1
|
Henrique RBL, Lima JVA, Santos ALF, Souza THS, Santos BS, Cabral Filho PE, Fontes A. Quantum dot-based conjugates: Luminous nanotools for cancer research. Biochem Biophys Res Commun 2024; 741:151052. [PMID: 39612641 DOI: 10.1016/j.bbrc.2024.151052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Nanotechnology has opened a new era in life science research, offering innovative nanotools to understand complex biological processes, such as those associated with cancer. Among the nanosystems, quantum dots (QDs) stand out for their remarkable optical properties, which render them valuable fluorescent nanoprobes in biological investigations. Moreover, their chemically active surfaces allow conjugations with (bio)molecules, other nanoparticles (NPs), and electrodes, enabling their use in multimodal site-specific applications and biosensing. The complexity and heterogeneity of cancer present challenges for its early diagnosis and personalized treatments. The conjugation of QDs with biologically relevant molecules can provide versatile nanotools for untangling cell mechanisms and biomarker patterns, thereby advancing the knowledge of cancer biology. This review illustrates the multifaceted capabilities of QDs, particularly in cancer research, drawing from applications at cell and tissue levels involving their conjugation with (i) low molecular weight molecules (e.g., folic acid, boronic acid, and glucose analog), (ii) macromolecules (e.g., holo-transferrin, lectins, and protease inhibitor), and (iii) optical-magnetic nanosystems combining QDs with superparamagnetic iron oxide NPs and holo-transferrin. The review also brings an overview of the fundamentals of QDs and strategies for their conjugation. By synthesizing findings from a range of studies, we hope that this review inspires new applications of QD-based conjugates in cancer biology, gathering knowledge and contributing to developing enhanced diagnostic and therapeutic procedures for this disease.
Collapse
Affiliation(s)
- Rafaella B L Henrique
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - João V A Lima
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Ana L F Santos
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Tiago H S Souza
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Beate S Santos
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-520, Brazil
| | - Paulo E Cabral Filho
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Adriana Fontes
- Biomedical Nanotechnology Research Group (NanoBio), Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
2
|
Xue B, Cao W, Zhao H, Zhang B, Liu J, Zhang H, Qi H, Zhou Q. Nanocrystal hydroxyapatite carrying traditional Chinese medicine for osteogenic differentiation. Colloids Surf B Biointerfaces 2024; 244:114186. [PMID: 39226849 DOI: 10.1016/j.colsurfb.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Developing biomaterials with high osteogenic properties is crucial for achieving rapid bone repair and regeneration. This study focuses on the application of nanocrystal hydroxyapatite (nHAp) as a drug carrier to load Fu Yuan Huo Xue Decoction (FYHXD), a traditional Chinese medicine derived from Angelica sinensis, aiming to achieve improved efficacy in treating bone diseases such as osteoporosis. Through a facile physical adsorption approach, the FTIR result emerges new characteristic absorption peaks in the range of 1200-950 cm-1, proving the successful absorption of FYHXD onto the nHAp with a loading efficiency of 39.76 %. The modified nHAp exhibits a similar shape to the bone-derived hydroxyapatite nanocrystals, and their diameter increases slightly after modification. The drug release assay implies the rapid release of FYHXD in the first 10 h, followed by a continuously slow release within 70 h. The developed nHAp effectively enhances the adhesion, spreading, and proliferation of MC3T3-E1 cells in vitro, and significantly promotes their osteogenic differentiation, as indicated by increased alkaline phosphatase activity. Overall, the biocomposites hold great promise as active ingredients for integration into bone-associated biomaterials, offering the potential to stimulate spontaneous osteogenesis without requiring exogenous osteogenic factors.
Collapse
Affiliation(s)
- Bo Xue
- Department of Bone, Huangdao District Central Hospital, Qingdao 266555, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Wen Cao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Zhao
- Department of Bone, Huangdao District Central Hospital, Qingdao 266555, China
| | - Bingqiang Zhang
- Qingdao Key Laboratory of Cancer and Immune Cells, Qingdao Restore Medical Testing Laboratory Co., Ltd., Qingdao, Shandong 266111, PR China
| | - Jia Liu
- Department of Bone, Huangdao District Central Hospital, Qingdao 266555, China
| | - Huixin Zhang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
3
|
Ge Y, Palanisamy S, Kwon MH, Kou F, Uthamapriya RA, Lee DJ, Jeong D, Bao H, You S. Angelica gigas polysaccharide induces CR3-mediated macrophage activation and the cytotoxicity of natural killer cells against HCT-116 cells via NF-κB and MAPK signaling pathways. Int J Biol Macromol 2024; 263:130320. [PMID: 38412933 DOI: 10.1016/j.ijbiomac.2024.130320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-ɣ), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 → 4, 1 → 6, 1 → 3, 6, 1 → 3 and 1 → 3, 4, 6 galactopyranose residues, 1 → 3 arabinofuranose residues, 1 → 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.
Collapse
Affiliation(s)
- Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Duyun Jeong
- Department of Food and Food Service Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
4
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
5
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Ma TL, Chang KF, Huang XF, Lai HC, Hsiao CY, Tsai NM. Angelica sinensis extract induces telomere dysfunction, cell cycle arrest, and mitochondria-mediated apoptosis in human glioblastoma cells. CHINESE J PHYSIOL 2023; 66:119-128. [PMID: 37322622 DOI: 10.4103/cjop.cjop-d-23-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GB) is one of the most aggressive and malignant tumors of the central nervous system. Conventional treatment for GB requires surgical resection followed by radiotherapy combined with temozolomide chemotherapy; however, the median survival time is only 12-15 months. Angelica sinensis Radix (AS) is commonly used as a traditional medicinal herb or a food/dietary supplement in Asia, Europe, and North America. This study aimed to investigate the effect of AS-acetone extract (AS-A) on the progression of GB and the potential mechanisms underlying its effects. The results indicated that AS-A used in this study showed potency in growth inhibition of GB cells and reduction of telomerase activity. In addition, AS-A blocked the cell cycle at the G0/G1 phase by regulating the expression of p53 and p16. Furthermore, apoptotic morphology, such as chromatin condensation, DNA fragmentation, and apoptotic bodies, was observed in AS-A-treated cells, induced by the activation of the mitochondria-mediated pathway. In an animal study, AS-A reduced tumor volume and prolonged lifespans of mice, with no significant changes in body weight or obvious organ toxicity. This study confirmed the anticancer effects of AS-A by inhibiting cell proliferation, reducing telomerase activity, altering cell cycle progression, and inducing apoptosis. These findings suggest that AS-A has great potential for development as a novel agent or dietary supplement against GB.
Collapse
Affiliation(s)
- Tsung-Liang Ma
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Chih Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital; Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung; Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan
| |
Collapse
|
7
|
Marzioni D, Mazzucchelli R, Fantone S, Tossetta G. NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer. Mol Biol Rep 2023; 50:873-881. [PMID: 36335520 DOI: 10.1007/s11033-022-08052-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. METHODS AND RESULTS We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. CONCLUSION We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, School of Medicine, United Hospitals, Università Politecnica Delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| |
Collapse
|
8
|
Khaksar S, Kiarostami K, Alinaghi S. The Effects of Methanol Extracts of Hyssopus officinalis on Model of Induced Glioblastoma Multiforme (GBM) in Rats. J Mol Neurosci 2022; 72:2045-2066. [PMID: 35963984 DOI: 10.1007/s12031-022-02058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022]
Abstract
Given the complexity of pathophysiological processes of brain tumors, ineffective therapies, and high mortality rate, new therapeutic options with less toxicity are necessary. Hyssopus officinalis (hyssop) is an aromatic plant with important biological activities. The aim of this study is to assess the anti-cancer effect of hyssop extract on damages of glioblastoma multiforme. In this study, total flavonoids, phenolic content, and quantification of phenolic compound of hyssop extracts were analyzed. In vitro antioxidant properties of hyssop extract were also examined. In addition, cell viability, apoptosis, and cell cycle were evaluated in C6 glioma cell culture. In vivo, the rats were divided randomly into four main groups: intact, control, vehicle, and treatment groups. 1 × 106 C6 rat glioma cells were implanted into the right caudate nucleus of the rat's brain. The treatment group received the methanol extract of hyssop (100 mg/kg) for 7 days. Evolution of locomotor activity, tumor volume, survival rate, activities of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), vascular endothelial growth factor (VEGF) expression, TUNEL-positive cells, p53 and p21 mRNA expression, and histological alterations were performed. The results showed that the methanol extract of hyssop increased the apoptosis and reduced the cell division of C6 glioma cells in cell culture. Moreover, methanol extract decreased the tumor volume and prolonged survival. Also, the activity of SOD and CAT enzymes was reduced in tumor tissue and enhanced in surrounding tissue. TUNEL-positive cells were increased in methanol extract of hyssop group. The expression of p53 and p21 mRNA was upregulated in the treatment group. Moreover, the histological analysis indicated a considerable decrease in invasion of tumor cells and inflammation in the hyssop-treated rats. According to the achieved results, it can be stated that hyssop has sufficient potential to inhibit damage of brain tumors, at least in part, by affecting the oxidative stress and cell proliferation pathways.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shahrzad Alinaghi
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
9
|
Polysaccharides Extracted from Angelica sinensis (Oliv.) Diels Relieve the Malignant Characteristics of Glioma Cells through Regulating the MiR-373-3p-Mediated TGF- β/Smad4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7469774. [PMID: 35855826 PMCID: PMC9288290 DOI: 10.1155/2022/7469774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Objectives Angelica sinensis polysaccharide (ASP) is a traditional herbal medicine accompanied by antitumor potential. This study aims to explore the therapeutic potential of ASP on glioma, as well as the underlying mechanisms involving microRNA-373-3p (miR-373-3p) and the TGF-β/Smad4 signaling pathway. Methods U251 cells (a human glioma cell line) were treated with different concentrations of ASP. miR-373-3p was silenced in U251 cells by the transfection of the miR-373-3p inhibitor. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were detected by wound healing and transwell assays, respectively. The miR-373-3p expression was measured by RT-qPCR. The protein expressions of TGF-β and Smad4 were evaluated by both western blotting and immunofluorescence. Results ASP inhibited the viability, migration, and invasion, and enhanced the apoptosis of U251 cells in a dose-dependent manner. ASP increased miR-373-3p expression and decreased TGF-β and Smad4 expressions in U251 cells. Silencing of miR-373-3p weakened the effects of ASP on inhibiting cell viability, migration, and invasion, as well as promoting cell apoptosis. In addition, deleting miR-373-3p weakened the inhibiting effects of ASP on the TGF-β/Smad4 pathway in U251 cells. Conclusions ASP suppresses the malignant progression of glioma via regulating the miR-373-3p-mediated TGF-β/Smad4 pathway.
Collapse
|
10
|
Liu Y, Chen Z, Li A, Liu R, Yang H, Xia X. The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Front Oncol 2022; 12:936054. [PMID: 35814371 PMCID: PMC9259986 DOI: 10.3389/fonc.2022.936054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-derived phytochemicals have gifted humans with vast therapeutic potentials. Yet, the unique features of the blood-brain barrier significantly limit their accession to the target tissue and thus clinical translation in brain disease treatment. Herein, we explore the medicinal outcomes of both the rare examples of phytochemicals that can easily translocate across the blood-brain barrier and most of the phytochemicals that were reported with brain therapeutic effects, but a bizarre amount of dosage is required due to their chemical nature. Lastly, we offer the nanodelivery platform that is capable of optimizing the targeted delivery and application of the non-permeable phytochemicals as well as utilizing the permeable phytochemicals for boosting novel applications of nanodelivery toward brain therapies.
Collapse
Affiliation(s)
- Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Zhouchun Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Aijie Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Runhan Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Targeting the Axl and mTOR Pathway Synergizes Immunotherapy and Chemotherapy to Butylidenephthalide in a Recurrent GBM. JOURNAL OF ONCOLOGY 2022; 2022:3236058. [PMID: 35646111 PMCID: PMC9132698 DOI: 10.1155/2022/3236058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Background. The role of inherent tumor heterogeneity and an immunosuppressive microenvironment in therapeutic resistance has been determined to be of importance for the better management of glioblastoma multiforme (GBM). Some studies have suggested that combined drugs with divergent mechanisms may be promising in treating recurrent GBM. Methods. Intracranial sustained (Z)-n-butylidenephthalide [(Z)-BP] delivery through Cerebraca Wafers (CWs) to eliminate unresectable brain tumors was combined with the administration of temozolomide (TMZ), pembrolizumab, and cytokine-induced killer (CIK) cells for treating a patient with recurrent glioblastoma. Neurological adverse events and wound healing delay were monitored for estimating tolerance and efficacy. Response Assessment in Neuro-Oncology criteria were applied to evaluate progression-free survival (PFS); further, the molecular characteristics of GBM tissues were analyzed, and the underlying mechanism was investigated using primary culture. Results. Intracerebral (Z)-BP in residual tumors could not only inhibit cancer stem cells but also increase interferon gamma levels in serum, which then led to the regression of GBM and an immune-responsive microenvironment. Targeting receptor tyrosine kinases, including Axl and epidermal growth factor receptor (EGFR), and inhibiting the mechanistic target of rapamycin (mTOR) through (Z)-BP were determined to synergize CIK cells in the presence of pembrolizumab and TMZ in recurrent GBM. Therefore, this well-tolerated regimen could simultaneously block multiple cancer pathways, which allowed extended PFS and improved quality of life for 22 months. Conclusion. Given the several unique functions of (Z)-BP, greater sensitivity of chemotherapy and the synergism of pembrolizumab and CIK cells could have affected the excellent prognosis seen in this patient with recurrent GBM.
Collapse
|
12
|
ZHOU Y, ZHAO D, JIANG X, AN W, GAO X, MA Q. Qilian Huaji decoction exerts an anti-cancer effect on hepatocellular carcinoma by upregulating miR-122. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yongsheng ZHOU
- Xi'an Jiaotong University, China; Inner Mongolia Medical University, China
| | - Dan ZHAO
- Fourth Hospital of Baotou City, China
| | | | - Wen AN
- Ulanqab Central Hospital, China
| | | | | |
Collapse
|
13
|
Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021; 376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
The edible and medicinal plants (EMPs) are becoming an abundant source for cancer prevention and treatment since the natural and healthy trend for modern human beings. Currently, there are more than one hundred species of EMPs widely used and listed by the national health commission of China, and most of them indicate immune or metabolic regulation potential in cancer treatment with numerous studies over the past two decades. In the present review, we focused on the metabolic influence in immunocytes and tumor microenvironment, including immune response, immunosuppressive factors and cancer cells, discussing the immunometabolic potential of EMPs in cancer treatment. There are more than five hundred references collected and analyzed through retrieving pharmacological studies deposited in PubMed by medical subject headings and the corresponding names derived from pharmacopoeia of China as a sole criterion. Finally, the immunometabolism modulation of EMPs was sketch out implying an immunometabolic control in cancer treatment.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
14
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
15
|
Lee JH, Lin SY, Liu JW, Lin SZ, Harn HJ, Chiou TW. n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway. Int J Mol Sci 2021; 22:6339. [PMID: 34199295 PMCID: PMC8231882 DOI: 10.3390/ijms22126339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Si-Yin Lin
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Jen-Wei Liu
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| |
Collapse
|
16
|
Lin H, Zhang X, Zhang X, Xia S. Identification of the metabolites of n-butylidenephthalide in rat and human liver microsomes by liquid chromatography-high-resolution mass spectrometry. Biomed Chromatogr 2021; 35:e5115. [PMID: 33713459 DOI: 10.1002/bmc.5115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/05/2022]
Abstract
n-Butylidenephthalide (NBDP) is one of the bioactive constituents originally isolated from Ligusticum chuanxiong Hort. The aim of this study was to study the metabolic profiles of NBDP in rat and human liver microsomes. NBDP was individually incubated with liver microsomes of rat and human at 37°C for 1 h and the samples incubated were analyzed by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry. The identities of the metabolites were identified by accurate masses, product ions and retention times. Under the current conditions, a total of 14 metabolites were detected and identified. M12, M13 and M14 were biosynthesized and unambiguously characterized by nuclear magnetic resonance spectroscopy. All the metabolites can be detected in rat liver microsomes, whereas in human liver microsomes, M1, M3, M4, M5, M6 and M7 were not detected. Our results demonstrated that the metabolic pathways of NBDP included hydroxylation, hydration, hydrolysis and glutathione conjugation. This study provides an overview of the metabolic profiles of NBDP in vitro, which is helpful to understand the action of this compound.
Collapse
Affiliation(s)
- Hairong Lin
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Xiulan Zhang
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Xiuqin Zhang
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Shixin Xia
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong Province, China
| |
Collapse
|
17
|
Zhao SL, Fu F, Jia YR, Yu XA, Yu BY, Li RS. Quality assessment and traceability study of Angelicae Sinensis Radix via binary chromatography, triple quadrupole tandem mass spectrometry, and multivariate statistical analysis. J Sep Sci 2020; 44:1062-1071. [PMID: 33378573 DOI: 10.1002/jssc.202001087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
Angelicae Sinensis Radix is a world-renowned herbal medicine originating in China. Owing to many environmental and geographical factors, Angelicae Sinensis Radix from various origins may have a difference in the content of ingredients, which made the confusion in the clinical practice and market. Herein, a binary chromatographic fingerprinting analysis method is developed via hydrophilic interaction chromatography and reversed-phase liquid chromatography to obtain more chemical information. Following that, an ultra-performance liquid chromatography with a triple quadrupole mass spectrometry method is furnished to simultaneously detect 17 ingredients of Angelicae Sinensis Radix gathered from six geographic zones in China. Eventually, the principal component analysis is successfully carried out to classify and differentiate the Angelicae Sinensis Radix from different origins, meanwhile the quantitative volcano plots was used to observe the changes of ingredient trends vividly. Accordingly, the proposed binary chromatography and triple quadrupole tandem mass spectrometry coupled with multivariate statistical analysis can be utilized as a facile and reliable method for origin tracing and quality control of Angelicae Sinensis Radix.
Collapse
Affiliation(s)
- Shuang-Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fei Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu-Ran Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,Shenzhen Institute for Drug Control, Shenzhen, P.R. China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,Shenzhen Institute for Drug Control, Shenzhen, P.R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ren-Shi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
18
|
Pogostemon cablin Triggered ROS-Induced DNA Damage to Arrest Cell Cycle Progression and Induce Apoptosis on Human Hepatocellular Carcinoma In Vitro and In Vivo. Molecules 2020; 25:molecules25235639. [PMID: 33266043 PMCID: PMC7731310 DOI: 10.3390/molecules25235639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of the study was to elucidate the anti-hepatoma effects and mechanisms of Pogostemon cablin essential oils (PPa extract) in vitro and in vivo. PPa extract exhibited an inhibitory effect on hepatocellular carcinoma (HCC) cells and was less cytotoxic to normal cells, especially normal liver cells, than it was to HCC cells, exerting a good selective index. Additionally, PPa extract inhibited HCC cell growth by blocking the cell cycle at the G0/G1 phase via p53 dependent or independent pathway to down regulated cell cycle regulators. Moreover, PPa extract induced the FAS-FASL-caspase-8 system to activate the extrinsic apoptosis pathway, and it increased the bax/bcl-2 ratio and reduced ΔΨm to activate the intrinsic apoptosis pathway that might be due to lots of reactive oxygen species (ROS) production which was induced by PPa extract. In addition, PPa extract presented to the potential to act synergistically with sorafenib to effectively inhibit HCC cell proliferation through the Akt/mTOR pathway and reduce regrowth of HCC cells. In an animal model, PPa extract suppressed HCC tumor growth and prolonged lifespan by reducing the VEGF/VEGFR axis and inducing tumor cell apoptosis in vivo. Ultimately, PPa extract demonstrated nearly no or low system-wide, physiological, or pathological toxicity in vivo. In conclusion, PPa extract effectively inhibited HCC cell growth through inducing cell cycle arrest and activating apoptosis in vitro and in vivo. Furthermore, PPa extract exhibits less toxicity toward normal cells and organs than it does toward HCC cells, which might lead to fewer side effects in clinical applications. PPa extract may be developed into a clinical drug to suppress tumor growth or functional food to prevent HCC initiation or chemoprotection of HCC recurrence.
Collapse
|
19
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
20
|
Lin YL, Huang XF, Chang KF, Liao KW, Tsai NM. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine 2020; 15:749-760. [PMID: 32099363 PMCID: PMC6999785 DOI: 10.2147/ijn.s235815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background n-Butylidenephthalide (BP) has anti-tumor effects on glioblastoma. However, the limitation of BP for clinical application is its unstable structure. A polycationic liposomal polyethylenimine (PEI) and polyethylene glycol (PEG) complex (LPPC) has been developed to encapsulate BP for drug structure protection. The purpose of this study was to investigate the anti-cancer effects of the BP/LPPC complex on glioblastoma in vitro and in vivo. Methods DBTRG-05MG tumor bearing xenograft mice were treated with BP and BP/LPPC and then their tumor sizes, survival, drug biodistribution were measured. RG2 tumor bearing F344 rats also treated with BP and BP/LPPC and then their tumor sizes by magnetic resonance imaging for evaluation blood–brain barrier (BBB) across and drug therapeutic effects. After treated with BP/LPPC in vitro, cell uptake, cell cycle and apoptotic regulators were analyzed for evaluation the therapeutic mechanism. Results In athymic mice, BP/LPPC could efficiently suppress tumor growth and prolong survival. In F334 rats, BP/LPPC crossed the BBB and led to tumor shrinkage. BP/LPPC promoted cell cycle arrest at the G0/G1 phase and triggered the extrinsic and intrinsic cell apoptosis pathways resulting cell death. BP/LPPC also efficiently suppressed VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 expression. Conclusion BP/LPPC was rapidly and efficiently transported to the tumor area across the BBB and induced cell apoptosis, anti-angiogenetic and anti-metastatic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Institute of Medicine of Chung Shun Medical University, Taichung 40201, Taiwan, Republic of China
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Institute of Medicine of Chung Shun Medical University, Taichung 40201, Taiwan, Republic of China
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, Republic of China
| |
Collapse
|
21
|
Wang J, Qi F, Wang Z, Zhang Z, Pan N, Huai L, Qu S, Zhao L. A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends 2019; 13:476-487. [PMID: 31866614 DOI: 10.5582/bst.2019.01323] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant intracranial tumor. Due to its high morbidity, high mortality, high recurrence rate, and low cure rate, it has brought great difficulty for treatment. Although the current treatment is multimodal, including surgical resection, radiotherapy, and chemotherapy, it does not significantly improve survival time. The dismal prognosis and inevitable recurrence as well as resistance to chemoradiotherapy may be related to its highly cellular heterogeneity and multiple subclonal populations. Traditional Chinese medicine has its own unique advantages in the prevention and treatment of it. A comprehensive literature search of anti-glioblastoma active ingredients and derivatives from traditional Chinese medicine was carried out in literature published in PubMed, Scopus, Web of Science Cochrane library, CNKI, Wanfang, and VIP database. Hence, this article systematically reviews experimental research progress of some traditional Chinese medicine in treatment of glioblastoma from two aspects: strengthening vital qi and eliminating pathogenic qi. Among, strengthening vital qi medicine includes panax ginseng, licorice, lycium barbarum, angelica sinensis; eliminating pathogenic medicine includes salvia miltiorrhiza bunge, scutellaria baicalensis, coptis rhizoma, thunder god vine, and sophora flavescens. We found that the same active ingredient can act on different signaling pathways, such as ginsenoside Rg3 inhibited proliferation and induced apoptosis via the AKT, MEK signal pathway. Hence, this multi-target, multi-level pathway may bring on a new dawn for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jinjing Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhikun Zhang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ni Pan
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lei Huai
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Shuyu Qu
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| |
Collapse
|
22
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
23
|
Lou Q, Liu R, Yang X, Li W, Huang L, Wei L, Tan H, Xiang N, Chan K, Chen J, Liu H. miR-448 targets IDO1 and regulates CD8 + T cell response in human colon cancer. J Immunother Cancer 2019; 7:210. [PMID: 31391111 PMCID: PMC6686234 DOI: 10.1186/s40425-019-0691-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Background Indoleamine 2,3-dioxygenase 1 (IDO1) is a critical regulator of T cell function, contributing to immune tolerance. Upregulation of IDO1 has been found in many cancer types; however, the regulatory mechanisms and clinical significance of IDO1 in colon cancer are still unclear. Here, we investigated the role of dysregulated microRNA (miRNA) targeting IDO1 in the colon cancer microenvironment. Methods We elucidated IDO1 function by performing cell-based assays and establishing transplanted tumor models in BALB/c mice and BALB/c nude mice. We evaluated IDO1 protein expression by immunohistochemistry (IHC) in a tissue microarray (TMA) and analyzed IDO1 mRNA expression with The Cancer Genome Atlas (TCGA). We screened miRNAs targeting IDO1 by using a dual luciferase reporter assay. We tested the function of microRNA-448 (miR-448) by using western blotting (WB) and fluorescence-activated cell sorting (FACS). Results We demonstrated that stable IDO1 overexpression enhanced xenograft tumor growth in BALB/c mice but not in BALB/c nude mice. We also revealed the involvement of posttranscriptional regulation of IDO1 in colon cancer by observing IDO1 protein levels and mRNA levels. Furthermore, ectopic expression of miRNA mimics suggested that miR-448 could significantly downregulate IDO1 protein expression. Notably, we proved that miR-448 suppressed the apoptosis of CD8+ T cells by suppressing IDO1 enzyme function. Conclusion Our findings indicated that IDO1 suppressed the CD8+ T cell response in colon cancer. miR-448, as a tumor-suppressive miRNA, enhanced the CD8+ T cell response by inhibiting IDO1 expression. The results provide a theoretical basis for the development of new immunotherapy for the treatment of colon cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0691-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Lou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Ruixian Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Weiqian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Lanlan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Huiliu Tan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Nanlin Xiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Kawo Chan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
24
|
Ethanol Extract of Securidaca longipedunculata Induces Apoptosis in Brain Tumor (U87) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9826590. [PMID: 30931334 PMCID: PMC6413385 DOI: 10.1155/2019/9826590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Incidence of cancer is estimated to be on the increase and current anticancer drugs are characterized by narrow margin of safety and side effects. There is the need to explore new drugs especially from plants since plants serve as major source of drugs. Securidaca longipedunculata Fresen plant is called the mother of all medicines in northern Nigeria and is used traditionally in the treatment of cancers by most traditional medicine practitioners in the region. This study is aimed at evaluating the anticancer activity of the plant extract using U87 brain tumor cell line. Ethanol extract of its root bark was prepared and fractionated by silica gel column chromatography. In vitro activity of the extract and fractions were assessed on the viability of U87 malignant brain tumor cell line by using hemacytometer, annexin V-PE and 7AAD flow cytometry and western blot detection of Poly-ADP-Ribose-Polymerase (PARP) cleavage. The results showed that the extract significantly (p<0.01) inhibited proliferation of U87 cell line with IC50 of 20.535 μg/ml. Apoptosis was induced by the extract (41.53 ± 10.33%) and the polar fraction (47.3 ± 2.7%) via cleavage of PARP. It was concluded that the ethanol extract of S. longipedunculata root bark inhibited proliferation of U87 cell line and induced apoptosis by cleavage of PARP, thus supporting folkloric use of the plant in the management of cancers.
Collapse
|
25
|
Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Int J Mol Sci 2019; 20:ijms20010200. [PMID: 30625996 PMCID: PMC6337644 DOI: 10.3390/ijms20010200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a type of brain tumor that is notorious for its aggressiveness and invasiveness, and the complete removal of GBM is still not possible, even with advanced diagnostic strategies and extensive therapeutic plans. Its dismal prognosis and short survival time after diagnosis make it a crucial public health issue. Understanding the molecular mechanisms underlying GBM may inspire novel and effective treatments against this type of cancer. At a molecular level, almost all tumor cells exhibit telomerase activity (TA), which is a major means by which they achieve immortalization. Further studies show that promoter mutations are associated with increased TA and stable telomere length. Moreover, some tumors and immortalized cells maintain their telomeres with a telomerase-independent mechanism termed the “alternative lengthening of telomeres” (ALT), which relates to the mutations of the α-thalassemia/mental retardation syndrome X-linked protein (ATRX), the death-domain associated protein (DAXX) and H3.3. By means of the mutations of the telomerase reverse transcriptase (TERT) promoter and ATRX/DAXX, cancers can immortalize and escape cell senescence and apoptosis. In this article, we review the evidence for triggering GBM cell death by targeting telomerase and the ALT pathway, with an extra focus on a plant-derived compound, butylidene phthalide (BP), which may be a promising novel anticancer compound with good potential for clinical applications.
Collapse
|
26
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
27
|
Wang L, Xia Y, Chen T, Zeng Y, Li L, Hou Y, Li W, Liu Z. Sanyang Xuedai enhances the radiosensitivity of human non-small cell lung cancer cells via increasing iNOS/NO production. Biomed Pharmacother 2018; 102:618-625. [PMID: 29602129 DOI: 10.1016/j.biopha.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE In this research, we aimed at finding out how San Yang Xue Dai (SYKT) promotes the radiosensitivity of non-small cell lung cancer (NSCLC) cell line NCI-H460. METHODS Survival rate of NSCLC cells (A549, NCI-H460, NCI-H1650 and NCI-H1975) after the SYKT treatment or irradiation (IR) was calculated by the MTT assay. The radiosensitization of SYKT (0.5 g/mL and 1.0 g/mL) on cell line NCI-H460 and the radioresistant cell line NCI-H460R was studied by MTT assay and clone formation assay. The protein expression levels of iNOS, Cyclin B1 and CDC2 were determined by western blot, and the expression of NO was measured by Griess method. Finally, cell cycle and apoptotic rate of NSCLC cell line NCI-H460 were accessed by flow cytometry assay. BrdU staining was also applied to detect the cell proliferation after IR with or without SYKT treatment. RESULTS The IC10 value of SYKT for NCI-H460 cells was 1.03 g/mL. After 1.0 g/mL SYKT treatment, the radiosensitivity of NCI-H460R cells was enhanced. The level of iNOS in the cells was found decreased after IR. We also found that SYKT could enhance iNOS and NO expressions while inhibit cyclin B1 and CDC2 expressions in radiation resistant cells. Combining β-irradiation with SYKT caused cell cycle arrest in G2/M phase and increased cell apoptosis. CONCLUSION SYKT resensitized radioresistant NCI-H460R cells via increasing cell apoptosis and cell cycle arrest. This was due to an elevated NO level caused by accumulating iNOS and effects of SYKT on radiosensitization of NSCLC should be further investigated in clinical application.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiotherapy Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China
| | - Yaoxiong Xia
- Department of Radiotherapy Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China
| | - Ting Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China
| | - Yueqin Zeng
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Lan Li
- Department of Radiotherapy Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China
| | - Yu Hou
- Department of Radiotherapy Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China
| | - Wenhui Li
- Department of Radiotherapy Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, Yunnan, China.
| | - Zhijie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650000, Yunnan, China.
| |
Collapse
|
28
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
29
|
Ma H, Li L, Dou G, Wang C, Li J, He H, Wu M, Qi H. Z-ligustilide restores tamoxifen sensitivity of ERa negative breast cancer cells by reversing MTA1/IFI16/HDACs complex mediated epigenetic repression of ERa. Oncotarget 2018; 8:29328-29345. [PMID: 28415616 PMCID: PMC5438733 DOI: 10.18632/oncotarget.16440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/02/2017] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence indicates epigenetic modification represses estrogen receptor α (ERα) and contributes to the resistance to tamoxifen in aggressive ERα-negative (ERα−) breast cancer. Z-ligustilide is a major compound in Radix Angelica sinensis, an herb from traditional Chinese medicine (TCM) most frequently prescribed for breast cancer. However, the role of Z-ligustilide in ERα− breast cancer and epigenetic modification remains largely unknown. Herein we showed, for the first time, that Z-ligustilide restored the growth inhibition of tamoxifen on ERα− breast cancer cells. Apoptosis and S and G2/M phases cell cycle arrest were induced by combinatorial Z-ligustilide and tamoxifen. Importantly, Z-ligustilide reactivated the ERα expression and transcriptional activity, which is proved to be indispensable for restoring the sensitivity to tamoxifen. Interestingly, Z-ligustilide increased Ace-H3 (lys9/14) enrichment in the ERα promoter. Moreover, Z-ligustilide dramatically reduced the enrichment of metastasis-associated protein 1 (MTA1) as well as IFN-γ-inducible protein 16 (IFI16) and histone deacetylases (HDACs) onto the ERα promoter. Meanwhile, Z-ligustilide downregulated MTA1, IFI16 and HDACs, which caused destabilization of the corepressor complex. Collectively, our study not only highlights Z-ligustilide as a novel epigenetic modulator, but also opens new possibilities from TCM for treating aggressive tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Hui Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Guojun Dou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Mingxia Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
30
|
The Molecular Mechanisms of Plant-Derived Compounds Targeting Brain Cancer. Int J Mol Sci 2018; 19:ijms19020395. [PMID: 29385679 PMCID: PMC5855617 DOI: 10.3390/ijms19020395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and malignant forms of brain tumors. Despite recent advances in operative and postoperative treatments, it is almost impossible to perform complete resection of these tumors owing to their invasive and diffuse nature. Several natural plant-derived products, however, have been demonstrated to have promising therapeutic effects, such that they may serve as resources for anticancer drug discovery. The therapeutic effects of one such plant product, n-butylidenephthalide (BP), are wide-ranging in nature, including impacts on cancer cell apoptosis, cell cycle arrest, and cancer cell senescence. The compound also exhibits a relatively high level of penetration through the blood-brain barrier (BBB). Taken together, its actions have been shown to have anti-proliferative, anti-chemoresistance, anti-invasion, anti-migration, and anti-dissemination effects against GBM. In addition, a local drug delivery system for the subcutaneous and intracranial implantation of BP wafers that significantly reduce tumor size in xenograft models, as well as orthotopic and spontaneous brain tumors in animal models, has been developed. Isochaihulactone (ICL), another kind of plant product, possesses a broad spectrum of pharmacological activities, including impacts on cancer cell apoptosis and cell cycle arrest, as well as anti-proliferative and anti-chemoresistance effects. Furthermore, these actions have been specifically shown to have cancer-fighting effects on GBM. In short, the results of various studies reviewed herein have provided substantial evidence indicating that BP and ICH are promising novel anticancer compounds with good potential for clinical applications.
Collapse
|
31
|
Anti-Tumor and Radiosensitization Effects of N-Butylidenephthalide on Human Breast Cancer Cells. Molecules 2018; 23:molecules23020240. [PMID: 29370116 PMCID: PMC6017952 DOI: 10.3390/molecules23020240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/17/2022] Open
Abstract
N-Butylidenephthalide (BP), which is extracted from a traditional Chinese medicine, Radix Angelica Sinensis (danggui), displays antitumor activity against various cancer cell lines. The purpose of this study was to investigate the cytotoxic and radiosensitizing effect of BP and the underlying mechanism of action in human breast cancer cells. BP induces apoptosis in breast cancer cells, which was revealed by the TUNEL assay; the activation of caspase-9 and PARP was detected by western blot. In addition, BP-induced G2/M arrest was examined by flow cytometry and the expression levels of the G2/M regulatory protein were detected by western blot. BP also suppresses the migration and invasion of breast cancer cells, which was tested by wound healing and the matrigel invasion assay; the involvement of EMT-related gene expressions was detected by real-time PCR. Furthermore, BP enhanced the radiosensitivity of breast cancer cells, which was measured by the colony formation assay and comet assay, where the foci of γ-H2AX after radiation significantly increased in BP pretreated cells and was evidenced by immunocytochemistry staining and western blot. The homologous recombination (HR) repair protein Rad51 was down-regulated after BP pretreatment. These results indicate that BP might be a potential chemotherapeutic and radiosensitizing agent for breast cancer therapy.
Collapse
|
32
|
Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. Int J Mol Sci 2017; 18:ijms18112265. [PMID: 29143796 PMCID: PMC5713235 DOI: 10.3390/ijms18112265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated β-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34+ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.
Collapse
|
33
|
Chen WR, Yu Y, Zulfajri M, Lin PC, Wang CC. Phthalide Derivatives from Angelica Sinensis Decrease Hemoglobin Oxygen Affinity: A New Allosteric-Modulating Mechanism and Potential Use as 2,3-BPG Functional Substitutes. Sci Rep 2017; 7:5504. [PMID: 28710372 PMCID: PMC5511246 DOI: 10.1038/s41598-017-04554-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Angelica sinensis (AS), one of the most versatile herbal medicines remains widely used due to its multi-faceted pharmacologic activities. Besides its traditional use as the blood-nourishing tonic, its anti-hypertensive, anti-cardiovascular, neuroprotective and anti-cancer effects have been reported. Albeit the significant therapeutic effects, how AS exerts such diverse efficacies from the molecular level remains elusive. Here we investigate the influences of AS and four representative phthalide derivatives from AS on the structure and function of hemoglobin (Hb). From the spectroscopy and oxygen equilibrium experiments, we show that AS and the chosen phthalides inhibited the oxygenated Hb from transforming into the high-affinity “relaxed” (R) state, decreasing Hb’s oxygen affinity. It reveals that phthalides cooperate with the endogenous Hb modulator, 2,3-bisphosphoglycerate (2,3-BPG) to synergetically regulate Hb allostery. From the docking modeling, phthalides appear to interact with Hb mainly through its α1/α2 interface, likely strengthening four (out of six) Hb “tense” (T) state stabilizing salt-bridges. A new allosteric-modulating mechanism is proposed to rationalize the capacity of phthalides to facilitate Hb oxygen transport, which may be inherently correlated with the therapeutic activities of AS. The potential of phthalides to serve as 2,3-BPG substitutes/supplements and their implications in the systemic biology and preventive medicine are discussed.
Collapse
Affiliation(s)
- Wei-Ren Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Youqing Yu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Muhammad Zulfajri
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Ping-Cheng Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China. .,Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China.
| |
Collapse
|
34
|
n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma. Int J Mol Sci 2017; 18:ijms18020372. [PMID: 28208648 PMCID: PMC5343907 DOI: 10.3390/ijms18020372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive types of brain tumor. Due to its highly recurrent rate and poor prognosis, the overall survival time with this type of tumor is only 20–21 months. Recent knowledge suggests that its recurrence is in part due to the presence of cancer stem cells (CSCs), which display radioresistant, chemoresistant, self-renewal and tumorigenic potential. Enhancers of Zeste 2 (EZH2) and AXL receptor tyrosine kinase (AXL) are both highly expressed in GBM. Additionally, they are an essential regulator involved in CSCs maintenance, migration, invasion, epithelial-to-mesenchymal transition (EMT), stemness, metastasis and patient survival. In this study, we used a small molecule, n-butylidenephthalide (BP), to assess the anti-GBM stem-like cells potential, and then tried to find out the associated genes involved with regulation in migration and invasion. We demonstrated that BP reduced the expression of AXL and stemness related genes in a dose-dependent manner. The migratory and invasive capabilities of GBM stem-like cells could be reduced by AXL/EZH2. Finally, in the overexpression of AXL, EZH2 and Sox2 by transfection in GBM stem-like cells, we found that AXL/EZH2/TGF-β1, but not Sox2, might be a key regulator in tumor invasion, migration and EMT. These results might help in the development of a new anticancer compound and can be a target for treating GBM.
Collapse
|
35
|
Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MIR. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Curr Genomics 2017; 18:106-131. [PMID: 28367072 PMCID: PMC5345333 DOI: 10.2174/1389202917666160808125645] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.
Collapse
|
36
|
A Nucleotide Signature for the Identification of Angelicae Sinensis Radix (Danggui) and Its Products. Sci Rep 2016; 6:34940. [PMID: 27713564 PMCID: PMC5054691 DOI: 10.1038/srep34940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
It is very difficult to identify Angelicae sinensis radix (Danggui) when it is processed into Chinese patent medicines. The proposed internal transcribed spacer 2 (ITS2) is not sufficient to resolve heavily processed materials. Therefore, a short barcode for the identification of processed materials is urgently needed. In this study, 265 samples of Angelicae sinensis radix and adulterants were collected. The ITS2 region was sequenced, and based on one single nucleotide polymorphism(SNP) site unique to Angelica sinensis, a nucleotide signature consisting of 37-bp (5′-aatccgcgtc atcttagtga gctcaaggac ccttagg-3′) was developed. It is highly conserved and specific within Angelica sinensis while divergent among other species. Then, we designed primers (DG01F/DG01R) to amplify the nucleotide signature region from processed materials. 15 samples procured online were analysed. By seeking the signature, we found that 7 of them were counterfeits. 28 batches of Chinese patent medicines containing Danggui were amplified. 19 of them were found to contain the signature, and adulterants such as Ligusticum sinense, Notopterygium incisum, Angelica decursiva and Angelica gigas were detected in other batches. Thus, this nucleotide signature, with only 37-bp, will broaden the application of DNA barcoding to identify the components in decoctions, Chinese patent medicines and other products with degraded DNA.
Collapse
|
37
|
Bu Y, Jia QA, Ren ZG, Xue TC, Zhang QB, Zhang KZ, Zhang QB, You Y, Tian H, Qin LX, Tang ZY. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells. Oncotarget 2016; 6:40068-80. [PMID: 26517671 PMCID: PMC4741880 DOI: 10.18632/oncotarget.5313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/09/2015] [Indexed: 01/27/2023] Open
Abstract
Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells.
Collapse
Affiliation(s)
- Yang Bu
- Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Qing-An Jia
- Cancer Center, Institutes of Biomedical Sciences, General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Ke-Zhi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Qiang-Bo Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hui Tian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Lun-Xiu Qin
- Cancer Center, Institutes of Biomedical Sciences, General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
38
|
Zhang Y, Zhou T, Wang H, Cui Z, Cheng F, Wang KP. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 2016; 147:401-408. [DOI: 10.1016/j.carbpol.2016.04.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 01/22/2023]
|
39
|
CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochim Biophys Acta Gen Subj 2016; 1860:28-35. [DOI: 10.1016/j.bbagen.2015.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022]
|
40
|
Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion. Oncogene 2015; 35:2156-65. [PMID: 26257061 PMCID: PMC4855077 DOI: 10.1038/onc.2015.277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the residual tumour. However, because of its local low concentration and short diffusion distance, patient survival improves non-significantly. Axl is an essential regulator in cancer metastasis and patient survival. In this study, we developed a controlled-release polyanhydride polymer loading a novel small molecule, n-butylidenephthalide (BP), which is not only increasing local drug concentration and extending its diffusion distance but also reducing tumour invasion, mediated by reducing Axl expression. First, we determined that BP inhibited the expression of Axl in a dose- and time-dependent manner and reduced the migratory and invasive capabilities of GBM cells. In addition, BP downregulated matrix metalloproteinase activity, which is involved in cancer cell invasion. Furthermore, we demonstrated that BP regulated Axl via the extracellular signal-regulated kinases pathway. Epithelial-to-mesenchymal transition (EMT) is related to epithelial cells in the invasive migratory mesenchymal cells that underlie cancer progression; we demonstrated that BP reduced the expression of EMT-related genes. Furthermore, we used the overexpression of Axl in GBM cells to prove that Axl is a crucial target in the inhibition of GBM EMT, migration and invasion. In an in vivo study, we demonstrated that BP inhibited tumour growth and suppressed Axl expression in a dose-dependent manner according to a subcutaneous tumour model. Most importantly, in an intracranial tumour model with BP wafer in situ treatment, we demonstrated that the BP wafer not only significantly increased the survival rate but also decreased Axl expression, and inhibited tumour invasion. These results contribute to the development of a BP wafer for a novel therapeutic strategy for treating GBM invasion and increasing survival in clinical subjects.
Collapse
|
41
|
Wang L, Jiang R, Song SD, Hua ZS, Wang JW, Wang YP. Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells. Asian Pac J Cancer Prev 2015; 16:3715-21. [DOI: 10.7314/apjcp.2015.16.9.3715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Huang MH, Lin SZ, Lin PC, Chiou TW, Harn YW, Ho LI, Chan TM, Chou CW, Chuang CH, Su HL, Harn HJ. Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability. Tumour Biol 2014; 35:4875-84. [PMID: 24464249 DOI: 10.1007/s13277-014-1639-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022] Open
Abstract
Developing an effective drug for treating human glioblastoma multiform (GBM) has been investigated persistently. A pure compound butylidenephthalide (BP), isolated from Angelica sinensis, has been shown the activities to arrest the growth and initiate apoptosis of GBM in our previous reports. In this study, we further demonstrated that BP treatment accelerates the cell senescence in a dose-dependent manner in vitro and in vivo. S-phase kinase-associated protein 2 (Skp2), a proto-oncogene, is generally upregulated in cancer. We found that it was downregulated in BP-treated GBM cells. The downregulation of Skp2 is parallel with increasing p16 and p21 expression which causes G0/G1 arrest and tumor cell senescence. We also found that restoring the Skp2 protein level by exogenous overexpression prevents the BP-induced cell senescence. Therefore, the linkage between cell senescence and Skp2 expression is strengthened. Promoter binding analysis further detailed that the BP-mediated SP1 reduction might involve in the Skp2 downregulation. In summary, these results emphasize that BP-triggered senescence in GBM cells is highly associated with its control on Skp2 regulation.
Collapse
Affiliation(s)
- Mao-Hsuan Huang
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Niu C, Wang J, Ji L, Wang Z. Protection of Angelica sinensis (Oliv) Diels against hepatotoxicity induced by Dioscorea bulbifera L. and its mechanism. Biosci Trends 2014; 8:253-9. [DOI: 10.5582/bst.2014.01076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Liu J, Xu CY, Cai SZ, Zhou Y, Li J, Jiang R, Wang YP. Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells. Asian Pac J Cancer Prev 2013; 14:6549-56. [DOI: 10.7314/apjcp.2013.14.11.6549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:394636. [PMID: 24319475 PMCID: PMC3844186 DOI: 10.1155/2013/394636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.
Collapse
|
46
|
Pacifico S, Gallicchio M, Lorenz P, Potenza N, Galasso S, Marciano S, Fiorentino A, Stintzing FC, Monaco P. Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food Chem Toxicol 2013; 62:628-37. [PMID: 24095960 DOI: 10.1016/j.fct.2013.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/05/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
Abstract
In the course of a bioactivity screening of Mediterranean plants, the assessment of neuroprotective properties of Laurus nobilis L. was of interest. Dried leaves were extracted by sonication using CHCl3 as solvent. The CHCl3 parental extract (CHCl3-pe) was fractionated to yield CHCl3 (LnC-1), EtOAc (LnC-2), MeOH (LnC-3) fractions. Each fraction underwent an extensive screening towards human neuroblastoma (SK-N-BE(2)-C, and SH-SY5Y) and rat glioma (C6) cell lines. MTT and SRB cytotoxicity tests were performed. The effect on the plasma membrane integrity was evaluated by assessment of LDH release. The caspase-3 activation enzyme and DNA fragmentation were also evaluated. The oxidant/antioxidant ability of all the extracts were evaluated using different methods. Furthermore, a metabolite profiling of the investigated extracts was carried out by GC-EI-MS. CHCl3-pe contained terpenes, allylphenols, and α-tocopherol. Dehydrocostus lactone was the main constituent. As result of the fractionation technique, the LnC-1 extract was mainly composed of α-tocopherol, whereas the LnC-2 fraction was enriched in guaiane and eudesmane terpenes. The most cytotoxic LnC-2 fraction induced apoptosis; it was ineffective in preventing in vitro free radicals production. Overall, the experimental results support a possible role of LnC-2 preparation as a chemopreventive agent for neuronal cells or other cells of the CNS.
Collapse
Affiliation(s)
- Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jia QA, Wang ZM, Ren ZG, Bu Y, Xie XY, Wang YH, Zhang L, Zhang QB, Xue TC, Deng LF, Tang ZY. Herbal compound "Songyou Yin" attenuates hepatoma cell invasiveness and metastasis through downregulation of cytokines secreted by activated hepatic stellate cells. Altern Ther Health Med 2013; 13:89. [PMID: 23622143 PMCID: PMC3639812 DOI: 10.1186/1472-6882-13-89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Background Activated hepatic stellate cells (aHSCs) play an important role in the progression of hepatocellular carcinoma (HCC). Here, we determined if cytokines secreted in response to the herbal compound “Songyou Yin” (SYY) treatment of aHSCs could influence invasiveness and metastatic capabilities of hepatoma cells. Methods Primary rat hepatic stellate cells (HSCs) were isolated, activated, divided into SYY treated and untreated (nSYY) groups, and conditioned media (CM-SYY and CM-nSYY, respectively) were collected. The hepatoma cell line, McA-RH7777 was cultured for 4 weeks with SYY, CM-SYY, and CM-nSYY, designated McA-SYY, McA-SYYCM and McA-nSYYCM. The invasiveness and metastatic capabilities were evaluated using Matrigel invasion assay in vitro and pulmonary metastasis in vivo. Matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, and vimentin protein levels in McA-SYYCM and McA-nSYYCM were evaluated by Western blot. Cytokine levels in conditioned media were tested using enzyme-linked immunosorbent assay (ELISA). Results Matrigel invasion assay indicated that the number of McA-SYYCM cells passing through the basement membrane was less than in McA-nSYYCM cells (P < 0.01). Similar results were also observed in vivo for lung metastasis. McA-SYYCM cells showed less pulmonary metastasis capabilities than McA-nSYYCM cells (P < 0.001). The reduced expression of MMP-2 and reversed epithelial to mesenchymal transition with E-cadherin upregulation, and N-cadherin and vimentin downregulation were also found in McA-SYYCM compared to McA-nSYYCM. Metastasis-promoting cytokines hepatocyte growth factor, interleukin-6, transforming growth factor-β1, and vascular endothelial growth factor were markedly decreased in CM-SYY compared to CM-nSYY. Conclusions SYY attenuates hepatoma cell invasiveness and metastasis capabilities through downregulating cytokines secreted by activated hepatic stellate cells.
Collapse
|
48
|
Su ZY, Khor TO, Shu L, Lee JH, Saw CLL, Wu TY, Huang Y, Suh N, Yang CS, Conney AH, Wu Q, Kong ANT. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem Res Toxicol 2013; 26:477-85. [PMID: 23441843 DOI: 10.1021/tx300524p] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer development has been linked to epigenetic modifications of cancer oncogenes and tumor suppressor genes; in advanced metastatic cancers, severe epigenetic modifications are present. We previously demonstrated that the progression of prostate tumors in TRAMP mice is associated with methylation silencing of the Nrf2 promoter and a reduced level of transcription of Nrf2 and Nrf2 target genes. Radix Angelicae Sinensis (RAS; Danggui) is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Z-Ligustilide (Lig) is one of the bioactive components of RAS. We investigated the potential of Lig and RAS to restore Nrf2 gene expression through epigenetic modification in TRAMP C1 cells. Lig and RAS induced the mRNA and protein expression of endogenous Nrf2 and Nrf2 downstream target genes, such as HO-1, NQO1, and UGT1A1. Bisulfite genomic sequencing revealed that Lig and RAS treatment decreased the level of methylation of the first five CpGs of the Nrf2 promoter. A methylation DNA immunoprecipitation assay demonstrated that Lig and RAS significantly decreased the relative amount of methylated DNA in the Nrf2 gene promoter region. Lig and RAS also inhibited DNA methyltransferase activity in vitro. Collectively, these results suggest that Lig and RAS are able to demethylate the Nrf2 promoter CpGs, resulting in the re-expression of Nrf2 and Nrf2 target genes. Epigenetic modifications of genes, including Nrf2, may therefore contribute to the overall health benefits of RAS, including the anticancer effect of RAS and its bioactive component, Lig.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu SP, Harn HJ, Chien YJ, Chang CH, Hsu CY, Fu RH, Huang YC, Chen SY, Shyu WC, Lin SZ. n-Butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation. PLoS One 2012; 7:e44024. [PMID: 22970157 PMCID: PMC3436873 DOI: 10.1371/journal.pone.0044024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022] Open
Abstract
In 2006, induced pluripotent stem (iPS) cells were generated from somatic cells by introducing Oct4, Sox2, c-Myc and Klf4. The original process was inefficient; maintaining the pluripotency of embryonic stem (ES) and iPS cell cultures required an expensive reagent–leukemia induced factor (LIF). Our goal is to find a pure compound that not only maintains ES and iPS cell pluripotency, but also increases iPS cell generation efficiency. From 15 candidate compounds we determined that 10 µg/ml n-Butylidenephthalide (BP), an Angelica sinensis extract, triggers the up-regulation of Oct4 and Sox2 gene expression levels in MEF cells. We used ES and iPS cells treated with different concentrations of BP to test its usefulness for maintaining stem cell pluripotency. Results indicate higher expression levels of several stem cell markers in BP-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryoid body formation and differentiation results confirm that BP containing medium culture was capable of maintaining ES cell pluripotency after six time passage. Microarray analysis data identified PPAR, ECM, and Jak-Stat signaling as the top three deregulated pathways. We subsequently determined that phosphorylated Jak2 and phosphorylated Stat3 protein levels increased following BP treatment and suppressed with the Jak2 inhibitor, AG490. The gene expression levels of cytokines associated with the Jak2-Stat3 pathway were also up-regulated. Last, we used pou5f1-GFP MEF cells to test iPS generation efficiency following BP treatment. Our data demonstrate the ability of BP to maintain stem cell pluripotency via the Jak2-Stat3 pathway by inducing cytokine expression levels, at the same time improving iPS generation efficiency.
Collapse
Affiliation(s)
- Shih-Ping Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Meng H, Guo J, Sun JY, Pei JM, Wang YM, Zhu MZ, Huang C. Angiogenic Effects of the Extracts from Chinese Herbs: Angelica and ChuanXiong. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 36:541-54. [PMID: 18543387 DOI: 10.1142/s0192415x08005965] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Angelica and ChuanXiong are used to cure ischemic heart disease in China. Previous studies found that these two herbs could increase myocardial blood flow, oxygen-supply and keep myocardial oxygen balance, etc. However, the mechanisms of angiogenic effects of these two herbs are not well-known. The purpose of this study was to assess the effects of Angelica and ChuanXiong on vascular endothelial growth factor (VEGF) expression in rat myocardial infarction, on endothelial cell proliferation and quantity of vessels on chick embryo chorioallantoic membrane (CAM). In this study, rats were divided randomly into either pre-treatment or acute-treatment group and sacrificed at the end of the treatments. VEGF expression using Western blot analysis was significantly increased in the groups pre-treated with ChuanXiong and Angelica when compared to the control group ( p < 0.05). There was significant increase in VEGF expression in the rats treated acutely with Angelica ( p < 0.05). In the contrary, the rats treated with ChuanXiong showed a decrease in VEGF expression when compared to the acute-treatment control group ( p < 0.05). Similar results were observed in immunohistochemistry of VEGF expression in the myocardia. Our study also demonstrated that these two herbs significantly enhanced endothelial cell proliferation ( p < 0.05) and revascularity in CAM ( p < 0.05). The data showed that Angelica and ChuanXiong could affect VEGF expression in rat myocardial infarction, promote endothelial cell proliferation and stimulate quantity of vessels on CAM model. The results suggest that Angelica and ChuanXiong have angiogenic effects, and may provide some mechanisms for the treatment of myocardial infarction and peripheral ischemia.
Collapse
Affiliation(s)
- Hua Meng
- Department of Physiology, The Fourth Military Medical University, Xi'an 710032, China
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jun Guo
- Department of Physiology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Yuan Sun
- Department of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Ming Pei
- Department of Physiology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yue-Min Wang
- Department of Physiology, The Fourth Military Medical University, Xi'an 710032, China
| | - Miao-Zhang Zhu
- Department of Physiology, The Fourth Military Medical University, Xi'an 710032, China
| | - Chen Huang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|