1
|
Bandoli G, Anunziata F, Bogdan R, Zilverstand A, Chaiyachati BH, Gurka KK, Sullivan E, Croff J, Bakhireva LN. Assessment of substance exposures in nail clipping samples: A systematic review. Drug Alcohol Depend 2024; 254:111038. [PMID: 38041982 PMCID: PMC11059950 DOI: 10.1016/j.drugalcdep.2023.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Studies of prenatal substance exposure often rely on self-report, urine drug screens, and/or analyses of blood or meconium biomarkers. Accuracy of these measures is limited when assessing exposure over many weeks or months of gestation. Nails are increasingly being considered as a matrix from which to assess substance exposure. This systematic review synthesizes data on the validity of detecting alcohol, nicotine, cannabis, and opioid from nail clippings, with an emphasis on prenatal exposure assessment. METHODS The systematic review was conducted using PRISMA 2020 guidelines. Seven databases were searched with keywords relevant to the four substances of interest. Results were summarized grouping manuscripts by the exposure of interest with focus on accuracy and feasibility. RESULTS Of 2384 papers initially identified, 35 manuscripts were included in our qualitative synthesis. Only a few studies specifically looked at pregnant individuals or mother-child dyads. Across the four substances, many studies demonstrated a dose-response relationship between exposure and concentration of analytes in nails. Nail assays appear to detect lower level of exposure compared to hair; however, sample insufficiency, especially for multi-substance assays, remains a limitation. CONCLUSIONS Based on the reviewed studies, nail clippings are an acceptable and potentially preferable matrix for the evaluation of these four prenatal substances when sampling frequency and/or study design necessitates assessment of past exposures over an extended period. Nails have the advantage of infrequent sampling and minimal invasiveness to assess a broad exposure period. Future studies should examine validity of analytes in toenail versus fingernail clippings.
Collapse
Affiliation(s)
- Gretchen Bandoli
- Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Florencia Anunziata
- Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO 63130, USA
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis MN 55455, USA
| | | | - Kelly K Gurka
- Department of Epidemiology, Colleges of Public Health & Health Professions and Medicine, University of Florida, Gainesville FL, 32611 USA
| | - Elinor Sullivan
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julie Croff
- Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice & Administrative Sciences, University of New Mexico Health and Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Li W, Zhang XS, Noguez J. Quantitation of Urine Nicotine, Cotinine, and 3-OH-Cotinine by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol Biol 2024; 2737:337-345. [PMID: 38036835 DOI: 10.1007/978-1-0716-3541-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Nicotine is a naturally occurring and highly addictive chemical used in e-cigarettes, cigarettes, chewing tobacco, and other tobacco products as well as in nicotine replacement therapies. The negative health consequences of using nicotine-containing products are well known. In fact, smoking remains the leading cause of preventable disease, disability, and death in the United States. Measurement of nicotine and its metabolites, cotinine and 3-OH-cotinine, offers an objective method to evaluate nicotine exposure and the associated health risks. In this chapter, we describe a quick and reliable isotope dilution LC-MS/MS method for the quantitation of these three compounds in 60 μL of human urine following a simple sample preparation procedure. Electrospray Ionization (ESI) in positive mode is used to introduce the analytes into the mass spectrometer and quantitation is achieved using Multiple Reaction Monitoring (MRM). The analytical measurable ranges for nicotine and cotinine are 10-2500 ng/mL and 20-5000 ng/mL for 3-OH-cotinine.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xiaochun Susan Zhang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jaime Noguez
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Development and validation of an ultra-performance liquid chromatography-tandem mass spectrometric method for the determination of 25 psychoactive drugs in cerumen and its application to real postmortem samples. Forensic Toxicol 2023; 41:94-104. [PMID: 36652062 DOI: 10.1007/s11419-022-00640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE In the present study, a method for the detection of 25 psychoactive substances in cerumen was developed and validated. This method targets opiates, cocaine, antidepressants, benzodiazepines, antipsychotics and antiparkinsons. METHODS Analysis was performed on a SCIEX Triple Quad 6500+ system after liquid-liquid extraction. Methanol with 1% acetic acid was chosen as the extraction solvent. After the addition of the solvent, samples were vortexed, sonicated, centrifuged and directly injected into the liquid chromatography-tandem mass spectrometry system. RESULTS The method was found to be selective and sensitive (limit of detection: 0.017 ng-0.33 ng/mg), the assay was linear for all analytes with linear regression coefficient ranging 0.9911-1.00. The values for intra-assay precision was between 4.34 and 14.6% and inter-assay precision between 5.81 and 17.7%, with accuracy within the acceptable criteria for all analytes. All analytes in cerumen specimens were stable for 48 h at 4 °C and 72 h at - 20 °C, whilst no significant matrix effect or carryover was observed. Applicability was proven by analyzing cerumen samples from 25 deceased with a history of drug abuse. All analytes were detected in real samples, thus confirming the sensitivity of the developed method. CONCLUSIONS According to our knowledge, it is the first time that a method for the simultaneous detection of 25 psychoactive drugs in cerumen was developed, fully validated and finally applied to 25 postmortem samples.
Collapse
|
4
|
Abdel Rahman R, Kamal N, Mediani A, Farag MA. How Do Herbal Cigarettes Compare To Tobacco? A Comprehensive Review of Their Sensory Characters, Phytochemicals, and Functional Properties. ACS OMEGA 2022; 7:45797-45809. [PMID: 36570239 PMCID: PMC9773184 DOI: 10.1021/acsomega.2c04708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
Collapse
Affiliation(s)
- Rania
T. Abdel Rahman
- Phytochemistry
and National Products Department, Technical Office of Central Administration
of Drug Control, Egyptian Drug Authority
(EDA), Giza 12553, Egypt
| | - Nurkhalida Kamal
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
5
|
Benowitz NL, Bernert JT, Foulds J, Hecht SS, Jacob P, Jarvis MJ, Joseph A, Oncken C, Piper ME. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine Tob Res 2020; 22:1086-1097. [PMID: 31570931 DOI: 10.1093/ntr/ntz132] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The changing prevalence and patterns of tobacco use, the advent of novel nicotine delivery devices, and the development of new biomarkers prompted an update of the 2002 Society for Research on Nicotine and Tobacco (SRNT) report on whether and how to apply biomarker verification for tobacco use and abstinence. METHODS The SRNT Treatment Research Network convened a group of investigators with expertise in tobacco biomarkers to update the recommendations of the 2002 SNRT Biochemical Verification Report. RESULTS Biochemical verification of tobacco use and abstinence increases scientific rigor and is recommended in clinical trials of smoking cessation, when feasible. Sources, appropriate biospecimens, cutpoints, time of detection windows and analytic methods for carbon monoxide, cotinine (including over the counter tests), total nicotine equivalents, minor tobacco alkaloids, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol are reviewed, as well as biochemical approaches to distinguishing cigarette smoking from use of electronic nicotine delivery devices (ENDS). CONCLUSIONS Recommendations are provided for whether and how to use biochemical verification of tobacco use and abstinence. Guidelines are provided on which biomarkers to use, which biospecimens to use, optimal cutpoints, time windows to detection, and methodology for biochemical verifications. Use of combinations of biomarkers is recommended for assessment of ENDS use. IMPLICATIONS Biochemical verification increases scientific rigor, but there are drawbacks that need to be assessed to determine whether the benefits of biochemical verification outweigh the costs, including the cost of the assays, the feasibility of sample collection, the ability to draw clear conclusions based on the duration of abstinence, and the variability of the assay within the study population. This paper provides updated recommendations from the 2002 SRNT report on whether and how to use biochemical markers in determining tobacco use and abstinence.
Collapse
Affiliation(s)
- Neal L Benowitz
- Division of Clinical Pharmacology and Experimental Therapeutics, Departments of Medicine and Biopharmaceutical Sciences; Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, CA
| | - John T Bernert
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jonathan Foulds
- Departments of Public Health Sciences and Psychiatry, Penn State College of Medicine, Hershey, PA
| | - Stephen S Hecht
- Departments of Laboratory Medicine and Pathology, Pharmacology, and Medicinal Chemistry, University of Minnesota, Masonic Cancer Center, Minneapolis, MN
| | - Peyton Jacob
- Departments of Medicine and Psychiatry, University of California San Francisco, San Francisco, CA
| | - Martin J Jarvis
- Department of Behavioural Science and Health, University College London, London, UK
| | - Anne Joseph
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Cheryl Oncken
- Department of Medicine, University of Connecticut, Farmington, CT
| | - Megan E Piper
- Center for Tobacco Research and Intervention, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| |
Collapse
|
6
|
Habibagahi A, Alderman N, Kubwabo C. A review of the analysis of biomarkers of exposure to tobacco and vaping products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4276-4302. [PMID: 32853303 DOI: 10.1039/d0ay01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantification of exposure to different chemicals from both combustible cigarettes and vaping products is important in providing information on the potential health risks of these products. To assess the exposure to tobacco products, biomarkers of exposure (BOEs) are measured in a variety of biological matrices. In this review paper, current knowledge on analytical methods applied to the analysis of biomarkers of exposure to tobacco products is discussed. Numerous sample preparation techniques are available for the extraction and sample clean up for the analysis of BOEs to tobacco and nicotine delivery products. Many tobacco products-related exposure biomarkers have been analyzed using different instrumental techniques, the most common techniques being gas and liquid chromatography coupled with mass spectrometry (GC-MS, GC-MS/MS and LC-MS/MS). To assess exposure to emerging tobacco products and study exposure in dual tobacco users, the list of biomarkers analyzed in urine samples has been expanded. Therefore, the current state of the literature can be used in preparing a preferred list of biomarkers based on the aim of each study. The information summarized in this review is expected to be a handy tool for researchers involved in studying exposures to tobacco products, as well as in risk assessment of biomarkers of exposure to vaping products.
Collapse
Affiliation(s)
- Arezoo Habibagahi
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | | | | |
Collapse
|
7
|
Kim J, Cho HD, Suh JH, Lee JY, Lee E, Jin CH, Wang Y, Cha S, Im H, Han SB. Analysis of Nicotine Metabolites in Hair and Nails Using QuEChERS Method Followed by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2020; 25:molecules25081763. [PMID: 32290380 PMCID: PMC7221804 DOI: 10.3390/molecules25081763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Many studies have analyzed nicotine metabolites in blood and urine to determine the toxicity caused by smoking, and assess exposure to cigarettes. Recently, hair and nails have been used as alternative samples for the evaluation of smoking, as not only do they reflect long-term exposure but they are also stable and easy to collect. Liquid-liquid or solid-phase extraction has mainly been used to detect nicotine metabolites in biological samples; however, these have disadvantages, such as the use of toxic organic solvents and complex pretreatments. In this study, a modified QuEChERS method was proposed for the first time to prepare samples for the detection of nicotine metabolite cotinine (COT) and trans-3′-hydroxycotinine (3-HCOT) in hair and nails. High-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) was used to analyze traces of nicotine metabolites. The established method was validated for selectivity, linearity, lower limit of quantitation, accuracy, precision and recovery. In comparison with conventional liquid-liquid extraction (LLE), the proposed method was more robust, and resulted in higher recoveries with favorable analytical sensitivity. Using this method, clinical samples from 26 Korean infants were successfully analyzed. This method is expected to be applicable in the routine analysis of nicotine metabolites for environmental and biological exposure monitoring.
Collapse
Affiliation(s)
- Junhee Kim
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
| | - Hyun-Deok Cho
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA; (J.H.S.); (Y.W.)
| | - Ji-Youn Lee
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
| | - Eunyoung Lee
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
| | - Chang Hwa Jin
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA; (J.H.S.); (Y.W.)
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea;
| | - Hosub Im
- Institute for Life & Environmental Technology, Smartive Corporation, Dobong-ro 110 na-gil, Dobong-gu, Seoul 01454, Korea;
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (J.K.); (H.-D.C.); (J.-Y.L.); (E.L.); (C.H.J.)
- Correspondence: ; Tel.: +82-2-820-5596
| |
Collapse
|
8
|
Barr DB, Puttaswamy N, Jaacks LM, Steenland K, Rajkumar S, Gupton S, Ryan PB, Balakrishnan K, Peel JL, Checkley W, Clasen T, Clark ML. Design and Rationale of the Biomarker Center of the Household Air Pollution Intervention Network (HAPIN) Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47010. [PMID: 32347765 PMCID: PMC7228115 DOI: 10.1289/ehp5751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Biomarkers of exposure, susceptibility, and effect are fundamental for understanding environmental exposures, mechanistic pathways of effect, and monitoring early adverse outcomes. To date, no study has comprehensively evaluated a large suite and variety of biomarkers in household air pollution (HAP) studies in concert with exposure and outcome data. The Household Air Pollution Intervention Network (HAPIN) trial is a liquified petroleum gas (LPG) fuel/stove randomized intervention trial enrolling 800 pregnant women in each of four countries (i.e., Peru, Guatemala, Rwanda, and India). Their offspring will be followed from birth through 12 months of age to evaluate the role of pre- and postnatal exposure to HAP from biomass burning cookstoves in the control arm and LPG stoves in the intervention arm on growth and respiratory outcomes. In addition, up to 200 older adult women per site are being recruited in the same households to evaluate indicators of cardiopulmonary, metabolic, and cancer outcomes. OBJECTIVES Here we describe the rationale and ultimate design of a comprehensive biomarker plan to enable us to explore more fully how exposure is related to disease outcome. METHODS HAPIN enrollment and data collection began in May 2018 and will continue through August 2021. As a part of data collection, dried blood spot (DBS) and urine samples are being collected three times during pregnancy in pregnant women and older adult women. DBS are collected at birth for the child. DBS and urine samples are being collected from the older adult women and children three times throughout the child's first year of life. Exposure biomarkers that will be longitudinally measured in all participants include urinary hydroxy-polycyclic aromatic hydrocarbons, volatile organic chemical metabolites, metals/metalloids, levoglucosan, and cotinine. Biomarkers of effect, including inflammation, endothelial and oxidative stress biomarkers, lung cancer markers, and other clinically relevant measures will be analyzed in urine, DBS, or blood products from the older adult women. Similarly, genomic/epigenetic markers, microbiome, and metabolomics will be measured in older adult women samples. DISCUSSION Our study design will yield a wealth of biomarker data to evaluate, in great detail, the link between exposures and health outcomes. In addition, our design is comprehensive and innovative by including cutting-edge measures such as metabolomics and epigenetics. https://doi.org/10.1289/EHP5751.
Collapse
Affiliation(s)
- Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Naveen Puttaswamy
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Lindsay M. Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Sarah Rajkumar
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Savannah Gupton
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - (HAPIN Investigative Team)
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Zhu L, Liu Y, Ding X, Wu X, Sand W, Zhou H. A novel method for textile odor removal using engineered water nanostructures. RSC Adv 2019; 9:17726-17736. [PMID: 35520538 PMCID: PMC9064573 DOI: 10.1039/c9ra01988j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
The malodor attached to textiles not only causes indoor environmental pollution but also endangers people's health even at low concentrations. Existing technologies cannot effectively eliminate the odor. Herein, an effective and environmentally friendly technology was proposed to address this challenging issue. This technology utilizes electrospraying process to produce Engineered Water Nanostructures (EWNS) in a controllable manner. Upon application of a high voltage to the Taylor cone, EWNS can be generated from the condensed vapor water through a Peltier element. Smoking, cooking and perspiration, considered the typical indoor malodorous gases emitted from human activities, were studied in this paper. A headspace SPME method in conjunction with GC-MS was employed for the extraction, detection and quantification of any odor residues. Results indicated that EWNS played a significant role in the deodorization process with removal efficiencies for the three odors were 95.3 ± 0.1%, 100.0 ± 0.0% and 43.7 ± 2.3%, respectively. The Reactive Oxygen Species (ROS) contained in the EWNS, mainly hydroxyl (OH˙) and superoxide radicals are the possible mechanisms for the odor removal. These ROS are strong oxidative and highly reactive and have the ability to convert odorous compounds to non-odorous compounds through various chemical reaction mechanisms. This study showed clearly the potential of the proposed method in the field of odor removal and can be applied in the battle against indoor air pollution.
Collapse
Affiliation(s)
- Lisha Zhu
- Fashion Institute, Donghua University Shanghai 200051 P. R. China
- Shanghai International Institute of Design & Innovation Shanghai 200080 P. R. China
- Key Laboratory of Clothing Design & Technology, Donghua University, Ministry of Education Shanghai 200051 P. R. China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 P. R. China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Road Shanghai 200092 P. R. China
| | - Xuemei Ding
- Fashion Institute, Donghua University Shanghai 200051 P. R. China
- Shanghai International Institute of Design & Innovation Shanghai 200080 P. R. China
- Key Laboratory of Clothing Design & Technology, Donghua University, Ministry of Education Shanghai 200051 P. R. China
| | - Xiongying Wu
- Shanghai Customs District Shanghai 200002 P. R. China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 P. R. China
- Institute of Biosciences, Freiberg University of Mining and Technology Freiberg 09599 Germany
| | - Huiling Zhou
- Fashion Institute, Donghua University Shanghai 200051 P. R. China
- Shanghai International Institute of Design & Innovation Shanghai 200080 P. R. China
- Key Laboratory of Clothing Design & Technology, Donghua University, Ministry of Education Shanghai 200051 P. R. China
| |
Collapse
|
10
|
Magalhães TP, Cravo S, Silva DDD, Dinis-Oliveira RJ, Afonso C, Lourdes Bastos MD, Carmo H. Quantification of Methadone and Main Metabolites in Nails. J Anal Toxicol 2018; 42:192-206. [PMID: 29244080 DOI: 10.1093/jat/bkx099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/22/2017] [Indexed: 01/22/2023] Open
Abstract
The quantification of drugs of abuse in keratinized matrices is becoming of special relevance for monitoring consumption and for post-mortem investigations. We aimed to implement an analytical method for the simultaneous detection of morphine (MORF), 6-monoacetylmorphine (6-MAM), methadone (MET), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyrrolidine (EMDP) in nails. After decontamination, the nail samples (30 mg) were submitted to an alkaline digestion followed by a two-step liquid-liquid and SPE extraction using mixed-mode cation exchange cartridges. The analytes were eluted with 5% NH4OH/methanol. After derivatization with N-methyl-N-(trimethylsilyl) trifluoroacetamide, the analytes were quantified by gas chromatography-mass spectrometry. The method was optimized and fully validated only for MET, EDDP and EMDP, since for MOR and 6-MAM it was not possible to obtain adequate recovery rates after extraction, although detection of MOR was still possible. The method was selective, accurate and precise. Regression analysis demonstrated linearity over a concentration range of 20.8-333.3 ng/mg for MET and 10.4-166.7 ng/mg for EDDP and EMDP. Limits of detection and quantification values ranged from 3.3 to 6.0 ng/mg and 10.4 to 20.8 ng/mg, respectively, and recovery rates ranged from 82% to 98%. The applicability of the method was demonstrated by analyzing nail and urine samples obtained from heroin consumers under substitution therapy with MET.
Collapse
Affiliation(s)
- Teresa Patrícia Magalhães
- 1UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Cravo
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Diana Dias da Silva
- 1UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal, Prof. Hernâni Monteiro Alameda, 4200-319 Porto, Portugal.,IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Central de Gandra Street, 1317, 4585-116 Gandra, PRD, Gandra, Portugal
| | - Carlos Afonso
- Department of Chemical Sciences, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- 1UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Helena Carmo
- 1UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Shokry E, de Oliveira AE, Avelino MAG, de Deus MM, Pereira NZ, Filho NRA. Earwax: an innovative tool for assessment of tobacco use or exposure. A pilot study in young adults. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Shokry E, Marques JG, Ragazzo PC, Pereira NZ, Filho NRA. Earwax as an alternative specimen for forensic analysis. Forensic Toxicol 2017; 35:348-358. [PMID: 28912899 PMCID: PMC5559577 DOI: 10.1007/s11419-017-0363-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 11/27/2022]
Abstract
In this work, we presented, for the first time, earwax as an alternative forensic specimen for detecting 12 neuropsychotic drugs employing liquid chromatography-tandem mass spectrometry in positive and negative ion modes after straightforward extraction with methanol. The method was validated and standard curves were established by external calibration with correlation coefficients >0.99. All precision, accuracy, matrix effects, extraction recoveries, and carryover were within acceptable limits; limits of quantification were sufficiently low to quantify almost all the samples tested. To confirm the feasibility of the study, earwax specimens were collected from actual patients treated with different combinations of the 12 drugs and analyzed by our method; the 12 drugs could be quantified from the earwax specimens of the users successfully, showing usefulness of earwax specimens, because of its noninvasive sampling and the storage of drug(s) for relatively long time together with its being relatively less contaminated by environmental impurities. This study is pioneering; many detailed studies on earwax as an alternative specimen remain to be explored.
Collapse
Affiliation(s)
- Engy Shokry
- Laboratório de Métodos de Extração e Separação (LAMES), Universidade Federal de Goiás (UFG), Campus II, Samambaia, Instituto de Química (IQ), CEP 74690-900 Goiânia, GO Brazil
| | - Jair Gonzalez Marques
- Laboratório de Métodos de Extração e Separação (LAMES), Universidade Federal de Goiás (UFG), Campus II, Samambaia, Instituto de Química (IQ), CEP 74690-900 Goiânia, GO Brazil
| | - Paulo César Ragazzo
- Instituto de Neurologia de Goiânia, Praça Gilson Alves de Souza, no 140, Setor Bueno, CEP 74690-970 Goiânia, GO Brazil
| | - Naiara Zedes Pereira
- Laboratório de Métodos de Extração e Separação (LAMES), Universidade Federal de Goiás (UFG), Campus II, Samambaia, Instituto de Química (IQ), CEP 74690-900 Goiânia, GO Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratório de Métodos de Extração e Separação (LAMES), Universidade Federal de Goiás (UFG), Campus II, Samambaia, Instituto de Química (IQ), CEP 74690-900 Goiânia, GO Brazil
| |
Collapse
|
13
|
Deochand C, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration. J Alzheimers Dis 2016; 50:373-86. [PMID: 26682684 DOI: 10.3233/jad-150664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. OBJECTIVE This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. METHODS Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. RESULTS CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. CONCLUSION Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.
Collapse
Affiliation(s)
- Chetram Deochand
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Evaluation of tobacco specific nitrosamines exposure by quantification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human hair of non-smokers. Sci Rep 2016; 6:25043. [PMID: 27112239 PMCID: PMC4844947 DOI: 10.1038/srep25043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic exposure to specific carcinogens present in secondhand smoke has been associated with different types of cancers. Hair is an ideal matrix to develop a proper biomarker as it absorbs substances in circulation and allows measuring their average concentration over long periods of time. A method was developed for the simultaneous quantification of nicotine, cotinine, NNN, NNK and NNAL in 20 mg human hair samples. Concentrations were significantly different depending on the declared exposure. This study shows for the first time that NNK is present in hair samples from non-smokers in concentrations much higher than any other tobacco specific nitrosamine. NNN could also be detected in samples from the most exposed non-smokers while, as previously reported, NNAL was undetectable. NNK correlates well with nicotine and cotinine (rsp = 0.774 and rsp = 0.792 respectively, p < 0.001 in both cases). However, NNN concentrations did not correlate with any of the other analytes. Ratios between NNK and nicotine show variability with different concentrations of NNK present in samples with similar nicotine values. NNK has proven to be the best marker of tobacco specific nitrosamines in hair. Monitoring NNK may provide a good estimation of cancer risk associated with exposure to secondhand smoke.
Collapse
|
15
|
de la Monte SM, Tong M, Agarwal AR, Cadenas E. Tobacco Smoke-Induced Hepatic Injury with Steatosis, Inflammation, and Impairments in Insulin and Insulin-Like Growth Factor Signaling. ACTA ACUST UNITED AC 2016; 6. [PMID: 27525191 PMCID: PMC4979551 DOI: 10.4172/2161-0681.1000269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Alcoholic liver disease (ALD) is associated with impairments in hepatic insulin and insulin-like growth factor (IGF) signaling through cell growth, survival, and metabolic pathways. Since not all heavy drinkers develop ALD, co-factors may be important. Epidemiologic data indicate that most heavy drinkers smoke tobacco and experimental data revealed that low-level nitrosamine exposures, including those from tobacco, can cause steatohepatitis with hepatic insulin/IGF resistance and exacerbate ALD. We hypothesize that cigarette smoke (CS) exposures also cause liver injury with impaired hepatic insulin/IGF signaling, and thereby contribute to ALD. Methods Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 (CS4) or 8 (CS8) weeks, or CS for 8 weeks with 2 weeks recovery (CS8+R). Results CS exposures caused progressive liver injury with disruption of the normal hepatic chord architecture, lobular inflammation, apoptosis or necrosis, micro-steatosis, sinusoidal dilatation, and nuclear pleomorphism. Histopathological liver injury scores increased significantly from A8 to CS4 and then further to CS8 (P<0.0001). The mean histological grade was also higher in CS8+R relative to A8 (P<0.0001) but lower than in CS4, reflecting partial resolution of injury by CS withdrawal. CS exposures impaired insulin and IGF-1 signaling through IRS-1, Akt, GSK-3β, and PRAS40. Livers from CS8+R mice had normalized or elevated levels of insulin receptor, pYpY-Insulin-R, 312S-IRS-1, 473S-Akt, S9-GSK-3β, and pT246-PRAS40 relative to A8, CS4, or CS8, reflecting partial recovery. Conclusion CS-mediated liver injury and steatohepatitis with impairments in insulin/IGF signalling are reminiscent of the findings in ALD. Therefore, CS exposures (either first or second-hand) may serve as a co-factor in ALD. The persistence of several abnormalities following CS exposure cessation suggests that some aspects of CS-mediated hepatic metabolic dysfunction are not readily reversible.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Liver Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA; Division of Neuropathology and Departments of Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - M Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - A R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - E Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Hecht SS, Stepanov I, Carmella SG. Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines. Acc Chem Res 2016; 49:106-14. [PMID: 26678241 PMCID: PMC5154679 DOI: 10.1021/acs.accounts.5b00472] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world, and cigarette smoking is its main cause. Oral cavity cancer is another debilitating and often fatal cancer closely linked to tobacco product use. While great strides have been made in decreasing tobacco use in the United States and some other countries, there are still an estimated 1 billion men and 250 million women in the world who are cigarette smokers and there are hundreds of millions of smokeless tobacco users, all at risk for cancer. Worldwide, lung cancer kills about three people per minute. This Account focuses on metabolites and biomarkers of two powerful tobacco-specific nitrosamine carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), considered to be among the main causes of lung cancer and oral cavity cancer in people who use tobacco products. Three properties of NNK and NNN are critical for successful biomarker studies: they are present in all tobacco products, they are tobacco-specific and are not found in any other product, and they are strong carcinogens. NNK and NNN are converted in humans to urinary metabolites that can be quantified by mass spectrometry as biomarkers of exposure to these carcinogens. They are also metabolized to diazonium ions and related electrophiles that react with DNA to form addition products that can be detected and quantified by mass spectrometry. These urinary metabolites and DNA addition products can serve as biomarkers of exposure and metabolic activation, respectively. The biomarkers of exposure, in particular the urinary NNK metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, have been extensively applied to document tobacco-specific lung carcinogen uptake in smokers and nonsmokers exposed to secondhand tobacco smoke. Highly sensitive mass spectrometric methods have been developed for quantitative analysis of these NNK metabolites as well as metabolites of NNN in human urine, blood, and toenails. Urinary and serum NNAL have been related to lung cancer risk, and urinary NNN has been related to esophageal cancer risk in prospective epidemiology studies. These results are consistent with carcinogenicity studies of NNK, NNAL, and NNN in rats, which show that NNK and NNAL induce mainly lung tumors, while NNN causes tumors of the esophagus and oral cavity. Biomarkers of metabolic activation of NNK and NNN applied in human studies include the metabolism of deuterium labeled substrates to distinguish NNK and NNN metabolism from that of nicotine and the determination of DNA and hemoglobin adducts in tissues, blood, and oral cells from people exposed to tobacco products. As these methods are continually improved in parallel with the ever increasing sensitivity and selectivity of mass spectrometers, development of a comprehensive biomarker panel for identifying tobacco users at high risk for cancer appears to be a realistic goal. Targeting high risk individuals for smoking cessation and cancer surveillance can potentially decrease the risk of developing fatal cancers.
Collapse
Affiliation(s)
- Stephen S. Hecht
- To whom correspondence should be addressed: Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-148 CCRB, Minneapolis, MN 55455, USA. phone: (612) 624-7604 fax: (612) 624-3869,
| | | | | |
Collapse
|
17
|
Nunez K, Kay J, Krotow A, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease. J Alzheimers Dis 2016; 51:151-63. [PMID: 26836183 PMCID: PMC5575809 DOI: 10.3233/jad-150916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Meta-analysis has shown that smokers have significantly increased risks for Alzheimer's disease (AD), and neuroimaging studies showed that smoking alters white matter (WM) structural integrity. OBJECTIVE Herein, we characterize the effects of cigarette smoke (CS) exposures and withdrawal on WM myelin lipid composition using matrix assisted laser desorption and ionization-imaging mass spectrometry (MALDI-IMS). METHODS Young adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). Frontal lobe WM was examined for indices of lipid and protein oxidation and lipid profile alterations by MALDI-IMS. Lipid ions were identified by MS/MS with the LIPID MAPS prediction tools database. Inter-group comparisons were made using principal component analysis and R-generated heatmap. RESULTS CS increased lipid and protein adducts such that higher levels were present in CS8 compared with CS4 samples. CS8 + R reversed CS8 effects and normalized the levels of oxidative stress. MALDI-IMS demonstrated striking CS-associated alterations in WM lipid profiles characterized by either reductions or increases in phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine) and sphingolipids (sulfatides), and partial reversal of CS's inhibitory effects with recovery. The heatmap hierarchical dendrogram and PCA distinguished CS exposure, duration, and withdrawal effects on WM lipid profiles. CONCLUSION CS-mediated WM degeneration is associated with lipid peroxidation, protein oxidative injury, and alterations in myelin lipid composition, including shifts in phospholipids and sphingolipids needed for membrane integrity, plasticity, and intracellular signaling. Future goals are to delineate WM abnormalities in AD using MALDI-IMS, and couple the findings with MRI-mass spectroscopy to improve in vivo diagnostics and early detection of brain biochemical responses to treatment.
Collapse
Affiliation(s)
- Kavin Nunez
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI, USA
| | - Jared Kay
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander Krotow
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathobiology Graduate Programs at Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Yu R, Deochand C, Krotow A, Leão R, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Tobacco Smoke-Induced Brain White Matter Myelin Dysfunction: Potential Co-Factor Role of Smoking in Neurodegeneration. J Alzheimers Dis 2016; 50:133-48. [PMID: 26639972 PMCID: PMC5577392 DOI: 10.3233/jad-150751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Meta-analysis studies showed that smokers have increased risk for developing Alzheimer's disease (AD) compared with non-smokers, and neuroimaging studies revealed that smoking damages white matter structural integrity. OBJECTIVE The present study characterizes the effects of side-stream (second hand) cigarette smoke (CS) exposures on the expression of genes that regulate oligodendrocyte myelin-synthesis, maturation, and maintenance and neuroglial functions. METHODS Adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). The frontal lobes were used for histology and qRT-PCR analysis. RESULTS Luxol fast blue, Hematoxylin and Eosin stained histological sections revealed CS-associated reductions in myelin staining intensity and narrowing of the corpus callosum. CS exposures broadly decreased mRNA levels of immature and mature oligodendrocyte myelin-associated, neuroglial, and oligodendrocyte-related transcription factors. These effects were more prominent in the CS8 compared with CS4 group, suggesting that molecular abnormalities linked to white matter atrophy and myelin loss worsen with duration of CS exposure. Recovery normalized or upregulated less than 25% of the suppressed genes; in most cases, inhibition of gene expression was either sustained or exacerbated. CONCLUSION CS exposures broadly inhibit expression of genes needed for myelin synthesis and maintenance. These adverse effects often were not reversed by short-term CS withdrawal. The results support the hypothesis that smoking contributes to white matter degeneration, and therefore could be a key risk factor for a number of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Rosa Yu
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Chetram Deochand
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Alexander Krotow
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Raiane Leão
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ming Tong
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neuropathology, and Departments of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Tzatzarakis MN, Vakonaki E, Kovatsi L, Belivanis S, Mantsi M, Alegakis A, Liesivuori J, Tsatsakis AM. Determination of Buprenorphine, Norbuprenorphine and Naloxone in Fingernail Clippings and Urine of Patients Under Opioid Substitution Therapy. J Anal Toxicol 2015; 39:313-20. [DOI: 10.1093/jat/bkv003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Choi J, Aarøe Mørck T, Polcher A, Knudsen LE, Joas A. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Judy Choi
- Judy Choi Alexandra Polcher Anke Joas
| | | | | | | | - Anke Joas
- Judy Choi Alexandra Polcher Anke Joas
| |
Collapse
|
21
|
|
22
|
Liu W, Cassano CL, Xu X, Fan ZH. Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum. Anal Chem 2013; 85:10270-6. [DOI: 10.1021/ac402055n] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wei Liu
- Interdisciplinary
Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
- Key
Laboratory of Analytical Chemistry for Life Science of Shaanxi Province,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an,
Shaanxi 710062, P. R. of China
| | - Christopher L. Cassano
- Interdisciplinary
Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
| | - Xin Xu
- Interdisciplinary
Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
| | - Z. Hugh Fan
- Interdisciplinary
Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
- J. Crayton
Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, United States
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Analysis of triclosan and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 934:97-101. [DOI: 10.1016/j.jchromb.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/13/2013] [Accepted: 07/06/2013] [Indexed: 11/23/2022]
|
24
|
Avila-Tang E, Al-Delaimy WK, Ashley DL, Benowitz N, Bernert JT, Kim S, Samet JM, Hecht SS. Assessing secondhand smoke using biological markers. Tob Control 2013; 22:164-71. [PMID: 22940677 PMCID: PMC3639350 DOI: 10.1136/tobaccocontrol-2011-050298] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 07/29/2012] [Indexed: 01/13/2023]
Abstract
Secondhand smoke exposure (SHSe) is a known cause of many adverse health effects in adults and children. Increasingly, SHSe assessment is an element of tobacco control research and implementation worldwide. In spite of decades of development of approaches to assess SHSe, there are still unresolved methodological issues; therefore, a multidisciplinary expert meeting was held to catalogue the approaches to assess SHSe and with the goal of providing a set of uniform methods for future use by investigators and thereby facilitate comparisons of findings across studies. The meeting, held at Johns Hopkins, in Baltimore, Maryland, USA, was supported by the Flight Attendant Medical Research Institute (FAMRI). A series of articles were developed to summarise what is known about self-reported, environmental and biological SHSe measurements. Non-smokers inhale toxicants in SHS, which are mainly products of combustion of organic materials and are not specific to tobacco smoke exposure. Biomarkers specific to SHSe are nicotine and its metabolites (e.g., cotinine), and metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Cotinine is the preferred blood, saliva and urine biomarker for SHSe. Cotinine and nicotine can also be measured in hair and toenails. NNAL (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol), a metabolite of NNK, can be determined in the urine of SHS-exposed non-smokers. The selection of a particular biomarker of SHSe and the analytic biological medium depends on the scientific or public health question of interest, study design and setting, subjects, and funding. This manuscript summarises the scientific evidence on the use of biomarkers to measure SHSe, analytical methods, biological matrices and their interpretation.
Collapse
Affiliation(s)
- Erika Avila-Tang
- 1Department of Epidemiology, Institute for Global Tobacco Control, Johns Hopkins Bloomberg School of Public Health, 2213 McElderry Street, 4th Floor, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Development, validation, and application of a liquid chromatography-tandem mass spectrometry method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human hair. Anal Bioanal Chem 2012; 404:2259-66. [PMID: 22926132 DOI: 10.1007/s00216-012-6356-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/19/2022]
Abstract
The tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a valuable biomarker for human exposure to the carcinogenic nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in tobacco and tobacco smoke. In this work, an efficient and sensitive method for the analysis of NNAL in human hair was developed and validated. The hair sample was extracted by NaOH solution digestion, purified by C(18) solid-phase extraction (SPE) and molecularly imprinted solid-phase extraction, further enriched by reverse-phase ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) into 1.0 % aqueous formic acid, and finally analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Good linearity was obtained in the range of 0.24-10.0 pg/mg hair with a correlation coefficient of 0.9982, when 150 mg hair was analyzed. The limit of detection and lower limit of quantification were 0.08 and 0.24 pg/mg hair, respectively. Accuracies determined from hair samples spiked with three different levels of NNAL ranged between 87.3 and 107.7 %. Intra- and inter-day relative standard deviations varied from 4.1 to 8.5 % and from 6.9 to 11.3 %, respectively. Under the optimized conditions, an enrichment factor of 20 was obtained. Finally, the developed method was applied for the analysis of NNAL in smokers' hair. The proposed sample preparation procedure combining selectivity of two-step SPE and enrichment of DLLME significantly improves the purification and enrichment of the analyte and should be useful to analyze NNAL in hair samples for cancer risk evaluation and cancer prevention in relation to exposure to the tobacco-specific carcinogen NNK.
Collapse
|
26
|
Shah KA, Karnes HT. A review of the analysis of tobacco-specific nitrosamines in biological matrices. Crit Rev Toxicol 2010; 40:305-27. [PMID: 20210694 DOI: 10.3109/10408440903394435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tobacco use constitutes a leading cause of mortality and morbidity worldwide. Tobacco-specific nitrosamines (TSNAs) are an important class of biomarkers for tobacco carcinogen uptake. The current review focuses on the issues and developments in analysis of these compounds in human biological matrices. The two most widely used techniques for TSNA bioanalysis are gas chromatography coupled with thermal energy analysis and liquid chromatography coupled with mass spectrometry, employing various sample preparation techniques. The review provides an overview of the tools and techniques currently available for TSNA bioanalysis that will help towards the ultimate goal of understanding the mechanisms of cancer caused by the use of tobacco products. A contrast and comparison of the important aspects of bioanalysis such as sample preparation, compound detection, and throughput is discussed for the thermal energy analysis- and mass spectrometry-based techniques. Complex sample extraction procedures, throughput, and the ability to validate are important issues of concern for the gas chromatography-thermal energy analysis-based methods. On the other hand, addressing ion suppression matrix effects remains an important challenge for hyphenated mass spectrometry-based methods. The review also provides an extensive summary of analytical procedures for various studies measuring tobacco-specific nitrosamines in different biological matrices.
Collapse
Affiliation(s)
- Kumar A Shah
- Department of Pharmaceutics, Virginia Commonwealth University, School of Pharmacy, Richmond, Virginia 23298, USA
| | | |
Collapse
|
27
|
Gan Q, Yang J, Yang G, Goniewicz M, Benowitz NL, Glantz SA. Chinese "herbal" cigarettes are as carcinogenic and addictive as regular cigarettes. Cancer Epidemiol Biomarkers Prev 2010; 18:3497-501. [PMID: 19959701 DOI: 10.1158/1055-9965.epi-09-0620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To examine the Chinese tobacco industry's claim that herbal cigarettes are less harmful than regular cigarettes. METHODS The study design was a cross-sectional survey. One hundred thirty-five herbal cigarette smokers and 143 regular smokers from one city in China completed a questionnaire on smoking behavior and provided a urine sample. The main outcome measures were cotinine and trans-3'-hydroxycotinine in all samples, and polycyclic aromatic hydrocarbon metabolites (PAH; 1-hydroxypyrene, naphthols, hydroxyfluorenes, and hydroxyphnanthrenes) and the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-butanol (NNAL) and NNAL-glucuronide in randomly selected 98 samples (47 from the herbal smokers' group and 51 from the regular smokers' group). Values were normalized by creatinine to correct for possible variability introduced by dilution or concentration of the urine. RESULTS Health concern was among the main reasons that smokers switched to herbal cigarettes from regular cigarettes. Smokers reported increased consumption after switching to herbal cigarettes from regular cigarettes. For all the four markers analyzed (cotinine, trans-3'-hydroxycotinine, total NNAL, and total PAHs), we observed no significant difference in the levels (P = 0.169, P = 0.146, P = 0.171, and P = 0.554, respectively) between smokers of herbal cigarettes and smokers of regular cigarettes. Both total NNAL and total PAHs were significantly correlated with cotinine and trans-3'-hydroxycotinine (P < 0.001 for all four correlations). CONCLUSIONS Our findings showed that herbal cigarettes did not deliver less carcinogens than regular cigarettes. The public needs to be aware of this fact, and the Chinese tobacco industry should avoid misleading the public when promoting herbal cigarettes as safer products.
Collapse
Affiliation(s)
- Quan Gan
- Center for Tobacco Control Research and Education, University of California, San Francisco, 94143-1390, USA
| | | | | | | | | | | |
Collapse
|
28
|
Schütte-Borkovec K, Heppel CW, Heling AK, Richter E. Analysis of myosmine, cotinine and nicotine in human toenail, plasma and saliva. Biomarkers 2009; 14:278-84. [PMID: 19476410 DOI: 10.1080/13547500902898164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myosmine is a minor tobacco alkaloid with widespread occurrence in the human diet. Myosmine is genotoxic in human cells and is readily nitrosated and peroxidated yielding reactive intermediates with carcinogenic potential. For biomonitoring of short-term and long-term exposure, analytical methods were established for determination of myosmine together with nicotine and cotinine in plasma, saliva and toenail by gas chromatography-mass spectrometry (GC/MS). Validation of the method with samples of 14 smokers and 10 non-smokers showed smoking-dependent differences of myosmine in toenails (66 +/- 56 vs 21 +/- 15 ng g(-1), p <0.01) as well as saliva (2.54 +/- 2.68 vs 0.73 +/- 0.65 ng ml(-1), p <0.01). However, these differences were much smaller than those with nicotine (1971 +/- 818 vs 132 +/- 82 ng g(-1), p <0.0001) and cotinine (1237 +/- 818 vs <35 ng g(-1)) in toenail and those of cotinine (97.43 +/- 84.54 vs 1.85 +/- 4.50 ng ml(-1), p <0.0001) in saliva. These results were confirmed in plasma samples from 84 patients undergoing gastro-oesophageal endoscopy. Differences between 25 smokers and 59 non-smokers are again much lower for myosmine (0.30 +/- 0.35 vs 0.16 +/- 0.18 ng ml(-1), p <0.05) than for cotinine (54.67 +/- 29.63 vs 0.61 +/- 1.82 ng ml(-1), p <0.0001). In conclusion, sources other than tobacco contribute considerably to the human body burden of myosmine.
Collapse
|
29
|
Al-Delaimy WK, Willett WC. Measurement of tobacco smoke exposure: comparison of toenail nicotine biomarkers and self-reports. Cancer Epidemiol Biomarkers Prev 2008; 17:1255-61. [PMID: 18483348 DOI: 10.1158/1055-9965.epi-07-2695] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accurate measurement tools of exposure for use in large epidemiologic studies are lacking. Biomarkers of tobacco exposure provide additional advantages to self-reports and there is a need to further develop and validate them. The objective is to compare toenail nicotine levels, a novel biomarker of tobacco exposure, with self-reports of tobacco exposure from a large cohort study. METHODS In this cross-sectional analysis, toenail samples were collected from 2,485 women participating in the Nurses' Health Study in 1982. Detailed self-reports of smoking habits and reported exposure to secondhand smoke (SHS) were collected from these women near the time of toenail collection. The toenail samples were analyzed by a high-performance liquid chromatography method for measuring nicotine. RESULTS The 5 to 95 percentile range of toenail nicotine was from 0.06 to 4.06 ng/mg toenail and the median level was 0.21 ng/mg. There was a significant difference in toenail nicotine levels according to reported smoking status (the median level for nonsmokers with no SHS was 0.10 ng/mg, the median level for nonsmokers with SHS was 0.14 ng/mg, and the median level for active smokers was 1.77 ng/mg). However there was considerable overlap in nicotine levels according to reported smoking status. Toenail nicotine level was strongly associated with reported smoking level (Spearman r = 0.63), but there was no complete concordance, suggesting that the two methods are measuring different aspects of the same exposure. CONCLUSION Our findings show that toenail nicotine levels capture the overall burden of tobacco smoke exposure and provide additional information on exposure not captured by reported history.
Collapse
Affiliation(s)
- Wael K Al-Delaimy
- Moores UCSD Cancer Center, Department of Family and Preventive Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
30
|
Stepanov I, Hecht SS. Detection and quantitation of N'-nitrosonornicotine in human toenails by liquid chromatography-electrospray ionization-tandem mass spectrometry. Cancer Epidemiol Biomarkers Prev 2008; 17:945-8. [PMID: 18398035 DOI: 10.1158/1055-9965.epi-07-2711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Specific biomarkers of tobacco carcinogen uptake are critical for investigations of the role of tobacco smoke exposure in human cancers. Two new biomarkers of human exposure to tobacco-specific carcinogens have been recently developed by our research group: urinary N'-nitrosonornicotine (NNN) and toenail 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). In this study, we report the presence of NNN in human toenails. Toenails of 17 smokers were analyzed for total NNN. Mean total NNN level in these samples was 4.63 +/- 6.48 fmol/mg toenail and correlated with previously reported total NNAL (r = 0.96; P < 0.0001), total nicotine (r = 0.48; P < 0.05), and total cotinine (r = 0.87; P < 0.0001). An interesting finding was that amounts of NNN in smokers' toenails were generally higher than those of total NNAL. The ratio of toenail NNN to NNAL averaged 2.8, whereas the previously reported ratio between these biomarkers in smokers' urine was 0.1. NNN was also found in toenail samples from 12 nonsmokers, averaging 0.35 +/- 0.16 fmol/mg and positively correlating with toenail cotinine (r = 0.58; P = 0.05). The results of this study show the feasibility of quantifying NNN in human toenails, providing a potentially useful new biomarker of tobacco carcinogen exposure.
Collapse
Affiliation(s)
- Irina Stepanov
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
31
|
Stepanov I, Upadhyaya P, Carmella SG, Feuer R, Jensen J, Hatsukami DK, Hecht SS. Extensive metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in smokers. Cancer Epidemiol Biomarkers Prev 2008; 17:1764-73. [PMID: 18628430 PMCID: PMC2542896 DOI: 10.1158/1055-9965.epi-07-2844] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in both unburned tobacco and cigarette smoke. The sum of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, referred to as total NNAL, is an established urinary biomarker of human NNK uptake. Metabolic activation of NNK to DNA adducts proceeds via alpha-hydroxylation pathways, and 4-oxo-4-(3-pyridyl)butanoic acid (keto acid) and 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid) are the principal end products of these pathways in rodents and primates. The purpose of this study was to determine NNK metabolic activation in smokers, as measured by the sum of keto acid and hydroxy acid, relative to total NNAL. To specifically identify NNK-derived keto acid and hydroxy acid, which are also formed from nicotine, we added [pyridine-D(4)]NNK to cigarettes that were originally low in NNK, and measured the deuterium-labeled metabolites in the urine of people who smoked these cigarettes. The total amount of [pyridine-D(4)]keto acid plus [pyridine-D(4)]hydroxy acid averaged 4.00 +/- 2.49 nmol/24 h, whereas the average amount of total [pyridine-D(4)]NNAL was 0.511 +/- 0.368 nmol/24 h. The results of this study show for the first time that NNK metabolic activation is a quantitatively significant pathway in smokers, accounting for approximately 86% of total urinary excretion of NNK metabolites. The large interindividual variation in the excreted [pyridine-D(4)]keto acid and [pyridine-D(4)]hydroxy acid among 20 smokers strongly supports our hypothesis that some smokers activate NNK more extensively than others and that the ratio between biomarkers of metabolic activation and detoxification at a given dose of NNK could be a potential indicator of cancer risk.
Collapse
Affiliation(s)
- Irina Stepanov
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Desai D, Krzeminski J, El-Bayoumy K, Amin S. Syntheses of isotope-labeled tobacco-specific nitrosamines and their metabolites. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Rudatsikira E, Siziya S, Dondog J, Muula AS. Prevalence and correlates of environmental tobacco smoke exposure among adolescents in Mongolia. Indian J Pediatr 2007; 74:1089-93. [PMID: 18174643 DOI: 10.1007/s12098-007-0203-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To estimate the prevalence and identify correlates of environmental tobacco exposure (ETS) among adolescents in Mongolia. METHODS A cross-sectional study was carried out in 2003 in Mongolia within the framework of the Global Youth Tobacco Survey. Information was obtained on exposure to Environmental tobacco smoke (ETS) in the home and outside home, parental and peer smoking. Demographic characteristics such as age and sex were also obtained. Data were analyzed to obtain frequencies of characteristics. Logistic regression analysis was conducted to assess the association between ETS and relevant predictor variables. RESULTS 73.9% (71.6%-76.1%) males and 71.7% (69.7%-73.7%) females reported being exposed to ETS either in the home or elsewhere. The odds of exposure were 5.85 (3.83-8.92) if both parents were smokers, 3.65(3.10-4.30) if only father smoked and 6.54 (3.48-12.32) if only mother smoked. Older adolescents were more likely to be exposed to ETS than younger adolescents. Prevalence of exposure to ETS within the home was similar between males and females but males had a higher prevalence of exposure outside of the home than females (50.7% and 42.4% respectively (p < 0.001). Overall proportion of adolescents exposed to ETS in the home was higher than those exposed outside suggesting that domestic exposure was the main form of ETS among adolescents in Mongolia. CONCLUSION Exposure to environmental tobacco smoke is high among school going adolescents in Mongolia. Public health interventions aimed to reduce morbidity from tobacco among adolescents should also accord particular attention toward environmental tobacco smoke.
Collapse
Affiliation(s)
- Emmanuel Rudatsikira
- Department of Epidemiology, Biostatistics, Global Health, Loma Linda University, School of Public Health, Loma Linda, California, United States
| | | | | | | |
Collapse
|
34
|
Stepanov I, Hecht SS, Lindgren B, Jacob P, Wilson M, Benowitz NL. Relationship of human toenail nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol to levels of these biomarkers in plasma and urine. Cancer Epidemiol Biomarkers Prev 2007; 16:1382-6. [PMID: 17627002 DOI: 10.1158/1055-9965.epi-07-0145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed sensitive and quantitative methods for analysis of the biomarkers of tobacco smoke exposure nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human toenails. In this study, we further evaluated the newly developed toenail biomarkers by investigating their relationship to demographic factors, reported exposure, plasma nicotine, cotinine, and trans-3'-hydroxycotinine, and urinary NNAL. Toenails of 105 smokers, mean age 38.9 years (range, 19-68), were analyzed. Fifty-five (53.4%) were male, with approximately equal numbers of Whites and African-Americans. The average number of cigarettes smoked per day was 18 (range, 5-50). There was no effect of age or gender on the toenail biomarkers. Toenail NNAL was higher in White than in African-American participants (P = 0.019). Toenail nicotine and toenail cotinine correlated significantly with cigarettes smoked per day (r = 0.24; P = 0.015 and r = 0.26; P = 0.009, respectively). Toenail nicotine correlated with plasma nicotine (r = 0.39; P < 0.001); toenail cotinine correlated with plasma cotinine (r = 0.45; P < 0.001) and plasma trans-3'-hydroxycotinine (r = 0.30; P = 0.008); and toenail NNAL correlated with urine NNAL (r = 0.53; P = 0.005). The results of this study provide essential validation data for the use of toenail biomarkers in investigations of the role of chronic tobacco smoke exposure in human cancer.
Collapse
Affiliation(s)
- Irina Stepanov
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|