1
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024; 10:1052-1071. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
3
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Duch P, Díaz‐Valdivia N, Gabasa M, Ikemori R, Arshakyan M, Fernández‐Nogueira P, Llorente A, Teixido C, Ramírez J, Pereda J, Chuliá‐Peris L, Galbis JM, Hilberg F, Reguart N, Radisky DC, Alcaraz J. Aberrant TIMP-1 production in tumor-associated fibroblasts drives the selective benefits of nintedanib in lung adenocarcinoma. Cancer Sci 2024; 115:1505-1519. [PMID: 38476010 PMCID: PMC11093210 DOI: 10.1111/cas.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.
Collapse
Affiliation(s)
- Paula Duch
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Natalia Díaz‐Valdivia
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Marta Gabasa
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
- Thoracic Oncology UnitHospital Clinic BarcelonaBarcelonaSpain
| | - Rafael Ikemori
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Marselina Arshakyan
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Patricia Fernández‐Nogueira
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Alejandro Llorente
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
| | - Cristina Teixido
- Thoracic Oncology UnitHospital Clinic BarcelonaBarcelonaSpain
- Pathology ServiceHospital Clinic BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
| | - Josep Ramírez
- Thoracic Oncology UnitHospital Clinic BarcelonaBarcelonaSpain
- Pathology ServiceHospital Clinic BarcelonaBarcelonaSpain
- Biomedical Research Center Network for Respiratory Diseases (CIBERES)Carlos III Health InstituteMadridSpain
| | - Javier Pereda
- Department of Physiology, Faculty of PharmacyUniversity of ValenciaBurjassotSpain
| | - Lourdes Chuliá‐Peris
- Department of Physiology, Faculty of PharmacyUniversity of ValenciaBurjassotSpain
| | | | - Frank Hilberg
- Boehringer Ingelheim Austria RCV GmbH & Co. KGViennaAustria
| | - Noemí Reguart
- Thoracic Oncology UnitHospital Clinic BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
| | | | - Jordi Alcaraz
- Department of Biomedicine, School of Medicine and Health Sciences, Unit of Biophysics and BioengineeringUniversity of BarcelonaBarcelonaSpain
- Thoracic Oncology UnitHospital Clinic BarcelonaBarcelonaSpain
- Biomedical Research Center Network for Respiratory Diseases (CIBERES)Carlos III Health InstituteMadridSpain
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
| |
Collapse
|
5
|
Hussein NA, Ebid SA, Ahmad MA, Khedr GE, Saad DM. The possible correlation between miR-762, Hippo signaling pathway, TWIST1, and SMAD3 in lung cancer and chronic inflammatory diseases. Sci Rep 2024; 14:8246. [PMID: 38589525 PMCID: PMC11001855 DOI: 10.1038/s41598-024-58704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Samia A Ebid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammad A Ahmad
- Clinical Pathology Department, Military Medical Academy, Cairo, Egypt
| | - Gamal E Khedr
- Clinical Pathology Department, Tanta Cancer Center, Tanta, Egypt
| | - Dina M Saad
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Wang C, Ji J, Jin Y, Sun Y, Cai Q, Jiang J, Guo L, Zhou C, Zhang J. Tumor-mesothelium HOXA11-PDGF BB/TGF β1-miR-181a-5p-Egr1 feedforward amplifier circuity propels mesothelial fibrosis and peritoneal metastasis of gastric cancer. Oncogene 2024; 43:171-188. [PMID: 37989866 PMCID: PMC10786717 DOI: 10.1038/s41388-023-02891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
A proportion of gastric cancer (GC) patients suffer from peritoneal metastasis (PM) in the late stage of tumor and these patients have a poor prognosis. To provide more care for GC patient with PM, a deeper exploration of the molecular characteristics of GC-PM is needed. Here we performed the in vitro and in vivo study to illustrate the effect of HOXA11 over-expressed GC cells on peritoneal mesothelial cells (HMrSV5), transcriptomics analyses of HMrSV5 cells co-cultured with HOXA11 over-expressed GC cells, counterparts or alone, cytokine array analyses of serum-free culture medium of HOXA11 over-expressed GC cells, we validated our findings through genetic manipulation of HMrSV5 cells and neutralizing antibodies targeting cytokines secreted by HOXA11 over-expressed GC cells in vitro, as well as utilized human peritoneal metastatic lesions to validate expression of potential targets. We identified that HOXA11 over-expressed GC cells strongly propelled mesothelial fibrosis in vivo and in vitro, and HOXA11 regulated paracrine and autocrine of PDGF BB and TGF β1 in GC cells to propel mesothelial fibrosis. Meanwhile, HOXA11 over-expressed GC cells drove PDGF BB and TGF β1 secretion to activate developmental-process related genes in HMrSV5 cells, including Egr1, which processes dependent on miR-181a-5p. Then, Egr1 could mediate peritoneal mesothelial fibrosis. Correspondingly, Egr1 over-expressed HMrSV5 cells supported migration and peritoneal dissemination of GC cells. Together our results suggest that a feedforward amplifier circuity governing GC cells and mesothelial cells in peritoneum contribute to peritoneal metastasis of GC cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
8
|
Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer 2023; 1878:188901. [PMID: 37120098 PMCID: PMC10375465 DOI: 10.1016/j.bbcan.2023.188901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a significant component of the tumor microenvironment (TME), contribute to cancer progression through the secretion of extracellular matrix (ECM), growth factors, and metabolites. It is now well recognized that CAFs are a heterogenous population with ablation experiments leading to reduced tumor growth and single-cell RNA sequencing demonstrating CAF subgroups. CAFs lack genetic mutations yet substantially differ from their normal stromal precursors. Here, we review epigenetic changes in CAF maturation, focusing on DNA methylation and histone modifications. DNA methylation changes in CAFs have been demonstrated globally, while roles of methylation at specific genes affect tumor growth. Further, loss of CAF histone methylation and gain of histone acetylation has been shown to promote CAF activation and tumor promotion. Many CAF activating factors, such as transforming growth factor β (TGFβ), lead to these epigenetic changes. MicroRNAs (miRNAs) serve as targets and orchestrators of epigenetic modifications that influence gene expression. Bromodomain and extra-terminal domain (BET), an epigenetic reader, recognizes histone acetylation and activates the transcription of genes leading to the pro-tumor phenotype of CAFs.
Collapse
Affiliation(s)
- Rachel J Kehrberg
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
3D collagen migration patterns reveal a SMAD3-dependent and TGF-β1-independent mechanism of recruitment for tumour-associated fibroblasts in lung adenocarcinoma. Br J Cancer 2023; 128:967-981. [PMID: 36572730 PMCID: PMC10006167 DOI: 10.1038/s41416-022-02093-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The TGF-β1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer. METHODS We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs. RESULTS High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-β1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-β1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-β1, high glucose and Trametinib, exhibiting impaired migration in all conditions. CONCLUSIONS The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.
Collapse
|
10
|
Almici E, Arshakyan M, Carrasco JL, Martínez A, Ramírez J, Enguita AB, Monsó E, Montero J, Samitier J, Alcaraz J. Quantitative Image Analysis of Fibrillar Collagens Reveals Novel Diagnostic and Prognostic Biomarkers and Histotype-dependent Aberrant Mechanobiology in Lung Cancer. Mod Pathol 2023; 36:100155. [PMID: 36918057 DOI: 10.1016/j.modpat.2023.100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Fibrillar collagens are the most abundant extracellular matrix components in non-small cell lung cancer (NSCLC). Yet, the potential of collagen fiber descriptors as a source of clinically-relevant biomarkers in NSCLC is mainly unknown. Likewise, our understanding of the aberrant collagen organization and associated tumor-promoting effects needs to be better defined. To address these limitations, we identified a digital pathology approach that can be easily implemented in pathology units based on the Curvelet Transform filtering and single Fiber Reconstruction (CT-FIRE) software analysis of picrosirius (PSR) stains of fibrillar collagens imaged with polarized light (PL). CT-FIRE settings were pre-optimized to assess a panel of collagen fiber descriptors in PSR-PL images of tissue microarrays from surgical NSCLC patients (106 adenocarcinomas (ADC), 89 squamous cell carcinomas (SCC)). Using this approach, we identified straightness as the single high-accuracy diagnostic collagen fiber descriptor (average area under the curve AUC = 0.92) and fiber density as the single descriptor consistently associated with poor prognosis in both ADC and SCC independently of the gold standard based on tumor size, lymph node involvement and metastasis (TNM) staging (Hazard ratio HR = 2.69 (1.55-4.66), p < 0.001). Moreover, we found that collagen fibers were markedly straighter, longer, and more aligned in tumors compared to paired samples from uninvolved pulmonary tissue, particularly in ADC, which is indicative of increased tumor stiffening. Consistently, we observed an increase in a panel of stiffness-associated processes in the high collagen fiber density patient group selectively in ADC, including venous/lymphatic invasion, fibroblast activation (alpha-smooth muscle actin (α-SMA)), and immune evasion (programmed death-ligand 1 (PD-L1)). Likewise, transcriptional correlation analysis supported the potential involvement of the major Yes-associated protein 1 (YAP)/TAZ mechanobiology pathway in ADC. Our results provide a proof-of-principle to use CT-FIRE analysis of PSR-PL images to assess new collagen fiber-based diagnostic and prognostic biomarkers in pathology units, which may improve the clinical management of surgical NSCLC patients. Our findings also unveil an aberrant stiff microenvironment in lung ADC that may foster immune evasion and dissemination, encouraging future work to identify therapeutic opportunities.
Collapse
Affiliation(s)
- Enrico Almici
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain
| | - Josep Lluís Carrasco
- Unit of Biostatistics, Department of Basic Clinical Practice, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Martínez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Josep Ramírez
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Enguita
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pathology, Hospital 12 Octubre, Madrid, Spain
| | - Eduard Monsó
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Respiratory Medicine, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Department of Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.
| | - Jordi Alcaraz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Zhang J, Huang L, Ge G, Hu K. Emerging Epigenetic-Based Nanotechnology for Cancer Therapy: Modulating the Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206169. [PMID: 36599655 PMCID: PMC9982594 DOI: 10.1002/advs.202206169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Indexed: 06/02/2023]
Abstract
Dysregulated epigenetic modifications dynamically drive the abnormal transcription process to affect the tumor microenvironment; thus, promoting cancer progression, drug resistance, and metastasis. Nowadays, therapies targeting epigenetic dysregulation of tumor cells and immune cells in the tumor microenvironment appear to be promising adjuncts to other cancer therapies. However, the clinical results of combination therapies containing epigenetic agents are disappointing due to systemic toxicities and limited curative effects. Here, the role of epigenetic processes, including DNA methylation, post-translational modification of histones, and noncoding RNAs is discussed, followed by detailed descriptions of epigenetic regulation of the tumor microenvironment, as well as the application of epigenetic modulators in antitumor therapy, with an emphasis on the epigenetic-based advanced drug delivery system in targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kaili Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
12
|
De Falco E, Bordin A, Menna C, Dhori X, Picchio V, Cozzolino C, De Marinis E, Floris E, Maria Giorgiano N, Rosa P, Angelo Rendina E, Ibrahim M, Calogero A. Remote Adipose Tissue-Derived Stromal Cells of Patients with Lung Adenocarcinoma Generate a Similar Malignant Microenvironment of the Lung Stromal Counterpart. JOURNAL OF ONCOLOGY 2023; 2023:1011063. [PMID: 36733673 PMCID: PMC9889152 DOI: 10.1155/2023/1011063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/25/2022] [Accepted: 12/25/2022] [Indexed: 01/26/2023]
Abstract
Cancer alters both local and distant tissue by influencing the microenvironment. In this regard, the interplay with the stromal fraction is considered critical as this latter can either foster or hamper the progression of the disease. Accordingly, the modality by which tumors may alter distant niches of stromal cells is still unclear, especially at early stages. In this short report, we attempt to better understand the biology of this cross-talk. In our "autologous stromal experimental setting," we found that remote adipose tissue-derived mesenchymal stem cells (mediastinal AMSC) obtained from patients with lung adenocarcinoma sustain proliferation and clonogenic ability of A549 and human primary lung adenocarcinoma cells similarly to the autologous stromal lung counterpart (LMSC). This effect is not observed in lung benign diseases such as the hamartochondroma. This finding was validated by conditioning benign AMSC with supernatants from LAC for up to 21 days. The new reconditioned media of the stromal fraction so obtained, was able to increase cell proliferation of A549 cells at 14 and 21 days similar to that derived from AMSC of patients with lung adenocarcinoma. The secretome generated by remote AMSC revealed overlapping to the corresponding malignant microenvironment of the autologous local LMSC. Among the plethora of 80 soluble factors analyzed by arrays, a small pool of 5 upregulated molecules including IL1-β, IL-3, MCP-1, TNF-α, and EGF, was commonly shared by both malignant-like autologous A- and L-MSC derived microenvironments vs those benign. The bioinformatics analysis revealed that these proteins were strictly and functionally interconnected to lung fibrosis and proinflammation and that miR-126, 101, 486, and let-7-g were their main targets. Accordingly, we found that in lung cancer tissues and blood samples from the same set of patients here employed, miR-126 and miR-486 displayed the highest expression levels in tissue and blood, respectively. When the miR-126-3p was silenced in A549 treated with AMSC-derived conditioned media from patients with lung adenocarcinoma, cell proliferation decreased compared to control media.
Collapse
Affiliation(s)
- Elena De Falco
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Cecilia Menna
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Xhulio Dhori
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Vittorio Picchio
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Claudia Cozzolino
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Erica Floris
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Noemi Maria Giorgiano
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Mohsen Ibrahim
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| |
Collapse
|
13
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
14
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
15
|
Li C, Qiu Y, Zhang Y. Research Progress on Therapeutic Targeting of Cancer-Associated Fibroblasts to Tackle Treatment-Resistant NSCLC. Pharmaceuticals (Basel) 2022; 15:1411. [PMID: 36422541 PMCID: PMC9696940 DOI: 10.3390/ph15111411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for most lung cancer cases and is the leading cause of cancer-related deaths worldwide. Treatment options for lung cancer are no longer limited to surgery, radiotherapy, and chemotherapy, as targeted therapy and immunotherapy offer a new hope for patients. However, drug resistance in chemotherapy and targeted therapy, and the low response rates to immunotherapy remain important challenges. Similar to tumor development, drug resistance occurs because of significant effects exerted by the tumor microenvironment (TME) along with cancer cell mutations. Cancer-associated fibroblasts (CAFs) are a key component of the TME and possess multiple functions, including cross-talking with cancer cells, remodeling of the extracellular matrix (ECM), secretion of various cytokines, and promotion of epithelial-mesenchymal transition, which in turn provide support for the growth, invasion, metastasis, and drug resistance of cancer cells. Therefore, CAFs represent valuable therapeutic targets for lung cancer. Herein, we review the latest progress in the use of CAFs as potential targets and mediators of drug resistance for NSCLC treatment. We explored the role of CAFs on the regulation of the TME and surrounding ECM, with particular emphasis on treatment strategies involving combined CAF targeting within the current framework of cancer treatment.
Collapse
|
16
|
Duch P, Díaz-Valdivia N, Ikemori R, Gabasa M, Radisky ES, Arshakyan M, Gea-Sorlí S, Mateu-Bosch A, Bragado P, Carrasco JL, Mori H, Ramírez J, Teixidó C, Reguart N, Fillat C, Radisky DC, Alcaraz J. Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biol 2022; 111:207-225. [PMID: 35787446 PMCID: PMC9667815 DOI: 10.1016/j.matbio.2022.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
Abstract
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metalloproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor microenvironment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interaction. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-β1/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-β1-activated ADC-TAFs is both necessary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenuated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Sabrina Gea-Sorlí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain
| | - Anna Mateu-Bosch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain
| | - Paloma Bragado
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Josep Lluís Carrasco
- Unit of Biostatistics, Department of Basic Clinical Practice, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, United States
| | - Josep Ramírez
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Cristina Teixidó
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain; Department of Medicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.
| |
Collapse
|
17
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Simon T, Salhia B. Cancer-Associated Fibroblast Subpopulations With Diverse and Dynamic Roles in the Tumor Microenvironment. Mol Cancer Res 2022; 20:183-192. [PMID: 34670861 PMCID: PMC9306405 DOI: 10.1158/1541-7786.mcr-21-0282] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023]
Abstract
Close interactions between cancer cells and cancer-associated fibroblasts (CAF) have repeatedly been reported to support tumor progression. Yet, targeting CAFs has so far failed to show a real benefit in cancer treatment, as preclinical studies have shown that such a strategy can enhance tumor growth. Accordingly, recent paradigm-shifting data suggest that certain CAF subpopulations could also show tumor-inhibitory capabilities. The present review aims to provide an in-depth description of the cellular heterogeneity of the CAF compartment in tumors. Through combining information from different cancer types, here we define 4 main CAF subpopulations that might cohabitate in any tumor microenvironment (TME). In addition, a model for the evolution of CAFs during tumor development is introduced. Moreover, the presence of tumor-inhibitory CAFs in the TME as well as their molecular characteristics are extensively discussed. Finally, the potential cellular origins of these distinct CAF subpopulations are reviewed. To our knowledge, this is the first attempt at establishing a broad but comprehensive classification of CAF subpopulations. Altogether, the present manuscript aims to provide the latest developments and innovative insights that could help refine future therapeutic targeting of CAFs for cancer treatment.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Corresponding Author: Bodour Salhia, Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033. Phone: 323-442-3099; E-mail:
| |
Collapse
|
19
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
20
|
Tang PC, Chung JY, Xue VW, Xiao J, Meng X, Huang X, Zhou S, Chan AS, Tsang AC, Cheng AS, Lee T, Leung K, Lam EW, To K, Tang PM, Lan H. Smad3 Promotes Cancer-Associated Fibroblasts Generation via Macrophage-Myofibroblast Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101235. [PMID: 34791825 PMCID: PMC8728853 DOI: 10.1002/advs.202101235] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution. MMT cells (MMTs) are observed in non-small-cell lung carcinoma (NSCLC) associated with CAF abundance and patient mortality. By fate-mapping study, RNA velocity, and pseudotime analysis, existence of novel macrophage-lineage-derived CAF subset in the TME of Lewis lung carcinoma (LLC) model is confirmed, which is directly transited via MMT from M2-TAM in vivo and bone-marrow-derived macrophages (BMDM) in vitro. Adoptive transfer of BMDM-derived MMTs markedly promote CAF formation in LLC-bearing mice. Mechanistically, a Smad3-centric regulatory network is upregulated in the MMTs of NSCLC, where chromatin immunoprecipitation sequencing(ChIP-seq) detects a significant enrichment of Smad3 binding on fibroblast differentiation genes in the macrophage-lineage cells in LLC-tumor. More importantly, macrophage-specific deletion and pharmaceutical inhibition of Smad3 effectively block MMT, therefore, suppressing the CAF formation and cancer progression in vivo. Thus, MMT may represent a novel therapeutic target of CAF for cancer immunotherapy.
Collapse
Affiliation(s)
- Philip Chiu‐Tsun Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Jeff Yat‐Fai Chung
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Vivian Wei‐wen Xue
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Jun Xiao
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | | | - Xiao‐Ru Huang
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Shuang Zhou
- Department of Histology and EmbryologyTongji University School of MedicineTongji University Cancer InstituteShanghaiChina
| | - Alex Siu‐Wing Chan
- Department of Applied Social SciencesThe Hong Kong Polytechnic UniversityKowloonHong KongChina
| | - Anna Chi‐Man Tsang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | | | - Tin‐Lap Lee
- ReproductionDevelopment and Endocrinology ProgramSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Kam‐Tong Leung
- Department of PaediatricsPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Eric W.‐F. Lam
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat‐sen UniversityGuangzhouGuangdong510060China
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Patrick Ming‐Kuen Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Hui‐Yao Lan
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- The Chinese University of Hong Kong‐Guangdong Academy of Sciences/Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney DiseasesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
21
|
Su SF, Ho H, Li JH, Wu MF, Wang HC, Yeh HY, Kuo SW, Chen HW, Ho CC, Li KC. DNA methylome and transcriptome landscapes of cancer-associated fibroblasts reveal a smoking-associated malignancy index. J Clin Invest 2021; 131:e139552. [PMID: 34228648 DOI: 10.1172/jci139552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unlike the better-studied aberrant epigenome in the tumor, the clinicopathologic impact of DNA methylation in the tumor microenvironment (TME), especially the contribution from cancer-associated fibroblasts (CAFs), remains elusive. CAFs exhibit profound patient-to-patient tumorigenic heterogeneity. We asked whether such heterogeneity may be exploited to quantify the level of TME malignancy. We developed a robust and efficient methylome/transcriptome co-analytical system for CAFs and paired normal fibroblasts (NFs) from non-small-cell lung cancer patients. We found 14,781 CpG sites of CAF/NF differential methylation, of which 3,707 sites showed higher methylation changes in ever-smokers than in nonsmokers. Concomitant CAF/NF differential gene expression analysis pointed to a subset of 54 smoking-associated CpG sites with strong methylation-regulated gene expression. A methylation index that summarizes the β values of these CpGs was built for NF/CAF discrimination (MIND) with high sensitivity and specificity. The potential of MIND in detecting premalignancy across individual patients was shown. MIND succeeded in predicting tumor recurrence in multiple lung cancer cohorts without reliance on patient survival data, suggesting that the malignancy level of TME may be effectively graded by this index. Precision TME grading may provide additional pathological information to guide cancer prognosis and open up more options in personalized medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Hao Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jia-Hua Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Fang Wu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsu-Chieh Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Department of Statistics, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
23
|
Zhang B, Zhang Y, Zhang J, Liu P, Jiao B, Wang Z, Ren R. Focal Adhesion Kinase (FAK) Inhibition Synergizes with KRAS G12C Inhibitors in Treating Cancer through the Regulation of the FAK-YAP Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100250. [PMID: 34151545 PMCID: PMC8373085 DOI: 10.1002/advs.202100250] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/20/2021] [Indexed: 05/04/2023]
Abstract
KRAS mutation is one of the most prevalent genetic drivers of cancer development, yet KRAS mutations are until very recently considered undruggable. There are ongoing trials of drugs that target the KRAS G12C mutation, yet acquired drug resistance from the extended use has already become a major concern. Here, it is demonstrated that KRAS G12C inhibition induces sustained activation of focal adhesive kinase (FAK) and show that a combination therapy comprising KRAS G12C inhibition and a FAK inhibitor (IN10018) achieves synergistic anticancer effects. It can simultaneously reduce the extent of drug resistance. Diverse CDX and PDX models of KRAS G12C mutant cancer are examined and synergistic benefits from the combination therapy are consistently observed. Mechanistically, it is found that both aberrant FAK-YAP signaling and FAK-related fibrogenesis impact on the development of KRAS G12C inhibitor resistance. This study thus illustrates the mechanism of resistance of cancer to the treatment of KRAS G12C inhibitor, as well as an innovative combination therapy to improve treatment outcomes for KRAS G12C mutant cancers.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yan Zhang
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | | | - Ping Liu
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Bo Jiao
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., LtdShanghai201202China
| | - Ruibao Ren
- Shanghai Institute of HematologyState Key Laboratory for Medical GenomicsNational Research Center for Translational MedicineInternational Center for Aging and CancerCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
24
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|
25
|
Gabasa M, Radisky ES, Ikemori R, Bertolini G, Arshakyan M, Hockla A, Duch P, Rondinone O, Llorente A, Maqueda M, Davalos A, Gavilán E, Perera A, Ramírez J, Gascón P, Reguart N, Roz L, Radisky DC, Alcaraz J. MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Lett 2021; 507:1-12. [PMID: 33684534 PMCID: PMC8026696 DOI: 10.1016/j.canlet.2021.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-β1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-β1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Giulia Bertolini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Ornella Rondinone
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Maria Maqueda
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | | | - Elena Gavilán
- Cell Dynamics and Signaling Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), CSIC, Sevilla, 41092, Spain
| | - Alexandre Perera
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | - Josep Ramírez
- Pathology Service, Hospital Clínic de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain
| | - Pere Gascón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain.
| |
Collapse
|
26
|
Abstract
The transforming growth factor-beta (TGFβ) pathway is essential during embryo development and in maintaining normal homeostasis. During malignancy, the TGFβ pathway is co-opted by the tumor to increase fibrotic stroma, to promote epithelial to mesenchymal transition increasing metastasis and producing an immune-suppressed microenvironment which protects the tumor from recognition by the immune system. Compelling preclinical data demonstrate the therapeutic potential of blocking TGFβ function in cancer. However, the TGFβ pathway cannot be described as a driver of malignant disease. Two small molecule kinase inhibitors which block the serine-threonine kinase activity of TGFβRI on TGFβRII, a pan-TGFβ neutralizing antibody, a TGFβ trap, a TGFβ antisense agent, an antibody which stabilizes the latent complex of TGFβ and a fusion protein which neutralizes TGFβ and binds PD-L1 are in clinical development. The challenge is how to most effectively incorporate blocking TGFβ activity alone and in combination with other therapeutics to improve treatment outcome.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, RM 4-W602, MSC 9735, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
28
|
Sapudom J, Müller CD, Nguyen KT, Martin S, Anderegg U, Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices. Gels 2020; 6:E33. [PMID: 33008082 PMCID: PMC7709683 DOI: 10.3390/gels6040033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Claudia Damaris Müller
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Khiet-Tam Nguyen
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Steve Martin
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| |
Collapse
|