1
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Watanabe M. ANGPTL2: Is it a Novel Therapeutic Target Related to Tumor-Associated Macrophages in Esophageal Cancer? Ann Surg Oncol 2024; 31:7657-7658. [PMID: 39240396 DOI: 10.1245/s10434-024-16135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
3
|
Horino T, Horiguchi H, Yumoto S, Kadomatsu T, Hara Y, Yagi T, Baba Y, Miyamoto Y, Baba H, Oike Y. Angiopoietin-Like Protein 2 Expression in Tumor Cells Supports Tumor-Associated Macrophage-Induced Tumor Progression in Esophageal Cancer. Ann Surg Oncol 2024; 31:7693-7704. [PMID: 38981990 DOI: 10.1245/s10434-024-15557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAM), a major component of the tumor microenvironment, play key roles in tumor formation and progression; however, mechanisms underlying TAM-induced tumor progression are complex and not well known. We previously reported that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. METHODS We examined ANGPTL2 expression in paraffin-embedded tumor samples from resected specimens of 221 patients with esophageal cancer. Patients were subdivided into four groups based on immunohistochemistry scores described above: ANGPTL2-low/TAM-low, ANGPTL2-low/TAM-high, ANGPTL2-high/TAM-low, and ANGPTL2-high/TAM-high groups. Gene expression datasets of esophageal cancer cell lines were obtained from the cancer cell line encyclopedia public database. RESULTS In this study, we demonstrate that TAM infiltration is associated with poor prognosis in patients with esophageal cancer whose tumor cells show relatively higher ANGPTL2 expression levels; however, TAM infiltration did not affect prognosis in patients with ANGPTL2-low-expressing esophageal cancer, suggesting that ANGPTL2 expression in esophageal cancer cells is required for TAM-induced tumor progression. Our analysis of public datasets indicates a potential positive correlation of ANGPTL2 expression levels with that of transforming growth factor (TGF)-β, a TAM-activating factor, in esophageal cancer cell lines. CONCLUSION We conclude that ANGPTL2 signaling in tumor cells supports TAM-induced tumor progression and contributes to poor prognosis in patients with esophageal cancer. These findings overall provide novel insight into pro-tumor ANGPTL2 functions and illustrate the essential role of cancer cell/TAM crosstalk in cancer progression.
Collapse
Affiliation(s)
- Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Hara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisuke Yagi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Translational Research and Advanced Treatment Against Gastrointestinal Cancer, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Yumoto S, Horiguchi H, Kadomatsu T, Horino T, Sato M, Terada K, Miyata K, Moroishi T, Baba H, Oike Y. Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy. Cancer Sci 2024. [PMID: 39321028 DOI: 10.1111/cas.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
Collapse
Affiliation(s)
- Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Hüser L, Chhabra Y, Gololobova O, Wang V, Liu G, Dixit A, Rocha MR, Harper EI, Fane ME, Marino-Bravante GE, Zabransky DJ, Cai KQ, Utikal J, Slusher BS, Walston J, Lipson EJ, Witwer KW, Weeraratna AT. Aged fibroblast-derived extracellular vesicles promote angiogenesis in melanoma. Cell Rep 2024; 43:114721. [PMID: 39255061 DOI: 10.1016/j.celrep.2024.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.
Collapse
Affiliation(s)
- Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Murilo Ramos Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Q Cai
- Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine - Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology - Hematologic Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Jiang T, Hu G, Yang R, Guan Z. Panax Notoginseng Saponins Regulate Angiogenic Cytokines Through the PI3K/AKT/mTOR Signaling Pathway to Promote Fracture Healing in Ovariectomized Rats. J Med Food 2024; 27:824-833. [PMID: 38868856 DOI: 10.1089/jmf.2024.k.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Osteoporotic fractures seriously affect the quality of life of the elderly. Panax notoginseng saponins (PNS) have the potential function of preventing osteoporosis. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase (AKT)/mammalian target of rapamycin (mTOR) pathway is involved in the regulation of osteoporosis and has been proven to be related to VEGF secretion and angiogenesis. Therefore, this study aimed to explore the effects of PNS on ovariectomized rats with osteoporotic fracture through the PI3K/AKT/mTOR pathway and angiogenesis-related factors. Female Sprague-Dawley rats were randomly divided into normal control, fracture model, ovariectomized fracture model, low-dose PNS (100 mg/kg/d), and high-dose PNS (200 mg/kg/d). The ovariectomized rat fracture model was established. In low and high dose groups, PNS was administered intraperitoneally. The vascularization of fracture ends was detected in vitro by micro-CT on the 7th, 14th, and 21st day after modeling, and the area and number of blood vessels in the unit field of vision of the callus healing plane were seen by hematoxylin-eosin staining. The expression levels of PI3K, AKT1, mTOR, hypoxia inducible factor-1; VEGF: vascular endothelial growth factor (HIF-1), VEGF, Ang-1, VEGFR2, and angiopoietin like 2 Gene (ANGPTL2) were determined using Western blotting. In the PNS treatment group, the area of cortical bone increased, the area of callus decreased, and the number and area of blood vessels increased significantly when compared with the ovariectomized fracture model group. PNS regulates the PI3K/AKT/mTOR signaling pathway and promotes the expression of vascular-related cytokines (VEGF, Ang-1, VEGFR2, and ANGPTL2) in osteoporotic fractures. PNS may regulate the expression of vascular-related factors through the PI3K/AKT/mTOR pathway and promote the healing of osteoporotic fractures in ovariectomized rats.
Collapse
Affiliation(s)
- Taiping Jiang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Guang Hu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Rongkun Yang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Zhiyu Guan
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Ohno T, Kikuchi T, Suzuki Y, Goto R, Takeuchi D, Hayashi JI, Nishida E, Yamamoto G, Kondo S, Ono K, Nomoto S, Mitani A. Periodontitis promotes hepatocellular carcinoma in Stelic Animal model (STAM) mice. Sci Rep 2024; 14:17560. [PMID: 39080409 PMCID: PMC11289391 DOI: 10.1038/s41598-024-68422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Periodontitis is a prevalent oral inflammatory disease that leads to alveolar bone loss and may exert an adverse impact on systemic health. Periodontal disease may be associated with hepatocellular carcinoma (HCC); however, the mechanism of such an association is unknown. In this study, Stelic Animal model (STAM) mice, a model of nonalcoholic steatohepatitis (NASH)-HCC, were induced to develop periodontitis and subjected to histopathological and immunological analyses. HCC progression was greater in STAM mice with experimental periodontitis compared with that in STAM mice without experimental periodontitis. Tumor necrosis factor-α (TNFα), matrix metalloproteinase-9 (MMP9), collagen 1, and angiopoietin-like protein 2 (ANGPTL2) gene expression was significantly increased in the liver of the periodontitis group. ANGPTL2 was previously reported to be involved in the pathogenesis of periodontitis, and HCC and ANGPTL2 protein tended to be more abundant in the pocket epithelium of STAM mice with experimental periodontitis than in control STAM mice. ANGPTL2 levels in the serum of STAM mice with experimental periodontitis tended to be higher than in control STAM mice. Our results indicate that ANGPTL2 is produced in chronically inflamed periodontal tissue and then travels to the liver via the bloodstream where it accumulates to promote the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tasuku Ohno
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan.
| | - Yuki Suzuki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Ryoma Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Daiki Takeuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Jun-Ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Shun Kondo
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Kouta Ono
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Shuji Nomoto
- Department of Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemoridori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| |
Collapse
|
8
|
Horiguchi H, Kadomatsu T, Yamashita T, Yumoto S, Horino T, Sato M, Terada K, Miyata K, Ichigozaki Y, Kimura T, Fukushima S, Moroishi T, Oike Y. Tumor stroma-derived ANGPTL2 potentiates immune checkpoint inhibitor efficacy. Cancer Gene Ther 2024; 31:933-940. [PMID: 38467764 DOI: 10.1038/s41417-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tomoya Yamashita
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuki Ichigozaki
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
9
|
Wang QQ, Zhou L, Qin G, Tan C, Zhou YC, Yao SK. Leukocyte immunoglobulin-like receptor B2 overexpression as a promising therapeutic target and noninvasive screening biomarker for colorectal cancer. World J Gastroenterol 2023; 29:5313-5326. [PMID: 37899785 PMCID: PMC10600801 DOI: 10.3748/wjg.v29.i37.5313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has become the second most deadly malignancy in the world, and the exploration of screening markers and precise therapeutic targets is urgent. Our previous research identified leukocyte immunoglobulin-like receptor B2 (LILRB2) protein as a characteristic protein of CRC, but the association between LILRB2 expression and clinicopathological features, the internal mechanism related to CRC progression, and screening diagnostic efficacy are not clear. Therefore, we hypothesized that LILRB2 is significantly highly expressed in CRC tissues, correlated with advanced stage and a poor prognosis, and could be used as a therapeutic target and potential screening biomarker for CRC. AIM To explore whether LILRB2 can be used as a potential therapeutic target and noninvasive screening biomarker for CRC. METHODS Patients who underwent radical surgery for CRC at China-Japan Friendship Hospital between February 2021 and October 2022 were included. Cancer and paracancerous tissues were collected to verify LILRB2 expression, and the association between LILRB2 expression and clinicopathological features was analysed. Serum was collected from CRC patients, adenoma patients and healthy controls during the same period to assess the diagnostic value of LILRB2 as a noninvasive screening biomarker, and its diagnostic value was further compared with that of the traditional markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). RESULTS A total of 58 CRC patients were included, and LILRB2 protein was significantly overexpressed in cancer tissues compared with paracancerous tissues (P < 0.001). Angiopoietin-like protein 2 (ANGPTL2) protein, as the ligand of LILRB2, was synergistically overexpressed in CRC tissues (P < 0.001), and overexpression of LILRB2 and ANGPTL2 protein was significantly correlated with poor to moderate differentiation, vascular involvement, lymph node metastasis, distant metastasis, advanced tumor-node-metastasis stage and a poor prognosis (P < 0.05), which suggested that LILRB2 and ANGPTL2 are closely associated with CRC progression. In addition, serum LILRB2 concentrations increased stepwise in healthy individuals, adenoma patients and CRC patients with statistically significant differences. The sensitivity of serum LILRB2 for the diagnosis of CRC was 89.74%, the specificity was 88.89%, the area under the curve was 0.95, and the diagnostic efficacy was better than that of conventional CEA and CA19-9. CONCLUSION LILRB2 protein can be used as a potential novel therapeutic target and noninvasive screening biomarker for CRC, which is beneficial for early screening and precise treatment.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Department of Gastroenterology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chang Tan
- Department of Gastroenterology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Yuan-Chen Zhou
- Department of Gastroenterology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Shu-Kun Yao
- Department of Gastroenterology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
10
|
Yang M, Yang C, Ma D, Li Z, Zhao W, Yang D. Single-cell analysis reveals cellular reprogramming in advanced colon cancer following FOLFOX-bevacizumab treatment. Front Oncol 2023; 13:1219642. [PMID: 37576892 PMCID: PMC10421721 DOI: 10.3389/fonc.2023.1219642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The combination of FOLFOX and bevacizumab (FOLFOX-Bev) is a promising treatment for advanced colorectal cancer (CRC). However, the response of the tumor microenvironment to FOLFOX-Bev is still largely unexplored. Methods We conducted single-cell transcriptomic analysis of CRC samples derived from a patient before and after treatment to gain insights into the cellular changes associated with FOLFOX-Bev treatment. Results We found that cancer cells with high proliferative, metastatic, and pro-angiogenic properties respond better to FOLFOX-Bev treatment. Moreover, FOLFOX-Bev enhances CD8+ T cell cytotoxicity, thereby boosting the anti-tumor immune response. Conversely, FOLFOX-Bev impairs the functionality of tumor-associated macrophages, plasma cells, and cancer-associated fibroblasts, leading to a decrease in VEGFB-mediated angiogenesis. Furthermore, FOLFOX-Bev treatment reset intercellular communication, which could potentially affect the function of non-cancer cells. Discussion Our findings provide valuable insights into the molecular mechanisms underlying the response of advanced CRC to FOLFOX-Bev treatment and highlight potential targets for improving the efficacy of this treatment strategy.
Collapse
Affiliation(s)
- Meiling Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ciqiu Yang
- Department of Breast Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dong Ma
- Medical Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijun Li
- Guangdong Provincial Institute of Geriatrics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Dongyang Yang
- Medical Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wang Y, Geng H, Li X, Chen P, Xu S, Zhang S, Weng P, Guo J, Huang M, Wu Y, Chen Y. A novel nomogram for predicting overall survival in peripheral T cell lymphoma patients.. [DOI: 10.21203/rs.3.rs-2823604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Abstract
Background The prognosis of peripheral T cell lymphomas (PTCLs) varies greatly. This study aimed at generating a prognostic nomogram based on differentially expressed genes (DEGs).Methods Firstly, we collected RNA transcripts from Gene Expression Omnibus and identified DEGs. Secondly we used univariate Cox regression, Least absolute shrinkage and selection operator (LASSO) to screen the independent risk factors to construct nomogram in the training cohort. Thirdly, we evaluate its prediction accuracy via decision curves analysis (DCA), receiver operating characteristic (ROC) and calibration rate to confirm its performance on survival in training and validation cohort. Then we carried out subgroup analysis in training and validation to eliminate the effects of age, gender, and pathological subtype. Lastly, to verify feasibility of nomogram in practice, we applied immunohistochemistry to clinical samples and analyzed the relationship between IHC scores and prognosis.Results The 702 DEGs between 40 PTCLs and 20 non-tumor patients were identified. Then ANGPTL2, CPSF4, CLIC4 and OTUD6B were screened out as independent risk factors via univariate Cox regression and LASSO. The DCA, ROC, Harrell’s concordance index (c-index) and calibration rate showed nomogram predicting more accurately than any single specific transcript. The results showed PTCLs with higher nomogram-score had a longer survival, regardless of age, gender and pathological subtype. Finally, the high expression level of ANGPTL2, CPSF4 and OTUD6B related to poor prognosis. Higher expression of CLIC4 related to longer survival.Conclusion This nomogram showed the favorable clinical applicability, regardless of age, gender and pathological subtype.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Hai-Li Geng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Juan Xu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Weng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Jiang-Rui Guo
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Mei-Juan Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| |
Collapse
|
12
|
An C, Pipia I, Ruiz AS, Argüelles I, An M, Wase S, Peng G. The molecular link between obesity and genomic instability in cancer development. Cancer Lett 2023; 555:216035. [PMID: 36502927 DOI: 10.1016/j.canlet.2022.216035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Obesity has been known to be a major risk factor for various types of cancers for several decades. More recently, the relationship between dysregulated adipokines and cancer development has been the focus of much research. Adipose tissue is an important endocrine organ that secretes adipokines that affect both autocrine and paracrine signaling. These adipokines modulate inflammation, induce insulin resistance, and regulate their own behavior and production. Adipokine-production dysregulation is due to physiological changes in adipose tissue that prompt molecular modifications, including low-grade inflammation and the stimulatory production of reactive oxygen species. Additionally, studies have linked DNA damage response, genomic instability, and the innate immune response to tumorigenesis. Further investigation of adipokines and their role in the promotion of genomic instability may clarify the link between obesity and cancer, as well as elucidate potential pharmaceutical targets. In this review, we discuss the progress of recent literature, focusing on the impact of adipokines, genomic instability, and the innate immune response on increasing the risk of cancer.
Collapse
Affiliation(s)
- Clemens An
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, VT, USA.
| | - Ilissa Pipia
- Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Ana-Sofia Ruiz
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivonne Argüelles
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martino An
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saima Wase
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Otolaryngology - Head & Neck Surgery, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Chen L, Yu Z, Xie L, He X, Mu X, Chen C, Yang W, Tong X, Liu J, Gao Z, Sun S, Xu N, Lu Z, Zheng J, Zhang Y. ANGPTL2 binds MAG to efficiently enhance oligodendrocyte differentiation. Cell Biosci 2023; 13:42. [PMID: 36855057 PMCID: PMC9976406 DOI: 10.1186/s13578-023-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Oligodendrocytes have robust regenerative ability and are key players in remyelination during physiological and pathophysiological states. However, the mechanisms of brain microenvironmental cue in regulation of the differentiation of oligodendrocytes still needs to be further investigated. RESULTS We demonstrated that myelin-associated glycoprotein (MAG) was a novel receptor for angiopoietin-like protein 2 (ANGPTL2). The binding of ANGPTL2 to MAG efficiently promoted the differentiation of oligodendrocytes in vitro, as evaluated in an HCN cell line. Angptl2-null mice had a markedly impaired myelination capacity in the early stage of oligodendrocyte development. These mice had notably decreased remyelination capacities and enhanced motor disability in a cuprizone-induced demyelinating mouse model, which was similar to the Mag-null mice. The loss of remyelination ability in Angptl2-null/Mag-null mice was similar to the Angptl2-WT/Mag-null mice, which indicated that the ANGPTL2-mediated oligodendrocyte differentiation effect depended on the MAG receptor. ANGPTL2 bound MAG to enhance its phosphorylation level and recruit Fyn kinase, which increased Fyn phosphorylation levels, followed by the transactivation of myelin regulatory factor (MYRF). CONCLUSION Our study demonstrated an unexpected cross-talk between the environmental protein (ANGPTL2) and its surface receptor (MAG) in the regulation of oligodendrocyte differentiation, which may benefit the treatment of many demyelination disorders, including multiple sclerosis.
Collapse
Affiliation(s)
- Lu Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xingmei Mu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenqian Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji Univeirsity School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - NanJie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Zhu P, Liu G, Wang X, Lu J, Zhou Y, Chen S, Gao Y, Wang C, Yu J, Sun Y, Zhou P. Transcription factor c-Jun modulates GLUT1 in glycolysis and breast cancer metastasis. BMC Cancer 2022; 22:1283. [PMID: 36476606 PMCID: PMC9730598 DOI: 10.1186/s12885-022-10393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
As the main isoforms of membranous glucose transporters (GLUT), GLUT1 involves tumorigenesis, metastasis and prognosis in a variety of cancers. However, its role in breast cancer metastasis remains to be elucidated. Here we examined its transcriptional and survival data in patients with breast cancer from several independent databases including the Oncomine, Gene Expression Profiling Interactive Analysis, Gene Expression across Normal and Tumor tissue, UALCAN, cBioPortal, Kaplan-Meier Plotter and PROGgeneV2. We found that its mRNA expression was significantly high in cancer tissues, which was associated with metastasis and poor survival. Transcription factor c-Jun might bind to GLUT1 promoter to downregulate its gene expression or mRNA stability, therefore to suppress glycolysis and metastasis. By qRT-PCR, we verified that GLUT1 was significantly increased in 38 paired human breast cancer samples while JUN was decreased. Furthermore, the protein level of GLUT1 was higher in tumor than in normal tissues by IHC assay. To explore underlying pathways, we further performed GO and KEGG analysis of genes related to GLUT1 and JUN and found that GLUT1 was increased by transcription factor c-Jun in breast cancer tissues to influence glycolysis and breast cancer metastasis.
Collapse
Affiliation(s)
- Ping Zhu
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Guoping Liu
- grid.412987.10000 0004 0630 1330Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Xue Wang
- grid.16821.3c0000 0004 0368 8293Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Jingjing Lu
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Yue Zhou
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Shuyi Chen
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Yabiao Gao
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Chaofu Wang
- grid.16821.3c0000 0004 0368 8293Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Jerry Yu
- grid.266623.50000 0001 2113 1622Department of Medicine, University of Louisville, Louisville, KY 40292 USA
| | - Yangbai Sun
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| | - Ping Zhou
- grid.8547.e0000 0001 0125 2443Department of Pathology and Musculoskeletal Oncology of Shanghai Cancer Center; Department of Physiology and Pathophysiology of School of Basic Medical Sciences, Fudan University, No. 270, 130 Dongan Road, Shanghai, 200032 China
| |
Collapse
|
15
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
16
|
Horiguchi H, Kadomatsu T, Yumoto S, Masuda T, Miyata K, Yamamura S, Sato M, Morinaga J, Ohtsuki S, Baba H, Moroishi T, Oike Y. Tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. Oncogene 2022; 41:4028-4041. [PMID: 35831580 DOI: 10.1038/s41388-022-02405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Uncontrolled proliferation of intestinal epithelial cells caused by mutations in genes of the WNT/β-catenin pathway is associated with development of intestinal cancers. We previously reported that intestinal stromal cell-derived angiopoietin-like protein 2 (ANGPTL2) controls epithelial regeneration and intestinal immune responses. However, the role of tumor cell-derived ANGPTL2 in intestinal tumorigenesis remained unclear. Here, we show that tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. ANGPTL2 deficiency suppressed intestinal tumor development in an experimental mouse model of sporadic colon cancer. We also found that increased ANGPTL2 expression in colorectal cancer (CRC) cells augments β-catenin pathway signaling and promotes tumor cell proliferation. Relevant to mechanism, our findings suggest that tumor cell-derived ANGPTL2 upregulates expression of OB-cadherin, which then interacts with β-catenin, blocking destruction complex-independent proteasomal degradation of β-catenin proteins. Moreover, our observations support a model whereby ANGPTL2-induced OB-cadherin expression in CRC cells is accompanied by decreased cell surface integrin α5β1 expression. These findings overall provide novel insight into mechanisms of β-catenin-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
17
|
Kim BK, Kim DM, Park H, Kim SK, Hwang MA, Lee J, Kang MJ, Byun JE, Im JY, Kang M, Park KC, Yeom YI, Kim SY, Jung H, Kweon DH, Cheong JH, Won M. Synaptotagmin 11 scaffolds MKK7-JNK signaling process to promote stem-like molecular subtype gastric cancer oncogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:212. [PMID: 35768842 PMCID: PMC9241269 DOI: 10.1186/s13046-022-02420-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Background Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. Methods In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient’s survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. Results SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. Conclusion SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02420-3.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| | - Da-Mi Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyunkyung Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jungwoon Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Environmental Diseases Research Center, KRIBB, Daejeon, South Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea.,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Seon-Young Kim
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Korea Bioinformation Center, KRIBB, Daejeon, South Korea
| | - Haiyoung Jung
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.,Immunotherapy Research Center, KRIBB, Daejeon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. .,Serverance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, 125 Kwahag-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea. .,R&D Center, oneCureGEN, Daejeon, South Korea.
| |
Collapse
|
18
|
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ, Fang YX. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett 2022; 526:76-90. [PMID: 34801597 DOI: 10.1016/j.canlet.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
Most prostate cancer (PCa)-related deaths are caused by progression to bone metastasis. Recently, the importance of extracellular vesicles (EVs) in pre-metastatic niche formation has been reported. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and induce pre-metastatic niche formation for PCa bone metastasis remain unclear. Our in vitro and in vivo functional and mechanistic assays revealed that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa, maintaining low intracellular miR-378a-3p concentration to promote proliferation and MAOA-mediated epithelial-to-mesenchymal transition. Moreover, miR-378a-3p enrichment in tumor-derived EVs was induced by hnRNPA2B1 (a transfer chaperone) overexpression. After tumor-derived EVs were taken in by BMMs, enriched miR-378a-3p promoted osteolytic progression by inhibiting Dyrk1a to improve Nfatc1 (an osteolysis-related transcription factor) nuclear translocation, to activate the expression of downstream target gene Angptl2. As a feedback, increased Angptl2 secretion into the tumor environment promoted PCa progression. In conclusion, tumor-derived miR-378a-3p-containing EVs play a significant role in PCa bone metastasis by activating the Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, making miR-378a-3p a potential predictor of metastatic PCa. Reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into EVs can be a therapeutic strategy against PCa metastasis.
Collapse
Affiliation(s)
- Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
19
|
Zhao W, Morinaga J, Ukawa S, Endo M, Yamada H, Kawamura T, Wakai K, Tsushita K, Ando M, Suzuki K, Oike Y, Tamakoshi A. Plasma angiopoietin-like protein 2 levels and mortality risk among younger-old Japanese people: a population-based case-cohort study. J Gerontol A Biol Sci Med Sci 2022; 77:1150-1158. [PMID: 35037044 DOI: 10.1093/gerona/glac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Aging is important medical and social problem. Excessive angiopoietin-like protein (ANGPTL)-2 signaling causes chronic tissue inflammation, promoting development and progression of aging-related diseases. Moreover, circulating ANGPTL2 levels reportedly predict risk of some aging-related diseases and subsequent death. However, there are as yet no reports of whether circulating ANGPTL2 levels predict vital prognosis in younger-old, community-dwelling populations. This study investigated associations between plasma ANGPTL2 levels and all-cause and specific-cause mortality in this population. The case-cohort study was abstracted from an on-going, age-specific prospective cohort study: the New Integrated Suburban Seniority Investigation Project. This project enrolled 3073 participants aged 64 years at the beginning of the investigation from 1996 through 2005. A sub-cohort of 714 randomly sampled participants plus 387 cases representing deceased participants followed through 2015 underwent survival analysis. Plasma ANGPTL2 concentrations were positively associated with >80% and 100% higher risk of all-cause mortality and cancer mortality, respectively, after adjustment for gender, smoking, alcohol consumption, walking time, sleep duration, caloric intake, medical status, disease history, BMI, and triglyceride, creatinine, uric acid, and high sensitivity C-reactive protein levels. More robust association between ANGPTL2 levels and all-cause and cancer mortality was seen in subjects with either frailties or with lifestyles of heavier drinking or current smoking. Elevated plasma ANGPTL2 levels are associated with high all-cause and cancer mortality in a community-dwelling sample of younger-old adults. These findings expand our knowledge of human aging and associated diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.,Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Aichi, Japan
| | | | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuyo Tsushita
- Comprehensive Health Science Center, Aichi Health Promotion Public Interest Foundation, Chita, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Aichi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
20
|
Chen W, Wang J, Wang X, Chang P, Liang M. Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes. Bioengineered 2022; 13:1476-1490. [PMID: 34974813 PMCID: PMC8805963 DOI: 10.1080/21655979.2021.2019874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate the role of hypoxia-inducible factor 1-alpha (HIF1A) in hypoxia/reoxygenation (H/R) injury of cardiomyocytes induced by high glucose (HG). The in vitro model of coronary heart disease with diabetes was that H9c2 cells were stimulated by H/R and HG. Quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis were used to detect the expression of HIF1A and angiopoietin-like protein 2 (ANGPTL2) in H9c2 cells. Cell viability and apoptosis were, respectively, estimated by Cell Counting Kit 8 (CCK-8) and TUNEL assays. Lactate dehydrogenase (LDH) activity, inflammation and oxidative stress were in turn detected by their commercial assay kits. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to confirm the association between HIF1A and ANGPTL2 promoter. The expression of nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway-related proteins and apoptosis-related proteins were also detected by Western blot analysis. As a result, ANGPTL2 expression was upregulated in H9c2 cells induced by HG or/and H/R. ANGPTL2 positively modulated HIF1A expression in H9c2 cells. HG or/and H/R suppressed the cell viability and promoted apoptosis, inflammatory response and oxidative stress levels in H9c2 cells. However, the knockdown of ANGPTL2 could reverse the above phenomena in H/R-stimulated-H9c2 cells through activation of Nrf2/HO-1 pathway. HIF1A transcriptionally activated ANGPTL2 expression. The effect of knockdown of ANGPTL2 on H/R triggered-H9c2 cells was weakened by HIF1A overexpression. In conclusion, knockdown of HIF1A downregulated ANGPTL2 to alleviate H/R injury in HG-induced H9c2 cells by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jianbang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Pan Chang
- Experimental Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Meng Liang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| |
Collapse
|
21
|
Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood 2021; 139:1529-1540. [PMID: 34929029 PMCID: PMC9015010 DOI: 10.1182/blood.2021011644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Endothelial cell-derived ANGPTL2 is important for the maintenance of HSC activities in bone marrow niches. ANGPTL2-mediated signaling pathways enhance PPARδ expression to transactivate G0s2 to sustain HSC activities.
Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.
Collapse
|
22
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
23
|
Dagher O, Mury P, Noly PE, Fortier A, Lettre G, Thorin E, Carrier M. Design of a Randomized Placebo-Controlled Trial to Evaluate the Anti-inflammatory and Senolytic Effects of Quercetin in Patients Undergoing Coronary Artery Bypass Graft Surgery. Front Cardiovasc Med 2021; 8:741542. [PMID: 34746258 PMCID: PMC8564044 DOI: 10.3389/fcvm.2021.741542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Following an acute coronary syndrome, patients display an elevated inflammatory profile, promoted in part by cellular senescence. For patients requiring a coronary artery bypass (CABG) surgery, exposure to the surgical intervention and cardiopulmonary bypass further exacerbate their residual inflammation. Experimental evidence identified quercetin, a natural senolytic drug, as a cardioprotective agent against inflammatory injuries. The Q-CABG study aims to explore the efficacy of quercetin to reduce inflammation, myocardial injury and senescence in patients undergoing CABG following an acute coronary syndrome. Methods: Q-CABG is a phase II, prospectively registered, randomized, double-blind and placebo-controlled clinical trial. Recruited patients awaiting CABG surgery at the Montreal Heart Institute (n = 100) will be randomly assigned in a 1:1 ratio to receive either quercetin supplementation (500 mg twice daily) or placebo, starting 2 days before surgery and until the seventh postoperative day. The primary endpoint examines the effects of quercetin on blood inflammatory cytokines and markers of myocardial injury and senescence in this patient population. Blood samples will be taken at four time points: baseline, postoperative day 1, postoperative day 4 and at hospital discharge, or after a maximum of seven postoperative days. The secondary endpoint is the assessment of endothelial (dys) function by looking at ex vivo vascular reactivity and mRNA expression of endothelial cells from the wall of discarded segments of internal mammary artery. Discussion: The preventive intake of quercetin supplementation may help limit the vigorous inflammatory response triggered by CABG and subsequent postoperative complications in patients suffering from an acute coronary syndrome. In an exploratory way, quercetin supplementation could also improve endothelial function by eliminating senescent vascular endothelial cells. The results of this trial should provide valuable information regarding a novel approach to improve biological, and potentially clinical, outcomes post CABG. Clinical Trial Registration:ClinicalTrials.gov, Identifier NCT04907253.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pauline Mury
- Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Pierre-Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Annik Fortier
- Montreal Health Innovations Coordinating Center, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Lettre
- Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
24
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
25
|
Takeshita Y, Motohara T, Kadomatsu T, Doi T, Obayashi K, Oike Y, Katabuchi H, Endo M. Angiopoietin-like protein 2 decreases peritoneal metastasis of ovarian cancer cells by suppressing anoikis resistance. Biochem Biophys Res Commun 2021; 561:26-32. [PMID: 34000514 DOI: 10.1016/j.bbrc.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Peritoneal metastasis is a common mode of spread of ovarian cancer. Despite therapeutic advances, some patients have intractable peritoneal metastasis. Therefore, in-depth characterization of the molecular mechanism of peritoneal metastasis is a key imperative. Angiopoietin-like protein 2 (ANGPTL2) is an inflammatory factor which activates NF-κB signaling and plays an important role in the pathogenesis of various inflammatory diseases including cancers, such as lung and breast cancer. In this study, we examined the role of ANGPTL2 in ovarian cancer peritoneal metastasis. We observed no difference of cell proliferation between ANGPTL2-expressing and control cells. In the mouse intraperitoneal xenograft model, formation of peritoneal metastasis by ANGPTL2-expressing cells was significantly decreased compared to control. In the in vitro analysis, the expressions of integrin α5β1, α6, and β4, but not those of αvβ3, α3, α4, and β1, were significantly decreased in ANGPTL2-expressing cells compared to control cells. ANGPTL2-expressing cells showed significantly inhibited adherence to laminin compared to control. In addition, we observed upregulation of anoikis (a form of programmed cell death occurring under an anchorage-independent condition) and significant decrease in the expression of Bcl-2 in ANGPTL2-expressing cells as compared to control cells. These results suggest that ANGPTL2 expression in ovarian cancer cells represses peritoneal metastasis by suppressing anoikis resistance.
Collapse
Affiliation(s)
- Yuko Takeshita
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
26
|
Influence of Angptl1 on osteoclast formation and osteoblastic phenotype in mouse cells. BMC Musculoskelet Disord 2021; 22:398. [PMID: 33910546 PMCID: PMC8082671 DOI: 10.1186/s12891-021-04278-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background Osteoblasts and osteoclasts play important roles during the bone remodeling in the physiological and pathophysiological states. Although angiopoietin family Angiopoietin like proteins (Angptls), including Angptl1, have been reported to be involved in inflammation, lipid metabolism and angiogenesis, the roles of Angptl1 in bone have not been reported so far. Methods We examined the effects of Angptl1 on the osteoblast and osteoclast phenotypes using mouse cells. Results Angptl1 significantly inhibited the osteoclast formation and mRNA levels of tartrate-resistant acid phosphatase and cathepsin K enhanced by receptor activator of nuclear factor κB ligand in RAW 264.7 and mouse bone marrow cells. Moreover, Angptl1 overexpression significantly enhanced Osterix mRNA levels, alkaline phosphatase activity and mineralization induced by bone morphogenetic protein-2 in ST2 cells, although it did not affect the expression of osteogenic genes in MC3T3-E1 and mouse osteoblasts. On the other hand, Angptl1 overexpression significantly reduced the mRNA levels of peroxisome proliferator-activated receptor γ and adipocyte protein-2 as well as the lipid droplet formation induced by adipogenic medium in 3T3-L1 cells. Conclusions The present study first indicated that Angptl1 suppresses and enhances osteoclast formation and osteoblastic differentiation in mouse cells, respectively, although it inhibits adipogenic differentiation of 3T3-L1 cells. These data suggest the possibility that Angptl1 might be physiologically related to bone remodeling.
Collapse
|
27
|
Wu Z, Liu J, Chen G, Du J, Cai H, Chen X, Ye G, Luo Y, Luo Y, Zhang L, Duan H, Liu Z, Yang S, Sun H, Cui Y, Sun L, Zhang H, Shi G, Wei T, Liu P, Yan X, Feng J, Bu P. CD146 is a Novel ANGPTL2 Receptor that Promotes Obesity by Manipulating Lipid Metabolism and Energy Expenditure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004032. [PMID: 33747748 PMCID: PMC7967059 DOI: 10.1002/advs.202004032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Obesity and its related complications pose an increasing threat to human health; however, targetable obesity-related membrane receptors are not yet elucidated. Here, the membrane receptor CD146 is demonstrated to play an essential role in obesity. In particular, CD146 acts as a new adipose receptor for angiopoietin-like protein 2 (ANGPTL2), which is thought to act on endothelial cells to activate adipose inflammation. ANGPTL2 binds to CD146 to activate cAMP response element-binding protein (CREB), which then upregulates CD146 during adipogenesis and adipose inflammation. CD146 is present in preadipocytes and mature adipocytes, where it is mediated by its ligands ANGPTL2 and galectin-1. In preadipocytes, CD146 ablation suppresses adipogenesis, whereas the loss of CD146 in mature adipocytes suppresses lipid accumulation and enhances energy expenditure. Moreover, anti-CD146 antibodies inhibit obesity by disrupting the interactions between CD146 and its ligands. Together, these findings demonstrate that ANGPTL2 directly affects adipocytes via CD146 to promote obesity, suggesting that CD146 can be a potential target for treating obesity.
Collapse
|
28
|
Seyhanli Z, Seyhanli A, Aksun S, Pamuk BO. Evaluation of serum Angiopoietin-like protein 2 (ANGPTL-2), Angiopoietin-like protein 8 (ANGPTL-8), and high-sensitivity C-reactive protein (hs-CRP) levels in patients with gestational diabetes mellitus and normoglycemic pregnant women. J Matern Fetal Neonatal Med 2021; 35:5647-5652. [PMID: 33615956 DOI: 10.1080/14767058.2021.1888919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In the present study, we aimed to investigate the role of the fasting serum levels of Anjiopoetın 2 - like protein (ANGPTL2), Anjiopoetın 8-like protein (ANGPTL8), and high-sensitivity C-reactive protein (hs-CRP) in the etiopathogenesis of gestational diabetes mellitus (GDM), and analyze the relationships between insulin resistance parameters. MATERIAL AND METHOD The 90 individuals admitted to İzmir Katip Celebi University Hospital Internal Medicine, Endocrinology and Obstetrics, and gynecology outpatient clinic were included in the study of similar ages and similar demographic characteristics. Forty-five women with diet-controlled GDM and 45 women with normoglycemic pregnancy were enrolled. ANGPTL-2, ANGPTL-8, hs-CRP, creatinine, ALT, GGT, lipid profile, HBA1c(%), and serum insülin, c-peptide levels were studied in the fasting serum samples of research groups. All individuals had 75-g OGTT testing. GDM screening was performed at 24-28 weeks' gestation. Exclusion criteria were as follows: Age <18 years or >40 years, pregestational diabetes (type 1 or 2), drug or alcohol abuse, thyroid dysfunction, Hepatitis B, and other infectious diseases (Herpes virus, Streptococcus B carriers, Chlamydia and Candida), Thalassemia carriers or other significant medical conditions, the use of any medication that interferes with lipid or glucose metabolism that would affect glucose regulation. RESULT Forty-five women with GDM and for the control group, 45 women with normoglycemic pregnant women were identified. The mean gestational age was 30.7 (18-38) for GDM and 29.6 (24-39) for the control group. Serum ANGPTL-8 (GDM =19.5 ± 93 Control = 0.73 ± 3.78 p = <.001). There was a statistically significant difference between the case and control groups for serum ANGPTL-8 levels. Serum ANGPTL-2 (GDM =19.9 ± 23.1 Control = 26.0 ± 23.4 p = .105) and serum hs-CRP(GDM =106 ± 65.1 Control =98.2 ± 87.3 p = .768). There was no statistically significant difference between the case and control groups for serum ANGPTL-2 and hsCRP levels. Serum ANGPTL8 levels were positively correlated with FPG (r = 0.391, p = <.001), FPI (r = 0.212, p = .045), 1-h PPG (r = 0.514, p = <.001), 2-h PPG (r = 0.502, p = <.001), HOMA-IR) score (r = 0.310, p = .003), TG (r = 0.245, p = .020); they were not except for BMI, hs-CRP levels and ANGPTL2 levels. CONCLUSIONS ANGPTL8 levels were significantly higher in GDM than in healthy control group. ANGPTL2 levels and hs-CRP levels were similar to the healthy control group. Elevated serum ANGPTL8 levels were correlated significantly with insulin resistance parameters, the main component of GDM pathophysiology. Our data showed that ANGPTL8 could be a new biomarker for diagnosing GDM.
Collapse
Affiliation(s)
- Zeynep Seyhanli
- Obstetrics and Gynaecology, Izmir Gaziemir Nevvar Salih Isgoren State Hospital, Izmir, Turkey
| | - Ahmet Seyhanli
- Department of Internal Medicine (Hematology), Sivas Numune Hastanesi, Sivas, Turkey
| | - Saliha Aksun
- Biochemistry Department, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Baris Onder Pamuk
- Endocrine and Metabolic Diseases Department Izmir, Izmir Katip Celebi University, Atatürk Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
29
|
Morinaga J, Kakuma T, Fukami H, Hayata M, Uchimura K, Mizumoto T, Kakizoe Y, Miyoshi T, Shiraishi N, Adachi M, Izumi Y, Kuwabara T, Okadome Y, Sato M, Horiguchi H, Sugizaki T, Kadomatsu T, Miyata K, Tajiri S, Tajiri T, Tomita K, Kitamura K, Oike Y, Mukoyama M. Circulating angiopoietin-like protein 2 levels and mortality risk in patients receiving maintenance hemodialysis: a prospective cohort study. Nephrol Dial Transplant 2020; 35:854-860. [PMID: 31840173 DOI: 10.1093/ndt/gfz236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.
Collapse
Affiliation(s)
- Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Clinical Investigation, Kumamoto University Hospital, Kumamoto, Japan.,Biostatistics Center, Kurume University, Fukuoka, Japan
| | | | - Hirotaka Fukami
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Hayata
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Miyoshi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Shiraishi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | - Kimio Tomita
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
30
|
HOX Genes Family and Cancer: A Novel Role for Homeobox B9 in the Resistance to Anti-Angiogenic Therapies. Cancers (Basel) 2020; 12:cancers12113299. [PMID: 33171691 PMCID: PMC7695342 DOI: 10.3390/cancers12113299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The inhibition of angiogenesis, relying on the use of drugs targeting the VEGF signaling pathway, has become one of the main strategies for cancer treatment. However, the intrinsic and acquired resistance to this type of therapy limit its efficacy. Thus, the identification of novel therapeutic targets is urgently needed. The resistance to anti-angiogenic treatment often occurs through the activation of alternative VEGF independent signaling pathways and recruitment of bone marrow-derived pro-angiogenic cells in the tumor microenvironment. HOX genes are key regulators of embryonic development, also involved in angiogenesis and in cancer progression. HOXB9 upregulation occurs in many types of cancer and it has been identified as a critical transcription factor involved in tumour resistance to anti-angiogenic drugs. Indeed, HOXB9 modulates the expression of alternative pro-angiogenic secreted factors in the tumour microenvironment leading tumor escape from the anti-angiogenic treatments. Hence, HOXB9 could serves as a novel therapeutic target to overcome the resistance to anti-angiogenic therapies. Abstract Angiogenesis is one of the hallmarks of cancer, and the inhibition of pro-angiogenic factors and or their receptors has become a primary strategy for cancer therapy. However, despite promising results in preclinical studies, the majority of patients either do not respond to these treatments or, after an initial period of response, they develop resistance to anti-angiogenic agents. Thus, the identification of a novel therapeutic target is urgently needed. Multiple mechanisms of resistance to anti-angiogenic therapy have been identified, including the upregulation of alternative angiogenic pathways and the recruitment of pro-angiogenic myeloid cells in the tumor microenvironment. Homeobox containing (HOX) genes are master regulators of embryonic development playing a pivotal role during both embryonic vasculogenesis and pathological angiogenesis in adults. The importance of HOX genes during cancer progression has been reported in many studies. In this review we will give a brief description of the HOX genes and their involvement in angiogenesis and cancer, with particular emphasis on HOXB9 as a possible novel target for anti-angiogenic therapy. HOXB9 upregulation has been reported in many types of cancers and it has been identified as a critical transcription factor involved in resistance to anti-angiogenic drugs.
Collapse
|
31
|
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 2020; 259:118377. [PMID: 32898526 DOI: 10.1016/j.lfs.2020.118377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The endothelium is the innermost vascular lining performing significant roles all over the human body while maintaining the blood pressure at physiological levels. Malfunction of endothelium is thus recognized as a biomarker linked with many vascular diseases including but not limited to atherosclerosis, hypertension and thrombosis. Alternatively, prevention of endothelial malfunctioning or regulating the functions of its associated physiological partners like endothelial nitric oxide synthase can prevent the associated vascular disorders which account for the highest death toll worldwide. While many anti-hypertensive drugs are available commercially, a comprehensive description of the key physiological roles of the endothelium and its regulation by endothelial nitric oxide synthase or vice versa is the need of the hour to understand its contribution in vascular homeostasis. This, in turn, will help in designing new therapeutics targeting endothelial nitric oxide synthase or its interacting partners present in the cellular pool. This review describes the central role of vascular endothelium in the regulation of endothelial nitric oxide synthase while outlining the emerging drug targets present in the vasculature with potential to treat vascular disorders including hypertension.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India; Center for Advanced Biotechnology and Medicine, Rutgers University, NJ 08854, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
32
|
Horiguchi H, Kadomatsu T, Miyata K, Terada K, Sato M, Torigoe D, Morinaga J, Moroishi T, Oike Y. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene 2020; 40:55-67. [PMID: 33051596 DOI: 10.1038/s41388-020-01505-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Daisuke Torigoe
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
33
|
Lu X. Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis. Curr Med Chem 2020; 27:5159-5174. [PMID: 31223079 DOI: 10.2174/0929867326666190621120523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism. METHOD A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis. RESULTS Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects. CONCLUSION ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London SW3 6LR, England, United Kingdom
| |
Collapse
|
34
|
Keles A, Sonmez K, Erol YO, Ayyıldız SN, Ogus E. Vitreous levels of vascular endothelial growth factor, stromal cell-derived factor-1α, and angiopoietin-like protein 2 in patients with active proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2020; 259:53-60. [PMID: 32813109 DOI: 10.1007/s00417-020-04889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the vitreous levels of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α) and angiopoietin-like protein 2 (ANGPTL2) in patients with active proliferative diabetic retinopathy (PDR), and to ascertain their contribution on different clinical presentation of active PDR. METHODS This case-control study included 31 eyes with active PDR and 10 eyes with idiopathic macular hole (MH) (control group). Eyes with active PDR were divided into three subgroups: vitreous hemorrhage (VH), tractional retinal detachment (TRD) caused by active fibrovascular membrane (FVM), and coexistence of VH and TRD with FVM. Vitreous samples obtained during vitrectomy were analyzed for concentrations of VEGF, SDF-1α, and ANGPTL2. RESULTS Vitreous level of VEGF (2021 (168-6550) pg/ml vs 110.1 (74.5-236) pg/ml), SDF-1α (517 (194-1044) pg/ml vs 388 (320-535) pg/ml), and ANGPTL2 (725 (131-1590) ng/ml vs 196 (75.9-437) ng/ml) were significantly higher in eyes with active PDR than in control group (p < 0.001, p = 0.002, and p < 0.001, respectively). The concentrations of these meaditors in each active PDR subgroups were also significantly higher than control group (p < 0.05). The vitreous level of ANGPTL2 was significantly higher in eyes with TRD caused by FVM (1033 ± 401 ng/ml) than in eyes with VH (561 ± 237 ng/ml; p = 0.008). CONCLUSION High levels of SDF-1α, ANGPTL2 and particularly VEGF seem to be associated with PDR. Since the vitreous levels of ANGPTL2 tend to be higher in eyes with active fibrovascular tractional detachment, vitreous levels of this chemokine seem to be affected by the clinical presentation of vascularly active PDR eyes.
Collapse
Affiliation(s)
- Ali Keles
- Department of Ophthalmology, Cizre State Hospital, Sırnak, Turkey
| | - Kenan Sonmez
- Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Kale Mh. Ulucanlar Cd. No:59, 06250, Altındag, Ankara, Turkey.
| | - Yasemin Ozdamar Erol
- Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Kale Mh. Ulucanlar Cd. No:59, 06250, Altındag, Ankara, Turkey
| | - Sema Nur Ayyıldız
- Department of Medical Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Elmas Ogus
- Department of Medical Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Leblond MM, Tillé L, Nassiri S, Gilfillan CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE, Verdeil G. CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner. Cancer Immunol Res 2020; 8:1180-1192. [DOI: 10.1158/2326-6066.cir-19-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
|
36
|
Roudnicky F, Poyet C, Buser L, Saba K, Wild P, Otto VI, Detmar M. Characterization of Tumor Blood Vasculature Expression of Human Invasive Bladder Cancer by Laser Capture Microdissection and Transcriptional Profiling. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1960-1970. [PMID: 32585158 DOI: 10.1016/j.ajpath.2020.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023]
Abstract
Tumor-associated blood vessels differ from normal vessels and play key roles in tumor progression. We aimed to identify biomolecules that are expressed differentially in human bladder cancer-associated blood vessels to find novel biomarkers and mechanisms involved in tumor-associated angiogenesis. The transcriptome of tumor blood vasculature from human invasive bladder carcinoma (I-BLCA) and normal bladder tissue vasculature was compared using differential expression and unsupervised hierarchical clustering analyses. Pathway analysis identified up-regulation of genes involved in the proliferation, cell cycle, angiogenesis, inflammation, and transforming growth factor-β signaling in tumor blood vasculature. A common consensus gene expression signature was identified between bladder cancer tumor blood vasculature with tumor blood vasculature of other solid cancers, which correlated with the overall survival of patients with several of the solid cancers investigated in The Cancer Genome Atlas data set. In bladder tumor blood vasculature, the secreted factor angiopoietin-like protein 2 (ANGPTL2), was confirmed to be up-regulated by quantitative RT-PCR and immunohistochemical staining. The up-regulation of ANGPTL2 in plasma was also observed in non-invasive bladder carcinoma and I-BLCA. We semiquantitatively analyzed expression of ANGPTL2 in tissue microarrays from I-BLCA and surprisingly found an opposite correlation between staining intensity and progression-free survival. Our results indicate that ANGPTL2 might serve as a potential biomarker to predict progression-free survival in I-BLCA.
Collapse
Affiliation(s)
- Filip Roudnicky
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, Zürich, Switzerland
| | - Lorenz Buser
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Karim Saba
- Department of Urology, University Hospital Zurich, Zürich, Switzerland
| | - Peter Wild
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
37
|
Tang C, Chen E, Peng K, Wang H, Cheng X, Wang Y, Yu S, Yu Y, Cui Y, Liu T. Mining the role of angiopoietin-like protein family in gastric cancer and seeking potential therapeutic targets by integrative bioinformatics analysis. Cancer Med 2020; 9:4850-4863. [PMID: 32410376 PMCID: PMC7333835 DOI: 10.1002/cam4.3100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/24/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background The indistinctive effects of antiangiogenesis agents in gastric cancer (GC) can be attributed to multifaceted gene dysregulation associated with angiogenesis. Angiopoietin‐like (ANGPTL) proteins are secreted proteins regulating angiogenesis. They are also involved in inflammation and metabolism. Emerging evidences have revealed their various roles in carcinogenesis and metastasis development. However, the mRNA expression profiles, prognostic values, and biological functions of ANGPTL proteins in GC are still elucidated. Methods We compared the transcriptional expression levels of ANGPTL proteins between GC and normal gastric tissues using ONCOMINE and TCGA‐STAD. The prognostic values were evaluated by LinkedOmics and Kaplan–Meier Plotter, while the association of expression levels with clinicopathological features was generated through cBioPortal. We conducted the functional enrichment analysis with Metascape. Results The expression of ANGPTL1/3/6 was lower in GC tissues than in normal gastric tissues. High expression of ANGPTL1/2/4 was correlated with short overall survival and post‐progression survival in GC patients. Upregulated ANGPTL1/2 was correlated with higher histological grade, non‐intestinal Lauren classification, and advanced T stage, while ANGPTL4 exhibited high expression in early T stage, M1 stage, and non‐intestinal Lauren classification. Conclusions Integrative bioinformatics analysis suggests that ANGPTL1/2/4 may be potential therapeutic targets in GC patients. Among them, ANGPTL2 acts as a GC promoter, while ANGPTL1/4’s role in GC is still uncertain.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Erbao Chen
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Ke Peng
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Haiwei Wang
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Xi Cheng
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Yan Wang
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Shan Yu
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Yiyi Yu
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Yuehong Cui
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiPR China
| |
Collapse
|
38
|
Osumi H, Horiguchi H, Kadomatsu T, Tashiro K, Morinaga J, Takahashi T, Ikeda K, Ito T, Suzuki M, Endo M, Oike Y. Tumor cell-derived angiopoietin-like protein 2 establishes a preference for glycolytic metabolism in lung cancer cells. Cancer Sci 2020; 111:1241-1253. [PMID: 32012400 PMCID: PMC7156862 DOI: 10.1111/cas.14337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
We previously revealed that tumor cell‐derived angiopoietin‐like protein 2 (ANGPTL2) accelerates the metastatic capacity of tumors in an autocrine/paracrine manner by activating tumor cell motility and invasiveness and the epithelial‐mesenchymal transition. However, the effects of ANGPTL2 on cancer cell glycolytic metabolism, which is a hallmark of tumor cells, are unknown. Here we report evidence supporting a role for tumor cell‐derived ANGPTL2 in establishing a preference for glycolytic metabolism. We report that a highly metastatic lung cancer cell subline expressing abundant ANGPTL2 showed upregulated expression of the glucose transporter GLUT3 as well as enhanced glycolytic metabolism relative to a less metastatic parental line. Most notably, ANGPTL2 overexpression in the less metastatic line activated glycolytic metabolism by increasing GLUT3 expression. Moreover, ANGPTL2 signaling through integrin α5β1 increased GLUT3 expression by increasing transforming growth factor‐β (TGF‐β) signaling and expression of the downstream transcription factor zinc finger E‐box binding homeobox 1 (ZEB1). Conversely, ANGPTL2 knockdown in the highly metastatic subline decreased TGF‐β1, ZEB1, and GLUT3 expression and antagonized glycolytic metabolism. In primary tumor cells from patients with lung cancer, ANGPTL2 expression levels correlated with GLUT3 expression. Overall, this work suggests that tumor cell‐derived ANGPTL2 accelerates activities associated with glycolytic metabolism in lung cancer cells by activating TGF‐β‐ZEB1‐GLUT3 signaling.
Collapse
Affiliation(s)
- Hironobu Osumi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kyosei Tashiro
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | | | - Koei Ikeda
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Horiguchi H, Kadomatsu T, Kurahashi R, Hara C, Miyata K, Baba M, Osumi H, Terada K, Araki K, Takai T, Kamba T, Linehan WM, Moroishi T, Oike Y. Dual functions of angiopoietin-like protein 2 signaling in tumor progression and anti-tumor immunity. Genes Dev 2019; 33:1641-1656. [PMID: 31727773 PMCID: PMC6942048 DOI: 10.1101/gad.329417.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies suggest that tumor cell-derived ANGPTL2 has tumor-promoting function. Here, we conducted mechanistic analysis comparing ANGPTL2 function in cancer progression in a murine syngeneic model of melanoma and a mouse model of translocation renal cell carcinoma (tRCC). ANGPTL2 deficiency in tumor cells slowed tRCC progression, supporting a tumor-promoting role. However, systemic ablation of ANGPTL2 accelerated tRCC progression, supporting a tumor-suppressing role. The syngeneic model also demonstrated a tumor-suppressing role of ANGPTL2 in host tumor microenvironmental cells. Furthermore, the syngeneic model showed that PDGFRα+ fibroblasts in the tumor microenvironment express abundant ANGPTL2 and contribute to tumor suppression. Moreover, host ANGPTL2 facilitates CD8+ T-cell cross-priming and enhances anti-tumor immune responses. Importantly, ANGPTL2 activates dendritic cells through PIR-B-NOTCH signaling and enhances tumor vaccine efficacy. Our study provides strong evidence that ANGPTL2 can function in either tumor promotion or suppression, depending on what cell type it is expressed in.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryoma Kurahashi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Chiaki Hara
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Hironobu Osumi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Thoracic Surgery, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Molecular Enzymology, Faculty of Life sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
40
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
41
|
Yang L, Sun R, Wang Y, Fu Y, Zhang Y, Zheng Z, Ji Z, Zhao D. Expression of ANGPTL2 and its impact on papillary thyroid cancer. Cancer Cell Int 2019; 19:204. [PMID: 31384179 PMCID: PMC6668118 DOI: 10.1186/s12935-019-0908-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Although the most thyroid carcinoma patients have good prognosis, around 20% of papillary thyroid carcinoma (PTC) patients have a high rate of metastasis and recurrence after routine treatment, which causes high lethality with these patients. Tumor proliferation, metastasis, and invasion are important predictors of PTC invasiveness and are key factors in cancer-related death. Angiopoietin-like 2 (ANGPTL2), a secreted protein which belongs to the angiopoietin (ANGPTL) family, was reported to be involved in the regulation of several different type of cancer cell proliferation and metastasis. However, whether ANGPTL2 plays a role in the progression of PTC, particularly in metastasis and recurrence of PTC, remains unclear. Hence, the purpose of this study was to evaluate the level of ANGPTL2 in PTC and normal thyroid, as well as para-cancerous tissue. Furthermore, the impact of ANGPTL2 on PTC cell proliferation, metastasis, recurrence and invasion was assessed to investigate the possibility whether ANGPTL2 may become a novel target for PTC therapy and cancer prognosis. Materials and methods The level of ANGPTL2 in PTC and para-cancerous tissue was assessed by immunohistochemistry. The biological effect of ANGPTL2 on thyroid cancer cell proliferation and metastasis was investigated by the Cell Counting Kit-8 (CCK8) assay, cell scratch test, and transwell assay. Correlations of ANGPTL2 expression levels with proliferation, migration, and metastasis of thyroid cancer were assessed with the TCGA data set and analyzed by gene set enrichment analysis. Receiver operating characteristic analysis was used to evaluate the utility of ANGPTL2 as a biomarker for prediction of thyroid cancer. Survival analysis was performed using the thyroid cancer database in K-M Plotter to detect correlations between survival time and ANGPTL2 levels. Results Current study revealed that: (1) ANGPTL2 was highly expressed in thyroid cancer in comparison with adjacent normal thyroid tissue; (2) ANGPTL2 expression was increased with thyroid tumor progression; (3) ANGPTL2 increased proliferation of thyroid cancer cells; (4) ANGPTL2 promoted migration and invasion of thyroid cancer cells; (5) high level of ANGPTL2 in thyroid cancer patients were significantly associated with a poor prognosis. The patients showed a higher metastasis and recurrence rate. Conclusion ANGPTL2 promoted and enhanced proliferation, metastasis, and invasion of thyroid cancer cells. ANGPTL2 may be considered as a potential biomarker for diagnosis and prognosis of thyroid cancer patients. Further evaluation needs to be done to analyze the possibility of taking ANGPTL2 as a prognostic marker and therapeutic target for papillary thyroid cancer.
Collapse
Affiliation(s)
- Longyan Yang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Rongxin Sun
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Yan Wang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Ying Fu
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Yuanyuan Zhang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Zhaohui Zheng
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Zhili Ji
- 2Department of General Surgery, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Dong Zhao
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| |
Collapse
|
42
|
Chen E, Tang C, Peng K, Cheng X, Wei Y, Liu T. ANGPTL6-mediated angiogenesis promotes alpha fetoprotein-producing gastric cancer progression. Pathol Res Pract 2019; 215:152454. [PMID: 31146977 DOI: 10.1016/j.prp.2019.152454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Alpha-fetoprotein (AFP)-producing gastric cancer (AFPGC) is regarded as a rare but highly malignant gastric adenocarcinoma subtype and its clinic pathological presentation mimics hepatocellular carcinoma. However, the underlying mechanism of this disease remains elusive. The level of ANGPTL6 in AFPGC cell lines is much higher than that of common types of gastric cancer cells. A high level of ANGPTL6 confers a poor prognosis and is correlated with the expression of CD34 (an endothelial cell marker). ANGPTL6 promotes endothelial cell migration and tube formation, Moreover, ANGPTL6 knockdown inhibits cancer cell apoptosis and invasiveness. Mechanistically, ANGPTL6 activates the ERK1/2 and AKT pathways. Treatment of ERK1/2 or AKT inhibitor can attenuated cell migration and tube formation. ANGPTL6 loss results in tumor growth in vivo. Our study revealed that ANGPTL6 is an important driver gene of angiogenesis in AFPGC development. These findings provide not only an effective biomarker for diagnosis but also an attractive therapeutic target for use in AFPGC patients.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Tang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Peng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Cheng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichou Wei
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Kadomatsu T, Oike Y. Roles of angiopoietin-like proteins in regulation of stem cell activity. J Biochem 2019; 165:309-315. [PMID: 30690458 DOI: 10.1093/jb/mvz005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/04/2023] Open
Abstract
Various types of stem cells reside in the body and self-renew throughout an organism's lifetime. Such self-renewal is essential for maintenance of tissue homeostasis and is co-ordinately regulated by stem cell-intrinsic signals and signals from stem cell niche. Angiopoietin is a niche-derived signalling molecule well known to contribute to maintenance of haematopoietic stem cells (HSCs). Angiopoietin-like proteins (ANGPTLs) are structurally similar to angiopoietin, and recent studies reveal that they function in angiogenesis, lipid and energy metabolism and regulation of inflammation. However, unlike angiopoietins, activities of ANGPTLs in stem cell maintenance have remained unclear. Recently, several studies have reported an association of ANGPTL signalling with stem cell maintenance. Here, we summarize those findings with a focus on HSCs, intestinal stem cells, neural stem cells and cancer stem cells and discuss mechanisms underlying ANGPTL-mediated stem cell maintenance.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
44
|
Satou G, Maji D, Isamoto T, Oike Y, Endo M. UV-B-activated B16 melanoma cells or HaCaT keratinocytes accelerate signaling pathways associated with melanogenesis via ANGPTL 2 induction, an activity antagonized by Chrysanthemum extract. Exp Dermatol 2019; 28:152-160. [PMID: 30554436 PMCID: PMC6850386 DOI: 10.1111/exd.13862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023]
Abstract
Sunburn causes inflammation, which increases melanin production in skin and causes hyperpigmentation. Angiopoietin-like protein (ANGPTL) 2 is an inflammatory mediator induced in sun-exposed skin areas. However, whether ANGPTL2 functions in melanin production remains unclear. To assess this possibility, we overexpressed Angptl2 in the melanoma line B16 and in the keratinocyte line HaCaT. Relative to controls, Angptl2-expressing B16 cells produced higher melanin levels via tyrosinase induction. Accordingly, Angptl2-expressing HaCaT cells secreted relatively high levels of both endothelin-1 (ET-1) and α-melanocyte-stimulating hormone (α-MSH). Moreover, treatment with an extract from Chrysanthemum indicum × Erigeron annuus (CE) suppressed ANGPTL2 expression and repressed tyrosinase induction in melanocytes and of α-MSH and ET-1 in keratinocytes. Our data suggest that ANGPTL2 expression in keratinocytes and melanin-producing cells accelerates pigment production and that treatment of skin with a CE extract could prevent melanin accumulation.
Collapse
Affiliation(s)
- Gaku Satou
- Saishunkan Pharmaceutical Co. LtdKumamotoJapan
| | | | | | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Motoyoshi Endo
- Department of Molecular GeneticsGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular BiologyUniversity of Occupational and Environmental Health, JapanFukuokaJapan
| |
Collapse
|
45
|
Yoshinaga T, Nishimata H, Tanaka S, Hori E, Tomiyoshi A, Tokudome E, Takei T, Yoshida M. Use of ANGPTL2 mRNA levels in formalin-fixed paraffin-embedded tissues as a biomarker to diagnose gastric cancer and to evaluate the extent of vascular invasion. Oncol Lett 2019; 17:518-524. [PMID: 30655796 DOI: 10.3892/ol.2018.9610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
With the recent advances in medical technologies, gastric cancer can often be removed with minimally invasive surgical techniques when identified early. Surgery must remove all gastric cancer, since residual cancerous tissue may lead to recurrence. Resected cancerous tissues are pathologically evaluated to determine whether all cancerous areas have been removed, but such assessments are rarely straightforward, and cancer markers could inform such pathological evaluations of cancer. An ideal marker would be identifiable in formalin-fixed paraffin-embedded (FFPE) tumor tissue. The first objective of the present study was to compare levels of angiopoietin-like protein 2 (ANGPTL2) in cancerous and noncancerous areas of FFPE tissues to determine whether ANGPTL2 is a marker relevant to the pathological diagnosis of cancer. The second objective was to evaluate whether ANGPTL2 mRNA is useful as a marker of the extent of vascular invasion of gastric cancer. Out of the 15 patients studied, 12 had a higher ANGPTL2 mRNA levels in cancerous areas compared with noncancerous areas. This finding indicated that ANGPTL2 mRNA is useful as a biomarker for identifying cancerous areas in FFPE tissues, at least for male patients. Spearman's rank correlation analysis showed a significant correlation between the ANGPTL2 mRNA level and the degree of vascular invasion of cancer (r=0.66; P=0.01). In receiver operating characteristic curve analysis of the association between the ANGPTL2 mRNA level and the degree of vascular invasion, the area under the curve was 0.92 (95% confidence interval, 0.78-1.00; P=0.01), indicating a significant association. The present study demonstrates that ANGPTL2 mRNA in FFPE tissues is a potential biomarker that informs the pathological diagnosis of gastric cancer and that ANGPTL2 mRNA may be predictive of vascular invasion, which is an indicator of metastasis in gastric cancer.
Collapse
Affiliation(s)
- Takuma Yoshinaga
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Hiroto Nishimata
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Sadao Tanaka
- Department of Diagnostic Pathology, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Emiko Hori
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Ayako Tomiyoshi
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Erena Tokudome
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Kagoshima 891-8512, Japan
| | - Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
46
|
Abstract
Angiopoietins play important roles in angiogenesis and the maintenance of hematopoietic stem cells. Angiopoietin-like proteins (ANGPTLs) are identified as proteins structurally similar to angiopoietins, and the ANGPTL family now consists of eight members. ANGPTLs are secretary proteins, and some ANGPTLs are not only angiogenic factors but also proteins with multiple functions such as glucose metabolism, lipid metabolism, redox regulation and chronic inflammation. Chronic inflammation is one of the key factors in carcinogenesis and cancer growth, proliferation, invasion and metastasis. ANGPTL 2, 3, 4, 6 and 7 are pro-inflammatory factors and regulate cancer progression, while ANGPTL1 inhibits tumor angiogenesis and metastasis. In this review, we describe the roles of ANGPTLs in cancer progression and discuss the possibility of disturbing the progression of cancer by regulating ANGPTLs expression.
Collapse
Affiliation(s)
- Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
47
|
Yoshinaga T, Niou T, Niihara T, Kajiya Y, Hori E, Tomiyoshi A, Tokudome E, Nishimata H, Takei T, Yoshida M. Angiopoietin-like Protein 2 is a Useful Biomarker for Pancreatic Cancer that is Associated with Type 2 Diabetes Mellitus and Inflammation. J Cancer 2018; 9:4736-4741. [PMID: 30588259 PMCID: PMC6299393 DOI: 10.7150/jca.25404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the tumors with the worst prognosis, with the 5-year survival rate reported to be 6%. The number of patients suffering from pancreatic cancer in recent years has continued to increase dramatically. Carbohydrate antigen 19-9 is an established biomarker of pancreatic cancer, but it does not have sufficient ability to detect pancreatic cancer at an early stage. We focused on angiopoietin-like protein 2 (ANGPTL2), which has been reported to be related to chronic inflammation and Type 2 diabetes mellitus. In this study, whether ANGPTL2 can detect early pancreatic cancer was evaluated. It was found that the concentration of serum ANGPTL2 was significantly higher in pancreatic cancer patients and tumor stage 0-I patients than in healthy individuals (5.84 ± 1.82 ng/mL vs 3.61 ± 0.64 ng/mL; P < 0.001) (5.68 ± 0.79 ng/mL vs 3.61 ± 0.64 ng/mL; P = 0.010). In addition, the diagnostic capability of serum ANGPTL2 levels for pancreatic cancer was evaluated using receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC) for ANGPTL2 was 0.906 (95% confidence interval (CI): 0.815-0.997; P < 0.001). To identify the risk factors for pancreatic cancer, multivariate regression models were used. Ten factors were included, and increasing age (odds ratio (OR), 1.318, 95% CI, 1.058-1.642; P = 0.014) and high ANGPTL2 levels (OR, 22.219, 95% CI, 1.962-251.659, P = 0.012) were found to be independent risk factors for pancreatic cancer, with ANGPTL2 having the strongest relationship. In addition, serum ANGPTL2 levels were strongly correlated with inflammatory markers, with blood sugar levels showing the strongest correlation with serum ANGPTL2 levels. In conclusion, this study suggested that an elevated serum ANGPTL2 level has the potential to be a biomarker capable of early detection of pancreatic cancer, and it was correlated with inflammation of the pancreas and the risk of developing diabetes mellitus.
Collapse
Affiliation(s)
- Takuma Yoshinaga
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Japan
| | | | - Toru Niihara
- Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Yoriko Kajiya
- Department of Radiology, Nanpuh Hospital, Kagoshima, Japan
| | - Emiko Hori
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Japan
| | - Ayako Tomiyoshi
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Japan
| | - Erena Tokudome
- Division of Clinical Application, Nanpuh Hospital, Kagoshima, Japan
| | | | - Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima, Japan
| | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima, Japan
| |
Collapse
|
48
|
Suzuki T, Takebayashi K, Hara K, Tsuchiya T, Inukai T. Association between angiopoietin-like protein 2 and lectin-like oxidized low-density lipoprotein receptor 1 ligand containing apolipoprotein B in patients with type 2 diabetes. J Int Med Res 2018; 46:4167-4180. [PMID: 30157689 PMCID: PMC6166345 DOI: 10.1177/0300060518791067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective This study was performed to evaluate the association of the serum level of
angiopoietin-like protein 2 (ANGPTL2) with circulating inflammatory markers
and oxidized and modified low-density lipoprotein (LDL) cholesterol as
evaluated by lectin-like oxidized LDL receptor 1 ligand containing
apolipoprotein B (LAB) in patients with type 2 diabetes. Methods The study included 70 patients with type 2 diabetes hospitalized for glycemic
control and 9 control subjects. Results The serum level of ANGPTL2 was significantly higher in the patients with type
2 diabetes than in the healthy controls. There was a significant positive
correlation between ANGPTL2 and the high-sensitivity C-reactive protein,
fibrinogen, and LAB levels and a significant negative correlation between
ANGPTL2 and the estimated glomerular filtration rate (eGFR). Conclusions These results suggest that the serum ANGPTL2 level has a close positive
association with inflammatory markers, especially fibrinogen and oxidized
and modified LDL as evaluated by LAB. The data also suggest that the serum
ANGPTL2 level is influenced by renal function as reflected by the eGFR.
Collapse
Affiliation(s)
- Tatsuhiko Suzuki
- Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Kohzo Takebayashi
- Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Kenji Hara
- Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Takafumi Tsuchiya
- Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| |
Collapse
|
49
|
Enhanced ANGPTL2 expression in adipose tissues and its association with insulin resistance in obese women. Sci Rep 2018; 8:13976. [PMID: 30228336 PMCID: PMC6143523 DOI: 10.1038/s41598-018-32419-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022] Open
Abstract
Angiopoietin-like protein 2 has been proposed to be a key mediator linking obesity and insulin resistance. However, no detailed study of ANGPTL2 expression in human adipose tissues has yet been reported. To investigate the pattern and regulation of ANGPTL2 expression in human adipose tissues in obesity and its related diseases, we recruited 32 non-diabetic and 13 type 2 diabetic obese women and 32 normal-weight women. ANGPTL2 mRNA was expressed at a similar level in visceral and subcutaneous adipose tissues. Adipose tissue ANGPTL2 mRNA was much higher in obese patients. Adipose tissue ANGPTL2 mRNA and serum ANGPTL2 levels showed strong associations with metabolic parameters associated with insulin resistance. In adipose tissue, ANGPTL2 mRNA was closely correlated with the expression of genes involved in inflammation and ER stress. ANGPTL2 mRNA was principally expressed in adipocytes, and its expression was markedly higher in the adipocyte but non-adipocyte fraction of obese adipose tissues. Culture of human adipocytes under conditions mimicking the microenvironment of obese adipose tissue (especially, increased ER stress) stimulated ANGPTL2 gene expression and secretion. In addition, co-culture of adipocytes and macrophages suggested that ANGPTL2 excessively produced by adipocytes, may contribute inflammation and remodeling in obese adipose tissues, thereby promoting insulin resistance.
Collapse
|
50
|
ANGPTL2 deletion inhibits osteoclast generation by modulating NF-κB/MAPKs/Cyclin pathways. Biochem Biophys Res Commun 2018; 503:1471-1477. [PMID: 30031603 DOI: 10.1016/j.bbrc.2018.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Osteoclasts are multinucleated cells essential for bone-resorption. Successful repair of bone defciencies still remains a great challenge worldwide. The signaling factor angiopoietin-like protein 2 (ANGPTL2), one of eight ANGPTL proteins, functions in maintenance of tissue homeostasis partly through regulating inflammation. In the study, ANGPTL2 expression was promoted during osteoclast development and that suppressing ANGPTL2 alleviated osteoclast production regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). The results suggested that ANGPTL2 knockdown inhibited M-CSF-caused proliferation of osteoclast precursor cells. Further, ANGPTL2 silence reduced nuclear factor of activated T cell c 1 (NFATC1) and NFATC4 expressions in M-CSF-treated cells, along with decreased Runx2, OPN and Colla1. Moreover, silencing ANGPTL2 down-regulated M-CSF-promoted expressions of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and chemoattractant protein-1 (CCL-2). Consistently, ANGPTL2 knockdown reduced M-CSF-enhanced activation of IKKα, IκBα and nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (p38 MAPK, ERK1/2 MAPK and JNK MAPK). Additionally, knockdown of ANGPTL2 inhibited the induction of Cyclin D1, Cyclin D2 and Cyclin E1 due to M-CSF exposure. In vivo, we confirmed that ANGPTL2 knockout (KO) mice were protected against osteoporosis induced by ovariectomy (OVX), as proved by the improved bone loss and bone mineral density (BMD). Decreased expression of NFATCs was also observed in OVX-induced mice in the absence of ANGPTL2. Elevated release of pro-inflammatory cytokines was abrogated by ANGPTL2 knockout in femoral heads of mice with OVX operation, accompanied with a significant reduction of phosphorylated NF-κB and MAPKs signaling pathways. And down-regulated expression of Cyclin D1, Cyclin D2 and Cyclin E1 was observed in OVX-operated mice with ANGPTL2 knockout. Therefore, our study indicated that ANGPTL2 played an essential role in osteoclast generation through regulating the proliferation and inflammation of osteoclast lineage cells, providing new insights into the therapeutic strategy to alleviate bone loss.
Collapse
|