1
|
Bu C, Wang Z, Lv X, Zhao Y. A dual-gene panel of two fragments of methylated IRF4 and one of ZEB2 in plasma cell-free DNA for gastric cancer detection. Epigenetics 2024; 19:2374988. [PMID: 39003776 PMCID: PMC11249030 DOI: 10.1080/15592294.2024.2374988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.
Collapse
Affiliation(s)
- Chunxiao Bu
- Department of Magnetic Resonance Imaging,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilong Wang
- Henan Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Xianping Lv
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Li H, Luo F, Sun X, Liao C, Wang G, Han Y, Li L, Xu C, Wang W, Cai S, Li G, Wu D. A differentially-methylated-region signature predicts the recurrence risk for patients with early stage lung adenocarcinoma. Aging (Albany NY) 2024; 16:13323-13339. [PMID: 39560475 DOI: 10.18632/aging.206139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Predicting prognosis in lung cancer patients is important in establishing future treatment and monitoring plans. Lung adenocarcinoma (LUAD) is the most common and aggressive type of lung cancer with dismal prognosis and prognostic stratification would help to guide treatment. Aberrant DNA methylation in tumors occurs earlier than clinical variations, and keeps accumulating as cancer progresses. Preliminary studies have given us some clues that DNA methylation might serve as a promising biomarker for prognosis prediction. Herein, we aimed to study the potential utility of DNA methylation pattern in predicting the recurrence risk of early stage resectable LUAD and to develop a risk-modeling signature based on differentially methylated regions (DMRs). This study consisted of three cohorts of 244 patients with stage I-IIIA LUAD, including marker discovery cohort (n = 39), prognostic model training cohort (n = 117) and validation cohort (n = 80). 468 DMRs between LUAD tumor and adjacent tissues were screened out in the marker discovery cohort (adjusted P < 0.05), and a prognostic signature was developed based on 15 DMRs significantly related to disease-free survival in early stage LUAD patients. The DMR signature showed commendable performance in predicting the recurrence risk of LUAD patients both in model training cohort (P < 0.001; HR = 4.32, 95% CI = 2.39-7.80) and model validation cohort (P = 0.009; HR = 9.08, 95% CI = 1.20-68.80), which might be of great utility both for understanding the molecular basis of LUAD relapse, providing risk stratification of patients, and establishing future monitoring plans.
Collapse
Affiliation(s)
- Heng Li
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, P.R. China
| | - Fuchao Luo
- Chongqing University Fuling Hospital, Chongqing, P.R. China
| | | | | | | | | | - Leo Li
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Wenxian Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, P.R. China
| | | | - Gao Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| | - Di Wu
- The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, P.R. China
| |
Collapse
|
3
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Li JH, Zhang DY, Zhu JM, Dong L. Clinical applications and perspectives of circulating tumor DNA in gastric cancer. Cancer Cell Int 2024; 24:13. [PMID: 38184573 PMCID: PMC10770949 DOI: 10.1186/s12935-024-03209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA (ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.
Collapse
Affiliation(s)
- Jing-Han Li
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Xue Y, Huang C, Pei B, Wang Z, Dai Y. An overview of DNA methylation markers for early detection of gastric cancer: current status, challenges, and prospects. Front Genet 2023; 14:1234645. [PMID: 37560387 PMCID: PMC10407555 DOI: 10.3389/fgene.2023.1234645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies, with a low 5-year survival rate. However, if diagnosed at an early stage, it can be cured by endoscopic treatment and has a good prognosis. While gastrointestinal X-ray and upper endoscopy are used as national GC screening methods in some GC high-risk countries, such as Japan and Korea, their radiation exposure, invasiveness, and high cost suggest that they are not the optimal tools for early detection of GC in many countries. Therefore, a cost-effective, and highly accurate method for GC early detection is urgently needed in clinical settings. DNA methylation plays a key role in cancer progression and metastasis and has been demonstrated as a promising marker for cancer early detection. Aims and methods: This review provides a comprehensive overview of the current status of DNA methylation markers associated with GC, the assays developed for GC early detection, challenges in methylation marker discovery and application, and the future prospects of utilizing methylation markers for early detection of GC. Through our analysis, we found that the currently reported DNA methylation markers related to GC are mainly in the early discovery stage. Most of them have only been evaluated in tissue samples. The majority of non-invasive assays developed based on blood lack standardized sampling protocols, pre-analytical procedures, and multicenter validation, and they exhibit insufficient sensitivity for early-stage GC detection. Meanwhile, the reported GC DNA methylation markers are generally considered pan-cancer markers. Conclusion: Therefore, future endeavors should focus on identifying additional methylation markers specific to GC and establishing non-invasive diagnostic assays that rely on these markers. These assays should undergo multicenter, large-scale prospective validation in diverse populations.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - ZhenZhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
7
|
Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, Spada D, Baiocchi GL, Ghidini M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int J Mol Sci 2023; 24:ijms24119421. [PMID: 37298371 DOI: 10.3390/ijms24119421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Gastric cancer (GC) is still one of the most aggressive cancers with a few targetable alterations and a dismal prognosis. A liquid biopsy allows for identifying and analyzing the DNA released from tumor cells into the bloodstream. Compared to tissue-based biopsy, liquid biopsy is less invasive, requires fewer samples, and can be repeated over time in order to longitudinally monitor tumor burden and molecular changes. Circulating tumor DNA (ctDNA) has been recognized to have a prognostic role in all the disease stages of GC. The aim of this article is to review the current and future applications of ctDNA in gastric adenocarcinoma, in particular, with respect to early diagnosis, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision choice and therapeutic monitoring. Although liquid biopsies have shown potentiality, pre-analytical and analytical steps must be standardized and validated to ensure the reproducibility and standardization of the procedures and data analysis methods. Further research is needed to allow the use of liquid biopsy in everyday clinical practice.
Collapse
Affiliation(s)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Bonomi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy
| | | | - Lauren Holladay
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
8
|
Guo J, Li J, Chang J, Wang L, Xi Y. Value of Methylation Status of RPRM, SDC2, and TCF4 Genes in Plasma for Gastric Adenocarcinoma Screening. Int J Gen Med 2023; 16:673-681. [PMID: 36855658 PMCID: PMC9968426 DOI: 10.2147/ijgm.s395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Objective To explore the clinical value of the combined screening of the methylation statuses of the RPRM, SDC2, and TCF4 genes in plasma of gastric cancer patients. Methods Differential expressed genes (DEGs) were selected from the Gene Expression Omnibus database, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using DAVID, and a protein-protein interaction network was constructed. Hub genes were obtained using Cytoscape. Screening results combined with literature reports identified three genes (RPRM, SDC2, and TCF4). Further analysis was done using biopsies collected through gastroscopy at Shanxi Cancer Hospital from January 8, 2020 to February 22, 2021. The patients were divided into two groups: gastric adenocarcinoma group, and control group which are not gastric adenocarcinoma according to pathological or gastroscopic results. The methylation statuses of the three genes in peripheral blood plasma were detected by fluorescence polymerase chain reaction, and the relationships between the positive rates of the three combined genes with pathology and/or gastroscopy results were analyzed. The clinical value of the combined detection of the three genes was evaluated according to these indicators. The diagnostic specificity and sensitivity of this detective method were analyzed. Results A total of 197 DEGs were identified and 12 hub genes were obtained. The enriched functions and pathways of DEGs include regulation of cell proliferation, extracellular space, cytokine activity, and pathways in cancer. The combination of RPRM, SDC2, and TCF4 gene methylation had a specificity of 93.39% and sensitivity of 80.33%. The combined positive rate of RPRM, SDC2, and TCF4 gene methylation in patients with gastric adenocarcinoma was significantly higher compared with those without gastric adenocarcinoma (χ2=151.179, P<0.05). Conclusion Combined detection of RPRM, SDC2, and TCF4 gene methylation in peripheral blood plasma maybe helpful in screening for gastric adenocarcinoma, and maybe a complementary method to gastroscopy and serum tumor markers.
Collapse
Affiliation(s)
- Jianghong Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jing Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jiang Chang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Li Wang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China,Correspondence: Yanfeng Xi, Email
| |
Collapse
|
9
|
Marques C, Poças J, Gomes C, Faria-Ramos I, Reis CA, Vivès RR, Magalhães A. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates Heparan Sulfate biosynthesis and shapes gastric cancer cell motility and invasion. J Biol Chem 2022; 298:102546. [PMID: 36181793 DOI: 10.1016/j.jbc.2022.102546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and Extracellular Matrix (ECM). By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-ECM crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either Exostosin Like glycosyltransferase 2 (EXTL2) or EXTL3, and revealed their regulatory roles in both Heparan Sulfate (HS) and Chondroitin Sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that knock-out of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell-surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression, and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.
Collapse
Affiliation(s)
- Catarina Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Juliana Poças
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Genome-wide linkage search for cancer susceptibility loci in a cohort of non BRCA1/2 families in Sri Lanka. BMC Res Notes 2022; 15:190. [PMID: 35655316 PMCID: PMC9164366 DOI: 10.1186/s13104-022-06081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Although linkage studies have been utilized for the identification of variants associated with cancer in the world, little is known about their role in non BRCA1/2 individuals in the Sri Lankans. Hence we performed linkage analysis to identify susceptibility loci related to the inherited risk of cancer in a cohort of Sri Lankans affected with hereditary breast cancer. The Illumina global screening array having 654,027 single nucleotide polymorphism markers was performed in four families, in which at least three individuals within third degree relatives were affected by breast cancer. Two-point parametric linkage analysis was conducted assuming disease allele frequency of 1%. Penetrance was set at 90% for carriers with a 10% phenocopy rate. Results Thirty-one variants exhibited genome-wide suggestive HLODs. The top overall HLOD score was at rs1856277, an intronic variant in MYO16 on chromosome 13. The two most informative families also suggested several candidate linked loci in genes, including ERAP1, RPRM, WWOX, CDH1, EXOC1, HUS1B, STIM1 and TUSC1. This study provides the first step in identifying germline variants that may be involved in risk of cancer in cancer-aggregated non-BRCA1/2 families from the understudied Sri Lankan population. Several candidate linked regions showed suggestive evidence of linkage to cancer risk. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06081-5.
Collapse
|
11
|
Wu Y, Du J. Downregulated Reprimo by LINC00467 participates in the growth and metastasis of gastric cancer. Bioengineered 2022; 13:11893-11906. [PMID: 35549646 PMCID: PMC9276005 DOI: 10.1080/21655979.2022.2063662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) as an aggressive malignancy still causes a global health problem. It has been documented that long noncoding RNAs are involved in GC development. Therefore, this research was designed to explore the role of LINC00467 in the growth and metastasis of GC. The expression of LINC00467 and Reprimo in GC tissues and cells was detected. The binding relationship among LINC00467, DNA methyltransferase 1 (DNMT1) and Reprimo was assessed following. Reprimo promoter methylation was detected by methylation sequencing. GC cell lines overexpressing or knock downing LINC00467 were constructed for pinpointing the effect of LINC00467 on cell functions as well as growth and metastasis of GC cells in vivo. LINC00467 was highly expressed, whereas Reprimo was poorly expressed in GC tissues and cells. Mechanically, LINC00467 promoted the methylation and decreased the expression of Reprimo promoter by recruiting DNMT1 in GC cells. Knockdown of LINC00467 diminished the malignant properties of GC cells. Knockdown of LINC00467 reduced tumorigenesis and metastasis of GC cells in vivo. LINC00467 might exert oncogenic effects in GC via Reprimo downregulation by recruiting DNMT1.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Juan Du
- Department of Ultrasound, Cangzhou Central HospitalThe 1st, Cangzhou, Hebei, China
| |
Collapse
|
12
|
Zeng Y, Rong H, Xu J, Cao R, Li S, Gao Y, Cheng B, Zhou T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front Genet 2022; 13:823905. [PMID: 35309131 PMCID: PMC8931997 DOI: 10.3389/fgene.2022.823905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a very common malignancy with a poor prognosis, and its occurrence and development are closely related to epigenetic modifications. Methylation of DNA before or during gastric cancer is an interesting research topic. This article reviews the studies on DNA methylation related to the cause, diagnosis, treatment, and prognosis of gastric cancer and aims to find cancer biomarkers to solve major human health problems.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Rong
- Department of Reconstructive Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruyue Cao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhua Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baoquan Cheng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
13
|
Lin DL, Wang LL, Zhao P, Ran WW, Wang W, Zhang LX, Han M, Bao H, Liu K, Wu X, Shao Y, Xing XM. Gastrointestinal Goblet Cell Adenocarcinomas Harbor Distinctive Clinicopathological, Immune, and Genomic Landscape. Front Oncol 2021; 11:758643. [PMID: 34804955 PMCID: PMC8603204 DOI: 10.3389/fonc.2021.758643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Goblet cell adenocarcinoma (GCA) is a rare amphicrine tumor and difficult to diagnose. GCA is traditionally found in the appendix, but extra-appendiceal GCA may be underestimated. Intestinal adenocarcinoma with signet ring cell component is also very rare, and some signet ring cell carcinomas are well cohesive, having some similar morphological features to GCAs. It is necessary to differentiate GCA from intestinal adenocarcinomas with cohesive signet ring cell component (IACSRCC). The goal of this study is to find occurrence of extra-appendiceal GCA and characterize the histological, immunohistochemical, transcriptional, and immune landscape of GCA. We collected 12 cases of GCAs and 10 IACSRCCs and reviewed the clinicopathologic characters of these cases. Immunohistochemical stains were performed with synaptophysin, chromogranin A, CD56, somatostatin receptor (SSTR) 2, and Ki-67. Whole transcriptome RNA-sequencing was performed, and data were used to analyze differential gene expression and predict immune cell infiltration levels in GCA and IACSRCC. RNA-sequencing data for colorectal adenocarcinoma were gathered from TCGA data portal. Of the 12 patients with GCA, there were 4 women and 8 men. There were three appendiceal cases and nine extra-appendiceal cases. GCAs were immunohistochemically different from IACSRCC. GCA also had different levels of B-cell and CD8+ T-cell infiltration compared to both colorectal adenocarcinoma and cohesive IACSRCCs. Differential gene expression analysis showed distinct gene expression patterns in GCA compared to colorectal adenocarcinoma, with a number of cancer-related differentially expressed genes, including upregulation of TMEM14A, GOLT1A, DSCC1, and HSD17B8, and downregulation of KCNQ1OT1 and MXRA5. GCA also had several differentially expressed genes compared to IACSRCCs, including upregulation of PRSS21, EPPIN, RPRM, TNFRSF12A, and BZRAP1, and downregulation of HIST1H2BE, TCN1, AC069363.1, RP11-538I12.2, and REG4. In summary, the number of extra-appendiceal GCA was underestimated in Chinese patients. GCA can be seen as a distinct morphological, immunohistochemical, transcriptomic, and immunological entity. The classic low-grade component of GCA and the immunoreactivity for neuroendocrine markers are the key points to diagnosing GCA.
Collapse
Affiliation(s)
- Dong-Liang Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Li Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Wen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long-Xiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Han
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Kaihua Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao-Ming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Ren J, Lu P, Zhou X, Liao Y, Liu X, Li J, Wang W, Wang J, Wen L, Fu W, Tang F. Genome-Scale Methylation Analysis of Circulating Cell-Free DNA in Gastric Cancer Patients. Clin Chem 2021; 68:354-364. [PMID: 34791072 DOI: 10.1093/clinchem/hvab204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant DNA hypermethylation of CpG islands (CGIs) occurs frequently and is genome-wide in human gastric cancer (GC). A DNA methylation approach in plasma cell-free DNA (cfDNA) is attractive for the noninvasive detection of GC. Here, we performed genome-scale cfDNA methylation analysis in patients with GC. METHODS We used MCTA-Seq, a genome-scale DNA methylation analysis method, on the plasma samples of patients with GC (n = 89) and control participants (n = 82), as well as 28 pairs of GC and adjacent noncancerous tissues. The capacity of the method for detecting GC and discriminating GC from colorectal cancer (CRC) and hepatocellular carcinoma (HCC) was assessed. RESULTS We identified 153 cfDNA methylation biomarkers, including DOCK10, CABIN1, and KCNQ5, for detecting GC in blood. A panel of these biomarkers gave a sensitivity of 44%, 59%, 78%, and 100% for stage I, II, III, and IV tumors, respectively, at a specificity of 92%. CpG island methylation phenotype (CIMP) tumors and NON-CIMP tumors could be distinguished and detected effectively. We also identified several hundreds of cfDNA biomarkers differentially methylated between GC, CRC, and HCC, and showed that MCTA-Seq can discriminate early-stage GC, CRC, and HCC in blood by using a high specificity (approximately 100%) algorithm. CONCLUSIONS Our comprehensive analyses provided valuable data on cfDNA methylation biomarkers of GC and showed the promise of cfDNA methylation for the blood-based noninvasive detection of GC.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Lu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Yuhan Liao
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jingyi Li
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jilian Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
15
|
de Mello RA, Amaral GA, Neves NM, Lippo EG, Parini F, Xu S, Tolia M, Charalampakis N, Tadokoro H, Castelo-Branco P, Zhu J. Current and potential biomarkers in gastric cancer: a critical review of the literature. Future Oncol 2021; 17:3383-3396. [PMID: 34291647 DOI: 10.2217/fon-2021-0084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer is the fourth most common type of cancer worldwide and the second most lethal. Gastric cancer biomarkers can be used for diagnosis, prediction of sensitivity to treatment, and prognosis. The following search terms were applied to PubMed as of December 2020: 'gastric cancer classification', 'gastric cancer epidemiology', 'cancer metastasis' and 'gastric cancer biomarker'. Only experimental studies were reported in the 'biomarkers' section. Some biomarkers can serve as therapeutic targets for antitumoral drugs. The genes analyzed include E-cadherin, RPRM, XAF1, MINT25, TFF1, p16 and p53. The miRNAs analyzed include miR-18a, miR185-5p, miR-125b and miR-21. Some molecules were associated with metastasis of gastric cancer, specifically those involved with EMT process and tissue degradation.
Collapse
Affiliation(s)
- Ramon Andrade de Mello
- Algarve Biomedical Centre, Faculty of Medicine & Biomedical Sciences, University of Algarve (FMCB UALG), Faro 8005-139, Portugal.,Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil.,Precision Oncology & Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil
| | - Giovanna Araujo Amaral
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Nathália Moisés Neves
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Estela Gudin Lippo
- School of Biomedical Sciences, Santo Amaro University, São Paulo 01525-000, Brazil
| | - Fernanda Parini
- Precision Oncology & Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil
| | - Song Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Maria Tolia
- Department of Radiotherapy, School of Medicine, University of Crete, Heraklion 715 00, Greece
| | | | - Hakaru Tadokoro
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Pedro Castelo-Branco
- Algarve Biomedical Centre, Faculty of Medicine & Biomedical Sciences, University of Algarve (FMCB UALG), Faro 8005-139, Portugal
| | - Jinhui Zhu
- Department of General Surgery & Laparoscopic Center, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
16
|
Huang ZB, Zhang HT, Yu B, Yu DH. Cell-free DNA as a liquid biopsy for early detection of gastric cancer. Oncol Lett 2021; 21:3. [PMID: 33240409 PMCID: PMC7681206 DOI: 10.3892/ol.2020.12264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with poor prognosis worldwide, mainly due to the lack of suitable modalities for population-based screening and early detection of this disease. Therefore, novel and less invasive tests with improved clinical utility are urgently required. The remarkable advances in genomics and proteomics, along with emerging new technologies for highly sensitive detection of genetic alterations, have shown the potential to map the genomic makeup of a tumor in liquid biopsies, in order to assist with early detection and clinical management. The present review summarize the current status in the identification and development of cell-free DNA (cfDNA)-based biomarkers in GC, and also discusses their potential utility and the technical challenges in developing practical cfDNA-based liquid biopsy for early detection of GC.
Collapse
Affiliation(s)
- Zheng-Bin Huang
- Department of Surgery, Hanchuan Renmin Hospital, Hanchuan, Hubei 431600, P.R. China
| | - Hai-Tao Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518037, P.R. China
| | - Benjamin Yu
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - De-Hua Yu
- Shenzhen USK Bioscience Co., Ltd., Shenzhen, Guangdong 518110, P.R. China
| |
Collapse
|
17
|
Alarcón MA, Olivares W, Córdova-Delgado M, Muñoz-Medel M, de Mayo T, Carrasco-Aviño G, Wichmann I, Landeros N, Amigo J, Norero E, Villarroel-Espíndola F, Riquelme A, Garrido M, Owen GI, Corvalán AH. The Reprimo-Like Gene Is an Epigenetic-Mediated Tumor Suppressor and a Candidate Biomarker for the Non-Invasive Detection of Gastric Cancer. Int J Mol Sci 2020; 21:ijms21249472. [PMID: 33322837 PMCID: PMC7763358 DOI: 10.3390/ijms21249472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Reprimo-like (RPRML) is an uncharacterized member of the Reprimo gene family. Here, we evaluated the role of RPRML and whether its regulation by DNA methylation is a potential non-invasive biomarker of gastric cancer. RPRML expression was evaluated by immunohistochemistry in 90 patients with gastric cancer and associated with clinicopathologic characteristics and outcomes. The role of RPRML in cancer biology was investigated in vitro, through RPRML ectopic overexpression. Functional experiments included colony formation, soft agar, MTS, and Ki67 immunofluorescence assays. DNA methylation-mediated silencing was evaluated by the 5-azacytidine assay and direct bisulfite sequencing. Non-invasive detection of circulating methylated RPRML DNA was assessed in 25 gastric cancer cases and 25 age- and sex-balanced cancer-free controls by the MethyLight assay. Downregulation of RPRML protein expression was associated with poor overall survival in advanced gastric cancer. RPRML overexpression significantly inhibited clonogenic capacity, anchorage-independent growth, and proliferation in vitro. Circulating methylated RPRML DNA distinguished patients with gastric cancer from controls with an area under the curve of 0.726. The in vitro overexpression results and the poor patient survival associated with lower RPRML levels suggest that RPRML plays a tumor-suppressive role in the stomach. Circulating methylated RPRML DNA may serve as a biomarker for the non-invasive detection of gastric cancer.
Collapse
Affiliation(s)
- María Alejandra Alarcón
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Wilda Olivares
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Miguel Córdova-Delgado
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Matías Muñoz-Medel
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Tomas de Mayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Faculty of Sciences, School of Medicine Universidad Mayor, Santiago 8580745, Chile
| | - Gonzalo Carrasco-Aviño
- Department of Pathology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile;
- Department of Pathology, Clínica Las Condes, Santiago 7591210, Chile
| | - Ignacio Wichmann
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Obstetrics, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Natalia Landeros
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Julio Amigo
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr Sótero del Río, Santiago 8207257, Chile;
- Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Franz Villarroel-Espíndola
- Translational Medicine Laboratory, Instituto Oncológico Fundación Arturo López Pérez (FALP), Santiago 8320000, Chile;
| | - Arnoldo Riquelme
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Marcelo Garrido
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Alejandro H. Corvalán
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Correspondence:
| |
Collapse
|
18
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
19
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
20
|
Zhou X, Jiao D, Dou M, Zhang W, Hua H, Chen J, Li Z, Li L, Han X. Association of APC gene promoter methylation and the risk of gastric cancer: A meta-analysis and bioinformatics study. Medicine (Baltimore) 2020; 99:e19828. [PMID: 32312003 PMCID: PMC7220245 DOI: 10.1097/md.0000000000019828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The methylation status of the adenomatous polyposis coli (APC) promoter has been shown to be associated with the occurrence of gastric cancer, but this finding remains controversial. The aim of this study was to investigate the relationship between methylation of the APC gene promoter and gastric cancer. METHODS We searched the Web of Science, EMBASE, Medline, and Cochrane Central Register of Controlled Trials (CENTRAL) databases from the date of creation until August 1, 2019. According to the inclusion criteria, the relationship between the methylation status of the APC gene promoter and gastric cancer was investigated. The incidence of APC promoter methylation in the tissues or blood of patients with and without gastric cancer was compared. The results are expressed as the odds ratio (OR) and 95% confidence interval (CI). The pooled OR of each study was estimated using a fixed effects model or a random effects model to generate forest plots. We further validated the results using the MethHC database. RESULTS Eight studies (985 samples) were included. Our meta-analysis showed that the incidence of APC promoter methylation in patients with gastric cancer was higher than that of patients without gastric cancer (OR = 3.86, 95% CI 1.71-8.74, P = .001). Methylation of the APC promoter is associated with the incidence of gastric cancer, and it increases the risk of gastric cancer. CONCLUSION This study provides a new strategic direction for research on gastric cancer. Methylation of the APC promoter may be a potential biomarker for the diagnosis of gastric cancer, but the results of this work require further confirmation.
Collapse
Affiliation(s)
| | | | | | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Hua
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine of USC, Los Angeles, CA
| | | | | | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
21
|
Abstract
Gastric cancer is an active topic of clinical and basic research due to high morbidity and mortality. To date, gastrectomy and chemotherapy are the only therapeutic options for gastric cancer patients, but drug resistance, either acquired or primary, is the main cause for treatment failure. Differences in development and response to cancer treatments have been observed among ethnically diverse GC patient populations. In spite of major incidence, GC Asian patients have a significantly better prognosis and response to treatments than Caucasian ones due to genetic discordances between the two populations. Gene therapy could be an alternative strategy to overcome such issues and especially CRISPR/Cas9 represents one of the most intriguing gene-editing system. Thus, in this review article, we want to provide an update on the currently used therapies for the treatment of advanced GC. Graphical abstract.
Collapse
|
22
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: https:/doi.org/10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
23
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: 10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
24
|
Marchant MJ, Guzmán L, Corvalán AH, Kogan MJ. Gold@Silica Nanoparticles Functionalized with Oligonucleotides: A Prominent Tool for the Detection of the Methylated Reprimo Gene in Gastric Cancer by Dynamic Light Scattering. NANOMATERIALS 2019; 9:nano9091333. [PMID: 31540371 PMCID: PMC6781027 DOI: 10.3390/nano9091333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Reprimo (RPRM) is a tumor suppressor gene involved in the development of gastric cancer. Hypermethylation of the RPRM promoter region has been found in tumor tissue and plasma samples from patients with gastric cancer. These findings suggest that circulating methylated DNA of RPRM could be a candidate for a noninvasive detection of gastric cancer. We designed a nanosystem based on the functionalization of silica coated gold nanoparticles with oligonucleotides that recognize a specific DNA fragment of the RPRM promoter region. The functionality of the oligonucleotide on the surface of the nanoparticle was confirmed by polymerase chain reaction (PCR). The nanoparticles were incubated with a synthetic DNA fragment of methylated DNA of RPRM and changes in the size distribution after hybridization were evaluated by dynamic light scattering (DLS). A difference in the size distribution of nanoparticles hybridized with genomic DNA from the KATO III gastric cancer cell line was observed when was compared with DNA from the GES-1 normal cell line. These results showed that this nanosystem may be a useful tool for the specific and sensitive detection of methylated DNA of RPRM in patients at risk of developing gastric cancer.
Collapse
Affiliation(s)
- María José Marchant
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile.
| | - Leda Guzmán
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, 2373223 Valparaíso, Chile.
| | - Alejandro H Corvalán
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330032 Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Independencia, Santiago, Chile.
| |
Collapse
|
25
|
Zhao C, Tao T, Yang L, Qin Q, Wang Y, Liu H, Song R, Yang X, Wang Q, Gu S, Xiong Y, Zhao D, Wang S, Feng D, Jiang WG, Zhang J, He J. Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer. Cancer Lett 2019; 453:107-121. [DOI: 10.1016/j.canlet.2019.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
26
|
Denys A, Allain F. The Emerging Roles of Heparan Sulfate 3- O-Sulfotransferases in Cancer. Front Oncol 2019; 9:507. [PMID: 31249810 PMCID: PMC6582251 DOI: 10.3389/fonc.2019.00507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Alteration in the expression of heparan sulfate (HS)-modifying enzymes has been frequently observed in cancer. Consequently, dysregulation of the HS biosynthetic machinery results in dramatic changes in the HS structure, thereby impacting a range of pivotal cellular processes involved in tumorigenesis and cancer progression including proliferation, migration, apoptosis, and immune escape. HS 3-O-sulfotransferases (HS3STs) catalyse the maturation step of glucosaminyl 3-O-sulfation within HS chains. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a rare modification and only a few biological processes have been described to be influenced by 3-O-sulfated HS. An aberrant expression of HS3STs has been reported in a variety of cancers. Thus, it was suggested that changes in the expression of these enzymes as a result of tumorigenesis or tumor growth may critically influence cancer cell behavior. In accordance with this assumption, a number of studies have documented the epigenetic repression of HS3ST2 and HS3ST3A in many cancers. However, the situation is not so clear, and there is accumulating evidence that HS3ST2, HS3ST3A, HS3ST3B, and HS3ST4 may also act as tumor-promoting enzymes in a number of cancer cells depending on their phenotypes and molecular signatures. In this mini-review, we focus on the recent insights regarding the abnormal expression of HS3STs in cancer and discuss the functional consequences on tumor cell behavior. In term of clinical outcome, further investigations are needed to explore the potential value of HS3STs and/or their 3-O-sulfated products as targets for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Agnès Denys
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
27
|
Zhang Y, Zhu C, Lu X. [Advances in serum biomarkers for early diagnosis of gastric cancer]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:326-333. [PMID: 31496166 DOI: 10.3785/j.issn.1008-9292.2019.06.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early diagnosis is the key to improve the prognosis of gastric cancer. How to screen out high-risk subjects of gastric cancer in population is a hot spot. Serum-based early detection of gastric cancer is suitable for high-risk population screening, which is more convenient and safer. This article reviews the diagnostic value of serum biomarkers for gastric cancer, including serum DNA methylation, various RNAs, pepsinogen, gastrin, osteopontin, MG7-Ag and CA724. Until now, there is still lack of ideal biomarkers for gastric cancer, and searching for specific RNAs may be promising for early diagnosis and screening of gastric cancer.
Collapse
Affiliation(s)
- Yunzhu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunpeng Zhu
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinliang Lu
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
28
|
Ribaldone DG, Simondi D, Petrini E, Astegiano M, Durazzo M. Non-invasive biomarkers for gastric cancer diagnosis: ready for prime time? MINERVA BIOTECNOL 2019; 31. [DOI: 10.23736/s1120-4826.18.02463-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
29
|
Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother 2019; 109:144-156. [DOI: 10.1016/j.biopha.2018.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
30
|
Koh JS, Joo MK, Park JJ, Yoo HS, Choi BI, Lee BJ, Chun HJ, Lee SW. Inhibition of STAT3 in gastric cancer: role of pantoprazole as SHP-1 inducer. Cell Biosci 2018; 8:50. [PMID: 30202514 PMCID: PMC6127946 DOI: 10.1186/s13578-018-0248-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background We investigated the inhibitory effect of pantoprazole on signal transducer and activator of transcription 3 (STAT3) activity and invasiveness of gastric adenocarcinoma cells, and the role of SH2-containing protein tyrosine phosphatase 1 (SHP-1) in mediating role. Methods We used AGS and MKN-28 cells because of reduced SHP-1 and preserved p-STAT3 expression. Western blot, wound closure assay, Matrigel invasion assay and 3-D culture invasion assay were performed. Pharmacologic inhibitor of SHP-1 and siRNA were used for validation of the role of SHP-1. Results We observed that pantoprazole at 40, 80, and 160 μg/ml upregulated SHP-1 and downregulated p-STAT3 expression in a dose-dependent manner in AGS and MKN-28 cells. Furthermore, pantoprazole significantly downregulated mesenchymal markers (Snail1 and vimentin), upregulated epithelial marker (E-cadherin), and inhibited migration and invasion of AGS and MKN-28 cells. To validate the role of SHP-1 in inhibition of STAT3 activity by pantoprazole in gastric cancer cells, we performed pharmacologic inhibition (pervanadate) or knockdown of SHP-1 before pantoprazole treatment, which significantly attenuated the suppression of p-STAT3 and anti-migration and invasion effect by pantoprazole in AGS cells. In xenograft tumor model, tumor volume was significantly reduced by intraperitoneal injection of pantoprazole, with upregulation of SHP-1 and downregulation of p-STAT3, which were attenuated by concomitant injection of pervanadate. Conclusion Our data suggest that the inhibitory effect of pantoprazole on cellular migration and invasion might be through inducing SHP-1 in gastric cancer cells.
Collapse
Affiliation(s)
- Jin Sung Koh
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Moon Kyung Joo
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Jong-Jae Park
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Hyo Soon Yoo
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Byung Il Choi
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Beom Jae Lee
- 1Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703 Republic of Korea
| | - Hoon Jai Chun
- 2Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| | - Sang Woo Lee
- 3Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu,, Ansan-si, Gyeonggi-do 425-707 Republic of Korea
| |
Collapse
|
31
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
32
|
Amigo JD, Opazo JC, Jorquera R, Wichmann IA, Garcia-Bloj BA, Alarcon MA, Owen GI, Corvalán AH. The Reprimo Gene Family: A Novel Gene Lineage in Gastric Cancer with Tumor Suppressive Properties. Int J Mol Sci 2018; 19:E1862. [PMID: 29941787 PMCID: PMC6073456 DOI: 10.3390/ijms19071862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022] Open
Abstract
The reprimo (RPRM) gene family is a group of single exon genes present exclusively within the vertebrate lineage. Two out of three members of this family are present in humans: RPRM and RPRM-Like (RPRML). RPRM induces cell cycle arrest at G2/M in response to p53 expression. Loss-of-expression of RPRM is related to increased cell proliferation and growth in gastric cancer. This evidence suggests that RPRM has tumor suppressive properties. However, the molecular mechanisms and signaling partners by which RPRM exerts its functions remain unknown. Moreover, scarce studies have attempted to characterize RPRML, and its functionality is unclear. Herein, we highlight the role of the RPRM gene family in gastric carcinogenesis, as well as its potential applications in clinical settings. In addition, we summarize the current knowledge on the phylogeny and expression patterns of this family of genes in embryonic zebrafish and adult humans. Strikingly, in both species, RPRM is expressed primarily in the digestive tract, blood vessels and central nervous system, supporting the use of zebrafish for further functional characterization of RPRM. Finally, drawing on embryonic and adult expression patterns, we address the potential relevance of RPRM and RPRML in cancer. Active investigation or analytical research in the coming years should contribute to novel translational applications of this poorly understood gene family as potential biomarkers and development of novel cancer therapies.
Collapse
Affiliation(s)
- Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile.
| | - Roddy Jorquera
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| | - Ignacio A Wichmann
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| | - Benjamin A Garcia-Bloj
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Maria Alejandra Alarcon
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Alejandro H Corvalán
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| |
Collapse
|
33
|
Li TT, Liu H, Yu J, Shi GY, Zhao LY, Li GX. Prognostic and predictive blood biomarkers in gastric cancer and the potential application of circulating tumor cells. World J Gastroenterol 2018; 24:2236-2246. [PMID: 29881233 PMCID: PMC5989238 DOI: 10.3748/wjg.v24.i21.2236] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC), with its high incidence and mortality rates, is a highly fatal cancer that is common in East Asia particularly in China. Its recurrence and metastasis are the main causes of its poor prognosis. Circulating tumor cells (CTCs) or other blood biomarkers that are released into the circulating blood stream by tumors are thought to play a crucial role in the recurrence and metastasis of gastric cancer. Therefore, the detection of CTCs and other blood biomarkers has an important clinical significance; in fact, they can help predict the prognosis, assess the staging, monitor the therapeutic effects and determine the drug susceptibility. Recent research has identified many blood biomarkers in GC, such as various serum proteins, autoantibodies against tumor associated antigens, and cell-free DNAs. The analysis of CTCs and circulating cell-free tumor DNA (ctDNA) in the peripheral blood of patients with gastric cancer is called as liquid biopsy. These blood biomarkers provide the disease status for individuals and have clinical meaning. In this review, we focus on the recent scientific advances regarding CTCs and other blood biomarkers, and discuss their origins and clinical meaning.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Guang-Yao Shi
- Division of Cardiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Li-Ying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Guo-Xin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
34
|
Abbasi A, Heydari S. Studying the expression rate and methylation of Reprimo gene in the blood of patients suffering from gastric cancer. Eur J Transl Myol 2018; 28:7423. [PMID: 29991989 PMCID: PMC6036304 DOI: 10.4081/ejtm.2018.7423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
As gastric cancer has no exclusive signals in its initial phases, it is usually diagnosed in advanced phases. Although many researches have been conducted on methylation and diagnosis of cancer’s markers, the methylation and expression of Reprimo gene and its correlation with gastric cancer has not been thoroughly studied. Methylation of Reprimo promoter is a repetitive procedure exclusive to cancer which nullifies its expression and performance. The present research seeks to study the expression and methylation of Reprimo among people suffering with gastric cancer so that it may be used as a biomarker for early diagnosis. Fifty blood samples taken from healthy people (normal samples) and 50 blood samples obtained from gastric cancer patients were analyzed using Real-Time PCR. The methylation status of the promoter of Reprimo was studied using Methylation Specific PCR technique in normal samples and in gastric cancer Iranian patients. We observed reduction in expression rate of Reprimo in the blood samples of patients suffering with gastric cancer in comparison to normal blood samples. A significant correlation was also observed between the expression rate of this gene, age and methylation of its promoter among patients suffering with gastric cancer and various analysis points to a correlation between reduced expressions of Reprimo gene in gastric cancer patients. In conclusion, reduced expression of Reprimo gene and greater levels of methylation of its promoter seems to be promising biomarkers for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Heydari
- Department of genetic, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
35
|
Wang Y, Xu H, Si L, Li Q, Zhu X, Yu T, Gang X. MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting CXCL11. Prostate 2018. [PMID: 29542173 DOI: 10.1002/pros.23468] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Our study was aimed at detecting the expression levels of miR-206 in prostate cancer (PCa) tissues and PCa cell lines, and exploring the potential functions of miR-206 by targeting chemokine ligand 11 (CXCL11). METHODS RT-qPCR was applied to detect the expressions of miR-206 and CXCL11 in PCa tissues and in PCa cell lines. Expression of the CXCL11 protein was detected using Western blot. After manipulating the expression of miR-206 and CXCL11 in PC-3 and DU-145 cells, the changes of cell proliferation and cell cycle were observed through cell counting kit-8 (CCK-8) and flow cytometry. Wound healing and transwell assay were conducted for cell migration and invasion examination in vitro. The luciferase reporter assay was applied to validate the association between miR-206 and CXCL11. RESULTS MiR-206 was significantly under-expressed in PCa tissues and in PCa cell lines. Up-regulation of miR-206 could inhibit proliferation, migration, invasion and induced G1/G0 arrest of PCa cells, and vice versa. MiR-206 bound to the 3'-UTR of CXCL11 and significantly repressed the luciferase activity. Overexpression of miR-206 decreased the expression level of CXCL11 significantly. CXCL11 mRNA and protein levels were significantly decreased in PCa cells. Downregulation of CXCL11 presented tumor-suppressing effects on PCa cells as miR-206 mimics did. And co-transfection miR-206 attenuated the tumor-promoting effects induced by CXCL11 overexpression. CONCLUSION Our current finding demonstrated that miR-206 negatively regulated PCa cell proliferation and migration, and arrested cell cycle by targeting CXCL11 as a tumor suppressor in prostate cancer.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Haitao Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lihui Si
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiuju Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Pirini F, Noazin S, Jahuira-Arias MH, Rodriguez-Torres S, Friess L, Michailidi C, Cok J, Combe J, Vargas G, Prado W, Soudry E, Pérez J, Yudin T, Mancinelli A, Unger H, Ili-Gangas C, Brebi-Mieville P, Berg DE, Hayashi M, Sidransky D, Gilman RH, Guerrero-Preston R. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies. Oncotarget 2018; 8:38501-38516. [PMID: 28418867 PMCID: PMC5503549 DOI: 10.18632/oncotarget.16258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022] Open
Abstract
Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p < 0.0001). Promoter methylation of IRF4 (p < 0.0001), ELMO1 (p < 0.0001), CLIP4 (p < 0.0001), and MSC (p < 0.0001), is also associated with increasing severity from gastritis with no metaplasia to gastritis with metaplasia and gastric cancer. Our findings suggest that IRF4, ELMO1, CLIP4 and MSC promoter methylation coupled with a GDMI>4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sassan Noazin
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA
| | - Martha H Jahuira-Arias
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sebastian Rodriguez-Torres
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Leah Friess
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Christina Michailidi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jaime Cok
- Hospital Nacional Cayetano Heredia, Pathology Department, Lima, Perú
| | - Juan Combe
- Instituto Nacional de Enfermedades Neoplásicas, Gastroenterology Department, Lima, Perú
| | - Gloria Vargas
- Hospital Nacional Arzobispo Loayza, Gastroenterology Department, Lima, Perú
| | - William Prado
- Hospital Nacional Dos de Mayo, Gastroenterology Department, Lima, Perú
| | - Ethan Soudry
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jimena Pérez
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Tikki Yudin
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Andrea Mancinelli
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Helen Unger
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Douglas E Berg
- Washington University Medical School, Department of Molecular Microbiology, St Louis, MO, USA.,University of California San Diego, Department of Medicine, La Jolla, CA, USA
| | - Masamichi Hayashi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Robert H Gilman
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rafael Guerrero-Preston
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,University of Puerto Rico School of Medicine, Department of Obstetrics and Gynecology, San Juan, Puerto Rico
| |
Collapse
|
38
|
Cerda-Opazo P, Valenzuela-Valderrama M, Wichmann I, Rodríguez A, Contreras-Reyes D, Fernández EA, Carrasco-Aviño G, Corvalán AH, Quest AF. Inverse expression of survivin and reprimo correlates with poor patient prognosis in gastric cancer. Oncotarget 2018; 9:12853-12867. [PMID: 29560115 PMCID: PMC5849179 DOI: 10.18632/oncotarget.24402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. METHODS In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. RESULTS cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson's r= -0.3, Spearman's ρ= -0.55). RNAseq analyses confirmed these findings (Spearman's ρ= -0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). CONCLUSIONS TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer.
Collapse
Affiliation(s)
- Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Ignacio Wichmann
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Core Biodata, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Andrés Rodríguez
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Daniel Contreras-Reyes
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Elmer A. Fernández
- CIDIE – CONICET - Facultad de Ingeniería, Campus Universitario, Universidad Católica de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- National Bioinformatics Consortia (BIA) of Argentina, Buenos Aires, Argentina
| | - Gonzalo Carrasco-Aviño
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Anatomía Patológica, Hospital Clínico José Joaquín Aguirre, Universidad de Chile, Santiago, Chile
| | - Alejandro H. Corvalán
- Gastric Cancer Research Group - Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Core Biodata, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Andrew F.G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| |
Collapse
|
39
|
Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2018; 7:60535-60554. [PMID: 27528034 PMCID: PMC5312401 DOI: 10.18632/oncotarget.11142] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.
Collapse
|
40
|
Jorquera R, González C, Clausen P, Petersen B, Holmes DS. Improved ontology for eukaryotic single-exon coding sequences in biological databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:1-6. [PMID: 30239665 PMCID: PMC6146118 DOI: 10.1093/database/bay089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases.
Collapse
Affiliation(s)
- Roddy Jorquera
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| | - Philip Clausen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bent Petersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark.,Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Centro de Genómica y Bioinformática Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
41
|
Lai J, Wang H, Luo Q, Huang S, Lin S, Zheng Y, Chen Q. The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells. Oncotarget 2017; 8:108610-108623. [PMID: 29312555 PMCID: PMC5752468 DOI: 10.18632/oncotarget.21296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Reprimo (RPRM) is a tumor suppressor involved in the development of a number of malignant tumors including gastric cancer which is highly related to its gene hypermethylation. However, the regulation of RPRM gene expression by DNA methylation in gastric cancer is not well understood. We examined the RPRM gene methylation in gastric cancer tissues or plasma samples by bisulfite sequencing, and investigated the relationship between DNA methylation and the RPRM gene expression by quantitative reverse transcription-PCR and Western blotting. We found that the RPRM gene promoter region is hypermethylated in gastric cancer tissues (75%, 45/60), plasma samples (86.3%, 44/51) and various cancer cell lines (75%, 3/4), which is correlated with the decrease of RPRM gene expression. The hypermethylation-induced RPRM reduction can be recovered by treating with zebularine, a demethylating agent, and by inhibition of the DNA methyltransferases via RNA interference and CRISPR/Cas9-mediated gene knockout. In addition, we generated RPRM gene-knockout cells and studied the effects of the RPRM deficiency on tumor formation by inoculating these cells in mice. The data show that the loss of RPRM can promote tumorigenesis. These data suggest that the RPRM expression is inhibited by DNA methyltransferases and the RPRM normal function can be restored by treating with DNA methylation inhibitors. The study provides important information regarding the role of RPRM and its methylation related to gastric cancer development.
Collapse
Affiliation(s)
- Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shanlu Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shujin Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Yansong Zheng
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| |
Collapse
|
42
|
Wen J, Zheng T, Hu K, Zhu C, Guo L, Ye G. Promoter methylation of tumor-related genes as a potential biomarker using blood samples for gastric cancer detection. Oncotarget 2017; 8:77783-77793. [PMID: 29100425 PMCID: PMC5652815 DOI: 10.18632/oncotarget.20782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Gene promoter methylation has been reported in gastric cancer (GC). However, the potential applications of blood-based gene promoter methylation as a noninvasive biomarker for GC detection remain to be evaluated. Hence, we performed this analysis to determine whether promoter methylation of 11 tumor-related genes could become a promising biomarker in blood samples in GC. We found that the cyclin-dependent kinase inhibitor 2A (p16), E-cadherin (CDH1), runt-related transcription factor 3 (RUNX3), human mutL homolog 1 (MLH1), RAS association domain family protein 1A (RASSF1A), cyclin-dependent kinase inhibitor 2B (p15), adenomatous polyposis coli (APC), Glutathione S-transferase P1 (GSTP1), TP53 dependent G2 arrest mediator candidate (Reprimo), and O6-methylguanine-DNAmethyl-transferase (MGMT) promoter methylation was notably higher in blood samples of patients with GC compared with non-tumor controls. While death-associated protein kinase (DAPK) promoter methylation was not correlated with GC. Further analyses demonstrated that RUNX3, RASSF1A and Reprimo promoter methylation had a good diagnostic capacity in blood samples of GC versus non-tumor controls (RUNX3: sensitivity = 63.2% and specificity = 97.5%, RASSF1A: sensitivity = 61.5% and specificity = 96.3%, Reprimo: sensitivity = 82.0% and specificity = 89.0%). Our findings indicate that promoter methylation of the RUNX3, RASSF1A and Reprimo genes could be powerful and potential noninvasive biomarkers for the detection and diagnosis of GC in blood samples in clinical practices, especially Reprimo gene. Further well-designed (multi-center) and prospective clinical studies with large populations are needed to confirm these findings in the future.
Collapse
Affiliation(s)
- Jinfeng Wen
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Tuo Zheng
- Department of Gastroenterology, Ningbo No.1 Hospital, Ningbo, Zhejiang 315000, People's Republic of China
| | - Kefeng Hu
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Chunxia Zhu
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Lihua Guo
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| |
Collapse
|
43
|
Reprimo, a Potential p53-Dependent Tumor Suppressor Gene, Is Frequently Hypermethylated in Estrogen Receptor α-Positive Breast Cancer. Int J Mol Sci 2017; 18:ijms18081525. [PMID: 28809778 PMCID: PMC5577992 DOI: 10.3390/ijms18081525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023] Open
Abstract
Aberrant DNA methylation is a hallmark of many cancers. Currently, there are four intrinsic molecular subtypes in breast cancer (BC): Luminal A, B, Her2-positive, and triple negative (TNBC). Recently, The Cancer Genome Atlas (TCGA) project has revealed that Luminal subtypes have higher levels of genome-wide methylation that may be a result of Estrogen/Estrogen receptor α (E2/ERα) signaling pathway activation. In this study, we analyze promoter CpG-island (CGIs) of the Reprimo (RPRM) gene in breast cancers (n = 77), cell lines (n = 38), and normal breast tissue (n = 10) using a MBDCap-seq database. Then, a validation cohort (n = 26) was used to confirm the results found in the MBDCap-seq platform. A differential methylation pattern was found between BC and cell lines compared to normal breast tissue. In BC, a higher DNA methylation was observed in tissues that were ERα-positive than in ERα-negative ones; more precisely, subtypes Luminal A compared to TNBC. Also, significant reverse correlation was observed between DNA methylation and RPRM mRNA expression in BC. Our data suggest that ERα expression in BC may affect the DNA methylation of CGIs in the RPRM gene. This approach suggests that DNA methylation status in CGIs of some tumor suppressor genes could be driven by E2 availability, subsequently inducing the activation of the ERα pathway.
Collapse
|
44
|
Abstract
Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.
Collapse
|
45
|
Figueroa RJ, Carrasco-Avino G, Wichmann IA, Lange M, Owen GI, Siekmann AF, Corvalán AH, Opazo JC, Amigo JD. Reprimo tissue-specific expression pattern is conserved between zebrafish and human. PLoS One 2017; 12:e0178274. [PMID: 28562620 PMCID: PMC5451059 DOI: 10.1371/journal.pone.0178274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/10/2017] [Indexed: 01/28/2023] Open
Abstract
Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.
Collapse
Affiliation(s)
- Ricardo J. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Pathology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ignacio A. Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Lange
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Gareth I. Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C. Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julio D. Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
46
|
Wang H, Ke H, Zheng Y, Lai J, Luo Q, Chen Q. A modified bisulfite conversion method for the detection of DNA methylation. Epigenomics 2017; 9:955-969. [PMID: 28548583 DOI: 10.2217/epi-2016-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM Our purpose is to improve the conventional procedures for bisulfite conversion used to detect 5-methylcytosine in DNA. METHODS Impacts of different bisulfite salts, bisulfite conversion temperature, antioxidants and denaturants on DNA conversion and degradation were assessed by methylation-sensitive melt curve analysis. The modified method was tested on different genes and the conversion efficiency was analyzed by bisulfite sequencing. RESULTS We developed a modified bisulfite conversion method that completes this process within 2 h. We demonstrate that high temperature denaturation is the major cause for DNA degradation, and the addition of ethylene glycol dimethyl ether is an effective way to accelerate the bisulfite conversion. The conversion efficiency is comparable to many other commercial kits. CONCLUSION Our modified bisulfite conversion method is simple, cost efficient and less time consuming and is compatible with different genes and samples, thus has a great potential for the future research and clinical applications.
Collapse
Affiliation(s)
- Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Huican Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Yansong Zheng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, 1 Keji Road, College Town, Fuzhou, Fujian 350117, China
| |
Collapse
|
47
|
Caglevic C, Silva S, Mahave M, Rolfo C, Gallardo J. The current situation for gastric cancer in Chile. Ecancermedicalscience 2016; 10:707. [PMID: 28105078 PMCID: PMC5221643 DOI: 10.3332/ecancer.2016.707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is a neoplasm with a high incidence and mortality rate in Chile where more than 3000 people die every year from this type of cancer. This study shows the clinical and epidemiological considerations of this disease, information about translational research on this pathology in Chile, the contribution of Chilean doctors to the development of gastric cancer management awareness and the general situation of gastric cancer in Chile.
Collapse
Affiliation(s)
- Christian Caglevic
- Cancer Drug Research Unit, Fundación Arturo López Pérez, Santiago, Chile; Instituto Oncológico Fundación Arturo López Pérez, Rancagua 878, Providencia Santiago, Chile
| | - Shirley Silva
- Radiation Oncology, University of Valparaíso, Valparaíso, Chile; Instituto Oncológico Fundación Arturo López Pérez, Rancagua 878, Providencia Santiago, Chile
| | - Mauricio Mahave
- Medical Oncology Service, Fundación Arturo López Pérez, Santiago, Chile; Instituto Oncológico Fundación Arturo López Pérez, Rancagua 878, Providencia Santiago, Chile
| | - Christian Rolfo
- Early Drug Development Unit - Phase I, University Hospital of Antwerp, Antwerp, Belgium; Instituto Oncológico Fundación Arturo López Pérez, Rancagua 878, Providencia Santiago, Chile
| | - Jorge Gallardo
- Fundación Chilena Desarrollo Oncología, SLAGO (Latin American Symposium on Oncological Gastroenterology), Santiago, Chile.; Instituto Oncológico Fundación Arturo López Pérez, Rancagua 878, Providencia Santiago, Chile
| |
Collapse
|
48
|
Wang H, Zheng Y, Lai J, Luo Q, Ke H, Chen Q. Methylation-Sensitive Melt Curve Analysis of the Reprimo Gene Methylation in Gastric Cancer. PLoS One 2016; 11:e0168635. [PMID: 27992600 PMCID: PMC5161478 DOI: 10.1371/journal.pone.0168635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Reprimo (RPRM) is a p53-induced tumor suppressor gene. Its aberrant DNA methylation is correlated with carcinogenesis and may be used as a surrogate marker for the early detection of gastric cancer. However, the detail information regarding its DNA methylation has not been revealed. Here, we investigated the RPRM gene methylation in gastric cancer tumor and plasma samples by methylation-sensitive melt curve analysis (MS-MCA) and bisulfite sequencing in depth. We developed a semi-quantitative method based on MS-MCA for detecting DNA methylation and unraveled the RPRM gene methylation pattern in gastric cancer. This study provides a solid foundation for the future application of detecting RPRM gene methylation in human plasma or serum samples to help diagnose gastric cancer or for prognosis evaluation.
Collapse
Affiliation(s)
- Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fujian, China
| | - Yansong Zheng
- The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fujian, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fujian, China
| | - Huican Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fujian, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fujian, China
- * E-mail:
| |
Collapse
|
49
|
Wang L, Zhang C, Xu J, Wu H, Peng J, Cai S, He Y. CXCL1 gene silencing inhibits HGC803 cell migration and invasion and acts as an independent prognostic factor for poor survival in gastric cancer. Mol Med Rep 2016; 14:4673-4679. [PMID: 27748927 PMCID: PMC5102040 DOI: 10.3892/mmr.2016.5843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Chemokine (C-X-C motif) ligand 1 (CXCL1) is essential in oncogenesis and development of malignant tumors. The present study aimed to investigate CXCL1 expression in promoting lymph node metastasis in gastric cancer patients. Human gastric cancer cell lines were employed to detect CXCL1 expression. HGC803 cell migration and cell invasion were detected using a wound healing assay and Transwell invasion assay, respectively. A total of 100 patients who underwent radical gastric resection with lymph node dissection in the First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China) between 2007 and 2008 were included. Expression of CXCL1 and lymphatic vessel density (LMVD) was determined by using immunohistochemistry (IHC), and their association with clinicopathological features and prognosis was investigated. Cox survival regression analysis was used to analyze overall survival of patients. Results indicated that CXCL1 protein was expressed in all of investigated gastric cancer cell lines. Silencing of the CXCL1 gene reduced migratory and invasive ability of HGC803 cells. CXCL1 protein expression was detected by IHC in 41 patients (41%), these were associated with advanced tumor-node-metastasis (TNM) stage, LMVD, tumor differentiation and poor survival. LMVD was positively correlated with advanced TNM stage, size of tumor, tumor differentiation and poor survival rate. Furthermore, it was observed that TNM stage, tumor differentiation and CXCL1 were independent prognostic factors in the Cox survival regression analysis. Silencing of the CXCL1 gene inhibits HGC803 cell migration and invasion. The positive expression of CXCL1 is correlated with poor survival of gastric cancer patients and CXCL1 is an independent prognostic factor for gastric cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
50
|
Wichmann IA, Zavala K, Hoffmann FG, Vandewege MW, Corvalán AH, Amigo JD, Owen GI, Opazo JC. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage. Gene 2016; 591:245-254. [PMID: 27432065 DOI: 10.1016/j.gene.2016.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed.
Collapse
Affiliation(s)
- Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, MS, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|