 DOI: 10.1016/j.euo.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Although different kidney cancers represent a heterogeneous group of malignancies, multiple subtypes including Von Hippel-Lindau (VHL)-altered clear cell renal cell carcinoma (ccRCC), fumarate hydratase (FH)- and succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC), and renal medullary carcinoma (RMC) are affected by genomic instability. Synthetic lethality with poly ADP-ribose polymerase inhibitors (PARPis) has been suggested in preclinical models of these subtypes, and paired PARPis with immune checkpoint blockade (ICB) may achieve additive and/or synergistic effects in patients with previously treated advanced kidney cancers. OBJECTIVE To evaluate combined PARPi + ICB in treatment-refractory metastatic kidney cancer. DESIGN, SETTING, AND PARTICIPANTS We conducted a single-center, investigator-initiated phase 2 trial in two genomically selected advanced kidney cancer cohorts: (1) VHL-altered RCC with at least one prior ICB agent and one vascular endothelial growth factor (VEGF) inhibitor, and (2) FH- or SDH-deficient RCC with at least one prior ICB agent or VEGF inhibitor and RMC with at least one prior line of chemotherapy. INTERVENTION Patients received talazoparib 1 mg daily plus avelumab 800 mg intravenously every 14 d in 28-d cycles. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was objective response rate (ORR) by Immune Response Evaluation Criteria in Solid Tumors at 4 mo, and the secondary endpoints included progression-free survival (PFS), overall survival, and safety. RESULTS AND LIMITATIONS Cohort 1 consisted of ten patients with VHL-altered ccRCC. All patients had previously received ICB. The ORR was 0/9 patients; one patient was not evaluable due to missed doses. In this cohort, seven patients achieved stable disease (SD) as the best response. The median PFS was 3.5 mo (95% confidence interval [CI] 1.0, 3.9 mo). Cohort 2 consisted of eight patients; four had FH-deficient RCC, one had SDH-deficient RCC, and three had RMC. In this cohort, six patients had previously received ICB. The ORR was 0/8 patients; two patients achieved SD as the best response and the median PFS was 1.2 mo (95% CI 0.4, 2.9 mo). The most common treatment-related adverse events of all grades were fatigue (61%), anemia (28%), nausea (22%), and headache (22%). There were seven grade 3-4 and no grade 5 events. CONCLUSIONS The first clinical study of combination PARPi and ICB therapy in advanced kidney cancer did not show clinical benefit in multiple genomically defined metastatic RCC cohorts or RMC. PATIENT SUMMARY We conducted a study to look at the effect of two medications, talazoparib and avelumab, in patients with metastatic kidney cancer who had disease progression on standard treatment. Talazoparib blocks the normal activity of molecules called poly ADP-ribose polymerase, which then prevents tumor cells from repairing themselves and growing, while avelumab helps the immune system recognize and kill cancer cells. We found that the combination of these agents was safe but not effective in specific types of kidney cancer.
Collapse
Affiliation(s)
- Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sahil D Doshi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Chaim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingbei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Jacobi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Zucker
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deaglan McHugh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil J Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Emily Feld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David H Aggen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William Rafelson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Han Xiao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
7
|
Previtali V, Bagnolini G, Ciamarone A, Ferrandi G, Rinaldi F, Myers SH, Roberti M, Cavalli A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J Med Chem 2024; 67:11488-11521. [PMID: 38955347 DOI: 10.1021/acs.jmedchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciamarone
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Ferrandi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel Harry Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Wei Y, He L, Liu T, Guo T, Xie C, Jia J, Lin Y, Liu J, Fan J. Efficacy and safety of PARP inhibitors combined with antiangiogenic agents in the maintenance treatment of ovarian cancer: a systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. Front Pharmacol 2024; 15:1372077. [PMID: 38584601 PMCID: PMC10995238 DOI: 10.3389/fphar.2024.1372077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Background: Poly (ADP-ribose) polymerase (PARP) inhibitor and antiangiogenic agent monotherapy have shown to be effective as maintenance treatment in patients with ovarian cancer (OC). However, there is currently a lack of evidence-based study to directly compare the effects of combination therapy with these two drugs. Therefore, this study aimed to compare the efficacy and safety of combination therapy with PARP inhibitors and antiangiogenic agents in women with OC using a meta-analysis. Methods: An exhaustive search of literature was undertaken using multiple databases, including PubMed, Web of Science, Embase, and the Cochrane Library to identify pertinent randomized controlled trials (RCTs) published up until 17 December 2023. The data on progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were pooled. We computed the pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) for PFS and OS, along with the relative risks (RRs) and 95% CIs for AEs. Trial sequential analysis, heterogeneity test, sensitivity analysis, and publication bias assessment were performed. Stata 12.0 and Software R 4.3.1 were utilized for all analyses. Results: This meta-analysis included 7 RCTs with a total of 3,388 participants. The overall analysis revealed that combination therapy of PARP inhibitors and antiangiogenic agents significantly improved PFS (HR = 0.615, 95% CI = 0.517-0.731; 95% PI = 0.379-0.999), but also increased the risk of AEs, including urinary tract infection (RR = 1.500, 95% CI = 1.114-2.021; 95% PI = 0.218-10.346), fatigue (RR = 1.264, 95% CI = 1.141-1.400; 95% PI = 1.012-1.552), headache (RR = 1.868, 95% CI = 1.036-3.369; 95% PI = 0.154-22.642), anorexia (RR = 1.718, 95% CI = 1.320-2.235; 95% PI = 0.050-65.480), and hypertension (RR = 5.009, 95% CI = 1.103-22.744; 95% PI = 0.016-1580.021) compared with PARP inhibitor or antiangiogenic agent monotherapy. Our study has not yet confirmed the benefit of combination therapy on OS in OC patients (HR = 0.885, 95% CI = 0.737-1.063). Additionally, subgroup analyses further showed that combination therapy resulted in an increased risk of AEs, encompassing thrombocytopenia, vomiting, abdominal pain, proteinuria, fatigue, headache, anorexia, and hypertension (all p < 0.05). Conclusion: Our study demonstrated the PFS benefit of combination therapy with PARP inhibitors and antiangiogenic agents in patients with OC. The OS result need to be updated after the original trial data is mature. Clinicians should be vigilant of AEs when administering the combination therapy in clinical practice. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023494482.
Collapse
Affiliation(s)
- Yan Wei
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li He
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Liu
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cong Xie
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jigang Jia
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Liu
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiayin Fan
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Fu X, Li P, Zhou Q, He R, Wang G, Zhu S, Bagheri A, Kupfer G, Pei H, Li J. Mechanism of PARP inhibitor resistance and potential overcoming strategies. Genes Dis 2024; 11:306-320. [PMID: 37588193 PMCID: PMC10425807 DOI: 10.1016/j.gendis.2023.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023] Open
Abstract
PARP inhibitors (PARPi) are a kind of cancer therapy that targets poly (ADP-ribose) polymerase. PARPi is the first clinically approved drug to exert synthetic lethality by obstructing the DNA single-strand break repair process. Despite the significant therapeutic effect in patients with homologous recombination (HR) repair deficiency, innate and acquired resistance to PARPi is a main challenge in the clinic. In this review, we mainly discussed the underlying mechanisms of PARPi resistance and summarized the promising solutions to overcome PARPi resistance, aiming at extending PARPi application and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Zhou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guannan Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shiya Zhu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Bagheri
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
10
|
Bakshi HA, Mkhael M, Faruck HL, Khan AU, Aljabali AAA, Mishra V, El-Tanani M, Charbe NB, Tambuwala MM. Cellular signaling in the hypoxic cancer microenvironment: Implications for drug resistance and therapeutic targeting. Cell Signal 2024; 113:110911. [PMID: 37805102 DOI: 10.1016/j.cellsig.2023.110911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
The rewiring of cellular metabolism is a defining characteristic of cancer, as tumor cells adapt to acquire essential nutrients from a nutrient-poor environment to sustain their viability and biomass. While hypoxia has been identified as a major factor depriving cancer cells of nutrients, recent studies have revealed that cancer cells distant from supporting blood vessels also face nutrient limitations. To overcome this challenge, hypoxic cancer cells, which heavily rely on glucose as an energy source, employ alternative pathways such as glycogen metabolism and reductive carboxylation of glutamine to meet their energy requirements for survival. Our preliminary studies, alongside others in the field, have shown that under glucose-deficient conditions, hypoxic cells can utilize mannose and maltose as alternative energy sources. This review aims to comprehensively examine the hypoxic cancer microenvironment, its association with drug resistance, and potential therapeutic strategies for targeting this unique niche. Furthermore, we will critically evaluate the current literature on hypoxic cancer microenvironments and explore state-of-the-art techniques used to analyze alternate carbohydrates, specifically mannose and maltose, in complex biological fluids. We will also propose the most effective analytical methods for quantifying mannose and maltose in such biological samples. By gaining a deeper understanding of the hypoxic cancer cell microenvironment and its role in drug resistance, novel therapeutic approaches can be developed to exploit this knowledge.
Collapse
Affiliation(s)
- Hamid A Bakshi
- Laboratory of Cancer Therapy Resistance and Drug Target Discovery, The Hormel Institute, University of Minnesota, Austin MN55912, USA; School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK.
| | - Michella Mkhael
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK
| | - Hakkim L Faruck
- Laboratory of Cell Signaling and Tumorigenesis, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Asad Ullah Khan
- Laboratory of Molecular Biology of Chronic Diseases, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mohamed El-Tanani
- RAK Medical and Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
11
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
12
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Zhao JL, Yang J, Li K, Chen Y, Tang M, Zhu HL, Nie CL, Yuan Z, Zhao XY. Abrogation of ATR function preferentially augments cisplatin-induced cytotoxicity in PTEN-deficient breast cancer cells. Chem Biol Interact 2023; 385:110740. [PMID: 37802411 DOI: 10.1016/j.cbi.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 μmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.
Collapse
Affiliation(s)
- Jian-Lei Zhao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jun Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Li Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chun-Lai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
15
|
Kim JW, McKay RR, Radke MR, Zhao S, Taplin ME, Davis NB, Monk P, Appleman LJ, Lara PN, Vaishampayan UN, Zhang J, Paul AK, Bubley G, Van Allen EM, Unlu S, Huang Y, Loda M, Shapiro GI, Glazer PM, LoRusso PM, Ivy SP, Shyr Y, Swisher EM, Petrylak DP. Randomized Trial of Olaparib With or Without Cediranib for Metastatic Castration-Resistant Prostate Cancer: The Results From National Cancer Institute 9984. J Clin Oncol 2023; 41:871-880. [PMID: 36256912 PMCID: PMC9901975 DOI: 10.1200/jco.21.02947] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Cediranib, a pan-vascular endothelial growth factor receptor inhibitor, suppresses expression of homologous recombination repair (HRR) genes and increases sensitivity to poly-(ADP-ribose) polymerase inhibition in preclinical models. We investigated whether cediranib combined with olaparib improves the clinical outcomes of patients with prostate cancer. METHODS Patients with progressive metastatic castration-resistant prostate cancer (mCRPC) were randomly assigned 1:1 to arm A: cediranib 30 mg once daily plus olaparib 200 mg twice daily or arm B: olaparib 300 mg twice daily alone. The primary end point was radiographic progression-free survival (rPFS) in the intention-to-treat patients. The secondary end points were rPFS in patients with HRR-deficient and HRR-proficient mCRPC. RESULTS In the intention-to-treat set of 90 patients, median rPFS was 8.5 (95% CI, 5.4 to 12.0) and 4.0 (95% CI, 3.2 to 8.5) months in arms A and B, respectively. Cediranib/olaparib significantly improved rPFS versus olaparib alone (hazard ratio [HR], 0.617; 95% CI, 0.392 to 0.969; P = .0359). Descriptive analyses showed a median rPFS of 10.6 (95% CI, 5.9 to not assessed [NA]) and 3.8 (95% CI, 2.33 to NA) months (HR, 0.64; 95% CI, 0.272 to 1.504) among patients with HRR-deficient mCRPC, and 13.8 (95% CI, 3.3 to NA) and 11.3 (95% CI, 3.8 to NA) months (HR, 0.98; 95% CI, 0.321 to 2.988) among patients with BRCA2-mutated mCRPC in arms A and B, respectively. The incidence of grades 3-4 adverse events was 61% and 18% in arms A and B, respectively. CONCLUSION Cediranib combined with olaparib improved rPFS compared with olaparib alone in men with mCRPC. This combination was associated with an increased incidence of grades 3-4 adverse events. BRCA2-mutated subgroups treated with olaparib with or without cediranib were associated with a numerically longer median rPFS.
Collapse
Affiliation(s)
- Joseph W. Kim
- Medical Oncology Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Rana R. McKay
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, San Diego, CA
| | - Marc R. Radke
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Nancy B. Davis
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Paul Monk
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Leonard J. Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Primo N. Lara
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | | | - Jingsong Zhang
- Genitourinary Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Glenn Bubley
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Serhan Unlu
- Medical Oncology Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Ying Huang
- Dana‐Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, and Meyer Cancer Center, New York, NY
| | | | - Peter M. Glazer
- Therapeutic Radiology, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Patricia M. LoRusso
- Medical Oncology Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - S. Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Daniel P. Petrylak
- Medical Oncology Yale School of Medicine and Yale Cancer Center, New Haven, CT
| |
Collapse
|
16
|
Peyton SR, Platt MO, Cukierman E. Challenges and Opportunities Modeling the Dynamic Tumor Matrisome. BME FRONTIERS 2023; 4:0006. [PMID: 37849664 PMCID: PMC10521682 DOI: 10.34133/bmef.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 10/19/2023] Open
Abstract
We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.
Collapse
Affiliation(s)
- Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Manu O. Platt
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| |
Collapse
|
17
|
Zeng Z, Zheng W, Hou P. The role of drug-metabolizing enzymes in synthetic lethality of cancer. Pharmacol Ther 2022; 240:108219. [PMID: 35636517 DOI: 10.1016/j.pharmthera.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-metabolizing enzymes (DMEs) have shown increasing importance in anticancer therapy. It is not only due to their effect on activation or deactivation of anticancer drugs, but also because of their extensive connections with pathological and biochemistry changes during tumorigenesis. Meanwhile, it has become more accessible to discovery anticancer drugs that selectively targeted cancer cells with the development of synthetic lethal screen technology. Synthetic lethal strategy makes use of unique genetic markers that different cancer cells from normal tissues to discovery anticancer agents. Dysregulation of DMEs has been found in various cancers, making them promising candidates for synthetic lethal strategy. In this review, we will systematically discuss about the role of DMEs in tumor progression, the application of synthetic lethality strategy in drug discovery, and a link between DMEs and synthetic lethal of cancer.
Collapse
Affiliation(s)
- Zekun Zeng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenfang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
18
|
Aiyappa-Maudsley R, Elsalem L, Ibrahim AIM, Pors K, Martin SG. In vitro radiosensitization of breast cancer with hypoxia-activated prodrugs. J Cell Mol Med 2022; 26:4577-4590. [PMID: 35841287 PMCID: PMC9357624 DOI: 10.1111/jcmm.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.
Collapse
Affiliation(s)
- Radhika Aiyappa-Maudsley
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, Liverpool, UK
| | - Lina Elsalem
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Ali I M Ibrahim
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
19
|
Nakai H, Matsumura N. Individualization in the first-line treatment of advanced ovarian cancer based on the mechanism of action of molecularly targeted drugs. Int J Clin Oncol 2022; 27:1001-1012. [PMID: 35416600 PMCID: PMC9006498 DOI: 10.1007/s10147-022-02163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/20/2022]
Abstract
With the development of poly(ADP-ribose) polymerase inhibitors, the treatment of advanced ovarian cancer is changing dramatically. The purpose of this narrative review is to provide a direction for the individualization of advanced ovarian cancer treatment based on the mechanism of action of molecularly targeted drugs currently used in Japan. The PAOLA-1 study showed very good progression-free survival in patients with homologous recombination deficiency tumors who underwent complete surgery with primary debulking surgery and who received olaparib plus bevacizumab. Niraparib has high intratumor penetration, and in a subgroup analysis of the PRIMA study, it was most effective in patients with residual tumors after interval debulking surgery. These data suggest the importance of achieving complete surgery and aiming for cure in the treatment of ovarian cancer and how the use of bevacizumab, olaparib, and niraparib should be individualized.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
20
|
Liu X, Ge Z, Yang F, Contreras A, Lee S, White JB, Lu Y, Labrie M, Arun BK, Moulder SL, Mills GB, Piwnica-Worms H, Litton JK, Chang JT. Identification of biomarkers of response to preoperative talazoparib monotherapy in treatment naïve gBRCA+ breast cancers. NPJ Breast Cancer 2022; 8:64. [PMID: 35538088 PMCID: PMC9090765 DOI: 10.1038/s41523-022-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Germline mutations in BRCA1 or BRCA2 exist in ~2–7% of breast cancer patients, which has led to the approval of PARP inhibitors in the advanced setting. We have previously reported a phase II neoadjuvant trial of single agent talazoparib for patients with germline BRCA pathogenic variants with a pathologic complete response (pCR) rate of 53%. As nearly half of the patients treated did not have pCR, better strategies are needed to overcome treatment resistance. To this end, we conducted multi-omic analysis of 13 treatment naïve breast cancer tumors from patients that went on to receive single-agent neoadjuvant talazoparib. We looked for biomarkers that were predictive of response (assessed by residual cancer burden) after 6 months of therapy. We found that all resistant tumors exhibited either the loss of SHLD2, expression of a hypoxia signature, or expression of a stem cell signature. These results indicate that the deep analysis of pre-treatment tumors can identify biomarkers that are predictive of response to talazoparib and potentially other PARP inhibitors, and provides a framework that will allow for better selection of patients for treatment, as well as a roadmap for the development of novel combination therapies to prevent emergence of resistance.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alejandro Contreras
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Genome Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marilyne Labrie
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Tercan B, Qin G, Kim TK, Aguilar B, Phan J, Longabaugh W, Pot D, Kemp CJ, Chambwe N, Shmulevich I. SL-Cloud: A Cloud-based resource to support synthetic lethal interaction discovery. F1000Res 2022; 11:493. [PMID: 36761837 PMCID: PMC9880341 DOI: 10.12688/f1000research.110903.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Synthetic lethal interactions (SLIs), genetic interactions in which the simultaneous inactivation of two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in cancer, as exemplified by the recent success of PARP inhibitors in treating BRCA1/2-deficient tumors. We present SL-Cloud, a new component of the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC), that provides an integrated framework of cloud-hosted data resources and curated workflows to enable facile prediction of SLIs. This resource addresses two main challenges related to SLI inference: the need to wrangle and preprocess large multi-omic datasets and the availability of multiple comparable prediction approaches. SL-Cloud enables customizable computational inference of SLIs and testing of prediction approaches across multiple datasets. We anticipate that cancer researchers will find utility in this tool for discovery of SLIs to support further investigation into potential drug targets for anticancer therapies.
Collapse
Affiliation(s)
- Bahar Tercan
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Guangrong Qin
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - John Phan
- General Dynamics Information Technology, Rockville, MD, 20852, USA
| | | | - David Pot
- General Dynamics Information Technology, Rockville, MD, 20852, USA
| | - Christopher J. Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nyasha Chambwe
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
22
|
Tercan B, Qin G, Kim TK, Aguilar B, Phan J, Longabaugh W, Pot D, Kemp CJ, Chambwe N, Shmulevich I. SL-Cloud: A Cloud-based resource to support synthetic lethal interaction discovery. F1000Res 2022; 11:493. [PMID: 36761837 PMCID: PMC9880341 DOI: 10.12688/f1000research.110903.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/22/2023] Open
Abstract
Synthetic lethal interactions (SLIs), genetic interactions in which the simultaneous inactivation of two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in cancer, as exemplified by the recent success of PARP inhibitors in treating BRCA1/2-deficient tumors. We present SL-Cloud, a new component of the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC), that provides an integrated framework of cloud-hosted data resources and curated workflows to enable facile prediction of SLIs. This resource addresses two main challenges related to SLI inference: the need to wrangle and preprocess large multi-omic datasets and the availability of multiple comparable prediction approaches. SL-Cloud enables customizable computational inference of SLIs and testing of prediction approaches across multiple datasets. We anticipate that cancer researchers will find utility in this tool for discovery of SLIs to support further investigation into potential drug targets for anticancer therapies.
Collapse
Affiliation(s)
- Bahar Tercan
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Guangrong Qin
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - John Phan
- General Dynamics Information Technology, Rockville, MD, 20852, USA
| | | | - David Pot
- General Dynamics Information Technology, Rockville, MD, 20852, USA
| | - Christopher J. Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nyasha Chambwe
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
23
|
Manzo J, Puhalla S, Pahuja S, Ding F, Lin Y, Appleman L, Tawbi H, Stoller R, Lee JJ, Diergaarde B, Kiesel BF, Yu J, Tan AR, Belani CP, Chew H, Garcia AA, Morgan RJ, Wahner Hendrickson AE, Visscher DW, Hurley RM, Kaufmann SH, Swisher EM, Oesterreich S, Katz T, Ji J, Zhang Y, Parchment RE, Chen A, Duan W, Giranda V, Shepherd SP, Ivy SP, Chu E, Beumer JH. A phase 1 and pharmacodynamic study of chronically-dosed, single-agent veliparib (ABT-888) in patients with BRCA1- or BRCA2-mutated cancer or platinum-refractory ovarian or triple-negative breast cancer. Cancer Chemother Pharmacol 2022; 89:721-735. [PMID: 35435472 PMCID: PMC9116722 DOI: 10.1007/s00280-022-04430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE BRCA1 or BRCA2 mutated cancers (BRCAmut) have intrinsic sensitivity to PARP inhibitors due to deficiency in homologous recombination-mediated DNA repair. There are similarities between BRCAmut and BRCAwt ovarian and basal-like breast cancers. This phase I study determined the recommended phase II dose (RP2D) and preliminary efficacy of the PARP inhibitor, veliparib (ABT-888), in these patients. PATIENTS AND METHODS Patients (n = 98) were dosed with veliparib 50-500 mg twice daily (BID). The BRCAmut cohort (n = 70) contained predominantly ovarian (53%) and breast (23%) cancers; the BRCAwt cohort (n = 28) consisted primarily of breast cancer (86%). The MTD, DLT, adverse events, PK, PD, and clinical response were assessed. RESULTS DLTs were grade 3 nausea/vomiting at 400 mg BID in a BRCAmut carrier, grade 2 seizure at 400 mg BID in a patient with BRCAwt cancer, and grade 2 seizure at 500 mg BID in a BRCAmut carrier. Common toxicities included nausea (65%), fatigue (45%), and lymphopenia (38%). Grade 3/4 toxicities were rare (highest lymphopenia at 15%). Overall response rate (ORR) was 23% (95% CI 13-35%) in BRCAmut overall, and 37% (95% CI 21-55%) at 400 mg BID and above. In BRCAwt, ORR was 8% (95% CI 1-26%), and clinical benefit rate was 16% (95% CI 4-36%), reflecting prolonged stable disease in some patients. PK was linear with dose and was correlated with response and nausea. CONCLUSIONS Continuous veliparib is safe and tolerable. The RP2D was 400 mg BID. There is evidence of clinical activity of veliparib in patients with BRCAmut and BRCAwt cancers.
Collapse
Affiliation(s)
- Julia Manzo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shannon Puhalla
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shalu Pahuja
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard Appleman
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald Stoller
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - James J Lee
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenda Diergaarde
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Jing Yu
- Department of Pathology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Antoinette R Tan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Levine Cancer Institute, Charlotte, NC, USA
| | - Chandra P Belani
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Helen Chew
- Division of Hematology/Oncology, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Agustin A Garcia
- Department of Medicine, Louisiana State University, New Orleans, LA, USA
| | - Robert J Morgan
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rachel M Hurley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecologic, University of Washington, Seattle, WA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tiffany Katz
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiuping Ji
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yiping Zhang
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Alice Chen
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Wenrui Duan
- Department of Human and Molecular Genetics, The Florida International University, Miami, FL, USA
| | | | | | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Lage-Vickers S, Sanchis P, Bizzotto J, Toro A, Sabater A, Lavignolle R, Anselmino N, Labanca E, Paez A, Navone N, Valacco MP, Cotignola J, Vazquez E, Gueron G. Exploiting Interdata Relationships in Prostate Cancer Proteomes: Clinical Significance of HO-1 Interactors. Antioxidants (Basel) 2022; 11:antiox11020290. [PMID: 35204174 PMCID: PMC8868058 DOI: 10.3390/antiox11020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer (PCa) cells display abnormal expression of proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown the anti-tumoral role of heme oxygenase 1 (HO-1) in this disease. In this work, we undertook a mass spectrometry-based proteomics study to identify HO-1 molecular interactors that might collaborate with its modulatory function in PCa. Among the HO-1 interactors, we identified proteins with nuclear localization. Correlation analyses, using the PCa GSE70770 dataset, showed a significant and positive correlation between HMOX1 and 6 of those genes. Alternatively, HMOX1 and YWHAZ showed a negative correlation. Univariable analyses evidenced that high expression of HNRNPA2B1, HSPB1, NPM1, DDB1, HMGA1, ZC3HAV1, and HMOX1 was associated with increased relapse-free survival (RFS) in PCa patients. Further, PCa patients with high HSPB1/HMOX1, DDB1/HMOX1, and YWHAZ/HMOX1 showed a worse RFS compared with patients with lower ratios. Moreover, a decrease in RFS for patients with higher scores of this signature was observed using a prognostic risk score model. However, the only factor significantly associated with a higher risk of relapse was high YWHAZ. Multivariable analyses confirmed HSPB1, DDB1, and YWHAZ independence from PCa clinic-pathological parameters. In parallel, co-immunoprecipitation analysis in PCa cells ascertained HO-1/14-3-3ζ/δ (protein encoded by YWHAZ) interaction. Herein, we describe a novel protein interaction between HO-1 and 14-3-3ζ/δ in PCa and highlight these factors as potential therapeutic targets.
Collapse
Affiliation(s)
- Sofia Lage-Vickers
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Juan Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Ayelen Toro
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Agustina Sabater
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Alejandra Paez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nora Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Maria P. Valacco
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Elba Vazquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.L.-V.); (P.S.); (J.B.); (A.T.); (A.S.); (R.L.); (A.P.); (M.P.V.); (J.C.); (E.V.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-9114-408-7796; Fax: +54-9114-788-5755
| |
Collapse
|
26
|
Sliheet E, Robinson M, Morand S, Choucair K, Willoughby D, Stanbery L, Aaron P, Bognar E, Nemunaitis J. Network based analysis identifies TP53m-BRCA1/2wt-homologous recombination proficient (HRP) population with enhanced susceptibility to Vigil immunotherapy. Cancer Gene Ther 2022; 29:993-1000. [PMID: 34785763 PMCID: PMC9293751 DOI: 10.1038/s41417-021-00400-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Thus far immunotherapy has had limited impact on ovarian cancer. Vigil (a novel DNA-based multifunctional immune-therapeutic) has shown clinical benefit to prolong relapse-free survival (RFS) and overall survival (OS) in the BRCA wild type and HRP populations. We further analyzed molecular signals related to sensitivity of Vigil treatment. Tissue from patients enrolled in the randomized double-blind trial of Vigil vs. placebo as maintenance in frontline management of advanced resectable ovarian cancer underwent DNA polymorphism analysis. Data was generated from a 981 gene panel to determine the tumor mutation burden and classify variants using Ingenuity Variant Analysis software (Qiagen) or NIH ClinVar. Only variants classified as pathogenic or likely pathogenic were included. STRING application (version 1.5.1) was used to create a protein-protein interaction network. Topological distance and probability of co-mutation were used to calculated the C-score and cumulative C-score (cumC-score). Kaplan-Meier analysis was used to determine the relationship between gene pairs with a high cumC-score and clinical parameters. Improved relapse free survival in Vigil treated patients was found for the TP53m-BRCAwt-HRP group compared to placebo (21.1 months versus 5.6 months p = 0.0013). Analysis of tumor mutation burden did not reveal statistical benefit in patients receiving Vigil versus placebo. Results suggest a subset of ovarian cancer patients with enhanced susceptibility to Vigil immunotherapy. The hypothesis-generating data presented invites a validation study of Vigil in target identified populations, and supports clinical consideration of STRING-generated network application to biomarker characterization with other cancer patients targeted with Vigil.
Collapse
Affiliation(s)
- Elyssa Sliheet
- grid.263864.d0000 0004 1936 7929Southern Methodist University, Department of Mathematics, Dallas, TX USA
| | - Molly Robinson
- grid.263864.d0000 0004 1936 7929Southern Methodist University, Department of Mathematics, Dallas, TX USA
| | - Susan Morand
- grid.267337.40000 0001 2184 944XUniversity of Toledo, Department of Medicine, Toledo, OH USA
| | - Khalil Choucair
- grid.266515.30000 0001 2106 0692University of Kansas School of Medicine, Wichita, KS USA
| | | | | | | | | | | |
Collapse
|
27
|
With Our Powers Combined: Exploring PARP Inhibitors and Immunotherapy. Cancer J 2021; 27:511-520. [PMID: 34904815 DOI: 10.1097/ppo.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapies has seen substantial clinical success in oncology therapeutic development. Although multiple agents within these classes have achieved regulatory approval globally-in several malignancies in early and advanced stages-drug resistance remains an issue. Building on preclinical evidence, several early trials and late-phase studies are underway. This review explores the therapeutic potential of combination poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapy in solid tumors, including the scientific and therapeutic rationale, available clinical evidence, and considerations for future trial and biomarker development across different malignancies using ovarian and other solid cancer subtypes as key examples.
Collapse
|
28
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
29
|
Abdel Hadi N, Boet E, Lahalle A, Lauture L, Refeyton A, Reyes-Castellanos G, Caplet N, Carrier A, Le Cam L, Mazure NM, Ricci JE, Rocchi S, Sarry JE, Vasseur S, Vlaski-Lafarge M, Rossignol R, Bost F. Meeting report of the 4th biennial Metabolism and Cancer symposium. FEBS J 2021; 289:5516-5526. [PMID: 34817127 DOI: 10.1111/febs.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel Prize winner Sir Peter J. Ratcliffe (Oxford, UK). Presentations and discussions were divided in four scientific sessions: (a) Redox and energy metabolism (b) Redox and hypoxia (c) Metabolic profiling and epigenetic control and (d) Signalling, fuelling and metabolism in cancer and a general public session on cancer and nutrition. This report summarises the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.
Collapse
Affiliation(s)
- Nadine Abdel Hadi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Unité 1068, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes (IPC), Unité Mixte de Recherche (UMR 7258), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherché Médicale, Université de Toulouse, Toulouse, France.,Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Airelle Lahalle
- Institut de Recherche en Cancérologie de Montpellier, Institut Régional du Cancer de Montpellier, INSERM, Université de Montpellier, Montpellier, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherché Médicale, Université de Toulouse, Toulouse, France.,Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Alice Refeyton
- Département de Recherche, Etablissement Français du Sang Nouvelle Aquitaine, Unité 1035 Inserm, Bordeaux, France
| | - Gabriela Reyes-Castellanos
- Centre de Recherche en Cancérologie de Marseille (CRCM), Unité 1068, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes (IPC), Unité Mixte de Recherche (UMR 7258), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
| | - Nathalie Caplet
- BRIO (Bordeaux Recherche Intégrée en Oncologie), Bordeaux, France
| | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Unité 1068, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes (IPC), Unité Mixte de Recherche (UMR 7258), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, Institut Régional du Cancer de Montpellier, INSERM, Université de Montpellier, Montpellier, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Jean-Ehrland Ricci
- INSERM U1065, C3M, Université Côte d'Azur (UCA), Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Stéphane Rocchi
- INSERM U1065, C3M, Université Côte d'Azur (UCA), Nice, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherché Médicale, Université de Toulouse, Toulouse, France.,Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille (CRCM), Unité 1068, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes (IPC), Unité Mixte de Recherche (UMR 7258), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
| | - Marija Vlaski-Lafarge
- Département de Recherche, Etablissement Français du Sang Nouvelle Aquitaine, Unité 1035 Inserm, Bordeaux, France
| | | | - Frédéric Bost
- INSERM U1065, C3M, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
30
|
Le Gac M, Koual M, Delanoy N, Perkins G, Nguyen-Xuan HT, Blons H, Le Frère-Belda MA, Laurent-Puig P, Bentivegna E, Durdux C, Azaïs H, Bats AS. [Place of PARP inhibitors in the treatment of endometrial and cervical cancers]. Bull Cancer 2021; 109:65-75. [PMID: 34801228 DOI: 10.1016/j.bulcan.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
New molecular therapeutic approaches have emerged in recent years for advanced gynaecological cancers, including targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi). These have demonstrated efficacy in high-grade serous ovarian cancers in patients carrying a mutation in the BRCA gene, which predisposes them to breast and ovarian cancers. Clinical and pre-clinical data suggest that the activity of PARPi inhibitors may not be limited to BRCA mutated tumours and may involve the homologous recombination pathway. These data raise the question of the potential efficacy of PARPi in advanced endometrial and cervical cancers where treatment options are currently limited. At present, there are few data available on the activity of PARPi in endometrial and cervical cancers, but some results seem promising. In this review, we present a synthesis of the available studies concerning PARPi in endometrial and cervical cancer.
Collapse
Affiliation(s)
- Marjolaine Le Gac
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| | - Meriem Koual
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Inserm UMR-S 1124, université de Paris, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Delanoy
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Géraldine Perkins
- Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncogénétique, 75015 Paris, France
| | - Huyên-Thu Nguyen-Xuan
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Hélène Blons
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, biochimie, 75015 Paris, France
| | | | - Pierre Laurent-Puig
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Enrica Bentivegna
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Catherine Durdux
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital européen Georges-Pompidou, oncologie médicale, 75015 Paris, France
| | - Henri Azaïs
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| | - Anne-Sophie Bats
- Université de Paris, faculté de médecine Paris-Descartes, 15, rue de l'École-de-Médecine, 75006 Paris, France; APHP centre, hôpital Européen Georges-Pompidou, chirurgie cancérologique gynécologique et du sein, 75015 Paris, France; Centre de recherche des Cordeliers, Inserm, CNRS, Sorbonne université, USPC, université Paris Descartes, université Paris Diderot, équipe labellisée ligue nationale contre le cancer, 15, rue de l'École-de-Médecine, 75006 Paris, France
| |
Collapse
|
31
|
Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021; 26:e1526-e1537. [PMID: 34021944 PMCID: PMC8417864 DOI: 10.1002/onco.13829] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate DNA repair mechanism. Several HR genes are established cancer susceptibility genes with clinically actionable pathogenic variants (PVs). Classically, BRCA1 and BRCA2 germline PVs are associated with significant breast and ovarian cancer risks. Patients with BRCA1 or BRCA2 PVs display worse clinical outcomes but respond better to platinum-based chemotherapies and poly-ADP ribose polymerase inhibitors, a trait termed "BRCAness." With the advent of whole-exome sequencing and multigene panels, PVs in other HR genes are increasingly identified among familial cancers. As such, several genes such as PALB2 are reclassified as cancer predisposition genes. But evidence for cancer risks remains unclear for many others. In this review, we will discuss cancer predispositions and treatment implications beyond BRCA1 and BRCA2, with a focus on 24 HR genes: 53BP1, ATM, ATR, ATRIP, BARD1, BLM, BRIP1, DMC1, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RIF1, RMI1, RMI2, RPA1, TOP3A, TOPBP1, XRCC2, and XRCC3. IMPLICATIONS FOR PRACTICE: This review provides a comprehensive reference for readers to quickly identify potential cancer predisposing homologous recombination (HR) genes, and to generate research questions for genes with inconclusive evidence. This review also evaluates the "BRCAness" of each HR member. Clinicians can refer to these discussions to identify potential candidates for future clinical trials.
Collapse
Affiliation(s)
- MingRen Toh
- Duke–National University of Singapore Medical SchoolSingapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer CenterSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore
| |
Collapse
|
32
|
Ramachandran S, Ma TS, Griffin J, Ng N, Foskolou IP, Hwang MS, Victori P, Cheng WC, Buffa FM, Leszczynska KB, El-Khamisy SF, Gromak N, Hammond EM. Hypoxia-induced SETX links replication stress with the unfolded protein response. Nat Commun 2021; 12:3686. [PMID: 34140498 PMCID: PMC8211819 DOI: 10.1038/s41467-021-24066-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Tiffany S Ma
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jon Griffin
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Natalie Ng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Iosifina P Foskolou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ming-Shih Hwang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Pedro Victori
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Wei-Chen Cheng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Katarzyna B Leszczynska
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Turinetto M, Scotto G, Tuninetti V, Giannone G, Valabrega G. The Role of PARP Inhibitors in the Ovarian Cancer Microenvironment: Moving Forward From Synthetic Lethality. Front Oncol 2021; 11:689829. [PMID: 34195090 PMCID: PMC8238121 DOI: 10.3389/fonc.2021.689829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
PARP inhibitors (PARPi) have shown promising clinical results and have revolutionized the landscape of ovarian cancer management in the last few years. While the core mechanism of action of these drugs has been largely analyzed, the interaction between PARP inhibitors and the microenvironment has been scarcely researched so far. Recent data shows a variety of mechanism through which PARPi might influence the tumor microenvironment and especially the immune system response, that might even partly be the reason behind PARPi efficacy. One of many pathways that are affected is the cGAS-cGAMP-STING; the upregulation of STING (stimulator of interferon genes), produces more Interferon ϒ and pro inflammatory cytokines, thus increasing intratumoral CD4+ and CD8+ T cells. Upregulation of immune checkpoints such as PD1-PDL1 has also been observed. Another interesting mechanism of interaction between PARPi and microenvironment is the ability of PARPi to kill hypoxic cells, as these cells show an intrinsic reduction in the expression and function of the proteins involved in HR. This process has been defined "contextual synthetic lethality". Despite ovarian cancer having always been considered a poor responder to immune therapy, data is now shedding a new light on the matter. First, OC is much more heterogenous than previously thought, therefore it is fundamental to select predictive biomarkers for target therapies. While single agent therapies have not yielded significant results on the long term, influencing the immune system and the tumor microenvironment via the concomitant use of PARPi and other target therapies might be a more successful approach.
Collapse
Affiliation(s)
- Margherita Turinetto
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giulia Scotto
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Gaia Giannone
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
34
|
Alvarez Secord A, O'Malley DM, Sood AK, Westin SN, Liu JF. Rationale for combination PARP inhibitor and antiangiogenic treatment in advanced epithelial ovarian cancer: A review. Gynecol Oncol 2021; 162:482-495. [PMID: 34090705 DOI: 10.1016/j.ygyno.2021.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) and angiogenesis have demonstrated single-agent activity in women with advanced ovarian cancer. Recent studies have aimed to establish whether combination therapy can augment the response seen with PARP inhibitors or antiangiogenic agents alone. This review provides an overview of PARP inhibitors and antiangiogenics as monotherapy in women with advanced ovarian cancer, explores potential mechanisms of action of PARP inhibitor and antiangiogenic combination treatments, reviews efficacy and safety data from trials evaluating this combination, and outlines ongoing and future trials evaluating this combination, discussing these in the context of the current and future treatment landscape for women with advanced ovarian cancer. Sentinel studies evaluating PARP inhibitor (n = 8), antiangiogenic (n = 4), and combination (n = 7) therapy were identified in women with newly diagnosed (n = 7) and recurrent (n = 12) ovarian cancer. PARP inhibitors included olaparib (n = 9), niraparib (n = 4), rucaparib (n = 1), and veliparib (n = 1). Antiangiogenic agents included bevacizumab (n = 7) and cediranib (n = 4). PARP inhibitors combined with antiangiogenics demonstrated efficacy based on objective response rates and progression-free survival (PFS) in the relapsed disease setting. Maintenance therapy with the PARP inhibitor, olaparib, plus antiangiogenic therapy offered a significant PFS benefit versus the antiangiogenic alone in women with newly diagnosed advanced ovarian cancer who tested positive for homologous recombination deficiency. Combination therapy was tolerated, with no new safety signals reported compared with monotherapy trials. PARP inhibitors and antiangiogenics have changed the landscape of ovarian cancer treatment. The PARP inhibitor plus antiangiogenic combination is a novel treatment option that appears promising in the first-line advanced and recurrent ovarian cancer settings, although the role of this combination in recurrent disease requires further elucidation. Defining which patients are candidates for monotherapy or combination therapy is critical, taking into consideration safety profiles of therapies alone or in combination, and how these treatments should be sequenced in clinical practice.
Collapse
Affiliation(s)
- Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.
| | - David M O'Malley
- Division of Gynecology Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
35
|
Mehibel M, Xu Y, Li CG, Moon EJ, Thakkar KN, Diep AN, Kim RK, Bloomstein JD, Xiao Y, Bacal J, Saldivar JC, Le QT, Cimprich KA, Rankin EB, Giaccia AJ. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. J Clin Invest 2021; 131:146256. [PMID: 34060485 PMCID: PMC8266208 DOI: 10.1172/jci146256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells. Mechanistically, we identify reduced ROS-induced DNA damage as the cause for the observed resistance. To determine the contribution of hypoxia to PARPi resistance in tumors, we used the hypoxic cytotoxin tirapazamine to selectively kill hypoxic tumor cells. We found that the selective elimination of hypoxic tumor cells led to a substantial antitumor response when used with PARPi compared with that in tumors treated with PARPi alone, without enhancing normal tissue toxicity. Since human breast cancers with BRAC1/2 mutations have an increased hypoxia signature and hypoxia reduces the efficacy of PARPi, then eliminating hypoxic tumor cells should enhance the efficacy of PARPi therapy.
Collapse
Affiliation(s)
- Manal Mehibel
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Yu Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Caiyun G. Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Eui Jung Moon
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Kaushik N. Thakkar
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Anh N. Diep
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Ryan K. Kim
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Joshua D. Bloomstein
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Yiren Xiao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Julien Bacal
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua C. Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Quynh-Thu Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Erinn B. Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
- Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, California, USA
| | - Amato J. Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, USA
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Halder V, McDonnell B, Uthayakumar D, Usher J, Shapiro RS. Genetic interaction analysis in microbial pathogens: unravelling networks of pathogenesis, antimicrobial susceptibility and host interactions. FEMS Microbiol Rev 2021; 45:fuaa055. [PMID: 33145589 DOI: 10.1093/femsre/fuaa055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic interaction (GI) analysis is a powerful genetic strategy that analyzes the fitness and phenotypes of single- and double-gene mutant cells in order to dissect the epistatic interactions between genes, categorize genes into biological pathways, and characterize genes of unknown function. GI analysis has been extensively employed in model organisms for foundational, systems-level assessment of the epistatic interactions between genes. More recently, GI analysis has been applied to microbial pathogens and has been instrumental for the study of clinically important infectious organisms. Here, we review recent advances in systems-level GI analysis of diverse microbial pathogens, including bacterial and fungal species. We focus on important applications of GI analysis across pathogens, including GI analysis as a means to decipher complex genetic networks regulating microbial virulence, antimicrobial drug resistance and host-pathogen dynamics, and GI analysis as an approach to uncover novel targets for combination antimicrobial therapeutics. Together, this review bridges our understanding of GI analysis and complex genetic networks, with applications to diverse microbial pathogens, to further our understanding of virulence, the use of antimicrobial therapeutics and host-pathogen interactions. .
Collapse
Affiliation(s)
- Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brianna McDonnell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
37
|
Martí JM, Garcia-Diaz A, Delgado-Bellido D, O'Valle F, González-Flores A, Carlevaris O, Rodríguez-Vargas JM, Amé JC, Dantzer F, King GL, Dziedzic K, Berra E, de Álava E, Amaral AT, Hammond EM, Oliver FJ. Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biol 2021; 41:101885. [PMID: 33581682 PMCID: PMC7878192 DOI: 10.1016/j.redox.2021.101885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptation to hypoxia is mainly controlled by the HIF transcription factors. Increased expression/activity of HIF-1α correlates with poor prognosis in cancer patients. PARP-1 inhibitors are used in the clinic to treat BRCAness breast/ovarian cancer and have been shown to regulate the hypoxic response; therefore, their use could be expanded. METHODS In this work by integrating molecular/cell biology approaches, genome-wide ChIP-seq, and patient samples, we elucidate the extent to which PARP-1 exerts control over HIF-1-regulated genes. RESULTS In human melanoma, PARP-1 and HIF-1α expression are strongly associated. In response to a hypoxic challenge poly(ADP-ribose) (PAR) is synthesized, HIF-1α is post-transcriptionally modified (PTM) and stabilized by PARylation at specific K/R residues located at its C-terminus. Using an unbiased ChIP-seq approach we demonstrate that PARP-1 dictates hypoxia-dependent HIF-recruitment to chromatin in a range of HIF-regulated genes while analysis of HIF-binding motifs (RCGTG) reveals a restriction on the recognition of hypoxia responsive elements in the absence of PARP-1. Consequently, the cells are poorly adapted to hypoxia, showing a reduced fitness during hypoxic induction. CONCLUSIONS These data characterize the fine-tuning regulation by PARP-1/PARylation of HIF activation and suggest that PARP inhibitors might have therapeutic potential against cancer types displaying HIF-1α over-activation.
Collapse
Affiliation(s)
- Juan Manuel Martí
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Angel Garcia-Diaz
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Daniel Delgado-Bellido
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada, Spain and Biosanitary Research Institute (IBS. GRANADA), University of Granada, Granada, Spain
| | - Ariannys González-Flores
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Onintza Carlevaris
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - José Manuel Rodríguez-Vargas
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - Jean Christophe Amé
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - George L King
- Section of Vascular Cell Biology and Complications, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Klaudia Dziedzic
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - Edurne Berra
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - E de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen Del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - A T Amaral
- Institute of Biomedicine of Sevilla (IBiS), Virgen Del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - F Javier Oliver
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain.
| |
Collapse
|
38
|
Successful treatment of an adult patient with diffuse midline glioma employing olaparib combined with bevacizumab. Invest New Drugs 2021; 39:1432-1435. [PMID: 33851364 DOI: 10.1007/s10637-021-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Diffuse midline gliomas (DMGs), which are malignant, fast-growing and entail a poor prognosis, are a rare subtype of glial tumor. DMGs harboring H3 K27-mutation are a novel entity with a poorer prognosis than the H3 wildtype and are categorized as a grade IV glioma. Histone-mutated DMGs characterized by a midline location occur more commonly in children and less frequently in adults. Considering the DMG treatment is limited, there is an urgent need for effective therapeutic strategies. Olaparib is a poly-adenosine diphosphate-ribose polymerase inhibitor, which has been reported to inhibit glioma in preclinical and clinical trials. Olaparib plus bevacizumab has been successfully used in ovarian cancer. However, the application of olaparib in DMGs has not been reported yet. Herein, we firstly reported that an adult DMG patient benefited from olaparib combined with bevacizumab and achieved complete remission. The duration of response and overall survival was 8 months and 16 months respectively. This report provides a promising treatment option for patients with DMG.
Collapse
|
39
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
40
|
Le Saux O, Vanacker H, Guermazi F, Carbonnaux M, Roméo C, Larrouquère L, Trédan O, Ray-Coquard I. Poly(ADP-ribose) polymerase inhibitors in combination with anti-angiogenic agents for the treatment of advanced ovarian cancer. Future Oncol 2021; 17:2291-2304. [PMID: 33726504 DOI: 10.2217/fon-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination deficiency and VEGF expression are key pathways in high-grade ovarian cancer. Recently, three randomized practice changing trials were published: the PAOLA-1, PRIMA and VELIA trials. The use of PARP inhibitors (PARPi) following chemotherapy has become standard of care in first line. Combination of PARPi with anti-angiogenic agents has demonstrated synergistic activity in preclinical study. This review summarizes the body of evidence supporting the efficacy and safety of the combination of PARPi and anti-angiogenic drugs in first-line homologous recombination deficiency high-grade ovarian cancer leading to US FDA and EMA approvals. This double maintenance is supported by: a large benefit with bevacizumab + olaparib compared with olaparib alone, a rationale for additive effect, and a good safety and cost-effective profile.
Collapse
Affiliation(s)
- Olivia Le Saux
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052, CNRS 5286, Centre Léon Bérard, Lyon, 69008, France
| | - Hélène Vanacker
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Fatma Guermazi
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Mélodie Carbonnaux
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Clémence Roméo
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Louis Larrouquère
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Olivier Trédan
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, Lyon, 69008, France
| |
Collapse
|
41
|
Metcalf KJ, Alazzeh A, Werb Z, Weaver VM. Leveraging microenvironmental synthetic lethalities to treat cancer. J Clin Invest 2021; 131:143765. [PMID: 33720045 PMCID: PMC7954586 DOI: 10.1172/jci143765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell-specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.
Collapse
Affiliation(s)
| | | | - Zena Werb
- Department of Anatomy
- Helen Diller Family Comprehensive Cancer Center
| | - Valerie M. Weaver
- Department of Surgery
- Helen Diller Family Comprehensive Cancer Center
- Center for Bioengineering and Tissue Regeneration, and
- Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Wang C, Fang H, Zhang J, Gu Y. Targeting "undruggable" c-Myc protein by synthetic lethality. Front Med 2021; 15:541-550. [PMID: 33660217 DOI: 10.1007/s11684-020-0780-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Synthetic lethal screening, which exploits the combination of mutations that result in cell death, is a promising method for identifying novel drug targets. This method provides a new avenue for targeting "undruggable" proteins, such as c-Myc. Here, we revisit current methods used to target c-Myc and discuss the important functional nodes related to c-Myc in non-oncogene addicted network, whose inhibition may cause a catastrophe for tumor cell destiny but not for normal cells. We further discuss strategies to identify these functional nodes in the context of synthetic lethality. We review the progress and shortcomings of this research field and look forward to opportunities offered by synthetic lethal screening to treat tumors potently.
Collapse
Affiliation(s)
- Chen Wang
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Hui Fang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiawei Zhang
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ying Gu
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
43
|
Kaplan AR, Glazer PM. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 2021; 35:61-68. [PMID: 31282537 DOI: 10.1093/mutage/gez019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of the tumour microenvironment with profound effects on tumour biology, influencing cancer progression, the development of metastasis and patient outcome. Hypoxia also contributes to genomic instability and mutation frequency by inhibiting DNA repair pathways. This review summarises the diverse mechanisms by which hypoxia affects DNA repair, including suppression of homology-directed repair, mismatch repair and base excision repair. We also discuss the effects of hypoxia mimetics and agents that induce hypoxia on DNA repair, and we highlight areas of potential clinical relevance as well as future directions.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Experimental Pathology, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Genetics, Yale University, New Haven, CT, USA
| |
Collapse
|
44
|
Gogineni V, Morand S, Staats H, Royfman R, Devanaboyina M, Einloth K, Dever D, Stanbery L, Aaron P, Manning L, Walter A, Edelman G, Dworkin L, Nemunaitis J. Current Ovarian Cancer Maintenance Strategies and Promising New Developments. J Cancer 2021; 12:38-53. [PMID: 33391401 PMCID: PMC7738841 DOI: 10.7150/jca.49406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
While ovarian cancer typically responds well to front line treatment, many patients will relapse within 5 years. Treatment options are less effective at each recurrence highlighting the need for novel maintenance therapies. PolyADP-ribose polymerase (PARP) inhibitors have recently gained approval in ovarian cancer maintenance. Niraparib was approved regardless of BRCA mutation status, however impact on overall survival is limited. Oliparib was approved for BRCA mutant and BRCA wildtype/homologous recombination deficient patients. This review will focus on current frontline ovarian cancer treatment as well molecularly based approaches to ovarian cancer management.
Collapse
|
45
|
Efficacy and safety of PARP inhibitors in the treatment of advanced ovarian cancer: An updated systematic review and meta-analysis of randomized controlled trials. Crit Rev Oncol Hematol 2021; 157:103145. [DOI: 10.1016/j.critrevonc.2020.103145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
|
46
|
Sigorski D, Iżycka-Świeszewska E, Bodnar L. Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data. Target Oncol 2020; 15:709-722. [PMID: 33044685 PMCID: PMC7701127 DOI: 10.1007/s11523-020-00756-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic instability is one of the hallmarks of cancer. The incidence of genetic alterations in homologous recombination repair genes increases during cancer progression, and 20% of prostate cancers (PCas) have defects in DNA repair genes. Several somatic and germline gene alterations drive prostate cancer tumorigenesis, and the most important of these are BRCA2, BRCA1, ATM and CHEK2. There is a group of BRCAness tumours that share phenotypic and genotypic properties with classical BRCA-mutated tumours. Poly(ADP-ribose) polymerase inhibitors (PARPis) show synthetic lethality in cancer cells with impaired homologous recombination genes, and patients with these alterations are candidates for PARPi therapy. Androgen deprivation therapy is the mainstay of PCa therapy. PARPis decrease androgen signalling by interaction with molecular mechanisms of the androgen nuclear complex. The PROFOUND phase III trial, comparing olaparib with enzalutamide/abiraterone therapy, revealed increased radiological progression-free survival (rPFS) and overall survival (OS) among patients with metastatic castration-resistant prostate cancer (mCRPC) with BRCA1, BRCA2 or ATM mutations. The clinical efficacy of PARPis has been confirmed in ovarian, breast, pancreatic and recently also in a subset of PCa. There is growing evidence that molecular tumour boards are the future of the oncological therapeutic approach in prostate cancer. In this review, we summarise the data concerning the molecular mechanisms and preclinical and clinical data of PARPis in PCa.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Al. Wojska Polskiego 37, 10-228, Olsztyn, Poland.
- Clinical Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of The Ministry of The Interior and Administration's Hospital, Olsztyn, Poland.
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Lubomir Bodnar
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Al. Wojska Polskiego 37, 10-228, Olsztyn, Poland
- Clinical Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of The Ministry of The Interior and Administration's Hospital, Olsztyn, Poland
| |
Collapse
|
47
|
Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. Mol Cell 2020; 80:562-577. [PMID: 33217316 PMCID: PMC8399907 DOI: 10.1016/j.molcel.2020.10.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can occur via phenotype transitions, often after chronic exposure to targeted anticancer agents. This process, termed lineage plasticity, is associated with acquired independence to an initial oncogenic driver, resulting in treatment failure. In non-small cell lung cancer (NSCLC) and prostate cancers, lineage plasticity manifests when the adenocarcinoma phenotype transforms into neuroendocrine (NE) disease. The exact molecular mechanisms involved in this NE transdifferentiation remain elusive. In small cell lung cancer (SCLC), plasticity from NE to nonNE phenotypes is driven by NOTCH signaling. Herein we review current understanding of NE lineage plasticity dynamics, exemplified by prostate cancer, NSCLC, and SCLC.
Collapse
Affiliation(s)
- Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3010 Bern, Switzerland.
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, University of Manchester, Macclesfield SK10 4TG, UK
| | - Phillip D Thienger
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield SK10 4TG, UK
| | - Marcin Imielinski
- Pathology and Laboratory Medicine and Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
48
|
Lee KH, Goh J, Kim YJ, Kim K. Identification of synthetic chemosensitivity genes paired with BRAF for BRAF/MAPK inhibitors. Sci Rep 2020; 10:20001. [PMID: 33203961 PMCID: PMC7672081 DOI: 10.1038/s41598-020-76909-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Molecular-targeted approaches are important for personalised cancer treatment, which requires knowledge regarding drug target specificity. Here, we used the synthetic lethality concept to identify candidate gene pairs with synergistic effects on drug responses. A synergistic chemo-sensitivity response was identified if a drug had a significantly lower half-maximal inhibitory concentration (IC50) in cell lines with a pair of mutated genes compared with those in other cell lines (wild-type or one mutated gene). Among significantly damaging mutations in the Genomics of Drug Sensitivity in Cancer database, we found 580 candidate synergistic chemo-sensitivity interaction sets for 456 genes and 54 commercial drugs. Clustering analyses according to drug/gene and drug/tissue interactions showed that BRAF/MAPK inhibitors clustered together; 11 partner genes for BRAF were identified. The combined effects of these partners on IC50 values were significant for both drug-specific and drug-combined comparisons. Survival analysis using The Cancer Genome Atlas data showed that patients who had mutated gene pairs in synergistic interaction sets had longer overall survival compared with that in patients with other mutation profiles. Overall, this analysis demonstrated that synergistic drug-responsive gene pairs could be successfully used as predictive markers of drug sensitivity and patient survival, offering new targets for personalised medicine.
Collapse
Affiliation(s)
- Kye Hwa Lee
- Department of Biomedical Informatics, Asan Medical Center, Seoul, 05505, South Korea.
| | - Jinmin Goh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, 07985, South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, South Korea.
| |
Collapse
|
49
|
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease and has poor patient outcome when tumours progress to castration-resistant and metastatic states. Understanding the mechanistic basis for transition to late stage aggressive disease is vital for both assigning patient risk status in the localised setting and also identifying novel treatment strategies to prevent progression. Subregions of intratumoral hypoxia are found in all solid tumours and are associated with many biologic drivers of tumour progression. Crucially, more recent findings show the co-presence of hypoxia and genomic instability can confer a uniquely adverse prognosis in localised PCa patients. In-depth informatic and functional studies suggests a role for hypoxia in co-operating with oncogenic drivers (e.g. loss of PTEN) and suppressing DNA repair capacity to alter clonal evolution due to an aggressive mutator phenotype. More specifically, hypoxic suppression of homologous recombination represents a “contextual lethal“ vulnerability in hypoxic prostate tumours which could extend the application of existing DNA repair targeting agents such as poly-ADP ribose polymerase inhibitors. Further investigation is now required to assess this relationship on the background of existing genomic alterations relevant to PCa, and also characterise the role of hypoxia in driving early metastatic spread. On this basis, PCa patients with hypoxic tumours can be better stratified into risk categories and treated with appropriate therapies to prevent progression.
Collapse
Affiliation(s)
- Jack Ashton
- Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert Bristow
- Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
50
|
Development of synthetic lethality in cancer: molecular and cellular classification. Signal Transduct Target Ther 2020; 5:241. [PMID: 33077733 PMCID: PMC7573576 DOI: 10.1038/s41392-020-00358-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Recently, genetically targeted cancer therapies have been a topic of great interest. Synthetic lethality provides a new approach for the treatment of mutated genes that were previously considered unable to be targeted in traditional genotype-targeted treatments. The increasing researches and applications in the clinical setting made synthetic lethality a promising anticancer treatment option. However, the current understandings on different conditions of synthetic lethality have not been systematically assessed and the application of synthetic lethality in clinical practice still faces many challenges. Here, we propose a novel and systematic classification of synthetic lethality divided into gene level, pathway level, organelle level, and conditional synthetic lethality, according to the degree of specificity into its biological mechanism. Multiple preclinical findings of synthetic lethality in recent years will be reviewed and classified under these different categories. Moreover, synthetic lethality targeted drugs in clinical practice will be briefly discussed. Finally, we will explore the essential implications of this classification as well as its prospects in eliminating existing challenges and the future directions of synthetic lethality.
Collapse
|