1
|
Feng H, Ju Y, Yin X, Qiu W, Zhang X. STLBRF: an improved random forest algorithm based on standardized-threshold for feature screening of gene expression data. Brief Funct Genomics 2025; 24:elae048. [PMID: 39736135 PMCID: PMC11735748 DOI: 10.1093/bfgp/elae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
When the traditional random forest (RF) algorithm is used to select feature elements in biostatistical data, a large amount of noise data and parameters can affect the importance of the selected feature elements, making the control of feature selection difficult. Therefore, it is a challenge for the traditional RF algorithm to preserve the accuracy of algorithm results in the presence of noise data. Generally, directly removing noise data can result in significant bias in the results. In this study, we develop a new algorithm, standardized threshold, and loops based random forest (STLBRF), and apply it to the field of gene expression data for feature gene selection. This algorithm, based on the traditional RF algorithm, combines backward elimination and K-fold cross-validation to construct a cyclic system and set a standardized threshold: error increment. The algorithm overcomes the shortcomings of existing gene selection methods. We compare ridge regression, lasso regression, elastic net regression, the traditional RF algorithm, and our improved RF algorithm using three real gene expression datasets and conducting a quantitative analysis. To ensure the reliability of the results, we validate the effectiveness of the genes selected by these methods using the Random Forest classifier. The results indicate that, compared to other methods, the STLBRF algorithm achieves not only higher effectiveness in feature gene selection but also better control over the number of selected genes. Our method offers reliable technical support for feature expression analysis and research on biomarker selection.
Collapse
Affiliation(s)
- Huini Feng
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiaofeng Yin
- Future Technology Research Institute, Weichai Power Co., Ltd, Weifang, China
| | - Wenshi Qiu
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| |
Collapse
|
2
|
He Z, Gong S, Zhang X, Li J, Xue J, Zeng Q, Nie J, Zhang Z, Ding H, Pei H, Li B. Activated PARP1/FAK/COL5A1 signaling facilitates the tumorigenesis of cholesterol-resistant ovarian cancer cells through promoting EMT. Cell Signal 2024; 124:111419. [PMID: 39293744 DOI: 10.1016/j.cellsig.2024.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Cancer cells require plentiful cholesterol for membrane biogenesis and other functional needs due to fast proliferating, leading to the interaction of cholesterol or its metabolites with cancer-related pathways. However, the impact of long-lasting high cholesterol concentrations on tumorigenesis and its underlying mechanisms remains largely unexplored. To the best of our knowledge, this study is the first to establish a cholesterol-resistant ovarian cancer cells, whose intracellular total cholesterol level up to 6-8 mmol/L. We confirmed that high cholesterol facilitated the progression of ovarian cancer in vitro and in vivo. Notably, our findings revealed significant upregulation of collagen type V alpha 1 chain (COL5A1) expression in cholesterol-resistant ovarian cancer cells and human ovarian cancer tissue, which was depended on FAK/Src activation. Mechanistically, PARP1 directly bound to FAK in response to activate FAK/Src/COL5A1 signaling. Intriguingly, COL5A1 depletion significantly impeded the tumorigenesis of these cells, concomitant with a decrease in epithelial-mesenchymal transition (EMT) progression. In conclusion, PARP1/FAK/COL5A1 signaling activation facilitated progression of cholesterol-resistant ovarian cancer cells by promoting EMT, thereby broadening a new therapeutic opportunity.
Collapse
Affiliation(s)
- Zeyin He
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shiyi Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jinglin Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qi Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215123, China.
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
4
|
Bouchareb E, Dallel S, De Haze A, Damon-Soubeyrand C, Renaud Y, Baabdaty E, Vialat M, Fabre J, Pouchin P, De Joussineau C, Degoul F, Sanmukh S, Gendronneau J, Sanchez P, Gonthier-Gueret C, Trousson A, Morel L, Lobaccaro JM, Kocer A, Baron S. Liver X Receptors Enhance Epithelial to Mesenchymal Transition in Metastatic Prostate Cancer Cells. Cancers (Basel) 2024; 16:2776. [PMID: 39199549 PMCID: PMC11353074 DOI: 10.3390/cancers16162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Metastasis is the leading cause of death in prostate cancer patients. One of the crucial processes involved in metastatic spread is the "epithelial-mesenchymal transition" (EMT), which allows cells to acquire the ability to invade distant organs. Liver X Receptors (LXRs) are nuclear receptors that have been demonstrated to regulate EMT in various cancers, including hepatic cancer. Our study reveals that the LXR pathway can control pro-invasive cell capacities through EMT in prostate cancer, employing ex vivo and in vivo approaches. We characterized the EMT status of the commonly used LNCaP, DU145, and PC3 prostate cancer cell lines through molecular and immunohistochemistry experiments. The impact of LXR activation on EMT function was also assessed by analyzing the migration and invasion of these cell lines in the absence or presence of an LXR agonist. Using in vivo experiments involving NSG-immunodeficient mice xenografted with PC3-GFP cells, we were able to study metastatic spread and the effect of LXRs on this process. LXR activation led to an increase in the accumulation of Vimentin and Amphiregulin in PC3. Furthermore, the migration of PC3 cells significantly increased in the presence of the LXR agonist, correlating with an upregulation of EMT. Interestingly, LXR activation significantly increased metastatic spread in an NSG mouse model. Overall, this work identifies a promoting effect of LXRs on EMT in the PC3 model of advanced prostate cancer.
Collapse
Affiliation(s)
- Erwan Bouchareb
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Sarah Dallel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
- Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, 63003 Clermont-Ferrand, France
| | - Angélique De Haze
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Elissa Baabdaty
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Marine Vialat
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Julien Fabre
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Pierre Pouchin
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Cyrille De Joussineau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Françoise Degoul
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Swapnil Sanmukh
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Juliette Gendronneau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Phelipe Sanchez
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Amalia Trousson
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Laurent Morel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Ayhan Kocer
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Silvère Baron
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| |
Collapse
|
5
|
Davis JC, Waltz SE. The MET Family of Receptor Tyrosine Kinases Promotes a Shift to Pro-Tumor Metabolism. Genes (Basel) 2024; 15:953. [PMID: 39062731 PMCID: PMC11275592 DOI: 10.3390/genes15070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The development and growth of cancer is fundamentally dependent on pro-tumor changes in metabolism. Cancer cells generally shift away from oxidative phosphorylation as the primary source of energy and rely more heavily on glycolysis. Receptor tyrosine kinases (RTKs) are a type of receptor that is implicated in this shift to pro-tumor metabolism. RTKs are important drivers of cancer growth and metastasis. One such family of RTKs is the MET family, which consists of MET and RON (MST1R). The overexpression of either MET or RON has been associated with worse cancer patient prognosis in a variety of tumor types. Both MET and RON signaling promote increased glycolysis by upregulating the expression of key glycolytic enzymes via increased MYC transcription factor activity. Additionally, both MET and RON signaling promote increased cholesterol biosynthesis downstream of glycolysis by upregulating the expression of SREBP2-induced cholesterol biosynthesis enzymes via CTTNB1. These changes in metabolism, driven by RTK activity, provide potential targets in limiting tumor growth and metastasis via pharmacological inhibition or modifications in diet. This review summarizes pro-tumor changes in metabolism driven by the MET family of RTKs. In doing so, we will offer our unique perspective on metabolic pathways that drive worse patient prognosis and provide suggestions for future study.
Collapse
Affiliation(s)
- James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
6
|
Song XQ, Guo X, Ding YX, Han YX, You ZH, Song Y, Yuan Y, Li L. Gemfibrozil-Platinum(IV) Precursors for New Enhanced-Starvation and Chemotherapy In Vitro and In Vivo. J Med Chem 2024; 67:7033-7047. [PMID: 38634331 DOI: 10.1021/acs.jmedchem.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.
Collapse
Affiliation(s)
- Xue-Qing Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xu Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xin Ding
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xuan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Zhi-Hao You
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yali Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yanan Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
7
|
Fu R, Xue W, Liang J, Li X, Zheng J, Wang L, Zhang M, Meng J. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma. Cell Death Dis 2024; 15:325. [PMID: 38724499 PMCID: PMC11082151 DOI: 10.1038/s41419-024-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
8
|
Wang D, Cao Y, Meng M, Qiu J, Ni C, Guo X, Li Y, Liu S, Yu J, Guo M, Wang J, Du B, Qiu W, Xie C, Zhao B, Ma X, Cheng X, Xu L. FOXA3 regulates cholesterol metabolism to compensate for low uptake during the progression of lung adenocarcinoma. PLoS Biol 2024; 22:e3002621. [PMID: 38805565 PMCID: PMC11161053 DOI: 10.1371/journal.pbio.3002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, the Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Ni
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhao
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Xinghua Cheng
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Pagliari F, Jansen J, Knoll J, Hanley R, Seco J, Tirinato L. Cancer radioresistance is characterized by a differential lipid droplet content along the cell cycle. Cell Div 2024; 19:14. [PMID: 38643120 PMCID: PMC11031927 DOI: 10.1186/s13008-024-00116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines. RESULTS Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern. CONCLUSIONS In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Rachel Hanley
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld, 69120, Heidelberg, Germany.
| | - Luca Tirinato
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Medical and Surgical Science, University Magna Graecia, 88100, Catanzaro, Italy.
| |
Collapse
|
10
|
Vishwa R, BharathwajChetty B, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Hegde M, Kunnumakkara AB. Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far? Cancer Metastasis Rev 2024; 43:293-319. [PMID: 38438800 DOI: 10.1007/s10555-024-10170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
11
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Wu J, Hu W, Yang W, Long Y, Chen K, Li F, Ma X, Li X. Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal 2024; 114:110983. [PMID: 37993027 DOI: 10.1016/j.cellsig.2023.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Weibin Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Wenhui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China.
| | - Xun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
13
|
Paul B, Merta H, Ugrankar-Banerjee R, Hensley M, Tran S, Dias do Vale G, McDonald JG, Farber SA, Henne WM. Paraoxonase-like APMAP maintains endoplasmic reticulum-associated lipid and lipoprotein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577049. [PMID: 38328083 PMCID: PMC10849633 DOI: 10.1101/2024.01.26.577049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Oxidative stress perturbs lipid homeostasis and contributes to metabolic diseases. Though ignored compared to mitochondrial oxidation, the endoplasmic reticulum (ER) generates reactive oxygen species requiring antioxidant quality control. Using multi-organismal profiling featuring Drosophila, zebrafish, and mammalian cells, here we characterize the paraoxonase-like APMAP as an ER-localized protein that promotes redox and lipid homeostasis and lipoprotein maturation. APMAP-depleted mammalian cells exhibit defective ER morphology, elevated ER and oxidative stress, lipid droplet accumulation, and perturbed ApoB-lipoprotein homeostasis. Critically, APMAP loss is rescued with chemical antioxidant NAC. Organismal APMAP depletion in Drosophila perturbs fat and lipoprotein homeostasis, and zebrafish display increased vascular ApoB-containing lipoproteins, particles that are atherogenic in mammals. Lipidomics reveals altered polyunsaturated phospholipids and increased ceramides upon APMAP loss, which perturbs ApoB-lipoprotein maturation. These ApoB-associated defects are rescued by inhibiting ceramide synthesis. Collectively, we propose APMAP is an ER-localized antioxidant that promotes lipid and lipoprotein homeostasis.
Collapse
Affiliation(s)
- Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Monica Hensley
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Goncalo Dias do Vale
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G McDonald
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
14
|
Feng S, Zhang Y, Gao Y, Liu Y, Wang Y, Han X, Zhang T, Song Y. A Gene-Editable Palladium-Based Bioorthogonal Nanoplatform Facilitates Macrophage Phagocytosis for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202313968. [PMID: 37884479 DOI: 10.1002/anie.202313968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Tashiro J, Sugiura A, Warita T, Irie N, Dwi Cahyadi D, Ishikawa T, Warita K. CYP11A1 silencing suppresses HMGCR expression via cholesterol accumulation and sensitizes CRPC cell line DU-145 to atorvastatin. J Pharmacol Sci 2023; 153:104-112. [PMID: 37770151 DOI: 10.1016/j.jphs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Statins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own. We performed suppression of CYP11A1, a rate-limiting enzyme in androgen synthesis from cholesterol, using siRNA or inhibitors, to examine the effect of steroidogenesis inhibition on statin sensitivity in CRPC cells. Here, we suggested that CYP11A1 silencing sensitized the statin-resistant CRPC cell line DU-145 to atorvastatin via HMGCR downregulation by an increase in intracellular free cholesterol. We further demonstrated that CYP11A1 silencing induced epithelial-mesenchymal transition, which converted DU-145 cells into a statin-sensitive phenotype. This suggests that concomitant use of CYP11A1 inhibitors could be an effective approach for overcoming statin resistance in CRPC. Moreover, we showed that ketoconazole, a CYP11A1 inhibitor, sensitized DU-145 cells to atorvastatin, although not all the molecular events observed in CYP11A1 silencing were reproducible. Although further studies are necessary to clarify the detailed mechanisms, ketoconazole may be effective as a concomitant drug that potentiates the anticancer effect of atorvastatin.
Collapse
Affiliation(s)
- Jiro Tashiro
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Danang Dwi Cahyadi
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Takuro Ishikawa
- Department of Anatomy, School of Medicine, Aichi Medical University, Aichi, Japan; Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan.
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan; Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan.
| |
Collapse
|
16
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
17
|
Trybus M, Hryniewicz-Jankowska A, Wójtowicz K, Trombik T, Czogalla A, Sikorski AF. EFR3A: a new raft domain organizing protein? Cell Mol Biol Lett 2023; 28:86. [PMID: 37880612 PMCID: PMC10601247 DOI: 10.1186/s11658-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.
Collapse
Affiliation(s)
- Magdalena Trybus
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tomasz Trombik
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Aleksander F Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamienskiego73a, 51-154, Wroclaw, Poland.
| |
Collapse
|
18
|
Han X, Jiang S, Gu Y, Ding L, Zhao E, Cao D, Wang X, Wen Y, Pan Y, Yan X, Duan L, Sun M, Zhou T, Liu Y, Hu H, Ye Q, Gao S. HUNK inhibits epithelial-mesenchymal transition of CRC via direct phosphorylation of GEF-H1 and activating RhoA/LIMK-1/CFL-1. Cell Death Dis 2023; 14:327. [PMID: 37193711 DOI: 10.1038/s41419-023-05849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.
Collapse
Affiliation(s)
- Xiaoqi Han
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Siyuan Jiang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China
| | - Enhao Zhao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Dongxing Cao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Xiaodong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ya Wen
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Yongbo Pan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Xin Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Tao Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610044, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China.
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
19
|
Zhou H, He Y, Huang Y, Li R, Zhang H, Xia X, Xiong H. Comprehensive analysis of prognostic value, immune implication and biological function of CPNE1 in clear cell renal cell carcinoma. Front Cell Dev Biol 2023; 11:1157269. [PMID: 37077419 PMCID: PMC10106647 DOI: 10.3389/fcell.2023.1157269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Elevated expression of Copine-1 (CPNE1) has been proved in various cancers; however, the underlying mechanisms by which it affects clear cell renal cell carcinoma (ccRCC) are unclear.Methods: In this study, we applied multiple bioinformatic databases to analyze the expression and clinical significance of CPNE1 in ccRCC. Co-expression analysis and functional enrichment analysis were investigated by LinkedOmics, cBioPortal and Metascape. The relationships between CPNE1 and tumor immunology were explored using ESTIMATE and CIBERSORT method. In vitro experiments, CCK-8, wound healing, transwell assays and western blotting were conducted to investigate the effects of gain- or loss-of-function of CPNE1 in ccRCC cells.Results: The expression of CPNE1 was notably elevated in ccRCC tissues and cells, and significantly correlated with grade, invasion range, stage and distant metastasis. Kaplan–Meier and Cox regression analysis displayed that CPNE1 expression was an independent prognostic factor for ccRCC patients. Functional enrichment analysis revealed that CPNE1 and its co-expressed genes mainly regulated cancer-related and immune-related pathways. Immune correlation analysis showed that CPNE1 expression was significantly related to immune and estimate scores. CPNE1 expression was positively related to higher infiltrations of immune cells, such as CD8+ T cells, plasma cells and regulatory T cells, exhibited lower infiltrations of neutrophils. Meanwhile, elevated expression of CPNE1 was characterized by high immune infiltration levels, increased expression levels of CD8+ T cell exhaustion markers (CTLA4, PDCD1 and LAG3) and worse response to immunotherapy. In vitro functional studies demonstrated that CPNE1 promoted proliferation, migration and invasion of ccRCC cells through EGFR/STAT3 pathway.Conclusion: CPNE1 is a reliable clinical predictor for the prognosis of ccRCC and promotes proliferation and migration by activating EGFR/STAT3 signaling. Moreover, CPNE1 significantly correlates with immune infiltration in ccRCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Xia
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huihua Xiong,
| |
Collapse
|
20
|
Chen J, Qin P, Tao Z, Ding W, Yao Y, Xu W, Yin D, Tan S. Anticancer Activity of Methyl Protodioscin against Prostate Cancer by Modulation of Cholesterol-Associated MAPK Signaling Pathway <i>via</i> FOXO1 Induction. Biol Pharm Bull 2023; 46:574-585. [PMID: 37005301 DOI: 10.1248/bpb.b22-00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Methyl protodioscin (MPD), a furostanol saponin found in the rhizomes of Dioscoreaceae, has lipid-lowering and broad anticancer properties. However, the efficacy of MPD in treating prostate cancer remains unexplored. Therefore, the present study aimed to evaluate the anticancer activity and action mechanism of MPD in prostate cancer. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, and flow cytometer assays revealed that MPD suppressed proliferation, migration, cell cycle, and invasion and induced apoptosis of DU145 cells. Mechanistically, MPD decreased cholesterol concentration in the cholesterol oxidase, peroxidase and 4-aminoantipyrine phenol (COD-PAP) assay, disrupting the lipid rafts as detected using immunofluorescence and immunoblot analyses after sucrose density gradient centrifugation. Further, it reduced the associated mitogen-activated protein kinase (MAPK) signaling pathway protein P-extracellular regulated protein kinase (ERK), detected using immunoblot analysis. Forkhead box O (FOXO)1, a tumor suppressor and critical factor controlling cholesterol metabolism, was predicted to be a direct target of MPD and induced by MPD. Notably, in vivo studies demonstrated that MPD significantly reduced tumor size, suppressed cholesterol concentration and the MAPK signaling pathway, and induced FOXO1 expression and apoptosis in tumor tissue in a subcutaneous mouse model. These results suggest that MPD displays anti-prostate cancer activity by inducing FOXO1 protein, reducing cholesterol concentration, and disrupting lipid rafts. Consequently, the reduced MAPK signaling pathway suppresses proliferation, migration, invasion, and cell cycle and induces apoptosis of prostate cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Puyan Qin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Zhanxia Tao
- College of Life Science, Capital Normal University
| | - Weijian Ding
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Yunlong Yao
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Weifang Xu
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine
| |
Collapse
|
21
|
Suresh S, Rabbie R, Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov 2023; 13:194-215. [PMID: 36259947 PMCID: PMC9827116 DOI: 10.1158/2159-8290.cd-22-0427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/16/2023]
Abstract
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Dianne Lumaquin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xinran Tang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Biochemistry and Structural Biology, Cellular and Developmental Biology and Molecular Biology Ph.D. Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Miranda V. Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuxin Zhu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
23
|
The prognosis of lipid reprogramming with the HMG-CoA reductase inhibitor, rosuvastatin, in castrated Egyptian prostate cancer patients: Randomized trial. PLoS One 2022; 17:e0278282. [PMID: 36480560 PMCID: PMC9731457 DOI: 10.1371/journal.pone.0278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
AIM The role of surgical castration and rosuvastatin treatment on lipid profile and lipid metabolism related markers was evaluated for their prognostic significance in metastatic prostate cancer (mPC) patients. METHODS A total of 84 newly diagnosed castrated mPC patients treated with castration were recruited and divided into two groups: Group I served as control (statin non-users) while group II treated with Rosuvastatin (20 mg/day) for 6 months and served as statin users. Prostate specific antigen (PSA), epidermal growth factor receptor (EGFR), Caveolin-1 (CAV1), lipid profile (LDL, HDL, triglycerides (TG) and total cholesterol (TC)) and lipid metabolism related markers (aldoketoreductase (AKR1C4), HMG-CoA reductase (HMGCR), ATP-binding cassette transporter A1 (ABCA1), and soluble low density lipoprotein receptor related protein 1 (SLDLRP1)) were measured at baseline, after 3 and 6 months. Overall survival (OS) was analyzed by Kaplan-Meier and COX regression for prognostic significance. RESULTS Before castration, HMG-CoA reductase was elevated in patients <65 years (P = 0.009). Bone metastasis was associated with high PSA level (P = 0.013), but low HMGCR (P = 0.004). Patients with positive family history for prostate cancer showed high levels of EGFR, TG, TC, LDL, alkaline phosphatase (ALP), but low AKR1C4, SLDLRP1, CAV1 and ABCA-1 levels. Smokers had high CAV1 level (P = 0.017). After 6 months of castration and rosuvastatin administration, PSA, TG, LDL and TC were significantly reduced, while AKR1C4, HMGCR, SLDLRP1, CAV1 and ABCA-1 were significantly increased. Overall survival was reduced in patients with high baseline of SLDLRP1 (>3385 pg/ml, P = 0.001), PSA (>40 ng/ml, P = 0.003) and CAV1 (>4955 pg/ml, P = 0.021). CONCLUSION Results of the current study suggest that the peripheral lipidogenic effects of rosuvastatin may have an impact on the treatment outcome and survival of castrated mPC patients. TRAIL REGISTRATION This trial was registered at the Pan African Clinical Trial Registry with identification number PACTR202102664354163 and at ClinicalTrials.gov with identification number NCT04776889.
Collapse
|
24
|
Chen Z, Liang B, Wu Y, Zhou H, Wang Y, Wu H. Identifying driver modules based on multi-omics biological networks in prostate cancer. IET Syst Biol 2022; 16:187-200. [PMID: 36039671 PMCID: PMC9675413 DOI: 10.1049/syb2.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023] Open
Abstract
The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors' method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.
Collapse
Affiliation(s)
- Zhongli Chen
- Tibet Center for Disease Control and PreventionLhasaChina
- School of SoftwareShandong UniversityJinanChina
- School of Information EngineeringNorthwest A&F UniversityYanglingChina
| | - Biting Liang
- School of Information EngineeringNorthwest A&F UniversityYanglingChina
| | - Yingfu Wu
- School of Information EngineeringNorthwest A&F UniversityYanglingChina
| | - Haoru Zhou
- School of Information EngineeringNorthwest A&F UniversityYanglingChina
| | - Yuchen Wang
- School of SoftwareShandong UniversityJinanChina
| | - Hao Wu
- School of SoftwareShandong UniversityJinanChina
| |
Collapse
|
25
|
Iwasaki T, Endo N, Nakayama Y, Kamei T, Shimanouchi T, Nakamura H, Hayashi K. Possible Role of Bent Structure of Methylated Lithocholic Acid on Artificial and Plasma Membranes. MEMBRANES 2022; 12:997. [PMID: 36295756 PMCID: PMC9610195 DOI: 10.3390/membranes12100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bile acids form micelles that are essential for the absorption of dietary lipids. However, excessive bile acid micelles can disrupt the plasma membrane by removing phospholipids, resulting in cell death. We hypothesized that the bent geometrical structure of the steroid scaffold of bile acids decreases the lipid order (similar to unsaturated phospholipids with cis double bonds), disrupting the plasma membrane. Here, lithocholic acid (LCA), a bile acid, was methylated to prevent micellization. Methylated lithocholic acid (Me-LCA) was mixed with a thin phase-separated lipid bilayer comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and cholesterol (Chol). Me-LCA was not localized in the DPPC-rich rigid phase but localized in the DOPC-rich fluid phase, and excess Me-LCA did not affect the phase separation. Me-LCA is distributed in the plasma and organelle membranes. However, Me-LCA with bent structure did not affect the membrane properties, membrane fluidity, and hydrophobicity of liposomes composed of DOPC, DPPC, and Chol and also did not affect the proliferation of cells.
Collapse
Affiliation(s)
- Tomoyuki Iwasaki
- Division of Medical Research Support of the Advanced Research Support Center, Ehime University, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Nobuyuki Endo
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama 639-1080, Nara, Japan
| | - Yuta Nakayama
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama 639-1080, Nara, Japan
| | - Toshiyuki Kamei
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama 639-1080, Nara, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Okayama, Japan
| | - Hidemi Nakamura
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama 639-1080, Nara, Japan
| | - Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama 639-1080, Nara, Japan
| |
Collapse
|
26
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
27
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
28
|
Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, Wu S, Kasim V. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci 2022; 79:472. [PMID: 35933495 PMCID: PMC11073046 DOI: 10.1007/s00018-022-04504-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol biosynthesis plays a critical role in rapidly proliferating tumor cells. X-box binding protein 1 (XBP1), which was first characterized as a basic leucine zipper-type transcription factor, exists in an unspliced (XBP1-u) and spliced (XBP1-s) form. Recent studies showed that unspliced XBP1 (XBP1-u) has unique biological functions independent from XBP1-s and could promote tumorigenesis; however, whether it is involved in tumor metabolic reprogramming remains unknown. Herein, we found that XBP1-u promotes tumor growth by enhancing cholesterol biosynthesis in hepatocellular carcinoma (HCC) cells. Specifically, XBP1-u colocalizes with sterol regulatory element-binding protein 2 (SREBP2) and inhibits its ubiquitination/proteasomal degradation. The ensuing stabilization of SREBP2 activates the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. We subsequently show that the XBP1-u/SREBP2/HMGCR axis is crucial for enhancing cholesterol biosynthesis and lipid accumulation as well as tumorigenesis in HCC cells. Taken together, these findings reveal a novel function of XBP1-u in promoting tumorigenesis through increased cholesterol biosynthesis in hepatocarcinoma cells. Hence, XBP1-u might be a potential target for anti-tumor therapeutic strategies that focus on cholesterol metabolism in HCC.
Collapse
Affiliation(s)
- Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Uli Nurjanah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Arin Herkilini
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Can Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
29
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tan-Jun Zhao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
30
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
31
|
Shao WQ, Zhu WW, Luo MJ, Fan MH, Li Q, Wang SH, Lin ZF, Zhao J, Zheng Y, Dong QZ, Lu L, Jia HL, Zhang JB, Lu M, Chen JH, Qin LX. Cholesterol suppresses GOLM1-dependent selective autophagy of RTKs in hepatocellular carcinoma. Cell Rep 2022; 39:110712. [PMID: 35443161 DOI: 10.1016/j.celrep.2022.110712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of receptor tyrosine kinases (RTKs) and the subsequent metabolic reprogramming play critical roles in cancer progression. Our previous study has shown that Golgi membrane protein 1 (GOLM1) promotes hepatocellular carcinoma (HCC) metastasis by enhancing the recycling of RTKs. However, how this RTK recycling process is regulated and coupled with RTK degradation remains poorly defined. Here, we demonstrate that cholesterol suppresses the autophagic degradation of RTKs in a GOLM1-dependent manner. Further mechanistic studies reveal that GOLM1 mediates the selective autophagy of RTKs by interacting with LC3 through an LC3-interacting region (LIR), which is regulated by a cholesterol-mTORC1 axis. Lowering cholesterol by statins improves the efficacy of multiple tyrosine kinase inhibitors (TKIs) in vivo. Our findings indicate that cholesterol serves as a signal to switch GOLM1-RTK degradation to GOLM1-RTK recycling and suggest that lowering cholesterol by statin may be a promising combination strategy to improve the TKI efficiency in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Wen-Wei Zhu
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Meng-Jun Luo
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming-Hao Fan
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Qin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng-Hao Wang
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zhi-Fei Lin
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Jing Zhao
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Zheng
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiong-Zhu Dong
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Hu-Liang Jia
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Ju-Bo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Hong Chen
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| | - Lun-Xiu Qin
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Gao J, Jung M, Williams RT, Hui D, Russell AJ, Naim AJ, Kamili A, Clifton M, Bongers A, Mayoh C, Ho G, Scott CL, Jessup W, Haber M, Norris MD, Henderson MJ. Suppression of the ABCA1 Cholesterol Transporter Impairs the Growth and Migration of Epithelial Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14081878. [PMID: 35454786 PMCID: PMC9029800 DOI: 10.3390/cancers14081878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer. Over 80% of cases have already spread at diagnosis, and these patients face a five-year survival rate of 35%. EOC cells often spread to the greater omentum, an abdominal fat pad. Here, EOC cells take-up cholesterols. Excessive amounts of cholesterol are lethal; thus, we proposed that the ABCA1 cholesterol transporter exports cholesterol from serous EOC cells to maintain cholesterol balance. Indeed, we found that reducing the level of ABCA1 could suppress serous EOC growth in two-dimensional as well as three-dimensional cell culture and also hindered their migration, a key process required for cancer spread. We also identified drugs that impair EOC cell growth by inhibiting cholesterol export. Our data demonstrate that disrupting the cholesterol balance by targeting ABCA1 may be an effective treatment strategy for EOC patients. Abstract Background: Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with over 80% of cases already disseminated at diagnosis and facing a dismal five-year survival rate of 35%. EOC cells often spread to the greater omentum where they take-up cholesterol. Excessive amounts of cholesterol can be cytocidal, suggesting that cholesterol efflux through transporters may be important to maintain homeostasis, and this may explain the observation that high expression of the ATP-binding cassette A1 (ABCA1) cholesterol transporter has been associated with poor outcome in EOC patients. Methods: ABCA1 expression was silenced in EOC cells to investigate the effect of inhibiting cholesterol efflux on EOC biology through growth and migration assays, three-dimensional spheroid culture and cholesterol quantification. Results: ABCA1 suppression significantly reduced the growth, motility and colony formation of EOC cell lines as well as the size of EOC spheroids, whilst stimulating expression of ABCA1 reversed these effects. In serous EOC cells, ABCA1 suppression induced accumulation of cholesterol. Lowering cholesterol levels using methyl-B-cyclodextrin rescued the effect of ABCA1 suppression, restoring EOC growth. Furthermore, we identified FDA-approved agents that induced cholesterol accumulation and elicited cytocidal effects in EOC cells. Conclusions: Our data demonstrate the importance of ABCA1 in maintaining cholesterol balance and malignant properties in EOC cells, highlighting its potential as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Jixuan Gao
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- Telomere Length Regulation Unit, Children’s Medical Research Institute, Westmead, NSW 2145, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence:
| | - MoonSun Jung
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rebekka T. Williams
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Danica Hui
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Amanda J. Russell
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrea J. Naim
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Alvin Kamili
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Molly Clifton
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Angelika Bongers
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Gwo Ho
- Australia Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (G.H.); (C.L.S.)
| | - Clare L. Scott
- Australia Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (G.H.); (C.L.S.)
| | - Wendy Jessup
- ANZAC Research Institute, Concord, Sydney, NSW 2139, Australia;
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.); (R.T.W.); (D.H.); (A.J.R.); (A.J.N.); (A.K.); (M.C.); (A.B.); (C.M.); (M.H.); (M.D.N.); (M.J.H.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | | |
Collapse
|
33
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
34
|
The Tumour Suppressor CYLD Is Required for Clathrin-Mediated Endocytosis of EGFR and Cetuximab-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 14:cancers14010173. [PMID: 35008337 PMCID: PMC8750287 DOI: 10.3390/cancers14010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and is a target for the therapeutic antibody cetuximab (CTX). However, because only some patients have a significant clinical response to CTX, identification of its predictive biomarkers and potentiation of CTX-based therapies are important. We have recently reported a frequent downregulation of cylindromatosis (CYLD) in primary HNSCC, which led to increased cell invasion and cisplatin resistance. Here, we show that CYLD located mainly in lipid rafts was required for clathrin-mediated endocytosis (CME) and degradation of the EGFR induced by EGF and CTX in HNSCC cells. The N-terminus containing the first cytoskeleton-associated protein-glycine domain of CYLD was responsible for this regulation. Loss of CYLD restricted EGFR to lipid rafts, which suppressed CTX-induced apoptosis without impeding CTX's inhibitory activity against downstream signalling pathways. Disruption of the lipid rafts with cholesterol-removing agents overcame this resistance by restoring CME and the degradation of EGFR. Regulation of EGFR trafficking by CYLD is thus critical for the antitumour activity of CTX. Our findings suggest the usefulness of a combination of cholesterol-lowering drugs with anti-EGFR antibody therapy in HNSCC.
Collapse
|
35
|
Kou Y, Li Z, Sun Q, Yang S, Wang Y, Hu C, Gu H, Wang H, Xu H, Li Y, Kou Y, Han B. Prognostic value and predictive biomarkers of phenotypes of tumor-associated macrophages in colorectal cancer. Scand J Immunol 2021; 95:e13137. [PMID: 34964155 PMCID: PMC9286461 DOI: 10.1111/sji.13137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The roles of different subtypes of tumor-associated macrophages (TAMs) in predicting the prognosis of colorectal cancer (CRC) remain controversial. In this study, different subtypes of TAMs were investigated as prognostic and predictive biomarkers for CRC. METHODS Expressions of CD68, CD86 and CD163 were investigated by immunohistochemistry (IHC) and immunofluorescence (IF), and the correlation between the expression of CD86 and CD163 was calculated in colorectal cancer tissues from 64 CRC patients. RESULTS The results showed that high expressions of CD86+ and CD68+ CD86+ TAMs as well as low expression of CD163+ and CD68+ CD163+ TAMs were significantly associated with favorable overall survival (OS). The level of CD86 protein expression showed a negative correlation with CD163 protein expression. In addition, CD86 protein expression remarkably negative correlated with tumor differentiation and tumor node metastasis (TNM) stage, while CD163 protein expression significantly positive correlated with tumor differentiation and tumor size. As an independent risk factor, high expression of CD86 TAMs had prominently favorable prognostic efficacy while high expression of CD68+ CD163+ TAMs had significantly poor prognostic efficacy. CONCLUSIONS These results indicate that CD86+ and CD68+ CD163+ TAMs as prognostic and predictive biomarkers for CRC.
Collapse
Affiliation(s)
- Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Zhuoqun Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Qidi Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Shengnan Yang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Yunshuai Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Chen Hu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huijie Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huangjian Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Hairong Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Baowei Han
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| |
Collapse
|
36
|
Yuan W, Wei F, Ouyang H, Ren X, Hang J, Mo X, Liu Z. CMTM3 suppresses chordoma progress through EGFR/STAT3 regulated EMT and TP53 signaling pathway. Cancer Cell Int 2021; 21:510. [PMID: 34560882 PMCID: PMC8461898 DOI: 10.1186/s12935-021-02159-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Chordomas are rare, slow-growing and locally aggressive bone sarcomas. At present, chordomas are difficult to manage due to their high recurrence rate, metastasis tendency and poor prognosis. The underlying mechanisms of chordoma tumorigenesis and progression urgently need to be explored to find the effective therapeutic targets. Our previous data demonstrates that EGFR plays important roles in chordoma development and CKLF-like MARVEL transmembrane domain containing (CMTM)3 suppresses gastric cancer metastasis by inhibiting the EGFR/STAT3/EMT signaling pathway. However, the roles and mechanism of CMTM3 in chordomas remain unknown. METHODS Primary chordoma tissues and the paired adjacent non-tumor tissues were collected to examine the expression of CMTM3 by western blot. The expression of CMTM3 in chordoma cell lines was tested by Real-time PCR and western blot. CCK-8 and colony forming unit assay were performed to delineate the roles of CMTM3 in cell proliferation. Wound healing and Transwell assays were performed to assess cell migration and invasion abilities. A xenograft model in NSG mice was used to elucidate the function of CMTM3 in vivo. Signaling pathways were analyzed by western blot and IHC. RNA-seq was performed to further explore the mechanism regulated by CMTM3 in chordoma cells. RESULTS CMTM3 expression was downregulated in chordoma tissues compared with paired normal tissues. CMTM3 suppressed proliferation, migration and invasion of chordoma cells in vitro and inhibited tumor growth in vivo. CMTM3 accelerated EGFR degradation, suppressed EGFR/STAT3/EMT signaling pathway, upregulated TP53 expression and enriched the TP53 signaling pathway in chordoma cells. CONCLUSIONS CMTM3 inhibited tumorigenesis and development of chordomas through activating the TP53 signaling pathway and suppressing the EGFR/STAT3 signaling pathway, which suppressed EMT progression. CMTM3 might be a potential therapeutic target for chordomas.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xiaoqing Ren
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing, China. .,Peking University Third Hospital, Key Laboratory of Assisted Reproduction, Ministry of Education, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.
| | - Xiaoning Mo
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Beijing Key Laboratory of Spinal Disease, Beijing, China. .,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
37
|
Zhu X, Xiang Z, Zou L, Chen X, Peng X, Xu D. APMAP Promotes Epithelial-Mesenchymal Transition and Metastasis of Cervical Cancer Cells by Activating the Wnt/β-catenin Pathway. J Cancer 2021; 12:6265-6273. [PMID: 34539899 PMCID: PMC8425192 DOI: 10.7150/jca.59595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a malignant tumor of the female reproductive system. At present, its occurrence, development and transfer mechanism are not entirely clear. APMAP (Adipocyte Plasma Membrane Associated Protein) is a glycosyl type II transmembrane protein that is mainly distributed in the plasma membrane and endoplasmic reticulum of adipocytes. APMAP has been reported to be involved in lipid transport and can induce epithelial-mesenchymal transition of prostate cancer and the liver metastasis of colorectal cancer. However, the role of APMAP in cervical cancer is still unknown. We analyzed the expression and prognosis of APMAP using data in both the GEO and the TCGA databases. We analyzed the function of APMAP using Transwell, wound healing assay and flow cytometry, and assessed the main mechanisms of APMAP by RT-PCR and Western blotting. We found that APMAP was highly expressed in cervical cancer tissues, and patients with high expression had poor prognosis. The functional in vitro experiments demonstrated that APMAP knockdown significantly inhibited the migration ability of cervical cancer cells, but had little effect on cell apoptosis. Mechanically, APMAP promotes cervical cancer cell migration and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway. Overall, APMAP is a potential prognostic marker as well as a therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Xiuting Zhu
- Department of Gynaecology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lingxiao Zou
- Department of Gynaecology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dabao Xu
- Department of Gynaecology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
38
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
39
|
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 2021; 597:549-554. [PMID: 34497417 PMCID: PMC9419706 DOI: 10.1038/s41586-021-03879-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.
Collapse
|
40
|
Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT. Mol Cell Proteomics 2021; 20:100131. [PMID: 34455105 PMCID: PMC8482521 DOI: 10.1016/j.mcpro.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell–based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag–based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration–associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease. Proteomics data were integrated with prior transcriptomic (RNA-Seq) data on RPE-EMT. Dysregulated RPE-EMT proteome shares commonality with malignancy-associated EMT. Altered RPE-EMT proteome signatures correlated with known AMD-associated risk factors. Protein kinases and phosphatases crosstalk modulate RPE-EMT.
Collapse
|
41
|
2-Hydroxypropyl-β-cyclodextrin Regulates the Epithelial to Mesenchymal Transition in Breast Cancer Cells by Modulating Cholesterol Homeostasis and Endoplasmic Reticulum Stress. Metabolites 2021; 11:metabo11080562. [PMID: 34436503 PMCID: PMC8399758 DOI: 10.3390/metabo11080562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol metabolism affects endoplasmic reticulum (ER) stress and modulates epithelial-mesenchymal transition (EMT). Our previous study demonstrated that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) attenuated EMT by blocking the transforming growth factor (TGF)-β/Smad signaling pathway and activating ER stress in MDA-MB-231 cells. To further assess the detailed mechanisms between cholesterol metabolism, ER stress, and EMT, LXR-623 (an agonist of LXRα) and simvastatin were used to increase and decrease cholesterol efflux and synthesis, respectively. Here, we found that high HP-β-CD concentrations could locally increase cholesterol levels in the ER by decreasing LXRα expression and increasing Hydroxymethylglutaryl-Coenzyme A reductase (HMGCR) expression in MDA-MB-231 and BT-549 cells, which triggered ER stress and inhibited EMT. Meanwhile, tunicamycin-induced ER stress blocked the TGF-β/Smad signaling pathway. However, low HP-β-CD concentrations can decrease the level of membrane cholesterol, enhance the TGF-β receptor I levels in lipid rafts, which helped to activate TGF-β/Smad signaling pathway, inhibit ER stress and elevate EMT. Based on our findings, the use of high HP-β-CD concentration can lead to cholesterol accumulation in the ER, thereby inducing ER stress, which directly suppresses TGF-β pathway-induced EMT. However, HP-β-CD is proposed to deplete membrane cholesterol at low concentrations and concurrently inhibit ER stress and induce EMT by promoting the TGF-β signaling pathways.
Collapse
|
42
|
Zhang M, Zheng M, Dai L, Zhang W, Fan H, Yu X, Pang X, Liao P, Chen B, Wang S, Cao M, Ma X, Liang X, Tang Y. CXCL12/CXCR4 facilitates perineural invasion via induction of the Twist/S100A4 axis in salivary adenoid cystic carcinoma. J Cell Mol Med 2021; 25:7901-7912. [PMID: 34170080 PMCID: PMC8358865 DOI: 10.1111/jcmm.16713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of CXCL12/CXCR4 axis participated in the progression of multiple cancers, but potential effect in terms of perineural invasion (PNI) in SACC remained ambiguous. In this study, we identified that CXCL12 substantially expressed in nerve cells. CXCR4 strikingly expressed in tumour cells, and CXCR4 expression was closely associated with the level of EMT-associated proteins and Schwann cell hallmarks at nerve invasion frontier in SACC. Activation of CXCL12/CXCR4 axis could promote PNI and up-regulate relative genes of EMT and Schwann cell hallmarks both in vitro and in vivo, which could be inhibited by Twist silence. After overexpressing S100A4, the impaired PNI ability of SACC cells induced by Twist knockdown was significantly reversed, and pseudo foot was visualized frequently. Collectively, the results indicated that CXCL12/CXCR4 might promote PNI by provoking the tumour cell to differentiate towards Schwann-like cell through Twist/S100A4 axis in SACC.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Min Zheng
- Department of StomatologyZhoushan HospitalWenzhou Medical University. ZhoushanZhejiangChina
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Wei‐long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral PathologyWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Hua‐yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Xiang‐hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Peng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Bing‐jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Sha‐sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Ming‐xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Xiang‐rui Ma
- Department of Oral and Maxillofacial SurgeryBinzhou Medical University HospitalBinzhouChina
| | - Xin‐hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology (Sichuan University)ChengduChina
| | - Ya‐ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral PathologyWest China Hospital of Stomatology (Sichuan University)ChengduChina
| |
Collapse
|
43
|
Abstract
Metabolism is an important part of tumorigenesis as well as progression. The various cancer metabolism pathways, such as glucose metabolism and glutamine metabolism, directly regulate the development and progression of cancer. The pathways by which the cancer cells rewire their metabolism according to their needs, surrounding environment and host tissue conditions are an important area of study. The regulation of these metabolic pathways is determined by various oncogenes, tumor suppressor genes, as well as various constituent cells of the tumor microenvironment. Expanded studies on metabolism will help identify efficient biomarkers for diagnosis and strategies for therapeutic interventions and countering ways by which cancers may acquire resistance to therapy.
Collapse
|
44
|
Gong Q, Zhang X, Liang A, Huang S, Tian G, Yuan M, Ke Q, Cai Y, Yan B, Wang J, Wang J. Proteomic screening of potential N-glycoprotein biomarkers for colorectal cancer by TMT labeling combined with LC-MS/MS. Clin Chim Acta 2021; 521:122-130. [PMID: 34242638 DOI: 10.1016/j.cca.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Colorectal cancer (CRC) is part of the most widespread malignant tumors. At present, colonoscopy is a routine procedure in the diagnosis of CRC, but it is traumatic. Carcinoembryonic antigen, CA199, and CA242 are common serum markers for the diagnosis of CRC; however, they do not demonstrate satisfactory specificity and sensitivity for the diagnosis of CRC. Hence, Now it is necessary to screen many valuable serum biomarkers for CRC, proteomics methods have been used to investigate PTMs such as glycosylation of proteins with prominent roles in the occurrence and development of tumors. METHODS This study screens altering glycosylated proteins of CRC tissues using LC-MS/MS quantitative glycoproteomics, and then these candidate biomarkers for CRC are further validated by serum glycoproteomics. RESULTS The results of glycoproteomics in CRC tissues show that the abundance of 160 and 79 glycerogelatin proteins was obviously upregulated and downregulated compared with their adjacent tissues(P < 0.05). Bioinformatics analysis suggests that these molecules are mainly involved in many biological processes, including skeletal system development, collagen fibril organization, and receptor-mediated endocytosis. Results of serum glycoproteomics show that the changing trends of 2 protein glycosylation were consistent with MS results of CRC tissues, including ICAM1and APMAP. Areas under the ROC curve (AUC) results confirm that ICAM1and APMAP as early immune diagnosis markers of CRC has excellent sensitivity and specificity. CONCLUSION The ICAM1 and APMAP may serve as a potential tumor marker for CRC.
Collapse
Affiliation(s)
- Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Xiuming Zhang
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, PR China
| | - Aifeng Liang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Sinian Huang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Guangang Tian
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Qing Ke
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Yijun Cai
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Bin Yan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, PR China.
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
45
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
46
|
Lu T, Shi L, Shi G, Cai Y, Hu S, Liu J, Ren S, Zhou X, Wang X. Derivation and validation of a lipid-covered prognostic model for mature T-cell lymphomas. Cancer Cell Int 2021; 21:348. [PMID: 34225710 PMCID: PMC8256497 DOI: 10.1186/s12935-021-02042-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Mature T-cell lymphomas (MTCLs), a group of diseases with high aggressiveness and vulnerable prognosis, lack for the accurate prognostic stratification systems at present. Novel prognostic markers and models are urgently demanded. Aberrant lipid metabolism is closely related to the tumor progression but its prognostic significance in MTCLs remains unexplored. This study aims to investigate the relationship between dysregulated lipid metabolism and survival prognosis of MTCLs and establish a novel and well-performed prognostic scoring system for MTCL patients. Methods A total of 173 treatment-naive patients were enrolled in this study. Univariate and multivariate Cox regression analysis were performed to assess the prognostic significance of serum lipid profiles and screen out independent prognostic factors, which constituted a novel prognostic model for MTCLs. The performance of the novel model was assessed in the training and validation cohort, respectively, by examining its calibration, discrimination and clinical utility. Results Among the 173 included patients, 115 patients (01/2006–12/2016) constituted the training cohort and 58 patients (01/2017–06/2020) formed the validation cohort. Univariate analysis revealed declined total cholesterol (TC, P = 0.000), high-density lipoprotein cholesterol (HDL-C, P = 0.000) and increased triglycerides (TG, P = 0.000) correlated to inferior survival outcomes. Multivariate analysis revealed extranodal involved sites ≥ 2 (hazard ratio [HR]: 2.439; P = 0.036), β2-MG ≥ 3 mg/L (HR: 4.165; P = 0.003) and TC < 3.58 mmol/L (HR: 3.338; P = 0.000) were independent predictors. Subsequently, a novel prognostic model, EnBC score, was constructed with these three factors. Harrell’s C-index of the model in the training and validation cohort was 0.840 (95% CI 0.810–0.870) and 0.882 (95% CI 0.822–0.942), respectively, with well-fitted calibration curves. The model divided patients into four risk groups with distinct OS [median OS: not available (NA) vs. NA vs. 14.0 vs. 4.0 months, P < 0.0001] and PFS (median PFS: 84.0 vs. 19.0 vs. 8.0 vs. 1.5 months, P < 0.0001). Time-dependent receiver operating characteristic curve and decision curve analysis further revealed that EnBC score provided higher diagnostic capacity and clinical benefit, compared with International Prognostic Index (IPI). Conclusion Firstly, abnormal serum lipid metabolism was demonstrated significantly related to the survival of MTCL patients. Furthermore, a lipid-covered prognostic scoring system was established and performed well in stratifying patients with MTCLs. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02042-3.
Collapse
Affiliation(s)
- Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Guanggang Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Ren
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
47
|
Liu Y, Fang L, Liu W. High SQLE Expression and Gene Amplification Correlates with Poor Prognosis in Head and Neck Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:4709-4723. [PMID: 34163246 PMCID: PMC8213972 DOI: 10.2147/cmar.s305719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Squalene epoxidase (SQLE) is considered a metabolic oncogene, but its biological function and prognostic value in head and neck squamous cell carcinoma (HNSCC) remain unclear. We aimed to evaluate the role of SQLE in the occurrence and development of HNSCC through bioinformatics analysis, and validation experiments. Methods Transcriptomic, genomic, and clinical data from The Cancer Genome Atlas were used for pan-cancer analysis. SQLE expression in HNSCC was evaluated using Gene Expression Omnibus datasets and immunohistochemistry. The biological significance of SQLE in the tumor microenvironment (TME) of HNSCC was determined using TISCH, HuRI, LinkedOmics, and TIMER 2.0. The prognostic value of SQLE in HNSCC was analyzed using univariate Cox regression and Kaplan–Meier survival curves. Effect of SQLE on the Cal27 HNSCC cell line was evaluated using cell counting kit 8, wound healing, and EdU assays. Results SQLE was overexpressed and amplified in various cancers, including HNSCC. High SQLE expression promoted cell proliferation, associated with T stage in HNSCC patients. Copy number amplification and DNA demethylation contributed to high SQLE expression in HNSCC, which was associated with poor prognosis. SQLE was related to HNSCC TME, and its mRNA expression/copy number alterations were negatively correlated with the infiltration of CD8+ T cells, follicular helper T cells, and regulatory T cell infiltration and mast cell activation and positively correlated with the infiltration of M0 macrophages and resting mast cells in HNSCC. Conclusion SQLE was identified as a prognostic biomarker and a potential pharmaceutical target for HNSCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oral Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Lijun Fang
- Department of Oral Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Weixian Liu
- Department of Oral Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
48
|
Jia L, Li J, Li P, Liu D, Li J, Shen J, Zhu B, Ma C, Zhao T, Lan R, Dang L, Li W, Sun S. Site-specific glycoproteomic analysis revealing increased core-fucosylation on FOLR1 enhances folate uptake capacity of HCC cells to promote EMT. Am J Cancer Res 2021; 11:6905-6921. [PMID: 34093861 PMCID: PMC8171077 DOI: 10.7150/thno.56882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Epithelial-mesenchymal transition (EMT) has been recognized as an important step toward high invasion and metastasis of many cancers including hepatocellular carcinoma (HCC), while the mechanism for EMT promotion is still ambiguous. Methods: The dynamic alterations of site-specific glycosylation during HGF/TGF-β1-induced EMT process of three HCC cell lines were systematically investigated using precision glycoproteomic methods. The possible roles of EMT-related glycoproteins and site-specific glycans were further confirmed by various molecular biological approaches. Results: Using mass spectrometry-based glycoproteomic methods, we totally identified 2306 unique intact glycopeptides from SMMC-7721 and HepG2 cell lines, and found that core-fucosylated glycans were accounted for the largest proportion of complex N-glycans. Through quantification analysis of intact glycopeptides, we found that the majority of core-fucosylated intact glycopeptides from folate receptor α (FOLR1) were up-regulated in the three HGF-treated cell lines. Similarly, core-fucosylation of FOLR1 were up-regulated in SMMC-7721 and Hep3B cells with TGF-β1 treatment. Using molecular approaches, we further demonstrated that FUT8 was a driver for HGF/TGF-β1-induced EMT. The silencing of FUT8 reduced core-fucosylation and partially blocked the progress of HGF-induced EMT. Finally, we confirmed that the level of core-fucosylation on FOLR1 especially at the glycosite Asn-201 positively regulated the cellular uptake capacity of folates, and enhanced uptake of folates could promote the EMT of HCC cells. Conclusions: Based on the results, we proposed a potential pathway for HGF or TGF-β1-induced EMT of HCC cells: HGF or TGF-β1 treatment of HCC cells can increase the expression of glycosyltransferase FUT8 to up-regulate the core-fucosylation of N-glycans on glycoproteins including the FOLR1; core-fucosylation on FOLR1 can then enhance the folate uptake capacity to finally promote the EMT progress of HCC cells.
Collapse
|
49
|
Jin Y, Chen Z, Dong J, Wang B, Fan S, Yang X, Cui M. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open Bio 2021; 11:1343-1352. [PMID: 33665967 PMCID: PMC8091817 DOI: 10.1002/2211-5463.13137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
Acquired and intrinsic radioresistance remains a major challenge during the treatment of patients with colorectal cancer (CRC). Aberrant cholesterol metabolism precipitates the development of multiple cancers. Here, we report that exogenous or endogenous cholesterol enhances the radioresistance of CRC cells. The addition of cholesterol protects CRC cells against irradiation both in vitro and in vivo. Sterol response element‐binding protein 1/fatty acid synthase (SREBP1/FASN) signaling is rapidly increased in response to radiation stimuli, resulting in cholesterol accumulation, cell proliferation and inhibition of apoptosis. Blocking the SREBP1/FASN pathway impedes cholesterol synthesis and accelerates radiation‐induced CRC cell death. Our findings provide novel insights into the role of the SREBP1/FASN/cholesterol axis in radiotherapy and suggest that it may be a potential target for CRC treatment. Clinically, our results suggest that CRC patients undergoing radiotherapy may benefit from a lowered cholesterol intake.
Collapse
Affiliation(s)
- Yuxiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
50
|
Dianat-Moghadam H, Khalili M, Keshavarz M, Azizi M, Hamishehkar H, Rahbarghazi R, Nouri M. Modulation of LXR signaling altered the dynamic activity of human colon adenocarcinoma cancer stem cells in vitro. Cancer Cell Int 2021; 21:100. [PMID: 33568147 PMCID: PMC7877018 DOI: 10.1186/s12935-021-01803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expansion and metastasis of colorectal cancers are closely associated with the dynamic growth of cancer stem cells (CSCs). This study aimed to explore the possible effect of LXR (a regulator of glycolysis and lipid hemostasis) in the tumorgenicity of human colorectal CD133 cells. METHODS Human HT-29 CD133+ cells were enriched by MACS and incubated with LXR agonist (T0901317) and antagonist (SR9243) for 72 h. Cell survival was evaluated using MTT assay and flow cytometric analysis of Annexin-V. The proliferation rate was measured by monitoring Ki-67 positive cells using IF imaging. The modulation of LXR was studied by monitoring the activity of all factors related to ABC transporters using real-time PCR assay and western blotting. Protein levels of metabolic enzymes such as PFKFB3, GSK3β, FASN, and SCD were also investigated upon treatment of CSCs with LXR modulators. The migration of CSCs was monitored after being exposed to LXR agonist using scratch and Transwell insert assays. The efflux capacity was measured using hypo-osmotic conditions. The intracellular content of reactive oxygen species was studied by DCFH-DA staining. RESULTS Data showed incubation of CSCs with T0901317 and SR9243 reduced the viability of CD133 cells in a dose-dependent manner compared to the control group. The activation of LXR up-regulated the expression and protein levels of ABC transporters (ABCA1, ABCG5, and ABCG8) compared to the non-treated cells (p < 0.05). Despite these effects, LXR activation suppressed the proliferation, clonogenicity, and migration of CD133 cells, and increased hypo-osmotic fragility (p < 0.05). We also showed that SR9243 inhibited the proliferation and clonogenicity of CD133 cells through down-regulating metabolic enzymes PFKFB3, GSK3β, FASN, and SCD as compared with the control cells (p < 0.05). Intracellular ROS levels were increased after the inhibition of LXR by SR9243 (p < 0.05). Calling attention, both T0901317 and SR9243 compounds induced apoptotic changes in cancer stem cells (p < 0.05). CONCLUSIONS The regulation of LXR activity can be considered as a selective targeting of survival, metabolism, and migration in CSCs to control the tumorigenesis and metastasis in patients with advanced colorectal cancers.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|