1
|
Wang H, Wang L, Luan H, Xiao J, Zhao Z, Yu P, Deng M, Liu Y, Ji S, Ma J, Zhou Y, Zhang J, Meng X, Zhang J, Zhao X, Li C, Li F, Wang D, Wei S, Hui L, Nie S, Jin C, An Z, Zhang N, Wang Y, Zhang CC, Li Z. LILRB4 on multiple myeloma cells promotes bone lesion by p-SHP2/NF-κB/RELT signal pathway. J Exp Clin Cancer Res 2024; 43:183. [PMID: 38951916 PMCID: PMC11218313 DOI: 10.1186/s13046-024-03110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Leukocyte Ig-like receptor B family 4 (LILRB4) as an immune checkpoint on myeloid cells is a potential target for tumor therapy. Extensive osteolytic bone lesion is the most characteristic feature of multiple myeloma. It is unclear whether ectopic LILRB4 on multiple myeloma regulates bone lesion. METHODS The conditioned medium (CM) from LILRB4-WT and -KO cells was used to analyze the effects of LILRB4 on osteoclasts and osteoblasts. Xenograft, syngeneic and patient derived xenograft models were constructed, and micro-CT, H&E staining were used to observe the bone lesion. RNA-seq, cytokine array, qPCR, the activity of luciferase, Co-IP and western blotting were used to clarify the mechanism by which LILRB4 mediated bone damage in multiple myeloma. RESULTS We comprehensively analyzed the expression of LILRB4 in various tumor tissue arrays, and found that LILRB4 was highly expressed in multiple myeloma samples. The patient's imaging data showed that the higher the expression level of LILRB4, the more serious the bone lesion in patients with multiple myeloma. The conditioned medium from LILRB4-WT not -KO cells could significantly promote the differentiation and maturation of osteoclasts. Xenograft, syngeneic and patient derived xenograft models furtherly confirmed that LILRB4 could mediate bone lesion of multiple myeloma. Next, cytokine array was performed to identify the differentially expressed cytokines, and RELT was identified and regulated by LILRB4. The overexpression or exogenous RELT could regenerate the bone damage in LILRB4-KO cells in vitro and in vivo. The deletion of LILRB4, anti-LILRB4 alone or in combination with bortezomib could significantly delay the progression of bone lesion of multiple myeloma. CONCLUSIONS Our findings indicated that LILRB4 promoted the bone lesion by promoting the differentiation and mature of osteoclasts through secreting RELT, and blocking LILRB4 singling pathway could inhibit the bone lesion.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Jing Xiao
- Department of Hematology, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Zhiling Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Pengfei Yu
- Department of Biopharmaceutical, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Peking University International Cancer Institute, Peking University, CN 38 Xueyuan Rd. Haidian Dis., Beijing, 100191, P.R. China
| | - Yifan Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Junjie Ma
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264009, P.R. China
| | - Yan Zhou
- Department of Gastrointestinalstrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Xianhui Meng
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xinyu Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Dapeng Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui, 233000, P.R. China
| | - Shujuan Wei
- R&D Center, Luye Pharma Group, Yantai, Shandong, 264005, P.R. China
| | - Lijun Hui
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Siman Nie
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Changzhu Jin
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Yaopeng Wang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266011, P.R. China.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
2
|
Al-Qaisi RA, Al-Gebori AM, Alosami MHM. Evaluation of Bone Turnover Markers in Patients with Acute and Chronic Leukemia. Indian J Clin Biochem 2024; 39:401-407. [PMID: 39005859 PMCID: PMC11239623 DOI: 10.1007/s12291-023-01124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This study investigated different bone biomarkers (cross-linked carboxy-terminal telopeptide of type 1 collagen (CTX-1), pyridinoline (PYD), osteocalcin (OC), interleukin-6 receptor (IL-6R), calcium (Ca), and magnesium (Mg)) in terms of their metabolism in 4 different leukemia subtypes (ALL, AML, CLL and CML). The design was case control study with 30 controls and 60 cases of leukemia patients. Authors have reported many results regarding decrease as well as increase of specific bone biomarker under investigation with each leukemia subtype when compared to control. In addition, Authors reported correlations between each biomarker level and leukemia subtypes.
Collapse
Affiliation(s)
- Reem A. Al-Qaisi
- Department of Applied Sciences, Applied Chemists Division, University of Technology, Baghdad, Iraq
| | - Abdulnasser M. Al-Gebori
- Department of Applied Sciences, Applied Chemists Division, University of Technology, Baghdad, Iraq
| | | |
Collapse
|
3
|
Zijlstra H, Te Velde JP, Striano BM, Groot OQ, de Groot TM, Raje N, Patel C, Husseini J, Delawi D, Kempen DHR, Verlaan JJ, Schwab JH. Remineralization Rate of Lytic Lesions of the Spine in Multiple Myeloma Patients Undergoing Radiation Therapy. Global Spine J 2024:21925682241260651. [PMID: 38856741 DOI: 10.1177/21925682241260651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVE In general, Multiple Myeloma (MM) patients are treated with systemic therapy including chemotherapy. Radiation therapy can have an important supportive role in the palliative management of MM-related osteolytic lesions. Our study aims to investigate the degree of radiation-induced remineralization in MM patients to gain a better understanding of its potential impact on bone mineral density and, consequently, fracture prevention. Our primary outcome measure was percent change in bone mineral density measured in Hounsfield Units (Δ% HU) between pre- and post-radiation measurements, compared to non-targeted vertebrae. METHODS We included 119 patients with MM who underwent radiotherapy of the spine between January 2010 and June 2021 and who had a CT scan of the spine at baseline and between 3-24 months after radiation. A linear mixed effect model tested any differences in remineralization rate per month (βdifference) between targeted and non-targeted vertebrae. RESULTS Analyses of CT scans yielded 565 unique vertebrae (366 targeted and 199 non-targeted vertebrae). In both targeted and non-targeted vertebrae, there was an increase in bone density per month (βoverall = .04; P = .002) with the largest effect being between 9-18 months post-radiation. Radiation did not cause a greater increase in bone density per month compared to non-targeted vertebrae (βdifference = .67; P = .118). CONCLUSION Our results demonstrate that following radiation, bone density increased over time for both targeted and non-targeted vertebrae. However, no conclusive evidence was found that targeted vertebrae have a higher remineralization rate than non-targeted vertebrae in patients with MM.
Collapse
Affiliation(s)
- Hester Zijlstra
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jens P Te Velde
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Brendan M Striano
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Olivier Q Groot
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom M de Groot
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Noopur Raje
- Department of Hematology/Oncology, Center for Multiple Myeloma, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Chirayu Patel
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Jad Husseini
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Diyar Delawi
- Department of Orthopedic Surgery, St. Antonius Hospital, Utrecht, Nieuwegein, The Netherlands
| | | | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joseph H Schwab
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Fedele PL, Opat S. Chronic Lymphocytic Leukemia: Time to Care for the Survivors. J Clin Oncol 2024; 42:2005-2011. [PMID: 38489567 DOI: 10.1200/jco.23.02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Pasquale L Fedele
- Lymphoma Research Group, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen Opat
- Lymphoma Research Group, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Petty L, Stephens D, Sharma A. Risk Factors for Fragility Fractures in Chronic Lymphocytic Leukemia. Cureus 2024; 16:e54774. [PMID: 38523984 PMCID: PMC10961164 DOI: 10.7759/cureus.54774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Abnormal bone health and fragility fractures (FF) are more common in patients with chronic lymphocytic leukemia (CLL). We hypothesize that there may be risk factors in CLL patients with osteoporosis that increase the risk of FFs. We conducted a cohort study encompassing all patients diagnosed with CLL from January 1, 2000, to July 31, 2020, utilizing International Classification of Diseases (ICD) codes related to abnormal bone health (osteopenia, osteoporosis, and/or presence of FF) within a single tertiary care institution. Of the 89 patients included, 55 (62%) were female with a mean age of 68 ± 11 years at cohort entry. Fifty-nine (66%) had at least one FF present (pFF) and 30 (34%) did not have an FF (nFF). There were no differences in IGHV (Immunoglobulin heavy chain variable region gene) mutation status, chromosomal abnormalities, or the presence of a complex karyotype. The spine accounted for 81% of identified FF. T-score <-2.5 was more common in those without FF (pFF 38% vs. nFF 71%, P = 0.02). DXA evaluation was not conducted for 36 (40%) individuals within the cohort. Risk factors for fragility fractures included male sex (relative risk [RR] 8.1, 95% confidence interval [CI] 2.1-31.7), diabetes mellitus (RR 1.4, 95% CI 1.04-1.8), smoking (RR 1.3, 95% CI 1.02-1.8), Rai stage >0 (RR 1.4, 95% CI 1.04-1.9), and T-score >-2.5 (RR 1.8, 95% CI 1.1-3.1). There is a high frequency of vertebral FFs in people with CLL despite T-scores not being in the osteoporotic range. Increased awareness to screen and treat vertebral FFs in people with CLL is needed.
Collapse
Affiliation(s)
- Lloyd Petty
- Endocrinology, Diabetes, and Metabolism, University of Utah School of Medicine, Salt Lake City, USA
| | - Deborah Stephens
- Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Anu Sharma
- Endocrinology, Diabetes, and Metabolism, University of Florida, Gainesville, USA
| |
Collapse
|
6
|
Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5058. [PMID: 37894425 PMCID: PMC10605026 DOI: 10.3390/cancers15205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy;
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
| | - Gian Mario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
7
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
8
|
Clar KL, Weber LM, Schmied BJ, Heitmann JS, Marconato M, Tandler C, Schneider P, Salih HR. Receptor Activator of NF-κB (RANK) Confers Resistance to Chemotherapy in AML and Associates with Dismal Disease Course. Cancers (Basel) 2021; 13:cancers13236122. [PMID: 34885231 PMCID: PMC8657109 DOI: 10.3390/cancers13236122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Despite the emergence of new therapeutic agents in recent years, curation remains challenging, and new and better treatment options are needed. In the present study, we investigated the expression, prognostic significance, and functional role of the Receptor Activator of Nuclear Factor-κB (RANK) in AML. We found that RANK is expressed on leukemic cells in a substantial proportion of AML patients and is associated with a dismal disease course. We further demonstrated that signaling via RANK induces release of factors that favor AML cell survival and confers resistance to chemotherapeutics in AML treatment. Together, our findings identify RANK as novel prognostic marker and putative candidate for therapeutic intervention in AML to enhance response to treatment. Abstract Although treatment options of acute myeloid leukemia (AML) have improved over the recent years, prognosis remains poor. Better understanding of the molecular mechanisms influencing and predicting treatment efficacy may improve disease control and outcome. Here we studied the expression, prognostic relevance and functional role of the tumor necrosis factor receptor (TNFR) family member Receptor Activator of Nuclear Factor (NF)-κB (RANK) in AML. We conducted an experimental ex vivo study using leukemic cells of 54 AML patients. Substantial surface expression of RANK was detected on primary AML cells in 35% of the analyzed patients. We further found that RANK signaling induced the release of cytokines acting as growth and survival factors for the leukemic cells and mediated resistance of AML cells to treatment with doxorubicin and cytarabine, the most commonly used cytostatic compounds in AML treatment. In line, RANK expression correlated with a dismal disease course as revealed by reduced overall survival. Together, our results show that RANK plays a yet unrecognized role in AML pathophysiology and resistance to treatment, and identify RANK as “functional” prognostic marker in AML. Therapeutic modulation of RANK holds promise to improve treatment response in AML patients.
Collapse
Affiliation(s)
- Kim L. Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lisa M. Weber
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Bastian J. Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-29-83275
| |
Collapse
|
9
|
Li K, Jin R, Wu X. The role of macrophages and osteoclasts in the progression of leukemia. ACTA ACUST UNITED AC 2021; 26:724-733. [PMID: 34555294 DOI: 10.1080/16078454.2021.1976911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACTBone marrow microenvironment provides critical regulatory signals for lineage differentiation and maintenance of HSC quiescence, and these signals also contribute to hematological myeloid malignancies. Macrophages exhibit high phenotypic heterogeneity under both physiological and pathological conditions and are mainly divided into proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, osteoclasts are multinucleated giant cells that arise by fusion of monocyte/macrophage-like cells, which are commonly known as bone macrophages. Emerging evidence suggests that macrophages and osteoclasts originating from myeloid progenitors lead to two competing differentiation outcomes, and they appear to play an important role in the onset, progression, and bone metastasis of solid cancers. However, little is known about their role in the development of hematological malignancies. In this review, we focus on macrophages and osteoclasts, their role in leukemia, and the potential for targeting these cells in this disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Alankus B, Ecker V, Vahl N, Braun M, Weichert W, Macher-Göppinger S, Gehring T, Neumayer T, Zenz T, Buchner M, Ruland J. Pathological RANK signaling in B cells drives autoimmunity and chronic lymphocytic leukemia. J Exp Med 2021; 218:211464. [PMID: 33075129 PMCID: PMC7868734 DOI: 10.1084/jem.20200517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
Clinical evidence suggests alterations in receptor activator of NF-κB (RANK) signaling are key contributors to B cell autoimmunity and malignancy, but the pathophysiological consequences of aberrant B cell–intrinsic RANK signaling remain unknown. We generated mice that express a human lymphoma–derived, hyperactive RANKK240E variant in B lymphocytes in vivo. Forced RANK signaling disrupted B cell tolerance and induced a fully penetrant systemic lupus erythematosus–like disease in addition to the development of chronic lymphocytic leukemia (CLL). Importantly, RANKK240E transgenic CLL cells as well as CLL cells of independent murine and of human origin depend on microenvironmental RANK ligand (RANKL) for tumor cell survival. Consequently, inhibition of the RANKL–RANK axis with anti-RANKL antibodies killed murine and human CLL cells in vitro and in vivo. These results establish pathological B cell–intrinsic RANK signaling as a potential driver of autoimmunity and B cell malignancy, and they suggest the exploitation of clinically available anti-RANKL compounds for CLL treatment.
Collapse
Affiliation(s)
- Begüm Alankus
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Veronika Ecker
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nathalie Vahl
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Braun
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | | | - Torben Gehring
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tanja Neumayer
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Maike Buchner
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Center for Infection Research, Munich, Germany
| |
Collapse
|
11
|
Griffen TL, Dammer EB, Dill CD, Carey KM, Young CD, Nunez SK, Ohandjo AQ, Kornblau SM, Lillard JW. Multivariate transcriptome analysis identifies networks and key drivers of chronic lymphocytic leukemia relapse risk and patient survival. BMC Med Genomics 2021; 14:171. [PMID: 34187466 PMCID: PMC8243588 DOI: 10.1186/s12920-021-01012-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumulation of CD5+ CD19+ B cells and episodes of relapse. The biological signaling that influence episodes of relapse in CLL are not fully described. Here, we identify gene networks associated with CLL relapse and survival risk. METHODS Networks were investigated by using a novel weighted gene network co-expression analysis method and examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used to identify biological functions overrepresented in each module. Differential Expression of modules and individual genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC tests. RESULTS Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively correlated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and negatively correlated with survival days. CONCLUSIONS This study provides novel insights into CLL relapse biology and pathways associated with known and novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival represented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Gene Expression Profiling
- Gene Regulatory Networks
- Male
- Female
- Recurrence
- Multivariate Analysis
- Biomarkers, Tumor/genetics
- Middle Aged
- Transcriptome
- Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Prognosis
Collapse
Affiliation(s)
- Ti'ara L Griffen
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Sha'Kayla K Nunez
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
12
|
Rajakumar SA, Papp E, Lee KK, Grandal I, Merico D, Liu CC, Allo B, Zhang L, Grynpas MD, Minden MD, Hitzler JK, Guidos CJ, Danska JS. B cell acute lymphoblastic leukemia cells mediate RANK-RANKL-dependent bone destruction. Sci Transl Med 2021; 12:12/561/eaba5942. [PMID: 32938796 DOI: 10.1126/scitranslmed.aba5942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the p53 -/-; Rag2 -/-; Prkdcscid/scid triple mutant (TM) mice and p53 -/-; Prkdcscid/scid double mutant (DM) mouse models of spontaneous B-ALL. In contrast to DM animals, leukemic TM mice displayed brittle bones, and the TM leukemic cells overexpressed Rankl, encoding receptor activator of nuclear factor κB ligand. RANKL is a key regulator of osteoclast differentiation and bone loss. Transfer of TM leukemic cells into immunodeficient recipient mice caused trabecular bone loss. To determine whether human B-ALL can exert similar effects, we evaluated primary human B-ALL blasts isolated at diagnosis for RANKL expression and their impact on bone pathology after their transplantation into NOD.Prkdcscid/scidIl2rgtm1Wjl /SzJ (NSG) recipient mice. Primary B-ALL cells conferred bone destruction evident in increased multinucleated osteoclasts, trabecular bone loss, destruction of the metaphyseal growth plate, and reduction in adipocyte mass in these patient-derived xenografts (PDXs). Treating PDX mice with the RANKL antagonist recombinant osteoprotegerin-Fc (rOPG-Fc) protected the bone from B-ALL-induced destruction even under conditions of heavy tumor burden. Our data demonstrate a critical role of the RANK-RANKL axis in causing B-ALL-mediated bone pathology and provide preclinical support for RANKL-targeted therapy trials to reduce acute and long-term bone destruction in these patients.
Collapse
Affiliation(s)
- Sujeetha A Rajakumar
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eniko Papp
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kathy K Lee
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Daniele Merico
- Center for Applied Genomics, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Careesa C Liu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bedilu Allo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Lucia Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Pediatrics, Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
13
|
An Fc-Optimized CD133 Antibody for Induction of NK Cell Reactivity against B Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13071632. [PMID: 33915811 PMCID: PMC8036612 DOI: 10.3390/cancers13071632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary B cell acute lymphoblastic leukemia (B-ALL) is a common blood cancer characterized by proliferating and accumulating malignant, immature B cells within the body. Despite recent successes in B-ALL therapy, there is still a need for new therapeutic options. In the present study, we report on the characterization of 293C3-SDIE for the treatment of B-ALL. 293C3-SDIE is an improved anti-tumor antibody targeting CD133, a common protein on the surface of B-ALL cells. We demonstrated that 293C3-SDIE specifically induces activation of natural killer cells, which leads to lysis of B-ALL cells. Based on this study, we conclude that CD133 serves as a target for immune therapy, and treatment with 293C3-SDIE represents a promising therapeutic option in B-ALL therapy and warrants further preclinical and clinical evaluation. Abstract In recent decades, antibody-dependent cellular cytotoxicity (ADCC)-inducing monoclonal antibodies (mAbs) have revolutionized cancer immunotherapy, and Fc engineering strategies have been utilized to further improve efficacy. A promising option is to enhance the affinity of an antibody’s Fc-part to the Fc-receptor CD16 by altering the amino acid sequence. Herein, we characterized an S239D/I332E-modified CD133 mAb termed 293C3-SDIE for treatment of B cell acute lymphoblastic leukemia (B-ALL). Flow cytometric analysis revealed CD133 expression on B-ALL cell lines and leukemic cells of 50% (14 of 28) B-ALL patients. 293C3-SDIE potently induced NK cell reactivity against the B-ALL cell lines SEM and RS4;11, as well as leukemic cells of B-ALL patients in a target antigen-dependent manner, as revealed by analysis of NK cell activation, degranulation, and cytotoxicity. Of note, CD133 expression did not correlate with BCR-ABL, CD19, CD20, or CD22, which are presently used as therapeutic targets in B-ALL, which revealed CD133 as an independent target for B-ALL treatment. Increased CD133 expression was also observed in MLL-AF4-rearranged B-ALL, indicating that 293C3-SDIE may constitute a particularly suitable treatment option in this hard-to-treat subpopulation. Taken together, our results identify 293C3-SDIE as a promising therapeutic agent for the treatment of B-ALL.
Collapse
|
14
|
Łacina P, Butrym A, Humiński M, Dratwa M, Frontkiewicz D, Mazur G, Bogunia-Kubik K. Association of RANK and RANKL gene polymorphism with survival and calcium levels in multiple myeloma. Mol Carcinog 2020; 60:106-112. [PMID: 33283899 DOI: 10.1002/mc.23272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is a heterogeneous bone marrow cancer characterized by proliferation of malignant plasma cells in the bone marrow. One of its major symptoms are hypercalcaemia and bone lesions, which may result in pathologic bone fractures. Receptor activator for nuclear factor κB (RANK) and its ligand, RANKL, are part of an activation pathway for osteoclasts and are thus responsible for bone resorption. Furthermore, RANKL expression is increased in multiple myeloma. In the present study, we investigated the role of single nucleotide polymorphisms (SNPs) in the genes coding for RANK (rs1805034, rs8086340), RANKL (rs7325635, rs7988338), and TACI (rs34562254), a receptor for osteoclast-derived pro-survival factors. The study involved 222 patients and 222 healthy individuals, and the analysis included disease susceptibility, survival, bone lesions, calcium levels, and vascular endothelial growth factor levels. Patients with allele RANK rs1805034 C had higher survival (p = .003). This relationship was especially evident in women (p = .006). Furthermore, allele rs1805034 C was associated with slightly lower median age at diagnosis (64.0 vs. 65.5, p = .008). Allele RANKL rs7325635 A correlated with lower progression-free survival (p = .027), and with lack of early progression (p = .023). Additionally, women with allele rs7325635 G were found to have higher calcium blood concentration (p = .040). Allele TACI rs34562254 A was more common in MM patients in more advanced stages (II and III stage International Staging System) at diagnosis (p = .017), and the SNP showed a slight trend towards association in a multivariate analysis (p = .084). Taken together, our results suggest that RANK rs1805034 and RANKL rs7325635 may have a role in MM development and progression.
Collapse
Affiliation(s)
- Piotr Łacina
- Department of Clinical Immunology, Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wrocław, Poland
| | - Michał Humiński
- Department of Clinical Immunology, Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Dratwa
- Department of Clinical Immunology, Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Diana Frontkiewicz
- Department of Internal Occupational Diseases, Hypertension, and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal Occupational Diseases, Hypertension, and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Department of Clinical Immunology, Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
15
|
Giannoni P, Marini C, Cutrona G, Matis S, Capra MC, Puglisi F, Luzzi P, Pigozzi S, Gaggero G, Neri A, Todoerti K, Morabito F, Ibatici A, Miglino M, Bergamaschi M, Bruno S, Sambuceti GM, Ravetti JL, Ferrarini M, Fais F, de Totero D. Chronic lymphocytic leukemia cells impair osteoblastogenesis and promote osteoclastogenesis: role of TNFα, IL-6 and IL-11 cytokines. Haematologica 2020; 106:2598-2612. [PMID: 32855274 PMCID: PMC8485691 DOI: 10.3324/haematol.2019.231456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 01/18/2023] Open
Abstract
Bone skeletal alterations are no longer considered a rare event in Chronic Lymphocytic Leukemia (CLL), especially at more advanced stages of the disease. This study is aimed at elucidating the mechanisms underlying this phenomenon. Bone marrow stromal cells, induced to differentiate toward osteoblasts in osteogenic medium, appeared unable to complete their maturation upon co-culture with CLL cells, CLL cells-derived conditioned media (CLL-cm) or CLL-sera (CLL-sr). Inhibition of osteoblast differentiation was documented by decreased levels of RUNX2 and osteocalcin mRNA expression, by increased osteopontin and DKK-1 mRNA levels, and by a marked reduction of mineralized matrix deposition. The addition of neutralizing TNFα, IL-11 or anti-IL-6R monoclonal antibodies to these co-cultures resulted into restoration of bone mineralization, indicating the involvement of these cytokines: these findings were further supported by silencing TNFα, IL-11 and IL-6 in leukemic cells. We also demonstrated that the addition of CLL-cm to monocytes, previously stimulated with MCSF and RANKL, significantly amplified the formation of large mature osteoclasts as well as their bone resorption activity. Moreover enhanced osteoclastogenesis, induced by CLL-cm, was significantly reduced by treating cultures with the anti-TNFα moAb Infliximab; an analogous effect was observed by the use of the BTK inhibitor Ibrutinib. CLL cells, co-cultured with mature osteoclasts, were interestingly protected from apoptosis and upregulated Ki-67. These experimental results parallel the direct correlation between TNFα amounts in CLL sera and the degree of compact bone erosion we previously described, further strengthening the indication of a reciprocal influence between leukemic cells expansion and bone structure derangement.
Collapse
Affiliation(s)
- Paolo Giannoni
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Serena Matis
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Francesca Puglisi
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Paola Luzzi
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Simona Pigozzi
- Pathological Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Gaggero
- Pathologycal Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Dept. of Oncology and Hemato-Oncology,University of Milan, Italy
| | - Katia Todoerti
- Dept. of Oncology and Hemato-Oncology,University of Milan, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Azienda Ospedaliera Aprigliano, Cosenza, Italy
| | - Adalberto Ibatici
- Hematology Clinic, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Hematology Clinic, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Silvia Bruno
- Dept. of Experimental Medicine, Anatomy Section, University of Genoa, Italy
| | | | - Jean Louis Ravetti
- Pathological Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Manlio Ferrarini
- Dept. of Experimental Medicine, Anatomy Section, University of Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy;
| |
Collapse
|
16
|
Effects of the Bone/Bone Marrow Microenvironments on Prostate Cancer Cells and CD59 Expression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2753414. [PMID: 32337233 PMCID: PMC7165328 DOI: 10.1155/2020/2753414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022]
Abstract
Objective To evaluate the effects of human bone marrow mesenchymal stem cells (hBMSCs) and osteoblasts (hFOB1.19) on PC3 prostate cancer cells. Methods To simulate the in vivo interaction between the bone/bone marrow microenvironments and prostate cancer cells, we established cocultures of PC3 cells with hBMSC or hFOB1.19 cells and evaluated their effects on the proliferation, cell cycle distribution, cell migration, and invasion of PC3 cells. Quantitative reverse transcription polymerase chain reaction was used to detect CD59 mRNA expression in PC3 cells. The expression of receptor activator of nuclear factor- (NF-) κB (RANK), RANK ligand (RANKL), osteoprotegerin (OPG), CD59, NF-κB (p50 subunit), and cyclin D1 in PC3 cells was analyzed by immunofluorescence and western blotting. Results hBMSCs and hFOB1.19 cells enhanced the proliferation, migration, and invasion of PC3 cells; increased the proportion of PC3 cells in the S and G2/M phases of the cell cycle; and upregulated RANK, RANKL, OPG, CD59, cyclin D1, and NF-κB (p50 subunit) expression by PC3 cells. The RANKL inhibitor, scutellarin, inhibited these effects in PC3-hFOB1.19 cocultures. Conclusion hBMSCs and hFOB1.19 cells modulate the phenotype of PC3 prostate cancer cells and the expression of CD59 by activating the RANK/RANKL/OPG signaling pathway.
Collapse
|
17
|
Amin N, Boccardi V, Taghizadeh M, Jafarnejad S. Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 2020; 32:363-371. [PMID: 31119697 DOI: 10.1007/s40520-019-01223-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
The skeleton is the framework and in charge of body configuration preservation. As a living tissue, bones are constantly being formed and absorbed. Osteoblasts and osteoclasts are the main bone cells and balance between their activities indicates bone health. Several mechanisms influence the bone turnover and RANKL/RANK/OPG pathway is one of them. This system, whose components are part of the tumor necrosis factor (TNF) superfamily, exists in many organs and could play a role in bone modeling and remodeling. RANKL/RANK pathway controls osteoclasts activity and formation. In addition, they are identified as key factors on bone turnover in different pathological situations. At the same time, OPG (RANKL's decoy receptor) plays role as a bone-protective factor by binding to RANKL and prevention of extra resorption. The lack of balance between RANKL and OPG could result in excessive bone resorption. Probiotics, the beneficial microorganisms for human health, entail bones in their advantages. Recent studies suggest that probiotics could reduce inflammatory factors (for example TNF-α and IL-1β) and increase bone OPG expression. In addition, probiotics have shown to maintain bones in various ways. Although current evidence is not enough for definitive approval of probiotics' efficacy on RANKL/RANK/OPG, its positive responses from conducted studies are significant. Understanding of the probiotics' effects on RANKL/RANK/OPG pathway will help focus future studies, and assist in developing efficient treatment strategies.
Collapse
Affiliation(s)
- Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Virginia Boccardi
- Section of Gerontology and Geriatrics, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
18
|
Schmied BJ, Lutz MS, Riegg F, Zekri L, Heitmann JS, Bühring HJ, Jung G, Salih HR. Induction of NK Cell Reactivity against B-Cell Acute Lymphoblastic Leukemia by an Fc-Optimized FLT3 Antibody. Cancers (Basel) 2019; 11:cancers11121966. [PMID: 31817795 PMCID: PMC6966676 DOI: 10.3390/cancers11121966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism by which antitumor antibodies mediate therapeutic efficacy. At present, we evaluate an Fc-optimized (amino acid substitutions S239D/I332E) FLT3 antibody termed 4G8-SDIEM (FLYSYN) in patients with acute myeloid leukemia (NCT02789254). Here we studied the possibility to induce NK cell ADCC against B-cell acute lymphoblastic leukemia (B-ALL) by Fc-optimized FLT3 antibody treatment. Flow cytometric analysis confirmed that FLT3 is widely expressed on B-ALL cell lines and leukemic cells of B-ALL patients. FLT3 expression did not correlate with that of CD20, which is targeted by Rituximab, a therapeutic monoclonal antibody (mAb) employed in B-ALL treatment regimens. Our FLT3 mAb with enhanced affinity to the Fc receptor CD16a termed 4G8-SDIE potently induced NK cell reactivity against FLT3-transfectants, the B-ALL cell line SEM and primary leukemic cells of adult B-ALL patients in a target-antigen dependent manner as revealed by analyses of NK cell activation and degranulation. This was mirrored by potent 4G8-SDIE mediated NK cell ADCC in experiments with FLT3-transfectants, the cell line SEM and primary cells as target cells. Taken together, the findings presented in this study provide evidence that 4G8-SDIE may be a promising agent for the treatment of B-ALL, particularly in CD20-negative cases.
Collapse
Affiliation(s)
- Bastian J. Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Fabian Riegg
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Department for Immunology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Hans-Jörg Bühring
- Department of Hematology and Oncology, Eberhard Karls University, 72076 Tübingen, Germany;
| | - Gundram Jung
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Department for Immunology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-7071/29-83275
| |
Collapse
|
19
|
Schmied BJ, Riegg F, Zekri L, Grosse-Hovest L, Bühring HJ, Jung G, Salih HR. An Fc-Optimized CD133 Antibody for Induction of Natural Killer Cell Reactivity against Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11060789. [PMID: 31181683 PMCID: PMC6627285 DOI: 10.3390/cancers11060789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The introduction of monoclonal antibodies (mAbs) has largely improved treatment options for cancer patients. The ability of antitumor mAbs to elicit antibody-dependent cellular cytotoxicity (ADCC) contributes to a large extent to their therapeutic efficacy. Many efforts accordingly aim to improve this important function by engineering mAbs with Fc parts that display enhanced affinity to the Fc receptor CD16 expressed, e.g., on natural killer (NK) cells. Here we characterized the CD133 mAb 293C3-SDIE that contains an engineered Fc part modified by the amino acid exchanges S239D/I332E—that reportedly increase the affinity to CD16—with regard to its ability to induce NK reactivity against colorectal cancer (CRC). 293C3-SDIE was found to be a stable protein with favorable binding characteristics achieving saturating binding to CRC cells at concentrations of approximately 1 µg/mL. While not directly affecting CRC cell growth and viability, 293C3-SDIE potently induced NK cell activation, degranulation, secretion of Interferon-γ, as well as ADCC resulting in potent lysis of CRC cell lines. Based on the preclinical characterization presented in this study and the available data indicating that CD133 is broadly expressed in CRC and represents a negative prognostic marker, we conclude that 293C3-SDIE constitutes a promising therapeutic agent for the treatment of CRC and thus warrants clinical evaluation.
Collapse
Affiliation(s)
- Bastian J Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| | - Fabian Riegg
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- Department for Immunology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | | | - Hans-Jörg Bühring
- Department of Hematology and Oncology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Gundram Jung
- Department for Immunology, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 72076 Partner site Tuebingen, Germany.
- DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy (iFIT)", 72076 Tuebingen, Germany.
| |
Collapse
|
20
|
Xie Y, Zhou W, Zhong Z, Yu H, Zhang P, Shen H. Docosahexaenoic acid inhibits bone remodeling and vessel formation in the osteochondral unit in a rat model. Biomed Pharmacother 2019; 114:108811. [PMID: 30965235 DOI: 10.1016/j.biopha.2019.108811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We aimed to determine whether bone remodeling and vessel formation in the osteochondral unit are suppressed by supplementing with docosahexaenoic acid in anterior cruciate ligament transection (ACLT)-induced rats. METHODS Twelve-week-old male Sprague Dawley rats were randomized to sham-operated, ACLT-operated and treated with vehicle, or ACLT-operated and treated with DHA groups. Micro-architecture and vasculature in the tibial osteochondral unit were examined by micro-CT, as well as by histomorphometry. To evaluate the effects of DHA in vitro, we conducted functional and expressional assays in RAW264.7 cells and HUVECs. Finally, we used OARSI-modified Mankin criteria and histological analyses to assess the status of the cartilage layer. RESULTS Microstructural parameters in the osteochondral unit showed that bone mass loss and angiogenesis were less in DHA-treated rats than in vehicle-treated rats. Immunofluorescence-positive cells labeled with TRAP, RANKL, CD31, and endomucin agents in the osteochondral unit of ACLT-operated rats were reduced in the DHA-treated group compared with the vehicle-treated group. Furthermore, the number of TRAP-stained cells, areas of bone resorption pits, and mRNA expression of TRAP, CTSK, MITF, and NFATC1 were reduced in RAW264.7 cells treated with RANKL + DHA compared with those treated with only RANKL. Tube formation, proliferation and migration of HUVECs, and VEGF-C mRNA and VEGFR2 protein expression were inhibited by DHA. The decrease in OARSI score, and MMP-13 and collagen X expression suggested that DHA attenuated cartilage degeneration. CONCLUSIONS DHA has the ability to restrain bone remodeling and vessel formation in the osteochondral unit, which may contribute to protection of cartilage.
Collapse
Affiliation(s)
- Yinhao Xie
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Wei Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Zhihong Zhong
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Haotao Yu
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Ping Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Huawei Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
21
|
Fernandes MT, Caroço LS, Pacheco-Leyva I, Dos Santos NR. NF-κB-dependent RANKL expression in a mouse model of immature T-cell leukemia. Biochem Biophys Res Commun 2019; 510:272-277. [PMID: 30711250 DOI: 10.1016/j.bbrc.2019.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Lara S Caroço
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal.
| | - Ivette Pacheco-Leyva
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
22
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
23
|
Rothfelder K, Hagelstein I, Roerden M, Blumenstock G, Hofmann M, Nuebling T, Jung G, Salih HR, Dörfel D. Expression of the Immune Checkpoint Modulator OX40 in Acute Lymphoblastic Leukemia Is Associated with BCR-ABL Positivity. Neoplasia 2018; 20:1150-1160. [PMID: 30300827 PMCID: PMC6175778 DOI: 10.1016/j.neo.2018.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
OX40 and its ligand are members of the TNF/TNF receptor superfamily, which includes various molecules influencing cellular signaling and function of both tumor and immune cells. The ability of OX40 to promote proliferation and differentiation of activated T cells fueled present attempts to modulate this immune checkpoint to reinforce antitumor immunity. While we recently found evidence for the involvement of OX40 in pathophysiology of acute myeloid leukemia including natural killer (NK) cell immunosurveillance, less is known on its role in acute lymphoblastic leukemia (ALL). In the present study, OX40 expression on ALL cells was significantly associated with positivity for the adverse risk factor BCR-ABL. In line, signaling via OX40 increased metabolic activity of primary ALL cells and resulted in release of cytokines involved in disease pathophysiology. Furthermore, interaction of ALL-expressed OX40 with its cognate ligand on NK cells stimulated ALL cell lysis. The data presented thus not only identify the yet unknown involvement of OX40/OX40L in ALL pathophysiology and NK cell immunosurveillance but also point to the necessity to thoroughly consider the consequences of modulating the OX40/OX40L molecule system beyond its effects on T cells when developing OX40-targeting approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Malte Roerden
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Gunnar Blumenstock
- Institute for Clinical Epidemiology and Applied Biometry, Eberhard Karls University, Tübingen, Germany
| | - Martin Hofmann
- Department of Immunology, Eberhard Karls University, Tübingen, Germany
| | - Tina Nuebling
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Gundram Jung
- Department of Immunology, Eberhard Karls University, Tübingen, Germany
| | - Helmut Rainer Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Ahern E, Smyth MJ, Dougall WC, Teng MWL. Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nat Rev Clin Oncol 2018; 15:676-693. [DOI: 10.1038/s41571-018-0095-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Raje NS, Bhatta S, Terpos E. Role of the RANK/RANKL Pathway in Multiple Myeloma. Clin Cancer Res 2018; 25:12-20. [PMID: 30093448 DOI: 10.1158/1078-0432.ccr-18-1537] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022]
Abstract
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL, are expressed in a variety of tissues throughout the body; their primary role is in the regulation of bone remodeling and development of the immune system. Consistent with these functions, evidence exists for a role of RANK/RANKL in all stages of tumorigenesis, from cell proliferation and carcinogenesis to epithelial-mesenchymal transition to neoangiogenesis and intravasation to metastasis to bone resorption and tumor growth in bone. Results from current studies also point to a role of RANK/RANKL signaling in patients with multiple myeloma, who have increased serum levels of soluble RANKL and an imbalance in RANKL and osteoprotegerin. Current therapies for patients with multiple myeloma demonstrate that RANKL may be released by tumor cells or osteoprogenitor cells. This article will review currently available evidence supporting a role for RANK/RANKL signaling in tumorigenesis, with a focus on patients with multiple myeloma.
Collapse
Affiliation(s)
- Noopur S Raje
- Massachusetts General Hospital, Boston, Massachusetts.
| | | | | |
Collapse
|
26
|
Abstract
Multiple myeloma (MM) is the second-most-common hematologic malignancy and the most frequent cancer to involve bone. MM bone disease (MMBD) has devastating consequences for patients, including dramatic bone loss, severe bone pain, and pathological fractures that markedly decrease the quality of life and impact survival of MM patients. MMBD results from excessive osteoclastic bone resorption and persistent suppressed osteoblastic bone formation, causing lytic lesions that do not heal, even when patients are in complete and prolonged remission. This review discusses the cellular and molecular mechanisms that regulate the uncoupling of bone remodeling in MM, the effects of MMBD on tumor growth, and potential therapeutic approaches that may prevent severe bone loss and repair damaged bone in MM patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - G David Roodman
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Roudebush VA Medical Center, Indianapolis, Indiana 46202
| |
Collapse
|
27
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
28
|
Gowda PS, Wildman BJ, Trotter TN, Xu X, Hao X, Hassan MQ, Yang Y. Runx2 Suppression by miR-342 and miR-363 Inhibits Multiple Myeloma Progression. Mol Cancer Res 2018; 16:1138-1148. [PMID: 29592898 DOI: 10.1158/1541-7786.mcr-17-0606] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
In multiple myeloma, abnormal plasma cells accumulate and proliferate in the bone marrow. Recently, we observed that Runx2, a bone-specific transcription factor, is highly expressed in multiple myeloma cells and is a major driver of multiple myeloma progression in bone. The primary goal of the present study was to identify Runx2-targeting miRNAs that can reduce tumor growth. Expression analysis of a panel of miRNAs in multiple myeloma patient specimens, compared with healthy control specimens, revealed that metastatic multiple myeloma cells express low levels of miR-342 and miR-363 but high levels of Runx2. Reconstituting multiple myeloma cells (CAG) with miR-342 and miR-363 reduced the abundance of Runx2 and the expression of metastasis-promoting Runx2 target genes RANKL and DKK1, and suppressed Runx2 downstream signaling pathways Akt/β-catenin/survivin, which are required for multiple myeloma tumor progression. Intravenous injection of multiple myeloma cells (5TGM1), stably overexpressing miR-342 and miR-363 alone or together, into syngeneic C57Bl/KaLwRij mice resulted in a significant suppression of 5TGM1 cell growth, decreased osteoclasts and increased osteoblasts, and increased antitumor immunity in the bone marrow, compared with mice injected with 5TGM1 cells expressing a miR-Scramble control. In summary, these results demonstrate that enhanced expression of miR-342 and miR-363 in multiple myeloma cells inhibits Runx2 expression and multiple myeloma growth, decreases osteolysis, and enhances antitumor immunity. Thus, restoring the function of Runx2-targeting by miR-342 and miR-363 in multiple myeloma cells may afford a therapeutic benefit by preventing multiple myeloma progression.Implications: miR-342 and miR-363-mediated downregulation of Runx2 expression in multiple myeloma cells prevents multiple myeloma progression. Mol Cancer Res; 16(7); 1138-48. ©2018 AACR.
Collapse
Affiliation(s)
- Pramod S Gowda
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin J Wildman
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoxuan Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoxiao Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Q Hassan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
30
|
Nuebling T, Schumacher CE, Hofmann M, Hagelstein I, Schmiedel BJ, Maurer S, Federmann B, Rothfelder K, Roerden M, Dörfel D, Schneider P, Jung G, Salih HR. The Immune Checkpoint Modulator OX40 and Its Ligand OX40L in NK-Cell Immunosurveillance and Acute Myeloid Leukemia. Cancer Immunol Res 2018; 6:209-221. [PMID: 29321210 DOI: 10.1158/2326-6066.cir-17-0212] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/30/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
The TNF receptor family member OX40 promotes activation and proliferation of T cells, which fuels efforts to modulate this immune checkpoint to reinforce antitumor immunity. Besides T cells, NK cells are a second cytotoxic lymphocyte subset that contributes to antitumor immunity, particularly in leukemia. Accordingly, these cells are being clinically evaluated for cancer treatment through multiple approaches, such as adoptive transfer of ex vivo expanded polyclonal NK cells (pNKC). Here, we analyzed whether and how OX40 and its ligand (OX40L) influence NK-cell function and antileukemia reactivity. We report that OX40 is expressed on leukemic blasts in a substantial percentage of patients with acute myeloid leukemia (AML) and that OX40 can, after stimulation with agonistic OX40 antibodies, mediate proliferation and release of cytokines that act as growth and survival factors for the leukemic cells. We also demonstrate that pNKC differentially express OX40L, depending on the protocol used for their generation. OX40L signaling promoted NK-cell activation, cytokine production, and cytotoxicity, and disruption of OX40-OX40L interaction impaired pNKC reactivity against primary AML cells. Together, our data implicate OX40/OX40L in disease pathophysiology of AML and in NK-cell immunosurveillance. Our findings indicate that effects of the OX40-OX40L receptor-ligand system in other immune cell subsets and also malignant cells should be taken into account when developing OX40-targeted approaches for cancer immunotherapy. Cancer Immunol Res; 6(2); 209-21. ©2018 AACR.
Collapse
Affiliation(s)
- Tina Nuebling
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carla Emilia Schumacher
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Martin Hofmann
- Department of Immunology, Eberhard Karls University, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Joachim Schmiedel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgit Federmann
- Department of Pathology, Eberhard Karls University, Tuebingen, Germany
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malte Roerden
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | | | - Gundram Jung
- Department of Immunology, Eberhard Karls University, Tuebingen, Germany
| | - Helmut Rainer Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
31
|
Xu S, Zhou W, Ge J, Zhang Z. Prostaglandin E2 receptor EP4 is involved in the cell growth and invasion of prostate cancer via the cAMP‑PKA/PI3K‑Akt signaling pathway. Mol Med Rep 2018; 17:4702-4712. [PMID: 29328471 DOI: 10.3892/mmr.2018.8415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent diagnosed malignancies globally. Previous studies have demonstrated that prostaglandin E2 (PGE2) is closely associated with the tumorigenesis and progression of PCa. However, the underlying molecular mechanisms remain unclear and require further investigation. Matrix metalloproteinases (MMPs), receptor activator of nuclear factor‑κB ligand (RANKL) and runt‑related transcription factor 2 (RUNX2), which are involved in cell growth and bone metastasis, are frequently activated or overexpressed in various types of cancer, including PCa. The present study was designed to investigate the associations between PGE2 and the PGE2 receptor EP4, and MMPs, RANKL and RUNX2 in PCa, and to define their roles in PCa cell proliferation and invasion in addition to understanding the molecular mechanisms. The results of western blotting and reverse transcription‑quantitative polymerase chain reaction demonstrated that the protein and the mRNA expression levels of MMP‑2, MMP‑9, RANKL and RUNX2 in PC‑3 cells were significantly upregulated by treatment with PGE2, respectively, and knockdown of these proteins blocked PGE2‑induced cell proliferation and invasion in PC‑3 cells, as determined by Cell Counting Kit‑8 and Matrigel invasion assays, respectively. The effect of PGE2 on the protein and mRNA expression levels was primarily regulated via the EP4 receptor. EP4 receptor signaling activates the cyclic (c)AMP‑protein kinase A (PKA) signaling pathway, and forskolin, an activator of adenylate cyclase (AC), exhibited similar effects to an EP4 receptor agonist on the protein expression, while SQ22536, an inhibitor of AC, inhibited the protein expression. These results confirmed that the AC/cAMP pathway may be involved in EP4 receptor‑mediated upregulation of protein expression. By using a specific inhibitor of PKA, it was also demonstrated that cAMP/PKA was also involved in the EP4 receptor‑mediated upregulation of protein expression. In addition to the signaling pathway involving PKA, the EP4 receptor also exerts activities through activation of Akt kinase. The results in the present study confirmed the hypothesis that EP4 receptor‑mediated protein expression in PCa cells that were pretreated with a specific inhibitor of phosphatidylinositol 3‑kinase (PI3K) was significantly inhibited. In conclusion, the results of the present study indicate that PGE2 significantly upregulated the mRNA and protein expression levels of the MMP‑2, MMP‑9, RANKL and RUNX2, and the EP4 receptor was involved in the cell proliferation and invasion of PCa via the cAMP‑PKA/PI3K‑Akt signaling pathway. These results may provide novel insight into potential therapeutic strategies for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Song Xu
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengyu Zhang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
32
|
Haen SP, Schmiedel BJ, Rothfelder K, Schmied BJ, Dang TM, Mirza N, Möhle R, Kanz L, Vogel W, Salih HR. Prognostic relevance of HER2/neu in acute lymphoblastic leukemia and induction of NK cell reactivity against primary ALL blasts by trastuzumab. Oncotarget 2017; 7:13013-30. [PMID: 26887048 PMCID: PMC4914338 DOI: 10.18632/oncotarget.7344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/22/2022] Open
Abstract
The epidermal growth factor receptor HER2/neu is expressed on various cancers and represents a negative prognostic marker, but is also a target for the therapeutic monoclonal antibody Trastuzumab. In about 30% of cases, HER2/neu is expressed on acute lymphoblastic leukemia (ALL) cells and was proposed to be associated with a deleterious prognosis. Here we evaluated clinical data from 65 ALL patients (HER2/neu+, n = 17; HER2/neu-, n = 48) with a median follow-up of 19.4 months (range 0.6-176.5 months) and observed no association of HER2/neu expression with response to chemotherapy, disease free or overall survival. In vitro, treatment of primary ALL cells (CD20+HER2/neu+, CD20+HER2/neu- and CD20-HER2/neu-) with Rituximab and Trastuzumab led to activation of NK cells in strict dependence of the expression of the respective antigen. NK reactivity was more pronounced with Rituximab as compared to Trastuzumab, and combined application could lead to additive effects in cases where both antigens were expressed. Besides providing evidence that HER2/neu expression is no risk factor in ALL patients, our data demonstrates that HER2/neu can be a promising target for Trastuzumab therapy in the subset of ALL patients with the potential to improve disease outcome.
Collapse
Affiliation(s)
- Sebastian P Haen
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany.,Interfacultary Center for Cell Biology, Department for Immunology, Tuebingen, Germany
| | - Benjamin J Schmiedel
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany
| | - Kathrin Rothfelder
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Tuebingen, Germany
| | - Bastian J Schmied
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Tuebingen, Germany
| | - Truong-Minh Dang
- Interfacultary Center for Cell Biology, Department for Immunology, Tuebingen, Germany
| | - Nora Mirza
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany.,Interfacultary Center for Cell Biology, Department for Immunology, Tuebingen, Germany
| | - Robert Möhle
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany
| | - Lothar Kanz
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany
| | - Wichard Vogel
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany
| | - Helmut R Salih
- University Hospital Tuebingen, Department for Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Tuebingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Tuebingen, Germany
| |
Collapse
|
33
|
Marini C, Bruno S, Fiz F, Campi C, Piva R, Cutrona G, Matis S, Nieri A, Miglino M, Ibatici A, Maria Orengo A, Maria Massone A, Neumaier CE, Totero DD, Giannoni P, Bauckneht M, Pennone M, Tenca C, Gugiatti E, Bellini A, Borra A, Tedone E, Efetürk H, Rosa F, Emionite L, Cilli M, Bagnara D, Brucato V, Bruzzi P, Piana M, Fais F, Sambuceti G. Functional Activation of Osteoclast Commitment in Chronic Lymphocytic Leukaemia: a Possible Role for RANK/RANKL Pathway. Sci Rep 2017; 7:14159. [PMID: 29074954 PMCID: PMC5658396 DOI: 10.1038/s41598-017-12761-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/14/2017] [Indexed: 01/18/2023] Open
Abstract
Skeletal erosion has been found to represent an independent prognostic indicator in patients with advanced stages of chronic lymphocytic leukaemia (CLL). Whether this phenomenon also occurs in early CLL phases and its underlying mechanisms have yet to be fully elucidated. In this study, we prospectively enrolled 36 consecutive treatment-naïve patients to analyse skeletal structure and bone marrow distribution using a computational approach to PET/CT images. This evaluation was combined with the analysis of RANK/RANKL loop activation in the leukemic clone, given recent reports on its role in CLL progression. Bone erosion was particularly evident in long bone shafts, progressively increased from Binet stage A to Binet stage C, and was correlated with both local expansion of metabolically active bone marrow documented by FDG uptake and with the number of RANKL + cells present in the circulating blood. In immune-deficient NOD/Shi-scid, γcnull (NSG) mice, administration of CLL cells caused an appreciable compact bone erosion that was prevented by Denosumab. CLL cell proliferation in vitro correlated with RANK expression and was impaired by Denosumab-mediated disruption of the RANK/RANKL loop. This study suggests an interaction between CLL cells and stromal elements able to simultaneously impair bone structure and increase proliferating potential of leukemic clone.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Italy.
- Nuclear Medicine IRCCS AOU San Martino-IST, Genoa, Italy.
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy.
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesco Fiz
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
- Nuclear Medicine Unit, Department of Radiology, Uni-Klinikum Tuebingen, Germany
| | | | - Roberta Piva
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | | | - Serena Matis
- Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alberto Nieri
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | - Maurizio Miglino
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | - Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | | | - Claudya Tenca
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elena Gugiatti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Bellini
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | - Anna Borra
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | | | - Hülya Efetürk
- Nuclear Medicine IRCCS AOU San Martino-IST, Genoa, Italy
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| | | | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Davide Bagnara
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valerio Brucato
- Department of Civil, Environmental, Aerospace, Materials Engineering, Aten Center, CHAB pole, University of Palermo, Viale delle Scienze, 6, Palermo, 90128, Italy
| | - Paolo Bruzzi
- Epidemiology and Clinical trial Service, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Michele Piana
- SPIN Institute, CNR, Genoa, Italy
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine IRCCS AOU San Martino-IST, Genoa, Italy
- Nuclear Medicine, Department of Health Science, University of Genova, Genoa, Italy
| |
Collapse
|
34
|
Herlihy SE, Lin C, Nefedova Y. Bone marrow myeloid cells in regulation of multiple myeloma progression. Cancer Immunol Immunother 2017; 66:1007-1014. [PMID: 28378067 PMCID: PMC11029144 DOI: 10.1007/s00262-017-1992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 12/25/2022]
Abstract
Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA
| | - Cindy Lin
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA
| | - Yulia Nefedova
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Room 376, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Sisay M, Mengistu G, Edessa D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy. Onco Targets Ther 2017; 10:3801-3810. [PMID: 28794644 PMCID: PMC5538694 DOI: 10.2147/ott.s135867] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular triad involving receptor activator of nuclear factor kβ (RANK)/RANK ligand (RANKL)/osteoprotegerin cytokine system has been well implicated in several physiological and pathological processes including bone metabolism, mammary gland development, regulation of the immune function, tumorigenesis and metastasis of cancer stem cell, thermoregulation, and vascular calcification. However, this review aimed to summarize several original and up-to-date articles focusing on the role of this signaling system in cancer cell development and metastasis as well as potential therapeutic agents targeting any of the three tumor necrotic factor super family proteins and/or their downstream signaling pathways. The RANK/RANKL axis has direct effects on tumor cell development. The system is well involved in the development of several primary and secondary tumors including breast cancer, prostate cancer, bone tumors, and leukemia. The signaling of this triad system has also been linked to tumor invasiveness in the advanced stage. Bone is by far the most common site of cancer metastasis. Several therapeutic agents targeting this system have been developed. Among them, a monoclonal antibody, denosumab, was clinically approved for the treatment of osteoporosis and cancer-related diseases.
Collapse
Affiliation(s)
| | | | - Dumessa Edessa
- Department of Clinical Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Eastern Ethiopia
| |
Collapse
|
36
|
McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, Bone, and Myeloma: Contributions from the Microenvironment. Calcif Tissue Int 2017; 100:433-448. [PMID: 27343063 PMCID: PMC5396178 DOI: 10.1007/s00223-016-0162-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide (Podar et al. in Expert Opin Emerg Drugs 14:99-127, 2009). Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90 % of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes, and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies.
Collapse
Affiliation(s)
- Michelle M McDonald
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia.
| | - Heather Fairfield
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Carolyne Falank
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
37
|
|
38
|
Wang D, Fløisand Y, Myklebust CV, Bürgler S, Parente-Ribes A, Hofgaard PO, Bogen B, Taskén K, Tjønnfjord GE, Schjesvold F, Dalgaard J, Tveita A, Munthe LA. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice. Leukemia 2017; 31:2114-2121. [PMID: 28232741 DOI: 10.1038/leu.2017.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.
Collapse
Affiliation(s)
- D Wang
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Y Fløisand
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - C V Myklebust
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - S Bürgler
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - A Parente-Ribes
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - P O Hofgaard
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - B Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K Taskén
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - G E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - F Schjesvold
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - J Dalgaard
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
| | - A Tveita
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - L A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Olszewski AJ, Gutman R, Eaton CB. Increased risk of axial fractures in patients with untreated chronic lymphocytic leukemia: a population-based analysis. Haematologica 2016; 101:e488-e491. [PMID: 27662013 DOI: 10.3324/haematol.2016.148858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Adam J Olszewski
- Division of Hematology-Oncology, Alpert Medical School of Brown University, Providence, RI, USA .,Division of Hematologic Malignancies, Rhode Island Hospital, Providence, RI, USA
| | - Roee Gutman
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Charles B Eaton
- Department of Epidemiology, School of Public Health of Brown University, Providence, RI, USA.,Department of Family Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
40
|
Borge M, Delpino MV, Podaza E, Stanganelli C, Palau-Nagore V, Roisman A, Slavutsky I, Palacios MF, Ledesma I, Arra A, Díaz A, Giordano M, Gamberale R, Bezares RF. Soluble RANKL production by leukemic cells in a case of chronic lymphocytic leukemia with bone destruction. Leuk Lymphoma 2016; 57:2468-71. [PMID: 26911473 DOI: 10.3109/10428194.2016.1151506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mercedes Borge
- a Laboratorio De Inmunología Oncológica, Instituto De Medicina Experimental (IMEX)-CONICET-Academia Nacional De Medicina (ANM) , CABA , Argentina ;,b Departamento De Microbiología, Parasitología E Inmunología, Facultad De Medicina , Universidad De Buenos Aires , CABA , Argentina
| | - María V Delpino
- c Genética Y Metabolismo (INIGEM)-CONICET-UBA , Instituto De Inmunología , CABA , Argentina
| | - Enrique Podaza
- a Laboratorio De Inmunología Oncológica, Instituto De Medicina Experimental (IMEX)-CONICET-Academia Nacional De Medicina (ANM) , CABA , Argentina ;,b Departamento De Microbiología, Parasitología E Inmunología, Facultad De Medicina , Universidad De Buenos Aires , CABA , Argentina
| | - Carmen Stanganelli
- d Servicio De Patología Molecular , Instituto De Investigaciones Hematológicas-ANM , CABA , Argentina
| | - Virginia Palau-Nagore
- e IMEX-CONICET-ANM , Laboratorio De Genética De Neoplasias Linfoides , CABA , Argentina
| | - Alejandro Roisman
- e IMEX-CONICET-ANM , Laboratorio De Genética De Neoplasias Linfoides , CABA , Argentina
| | - Irma Slavutsky
- e IMEX-CONICET-ANM , Laboratorio De Genética De Neoplasias Linfoides , CABA , Argentina
| | - María F Palacios
- f Departamento De Patología Diagnóstica, División Citometría De Flujo , IIHEMA/Academia Nacional De Medicina , CABA , Argentina
| | - Ignacio Ledesma
- g Sección De Hematología , Hospital General De Agudos Dr. Teodoro Álvarez , CABA , Argentina
| | - Antonio Arra
- h Sección De Patología , Hospital Santojanni , CABA , Argentina
| | - Alicia Díaz
- g Sección De Hematología , Hospital General De Agudos Dr. Teodoro Álvarez , CABA , Argentina
| | - Mirta Giordano
- a Laboratorio De Inmunología Oncológica, Instituto De Medicina Experimental (IMEX)-CONICET-Academia Nacional De Medicina (ANM) , CABA , Argentina ;,b Departamento De Microbiología, Parasitología E Inmunología, Facultad De Medicina , Universidad De Buenos Aires , CABA , Argentina
| | - Romina Gamberale
- a Laboratorio De Inmunología Oncológica, Instituto De Medicina Experimental (IMEX)-CONICET-Academia Nacional De Medicina (ANM) , CABA , Argentina ;,b Departamento De Microbiología, Parasitología E Inmunología, Facultad De Medicina , Universidad De Buenos Aires , CABA , Argentina
| | - Raimundo F Bezares
- g Sección De Hematología , Hospital General De Agudos Dr. Teodoro Álvarez , CABA , Argentina
| |
Collapse
|
41
|
Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci 2016; 1364:32-51. [PMID: 27002787 PMCID: PMC4806534 DOI: 10.1111/nyas.13038] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM-induced forward-feedback cycle where bone-embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM-induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Collapse
Affiliation(s)
| | | | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine
- University of Maine, Orono, Maine
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. RECENT FINDINGS Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. SUMMARY Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma-osteocyte interactions.
Collapse
|
43
|
Salahudeen AA, Gupta A, Jones JC, Cowan RW, Vusirikala M, Kwong C, Naina HVK. PTHrP-Induced Refractory Malignant Hypercalcemia in a Patient With Chronic Lymphocytic Leukemia Responding to Denosumab. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:e137-40. [PMID: 26187654 DOI: 10.1016/j.clml.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Ameen A Salahudeen
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arjun Gupta
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeremy C Jones
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert W Cowan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Madhuri Vusirikala
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Simmons Cancer Center, Division of Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chi Kwong
- Simmons Cancer Center, Division of Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Harris V K Naina
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Simmons Cancer Center, Division of Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
44
|
Reagan MR, Liaw L, Rosen CJ, Ghobrial IM. Dynamic interplay between bone and multiple myeloma: emerging roles of the osteoblast. Bone 2015; 75:161-9. [PMID: 25725265 PMCID: PMC4580250 DOI: 10.1016/j.bone.2015.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 01/06/2023]
Abstract
Multiple myeloma is a B-cell malignancy characterized by the unrelenting proliferation of plasma cells. Multiple myeloma causes osteolytic lesions and fractures that do not heal due to decreased osteoblastic and increased osteoclastic activity. However, the exact relationship between osteoblasts and myeloma cells remains elusive. Understanding the interactions between these dynamic bone-forming cells and myeloma cells is crucial to understanding how osteolytic lesions form and persist and how tumors grow within the bone marrow. This review provides a comprehensive overview of basic and translational research focused on the role of osteoblasts in multiple myeloma progression and their relationship to osteolytic lesions. Importantly, current challenges for in vitro studies exploring direct osteoblastic effects on myeloma cells, and gaps in understanding the role of the osteoblast in myeloma progression are delineated. Finally, successes and challenges in myeloma treatment with osteoanabolic therapy (i.e., any treatment that induces increased osteoblastic number or activity) are enumerated. Our goal is to illuminate novel mechanisms by which osteoblasts may contribute to multiple myeloma disease progression and osteolysis to better direct research efforts. Ultimately, we hope this may provide a roadmap for new approaches to the pathogenesis and treatment of multiple myeloma with a particular focus on the osteoblast.
Collapse
Affiliation(s)
- Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Schmiedel BJ, Grosse-Hovest L, Salih HR. A "vicious cycle" of NK-cell immune evasion in acute myeloid leukemia mediated by RANKL? Oncoimmunology 2014; 2:e23850. [PMID: 23762785 PMCID: PMC3667891 DOI: 10.4161/onci.23850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/31/2022] Open
Abstract
Receptor activator of NFκB ligand (RANKL) is mainly known for its role in bone metabolism, constituting a target for therapeutic interventions. Increasing evidence suggests that RANKL is also involved in oncogenesis and tumor progression, including a prominent role in host-tumor interaction. Our data suggest that targeting RANKL may reinforce natural killer (NK) cell-mediated antitumor responses in patients affected by hematological malignancies.
Collapse
|
46
|
Steinbacher J, Baltz-Ghahremanpour K, Schmiedel BJ, Steinle A, Jung G, Kübler A, André MC, Grosse-Hovest L, Salih HR. An Fc-optimized NKG2D-immunoglobulin G fusion protein for induction of natural killer cell reactivity against leukemia. Int J Cancer 2014; 136:1073-84. [DOI: 10.1002/ijc.29083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/30/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Julia Steinbacher
- Department of Hematology and Oncology; Eberhard Karls University; Tuebingen Germany
| | | | | | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University; Frankfurt am Main Germany
| | - Gundram Jung
- Department of Immunology; Eberhard Karls University; Tuebingen Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Ayline Kübler
- Department of Pediatric Hematology and Oncology; University Children's Hospital, Eberhard Karls University; Tuebingen Germany
| | - Maya Caroline André
- Department of Pediatric Hematology and Oncology; University Children's Hospital, Eberhard Karls University; Tuebingen Germany
- Department of Pediatric Intensive Care; University Children's Hospital; Basel Switzerland
| | | | - Helmut Rainer Salih
- Department of Hematology and Oncology; Eberhard Karls University; Tuebingen Germany
- Clinical Collaboration Unit Translational Immunology; German Cancer Consortium (DKTK); Heidelberg Germany
| |
Collapse
|
47
|
Cheng ML, Fong L. Effects of RANKL-Targeted Therapy in Immunity and Cancer. Front Oncol 2014; 3:329. [PMID: 24432249 PMCID: PMC3882875 DOI: 10.3389/fonc.2013.00329] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/23/2013] [Indexed: 01/24/2023] Open
Abstract
The role of the receptor activator of nuclear factor-κB ligand (RANKL)/RANK system is well characterized within bone, where RANKL/RANK signaling mediates osteoclastogenesis and bone resorption. However, this system has also been shown to influence biologic processes beyond the skeletal system, including in the immune system and in cancer. RANKL/RANK signaling is important in lymph-node development, lymphocyte differentiation, dendritic cell survival, T-cell activation, and tolerance induction. The RANKL/RANK axis may also have direct, osteoclast-independent effects on tumor cells. Indeed, activity of the RANKL/RANK pathway in cancer cells has been correlated with tumor progression and advanced disease. Denosumab, a fully human monoclonal antibody against RANKL, inhibits osteoclastogenesis and is widely used not just for the treatment of osteoporosis, but for the prevention of skeletal-related events from bone metastases in solid malignancies such as breast and prostate cancer. The potential effects of denosumab on the immune system have been largely ignored. Nevertheless, with the emergence of immunotherapies for cancer, denosumab may impact the effectiveness of these therapies, especially if they are given in combination. In this article, we review the role of RANKL/RANK in bone, immunity, and cancer. Examining the potential effects of routine treatment with denosumab beyond the bone represents an important area of investigation.
Collapse
Affiliation(s)
- Michael L Cheng
- Division of Hematology and Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco , San Francisco, CA , USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|