1
|
Min D, Fiedler J, Anandasabapathy N. Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy. Curr Opin Immunol 2024; 91:102499. [PMID: 39486215 DOI: 10.1016/j.coi.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As cancer immunotherapy evolves, tissue-resident memory (TRM) cells remain key contributors to the antitumoral immune response due to their ability to mediate local tumor control, high expression of immune checkpoints, potential to respond to immunotherapy, and location across tissue sites where distal tumor metastases occur. This review synthesizes recent findings on the biology of TRM cells, their role in cancer, and their interactions with the tumor microenvironment. We also identify several critical research gaps, such as how mechanistic interrogation of TRM cell function is required for integration into therapeutics, proposing a focused research agenda to better exploit their potential.
Collapse
Affiliation(s)
- Daniel Min
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Fiedler
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Zhao L, Hu M, Li L. Identifying the Genetic Associations Between Diabetes Mellitus and the Risk of Vitiligo. Clin Cosmet Investig Dermatol 2024; 17:2261-2271. [PMID: 39421797 PMCID: PMC11484772 DOI: 10.2147/ccid.s480199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024]
Abstract
Purpose While increasing observational studies have suggested an association between diabetes mellitus (DM) and vitiligo, the causal relationship and possible mechanism remain unclear. Methods Publicly accessible genome-wide association study (GWAS) was utilized to conduct a bidirectional two-sample Mendelian randomization (MR) analysis. GWAS data for diabetes and vitiligo were obtained from the UK Biobank Consortium (20203 cases and 388756 controls) and the current GWAS data with largest cases (GCST004785, 4680 cases and 39586 controls) for preliminary analysis, respectively. Inverse variance weighting (IVW) was used as the main analysis method. Several sensitivity analyses were utilized to test the pleiotropy or heterogeneity. To explore the possible mechanism of gene-generating effects represented by the final instrumental variables in the analysis, enrichment analysis was conducted using the DAVID and STRING database. Results IVW method showed a significant genetic causal association between DM and vitiligo (OR = 1.20, 95% CI: 1.08-1.33, PIVW = 0.0009). Diabetes subtype analysis showed that T2D (type 2 diabetes) were associated with an increased risk of vitiligo (OR = 1.13, 95% CI: 1.00-1.27, PIVW = 0.0432). Sensitivity analysis further confirmed the robustness of the results. The enrichment analysis revealed that the genetic inducing effects of diabetes mellitus on vitiligo were primarily about pancreatic secretion and protein digestion and absorption pathway. Conclusion Our findings provide genetic evidence that there is a notable association between T2D and an elevated risk of vitiligo in European populations. This result may explain why the co-presentation of T2D and vitiligo is often seen in observational studies, and emphasize the significance of vigilant monitoring and clinical evaluations for vitiligo in individuals diagnosed with T2D. The aberrant glucose and lipid metabolism and the primary nutrient absorption disorder of vitiligo brought on by diabetes may be the potential mechanisms behind this association.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Cosmetics Safety and Efficacy Evaluation Center, Key Laboratory of Human Evaluation and Big Data of Cosmetics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Daugherty-Lopès A, Pérez-Guijarro E, Gopalan V, Rappaport J, Chen Q, Huang A, Lam KC, Chin S, Ebersole J, Wu E, Needle GA, Church I, Kyriakopoulos G, Xie S, Zhao Y, Gruen C, Sassano A, Araya RE, Thorkelsson A, Smith C, Lee MP, Hannenhalli S, Day CP, Merlino G, Goldszmid RS. IMMUNE AND MOLECULAR CORRELATES OF RESPONSE TO IMMUNOTHERAPY REVEALED BY BRAIN-METASTATIC MELANOMA MODELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609785. [PMID: 39372744 PMCID: PMC11451731 DOI: 10.1101/2024.08.26.609785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the promising results of immune checkpoint blockade (ICB) therapy, outcomes for patients with brain metastasis (BrM) remain poor. Identifying resistance mechanisms has been hindered by limited access to patient samples and relevant preclinical models. Here, we developed two mouse melanoma BrM models that recapitulate the disparate responses to ICB seen in patients. We demonstrate that these models capture the cellular and molecular complexity of human disease and reveal key factors shaping the tumor microenvironment and influencing ICB response. BR1-responsive tumor cells express inflammatory programs that polarize microglia into reactive states, eliciting robust T cell recruitment. In contrast, BR3-resistant melanoma cells are enriched in neurological programs and exploit tolerance mechanisms to maintain microglia homeostasis and limit T cell infiltration. In humans, BR1 and BR3 expression signatures correlate positively or negatively with T cell infiltration and BrM patient outcomes, respectively. Our study provides clinically relevant models and uncovers mechanistic insights into BrM ICB responses, offering potential biomarkers and therapeutic targets to improve therapy efficacy.
Collapse
Affiliation(s)
- Amélie Daugherty-Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jessica Rappaport
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung Chin
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jessica Ebersole
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Emily Wu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gabriel A. Needle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Isabella Church
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shaojun Xie
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina E. Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cari Smith
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Wu N, Li J, Li L, Yang L, Dong L, Shen C, Sha S, Fu Y, Dong E, Zheng F, Tan Z, Tao J. MerTK + macrophages promote melanoma progression and immunotherapy resistance through AhR-ALKAL1 activation. SCIENCE ADVANCES 2024; 10:eado8366. [PMID: 39365866 PMCID: PMC11451552 DOI: 10.1126/sciadv.ado8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Despite our increasing understanding of macrophage heterogeneity, drivers of macrophage phenotypic and functional polarization in the microenvironment are not fully elucidated. Here, our single-cell RNA sequencing data identify a subpopulation of macrophages expressing high levels of the phagocytic receptor MER proto-oncogene tyrosine kinase (MerTK+ macrophages), which is closely associated with melanoma progression and immunotherapy resistance. Adoptive transfer of the MerTK+ macrophages into recipient mice notably accelerated tumor growth regardless of macrophage depletion. Mechanistic studies further revealed that ALK And LTK Ligand 1 (ALKAL1), a target gene of aryl hydrocarbon receptor (AhR), facilitated MerTK phosphorylation, resulting in heightened phagocytic activity of MerTK+ macrophages and their subsequent polarization toward an immunosuppressive phenotype. Specifically targeted delivery of AhR antagonist to tumor-associated macrophages with mannosylated micelles could suppress MerTK expression and improved the therapeutic efficacy of anti-programmed cell death ligand 1 therapy. Our findings shed light on the regulatory mechanism of MerTK+ macrophages and provide strategies for improving the efficacy of melanoma immunotherapy.
Collapse
Affiliation(s)
- Naming Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Jun Li
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Enzhu Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| |
Collapse
|
5
|
Zhang S, Kong F, Zheng L, Li X, Jia L, Yang L. SEMA7A as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltrates in Breast Cancer. Int J Gen Med 2024; 17:4081-4099. [PMID: 39295856 PMCID: PMC11410036 DOI: 10.2147/ijgm.s474827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background The role of Semaphorin 7a (SEMA7A) in the initiation and progression of different types of cancerous lesions has been extensively studied. However, the prognostic significance of SEMA7A, specifically in breast cancer (BC), lacks clarity. Methods We conducted an evaluation on the relationship between SEMA7A and the prognosis, immune invasion and tumor mutation burden in different types of cancer by analyzing data from The Cancer Genome Atlas database. The present study focused on investigating the expression level, mutation, immune correlation and coexpression of SEMA7A in BC, utilizing various databases such as the University of Alabama at Birmingham Cancer data analysis portal, cBioPortal and tumor immune estimation resource. Survival analysis was carried out using the Kaplan-Meier Plotter. Furthermore, we employed the R software package to generate receiver operating characteristic (ROC) curves and nomograms. Notably, P<0.05 was considered to indicate statistical significance. Results Using pancancer analysis, it has been observed that the expression of SEMA7A is elevated in various types of cancer and is strongly correlated with the prognosis of different cancer types. SEMA7A also exhibits a significant association with the tumor mutation burden of diverse types of cancer. Moreover, SEMA7A displays a notable increase in BC cases, and was indicated to have a substantial association with the abundance of immune infiltration. In-depth survival analysis demonstrated that elevated levels of SEMA7A expression are notably linked to shorter overall survival and distant metastasis-free survival among patients with BC. The efficiency of SEMA7A as a reliable prognostic biomarker for BC has been substantiated by the validation of ROC curves and nomograms. Conclusion SEMA7A has the potential to function as a prognostic indicator for BC, and its correlation with immune infiltration in BC is significant.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| |
Collapse
|
6
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400702. [PMID: 39248327 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Hill SL, Sugiyarto G, Harrington J, James E, Underwood TJ, Elliott T. High proportion of PD-1 and CD39 positive CD8+ tissue resident T lymphocytes correlates with better clinical outcome in resected human oesophageal adenocarcinoma. Cancer Immunol Immunother 2024; 73:213. [PMID: 39235606 PMCID: PMC11377377 DOI: 10.1007/s00262-024-03799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To understand the CD8+ tumour infiltrating lymphocyte (TIL) compartment of oesophageal adenocarcinoma (OAC) with regards to markers of lymphocyte exhaustion, tissue residency and to identify possible reasons behind differential responses to therapy. DESIGN Tumour samples from 44 patients undergoing curative resection for OAC were assessed by flow cytometry for presence of antigen-experienced TILs and markers of activation and exhaustion. Populations of PD-1 and CD39 positive OAC TILs were sorted, and bulk RNA sequencing undertaken using a modified SmartSeq2 protocol. Flow cytometric assessment of functionality was completed. RESULTS A higher proportion of antigen experienced CD8+ OAC TILs was associated with improved survival following surgery; while, high double positivity (DP) for PD-1 and CD39 among these TILs also correlated significantly with outcome. These DP TILs possess a minority population which is positive for the markers of exhaustion TIM3 and LAG3. Transcriptomic assessment of the PD-1 and CD39 DP TILs demonstrated enrichment for a tissue resident memory T lymphocyte (TRM) phenotype associated with improved survival in other cancers, reinforced by positivity for the canonical TRM marker CD103 by flow cytometry. This population demonstrated maintained functional capacity both in their transcriptomic profile, and on flow cytometric assessment, as well as preserved proliferative capacity. CONCLUSION Resected OAC are variably infiltrated by PD-1 and CD39 DP TILs, an abundance of which among lymphocytes is associated with improved survival. This DP population has an increased, but still modest, frequency of TIM3 and LAG3 positivity compared to DN, and is in keeping with a functionally competent TRM phenotype.
Collapse
Affiliation(s)
- Samuel L Hill
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Gessa Sugiyarto
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jack Harrington
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Edward James
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim Elliott
- Oxford Cancer Centre for Immuno-Oncology and CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Isaacs JF, Degefu HN, Chen T, Kleist SA, Musial SC, Ford MA, Searles TG, Lin CC, Skorput AGJ, Shirai K, Turk MJ, Zanazzi GJ, Rosato PC. CD39 Is Expressed on Functional Effector and Tissue-resident Memory CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:588-599. [PMID: 38975728 PMCID: PMC11333163 DOI: 10.4049/jimmunol.2400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The ecto-ATPase CD39 is expressed on exhausted CD8+ T cells in chronic viral infection and has been proposed as a marker of tumor-specific CD8+ T cells in cancer, but the role of CD39 in an effector and memory T cell response has not been clearly defined. We report that CD39 is expressed on Ag-specific CD8+ short-lived effector cells, while it's co-ectoenzyme, CD73, is found on memory precursor effector cells (MPECs) in vivo. Inhibition of CD39 enzymatic activity during in vitro T cell priming enhances MPEC differentiation in vivo after transfer and infection. The enriched MPEC phenotype is associated with enhanced tissue resident memory T cell (TRM cell) establishment in the brain and salivary gland following an acute intranasal viral infection, suggesting that CD39 ATPase activity plays a role in memory CD8+ T cell differentiation. We also show that CD39 is expressed on human and murine TRM cells across several nonlymphoid tissues and melanoma, whereas CD73 is expressed on both circulating and resident memory subsets in mice. In contrast to exhausted CD39+ T cells in chronic infection, CD39+ TRM cells are fully functional when stimulated ex vivo with cognate Ag, further expanding the identity of CD39 beyond a T cell exhaustion marker.
Collapse
Affiliation(s)
- Jordan F. Isaacs
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Hanna N. Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tiffany Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Sierra A. Kleist
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Shawn C. Musial
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Myles A. Ford
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tyler G. Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | | | - Keisuke Shirai
- Department of Medicine, Dartmouth Health, Lebanon NH, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | - Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
10
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
11
|
Martin S, Wendlinger L, Zitti B, Hicham M, Postupalenko V, Marx L, Giordano-Attianese G, Cribioli E, Irving M, Litvinenko A, Faizova R, Viertl D, Schottelius M. Validation of the C-X-C chemokine receptor 3 (CXCR3) as a target for PET imaging of T cell activation. EJNMMI Res 2024; 14:77. [PMID: 39196448 PMCID: PMC11358572 DOI: 10.1186/s13550-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE CXCR3 is expressed on activated T cells and plays a crucial role in T-cell recruitment to the tumor microenvironment (TME) during cell-based and immune checkpoint inhibitor (ICI) immunotherapy. This study utilized a 64Cu-labeled NOTA-α-CXCR3 antibody to assess CXCR3 expression in the TME and validate it as a potential T cell activation biomarker in vivo. PROCEDURES CXCR3+ cells infiltrating MC38 tumors (B57BL/6 mice, untreated and treated with αPD-1/αCTLA-4 ICI) were quantified using fluorescence microscopy and flow cytometry. A commercial anti-mouse CXCR3 antibody (α-CXCR3) was site-specifically conjugated with 2,2,2-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) and radiolabeled with 64Cu. Saturation binding of [64Cu]Cu-NOTA-α-CXCR3 was investigated using CHO cells stably transfected with murine CXCR3. Biodistribution and PET imaging studies both at baseline and after 1 to 3 cycles of ICI, respectively, were carried out using different molar activities (10 GBq/µmol to 300 GBq/µmol) of [64Cu]Cu-NOTA-α-CXCR3. RESULTS Flow cytometry analysis at baseline confirmed the presence of CXCR3 + T-cells in MC38 tumors, which was significantly increased at day five after ICI (treated 33.8 ± 17.4 vs. control 8.8 ± 6.2 CD3+CXCR3+ cells/mg). These results were qualitatively and quantitatively confirmed by immunofluorescence of tumor cryoslices. In vivo PET imaging of MC38 tumor bearing mice before, during and after ICI using [64Cu]Cu-NOTA-α-CXCR3 (Kd = 3.3 nM) revealed a strong dependence of CXCR3-specificity of tracer accumulation in secondary lymphoid organs on molar activity. At 300 GBq/µmol (1.5 µg of antibody/mouse), a specific signal was observed in lymph nodes (6.33 ± 1.25 control vs. 3.95 ± 1.23%IA/g blocking) and the spleen (6.04 ± 1.02 control vs. 3.84 ± 0.79%IA/g blocking) at 48 h p.i. Spleen-to-liver ratios indicated a time dependent systemic immune response showing a steady increase from 1.08 ± 0.19 (untreated control) to 1.54 ± 0.14 (three ICI cycles). CONCLUSIONS This study demonstrates the feasibility of in vivo imaging of CXCR3 upregulation under immunotherapy using antibodies. However, high molar activities and low antibody doses are essential for sensitive detection in lymph nodes and spleen. Detecting therapy-induced changes in CXCR3+ T cell numbers in tumors was challenging due to secondary antibody-related effects. Nonetheless, CXCR3 remains a promising target for imaging T cell activation, with anticipated improvements in sensitivity using alternative tracers with high affinities and favorable pharmacokinetics.
Collapse
Affiliation(s)
- Sebastian Martin
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Lennard Wendlinger
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Béatrice Zitti
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mehdi Hicham
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Viktoriia Postupalenko
- Debiopharm Research & Manufacturing SA, Campus "après-demain", Rue du Levant 146, Martigny, 1920, Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA, Campus "après-demain", Rue du Levant 146, Martigny, 1920, Switzerland
| | - Greta Giordano-Attianese
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland
| | - Alexandra Litvinenko
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Radmila Faizova
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.
| |
Collapse
|
12
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Chen Y, Shao Z, Hao Z, Xin Z, Chen X, Huang L, Chen D, Lin M, Liu Q, Xu X, Li J, Wu D, Yan J, Chai Y, Wu P. Epithelium/imcDC2 axis facilitates the resistance of neoadjuvant anti-PD-1 in human NSCLC. J Immunother Cancer 2024; 12:e007854. [PMID: 39134346 PMCID: PMC11332012 DOI: 10.1136/jitc-2023-007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Therapeutic resistance is a main obstacle to achieve long-term benefits from immune checkpoint inhibitors. The underlying mechanism of neoadjuvant anti-PD-1 resistance remains unclear. METHODS Multi-omics analysis, including mass cytometry, single-cell RNA-seq, bulk RNA-seq, and polychromatic flow cytometry, was conducted using the resected tumor samples in a cohort of non-small cell lung cancer (NSCLC) patients received neoadjuvant anti-PD-1 therapy. Tumor and paired lung samples acquired from treatment-naïve patients were used as a control. In vitro experiments were conducted using primary cells isolated from fresh tissues and lung cancer cell lines. A Lewis-bearing mouse model was used in the in vivo experiment. RESULTS The quantity, differentiation status, and clonal expansion of tissue-resident memory CD8+ T cells (CD8+ TRMs) are positively correlated with therapeutic efficacy of neoadjuvant anti-PD-1 therapy in human NSCLC. In contrast, the quantity of immature CD1c+ classical type 2 dendritic cells (imcDC2) and galectin-9+ cancer cells is negatively correlated with therapeutic efficacy. An epithelium/imDC2 suppressive axis that restrains the antitumor response of CD8+ TRMs via galectin-9/TIM-3 was uncovered. The expression level of CD8+ TRMs and galectin-9+ cancer cell-related genes predict the clinical outcome of anti-PD-1 neoadjuvant therapy in human NSCLC patients. Finally, blockade of TIM-3 and PD-1 could improve the survival of tumor-bearing mouse by promoting the antigen presentation of imcDC2 and CD8+ TRMs-mediated tumor-killing. CONCLUSION Galectin-9 expressing tumor cells sustained the primary resistance of neoadjuvant anti-PD-1 therapy in NSCLC through galectin-9/TIM-3-mediated suppression of imcDC2 and CD8+ TRMs. Supplement of anti-TIM-3 could break the epithelium/imcDC2/CD8+ TRMs suppressive loop to overcome anti-PD-1 resistance. TRIAL REGISTRATION NUMBER NCT03732664.
Collapse
Affiliation(s)
- Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijian Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr., Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
15
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Zhao Z, Ma X, Cai Z. The potential role of CD8+ cytotoxic T lymphocytes and one branch connected with tissue-resident memory in non-luminal breast cancer. PeerJ 2024; 12:e17667. [PMID: 39006029 PMCID: PMC11246025 DOI: 10.7717/peerj.17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Advances in understanding the pathological mechanisms of breast cancer have resulted in the emergence of novel therapeutic strategies. However, triple-negative breast cancer (TNBC), a molecular subtype of breast cancer with a poor prognosis, lacks classical and general therapeutic targets, hindering the clinical application of several therapies to breast cancer. As insights into the unique immunity and molecular mechanisms of TNBC have become more extensive, immunotherapy has gradually become a valuable complementary approach to classical radiotherapy and chemotherapy. CD8+ cells are significant actors in the tumor immunity cycle; thus, research on TNBC immunotherapy is increasingly focused in this direction. Recently, CD8+ tissue-resident memory (TRM) cells, a subpopulation of CD8+ cells, have been explored in relation to breast cancer and found to seemingly play an undeniably important role in tumor surveillance and lymphocytic infiltration. In this review, we summarize the recent advances in the mechanisms and relative targets of CD8+ T cells, and discuss the features and potential applications of CD8+ TRM cells in non-luminal breast cancer immunotherapy.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xinyu Ma
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhengang Cai
- Department of Breast Cancer, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
17
|
De León-Rodríguez SG, Aguilar-Flores C, Gajón JA, Juárez-Flores Á, Mantilla A, Gerson-Cwilich R, Martínez-Herrera JF, Villegas-Osorno DA, Gutiérrez-Quiroz CT, Buenaventura-Cisneros S, Sánchez-Prieto MA, Castelán-Maldonado E, Rivera Rivera S, Fuentes-Pananá EM, Bonifaz LC. TCF1-positive and TCF1-negative TRM CD8 T cell subsets and cDC1s orchestrate melanoma protection and immunotherapy response. J Immunother Cancer 2024; 12:e008739. [PMID: 38969523 PMCID: PMC11227852 DOI: 10.1136/jitc-2023-008739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Melanoma, the most lethal form of skin cancer, has undergone a transformative treatment shift with the advent of checkpoint blockade immunotherapy (CBI). Understanding the intricate network of immune cells infiltrating the tumor and orchestrating the control of melanoma cells and the response to CBI is currently of utmost importance. There is evidence underscoring the significance of tissue-resident memory (TRM) CD8 T cells and classic dendritic cell type 1 (cDC1) in cancer protection. Transcriptomic studies also support the existence of a TCF7+ (encoding TCF1) T cell as the most important for immunotherapy response, although uncertainty exists about whether there is a TCF1+TRM T cell due to evidence indicating TCF1 downregulation for tissue residency activation. METHODS We used multiplexed immunofluorescence and spectral flow cytometry to evaluate TRM CD8 T cells and cDC1 in two melanoma patient cohorts: one immunotherapy-naive and the other receiving immunotherapy. The first cohort was divided between patients free of disease or with metastasis 2 years postdiagnosis while the second between CBI responders and non-responders. RESULTS Our study identifies two CD8+TRM subsets, TCF1+ and TCF1-, correlating with melanoma protection. TCF1+TRM cells show heightened expression of IFN-γ and Ki67 while TCF1- TRM cells exhibit increased expression of cytotoxic molecules. In metastatic patients, TRM subsets undergo a shift in marker expression, with the TCF1- subset displaying increased expression of exhaustion markers. We observed a close spatial correlation between cDC1s and TRMs, with TCF1+TRM/cDC1 pairs enriched in the stroma and TCF1- TRM/cDC1 pairs in tumor areas. Notably, these TCF1- TRMs express cytotoxic molecules and are associated with apoptotic melanoma cells. Both TCF1+ and TCF1- TRM subsets, alongside cDC1, prove relevant to CBI response. CONCLUSIONS Our study supports the importance of TRM CD8 T cells and cDC1 in melanoma protection while also highlighting the existence of functionally distinctive TCF1+ and TCF1- TRM subsets, both crucial for melanoma control and CBI response.
Collapse
Affiliation(s)
- Saraí G De León-Rodríguez
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Julián A Gajón
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Posgrado en Ciencias Bioquímicas, Facultad de Química, Universad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángel Juárez-Flores
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - José Fabián Martínez-Herrera
- Medical Center American British Cowdray, Mexico City, Mexico
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | | | - Claudia T Gutiérrez-Quiroz
- UMAE Hospital de Especialidades, Centro Médico Nacional General Manuel Avila Camacho, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Edmundo Castelán-Maldonado
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Samuel Rivera Rivera
- Medical Center American British Cowdray, Mexico City, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Coordinación de investigación en salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| |
Collapse
|
18
|
Hu S, Che Y, Cai J, Chen S, Gao R, Huang X. Diabetes, glycemic profile and risk of vitiligo: A Mendelian randomization study. Skin Res Technol 2024; 30:e13787. [PMID: 38992866 PMCID: PMC11239318 DOI: 10.1111/srt.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUD Previous observational studies have shown that vitiligo usually co-manifests with a variety of dysglycemic diseases, such as Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM). Mendelian randomization (MR) analysis was performed to further evaluate the causal association between fasting plasma glucose, glycosylated hemoglobin (HbA1c), T1DM, T2DM and vitiligo. MATERIALS AND METHODS We used aggregated genome-wide association data from the Integrative Epidemiology Unit (IEU) online database of European adults vitiligo; HbA1c data were from IEU. Fasting blood glucose data were obtained from the European Bioinformatics Institute (EBI). T1DM and T2DM data were from FinnGen. We used bidirectional two-sample and multivariate MR analyses to test whether dysglycemic measures (fasting blood glucose, HbA1c), diabetes-related measures (T1DM, T2DM) are causatively associated with vitiligo. Inverse variance weighting (IVW) method was used as the main test method, MR-Egger, Weighted mode and Weighted median were used as supplementary methods. RESULTS We found no statistically significant evidence to support a causal association between dysglycemic traits and vitiligo, but in the correlation analysis of diabetic traits, our data supported a positive causal association between T1DM and vitiligo (p = 0.018). In the follow-up multivariate MR analysis, our results still supported this conclusion (p = 0.016), and suggested that HbA1c was not a mediator of T1DM affecting the pathogenesis of vitiligo. No reverse causality was found in any of the reverse MR Analyses of dysglycemic traits and diabetic traits. CONCLUSIONS Our findings support that T1DM is a risk factor for the development of vitiligo, and this conclusion may explain why the co-presentation of T1DM and vitiligo is often seen in observational studies. Clinical use of measures related to T1DM may be a new idea for the prevention or treatment of vitiligo.
Collapse
Affiliation(s)
- Shucheng Hu
- Clinical Medical CollegeChengdu University of Traditional Chinese MedicineChengduChina
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yuhui Che
- Clinical Medical CollegeChengdu University of Traditional Chinese MedicineChengduChina
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jiaying Cai
- Clinical Medical CollegeChengdu University of Traditional Chinese MedicineChengduChina
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Siyan Chen
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ruifan Gao
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaopeng Huang
- Clinical Medical CollegeChengdu University of Traditional Chinese MedicineChengduChina
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
19
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
20
|
Rodriguez E, Zwart ES, Affandi AA, Verhoeff J, de Kok M, Boyd LNC, Meijer LL, Le Large TYS, Olesek K, Giovannetti E, García-Vallejo JJ, Mebius RE, van Kooyk Y, Kazemier G. In-depth immune profiling of peripheral blood mononuclear cells in patients with pancreatic ductal adenocarcinoma reveals discriminative immune subpopulations. Cancer Sci 2024; 115:2170-2183. [PMID: 38686549 PMCID: PMC11247553 DOI: 10.1111/cas.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival of less than 10%. More knowledge of the immune response developed in patients with PDAC is pivotal to develop better combination immune therapies to improve clinical outcome. In this study, we used mass cytometry time-of-flight to undertake an in-depth characterization of PBMCs from patients with PDAC and examine the differences with healthy controls and patients with benign diseases of the biliary system or pancreas. Peripheral blood mononuclear cells from patients with PDAC or benign disease are characterized by the increase of pro-inflammatory cells, as CD86+ classical monocytes and memory T cells expressing CCR6+ and CXCR3+, associated with T helper 1 (Th1) and Th17 immune responses, respectively. However, PBMCs from patients with PDAC present also an increase of CD39+ regulatory T cells and CCR4+CCR6-CXCR3- memory T cells, suggesting Th2 and regulatory responses. Concluding, our results show PDAC develops a multifaceted immunity, where a proinflammatory component is accompanied by regulatory responses, which could inhibit potential antitumor mechanisms.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Alsya A Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Mike de Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lenka N C Boyd
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Laura L Meijer
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tessa Y S Le Large
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Geert Kazemier
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Mazzetto R, Miceli P, Sernicola A, Tartaglia J, Alaibac M. Skin Hypopigmentation in Hematology Disorders. Hematol Rep 2024; 16:354-366. [PMID: 38921184 PMCID: PMC11204138 DOI: 10.3390/hematolrep16020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Hypopigmentation disorders pose significant diagnostic challenges in dermatology, sometimes reflecting underlying hematological conditions. This review explores the clinical presentations related to hypopigmentation in hematological disorders, focusing on vitiligo, morphea, and syndromic albinism. Vitiligo, an autoimmune disorder targeting melanocytes, involves interactions between genetic polymorphisms and immune responses, particularly regarding CD8+ T cells and IFN-γ. Drug-induced vitiligo, notably by immune checkpoint inhibitors and small-molecule targeted anticancer therapies, underscores the importance of immune dysregulation. Morphea, an inflammatory skin disorder, may signal hematological involvement, as seen in deep morphea and post-radiotherapy lesions. Syndromic albinism, linked to various genetic mutations affecting melanin production, often presents with hematologic abnormalities. Treatment approaches focus on targeting the immune pathways specific to the condition, and when that is not possible, managing symptoms. Understanding these dermatological manifestations is crucial for the timely diagnosis and management of hematological disorders.
Collapse
Affiliation(s)
| | | | - Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padova, Italy; (R.M.); (J.T.); (M.A.)
| | | | | |
Collapse
|
22
|
Rayson VC, Harris MA, Savas P, Hun ML, Virassamy B, Salgado R, Loi S. The anti-cancer immune response in breast cancer: current and emerging biomarkers and treatments. Trends Cancer 2024; 10:490-506. [PMID: 38521654 DOI: 10.1016/j.trecan.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast cancers (TNBCs) exhibit heightened T cell infiltration, contributing to an enhanced response to immune checkpoint blockade (ICB) compared with other subtypes. An immune-rich immune microenvironment correlates with improved prognosis in early and advanced TNBC. Combination chemotherapy and ICB is now the standard of care in early- and late-stage TNBC. Although programmed death ligand-1 (PD-L1) positivity predicts ICB response in advanced stages, its role in early-stage disease remains uncertain. Despite neoadjuvant ICB becoming common in early-stage TNBC, the necessity of adjuvant ICB after surgery remains unclear. Understanding the molecular basis of the immune response in breast cancer is vital for precise biomarkers for ICB and effective combination therapy strategies.
Collapse
Affiliation(s)
- Victoria C Rayson
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael L Hun
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Hao Z, Xin Z, Chen Y, Shao Z, Lin W, Wu W, Lin M, Liu Q, Chen D, Wu D, Wu P. JAML promotes the antitumor role of tumor-resident CD8 + T cells by facilitating their innate-like function in human lung cancer. Cancer Lett 2024; 590:216839. [PMID: 38570084 DOI: 10.1016/j.canlet.2024.216839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Tissue-resident memory CD8+T cells (CD8+TRMs) are thought to play a crucial role in cancer immunosurveillance. However, the characteristics of CD8+TRMs in the tumor microenvironment (TME) of human non-small cell lung cancer (NSCLC) remain unclear. Here, we report that CD8+TRMs accumulate explicitly and exhibit a unique gene expression profile in the TME of NSCLC. Interestingly, these tumor-associated CD8+TRMs uniquely exhibit an innate-like phenotype. Importantly, we found that junction adhesion molecule-like (JAML) provides an alternative costimulatory signal to activate tumor-associated CD8+TRMs via combination with cancer cell-derived CXADR (CXADR Ig-like cell adhesion molecule). Furthermore, we demonstrated that activating JAML could promote the expression of TLR1/2 on CD8+TRMs, inhibit tumor progression and prolong the survival of tumor-bearing mice. Finally, we found that higher CD8+TRMs and JAML expression in the TME could predict favorable clinical outcomes in NSCLC patients. Our study reveals an intrinsic bias of CD8+TRMs for receiving the tumor-derived costimulatory signal in the TME, which sustains their innate-like function and antitumor role. These findings will shed more light on the biology of CD8+TRMs and aid in the development of potential targeted treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
24
|
Hamid MHBA, Cespedes PF, Jin C, Chen JL, Gileadi U, Antoun E, Liang Z, Gao F, Teague R, Manoharan N, Maldonado-Perez D, Khalid-Alham N, Cerundolo L, Ciaoca R, Hester SS, Pinto-Fernández A, Draganov SD, Vendrell I, Liu G, Yao X, Kvalvaag A, Dominey-Foy DCC, Nanayakkara C, Kanellakis N, Chen YL, Waugh C, Clark SA, Clark K, Sopp P, Rahman NM, Verrill C, Kessler BM, Ogg G, Fernandes RA, Fisher R, Peng Y, Dustin ML, Dong T. Unconventional human CD61 pairing with CD103 promotes TCR signaling and antigen-specific T cell cytotoxicity. Nat Immunol 2024; 25:834-846. [PMID: 38561495 PMCID: PMC11065694 DOI: 10.1038/s41590-024-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Apyrase
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Integrin alpha Chains/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Megat H B A Hamid
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pablo F Cespedes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chen Jin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Li Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elie Antoun
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zhu Liang
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Fei Gao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Renuka Teague
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nikita Manoharan
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Maldonado-Perez
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nasullah Khalid-Alham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raul Ciaoca
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Svenja S Hester
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Adán Pinto-Fernández
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Simeon D Draganov
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Guihai Liu
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Molecular Cell Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Charunya Nanayakkara
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Kanellakis
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Yi-Ling Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Najib M Rahman
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Clare Verrill
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Benedikt M Kessler
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graham Ogg
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fisher
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Yanchun Peng
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Beumer-Chuwonpad A, Behr FM, van Alphen FPJ, Kragten NAM, Hoogendijk AJ, van den Biggelaar M, van Gisbergen KPJM. Intestinal tissue-resident memory T cells maintain distinct identity from circulating memory T cells after in vitro restimulation. Eur J Immunol 2024; 54:e2350873. [PMID: 38501878 DOI: 10.1002/eji.202350873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.
Collapse
MESH Headings
- Animals
- Memory T Cells/immunology
- Immunologic Memory/immunology
- Mice
- Listeria monocytogenes/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Integrin alpha Chains/metabolism
- Mice, Inbred C57BL
- Listeriosis/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytokines/metabolism
- Cytokines/immunology
- Lymphocyte Activation/immunology
- Lymphocytic choriomeningitis virus/immunology
- Intestinal Mucosa/immunology
- CD8-Positive T-Lymphocytes/immunology
- Intestine, Small/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Floris P J van Alphen
- Department of Research Facilities, Sanquin Research and Laboratory Services, Amsterdam, the Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | | | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, the Netherlands
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
26
|
Zeng A, Yin Y, Xu Z, Abuduwayiti A, Yang F, Shaik MS, Wang C, Chen K, Wang C, Fang X, Dai J. Down-regulated HHLA2 enhances neoadjuvant immunotherapy efficacy in patients with non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD). BMC Cancer 2024; 24:396. [PMID: 38553708 PMCID: PMC10979619 DOI: 10.1186/s12885-024-12137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Emerging data suggested a favorable outcome in advanced non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD) patients treated by immunotherapy. The objective of this study was to investigate the effectiveness of neoadjuvant immunotherapy among NSCLC with COPD versus NSCLC without COPD and explore the potential mechanistic links. PATIENTS AND METHODS Patients with NSCLC receiving neoadjuvant immunotherapy and surgery at Shanghai Pulmonary Hospital between November 2020 and January 2023 were reviewed. The assessment of neoadjuvant immunotherapy's effectiveness was conducted based on the major pathologic response (MPR). The gene expression profile was investigated by RNA sequencing data. Immune cell proportions were examined using flow cytometry. The association between gene expression, immune cells, and pathologic response was validated by immunohistochemistry and single-cell data. RESULTS A total of 230 NSCLC patients who received neoadjuvant immunotherapy were analyzed, including 60 (26.1%) with COPD. Multivariate logistic regression demonstrated that COPD was a predictor for MPR after neoadjuvant immunotherapy [odds ratio (OR), 2.490; 95% confidence interval (CI), 1.295-4.912; P = 0.007]. NSCLC with COPD showed a down-regulation of HERV-H LTR-associating protein 2 (HHLA2), which was an immune checkpoint molecule, and the HHLA2low group demonstrated the enrichment of CD8+CD103+ tissue-resident memory T cells (TRM) compared to the HHLA2high group (11.9% vs. 4.2%, P = 0.013). Single-cell analysis revealed TRM enrichment in the MPR group. Similarly, NSCLC with COPD exhibited a higher proportion of CD8+CD103+TRM compared to NSCLC without COPD (11.9% vs. 4.6%, P = 0.040). CONCLUSIONS The study identified NSCLC with COPD as a favorable lung cancer type for neoadjuvant immunotherapy, offering a new perspective on the multimodality treatment of this patient population. Down-regulated HHLA2 in NSCLC with COPD might improve the MPR rate to neoadjuvant immunotherapy owing to the enrichment of CD8+CD103+TRM. TRIAL REGISTRATION Approval for the collection and utilization of clinical samples was granted by the Ethics Committee of Shanghai Pulmonary Hospital (Approval number: K23-228).
Collapse
Affiliation(s)
- Ao Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Yanze Yin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Abudumijiti Abuduwayiti
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | | | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Keyi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Xinyun Fang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China.
| |
Collapse
|
27
|
Reschke R, Deitert B, Enk AH, Hassel JC. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin? Front Immunol 2024; 15:1385781. [PMID: 38562921 PMCID: PMC10982392 DOI: 10.3389/fimmu.2024.1385781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, TRM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced TRM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Benjamin Deitert
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alex H. Enk
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| |
Collapse
|
28
|
Fang J, Lei J, He B, Wu Y, Chen P, Sun Z, Wu N, Huang Y, Wei P, Yin L, Chen Y. Decoding the transcriptional heterogeneity, differentiation lineage, clinical significance in tissue-resident memory CD8 T cell of the small intestine by single-cell analysis. J Transl Med 2024; 22:203. [PMID: 38403590 PMCID: PMC10895748 DOI: 10.1186/s12967-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 02/27/2024] Open
Abstract
Resident memory T (Trm) cells which are specifically located in non-lymphoid tissues showed distinct phenotypes and functions compared to circulating memory T cells and were vital for the initiation of robust immune response within tissues. However, the heterogeneity in the transcriptional features, development pathways, and cancer response of Trm cells in the small intestine was not demonstrated. Here, we integrated scRNA-seq and scTCR-seq data pan-tissue T cells to explore the heterogeneity of Trm cells and their development pathways. Trm were enriched in tissue-specific immune response and those in the DUO specially interacted with B cells via TNF and MHC-I signatures. T cell lineage analyses demonstrated that Trm might be derived from the T_CD4/CD8 subset within the same organ or migrated from spleen and mesenteric lymph nodes. We compared the immune repertoire of Trm among organs and implied that clonotypes in both DUO and ILE were less expanded and hydrophilic TRB CDR3s were enriched in the DUO. We further demonstrated that Trm in the intestine infiltrated the colorectal cancer and several effector molecules were highly expressed. Finally, the TCGA dataset of colorectal cancer implied that the infiltration of Trm from the DUO and the ILE was beneficial for overall survival and the response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Wei
- School of Medicine, Guangxi University, Nanning, 530004, China
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
29
|
Ryu H, Bi TM, Pulliam TH, Sarkar K, Church CD, Kumar N, Mayer-Blackwell K, Jani S, Ramchurren N, Hansen UK, Hadrup SR, Fling SP, Koelle DM, Nghiem P, Newell EW. Merkel cell polyomavirus-specific and CD39 +CLA + CD8 T cells as blood-based predictive biomarkers for PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101390. [PMID: 38340724 PMCID: PMC10897544 DOI: 10.1016/j.xcrm.2023.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.
Collapse
Affiliation(s)
- Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Timothy M Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas H Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Korok Sarkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Candice D Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Nandita Kumar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Saumya Jani
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nirasha Ramchurren
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulla K Hansen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steven P Fling
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Benaroya Research Institute, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
31
|
Yang L, Yang L, Kong F, Zhang S, Pu P, Li X, Song Z. Bioinformatic analysis reveals an association between Metadherin with breast cancer prognosis and tumor immune infiltration. Sci Rep 2024; 14:1949. [PMID: 38253625 PMCID: PMC10803374 DOI: 10.1038/s41598-024-52403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer metastasis and invasion are both promoted by the oncoprotein Metadherin (MTDH). However, the the role of Metadherin in breast cancer progression and its role in the immune microenvironment. Are not clear. A bioinformatic analysis was performed to demonstrate the prognostic value of Metadherin in BC. In the present study, we found that Metadherin is overexpressed in BC and is significantly correlated with individual cancer stage, age, subclasses, menopause and nodal metastasis status. Metadherin overexpression was associated with a significant decrease in OS and DSS. Cox multivariate analysis indicated that Metadherin was an independent negative prognostic indicator for OS and DSS. Moreover, Metadherin hypomethylation status was associated with poor prognosis. A negative correlation was also noted between Metadherin overexpression and the number of plasmacytoid dendritic cells, cluster of differentiation 8+ T cells, and natural killer cells. Association patterns varied with different subtypes. Various associations between Metadherin levels and immune cell surface markers were revealed. A total of 40 groups of BC and adjacent normal breast tissue samples were collected. Metadherin mRNA was detected by PCR, and its expression levels in BC tissues were significantly increased compared with those noted in normal tissues. The expression levels of Metadherin were also measured in normal and BC cell lines, respectively, and similar conclusions were obtained. The Metadherin mRNA levels were knocked down in SK-BR3 and MDA-MB-231 cell lines and the cell proliferative and migratory activities were determined using Cell Counting Kit-8 and scratch assays, respectively. The results indicated that the cell proliferative and migratory abilities were reduced following knockdown of Metadherin expression. Therefore, Metadherin may be considered as a novel prognostic biomarker in BC.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Liu Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Changjiang Avenue, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Zhenchuan Song
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Changjiang Avenue, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
32
|
Liu Y, Altreuter J, Bodapati S, Cristea S, Wong CJ, Wu CJ, Michor F. Predicting patient outcomes after treatment with immune checkpoint blockade: A review of biomarkers derived from diverse data modalities. CELL GENOMICS 2024; 4:100444. [PMID: 38190106 PMCID: PMC10794784 DOI: 10.1016/j.xgen.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024]
Abstract
Immune checkpoint blockade (ICB) therapy targeting cytotoxic T-lymphocyte-associated protein 4, programmed death 1, and programmed death ligand 1 has shown durable remission and clinical success across different cancer types. However, patient outcomes vary among disease indications. Studies have identified prognostic biomarkers associated with immunotherapy response and patient outcomes derived from diverse data types, including next-generation bulk and single-cell DNA, RNA, T cell and B cell receptor sequencing data, liquid biopsies, and clinical imaging. Owing to inter- and intra-tumor heterogeneity and the immune system's complexity, these biomarkers have diverse efficacy in clinical trials of ICB. Here, we review the genetic and genomic signatures and image features of ICB studies for pan-cancer applications and specific indications. We discuss the advantages and disadvantages of computational approaches for predicting immunotherapy effectiveness and patient outcomes. We also elucidate the challenges of immunotherapy prognostication and the discovery of novel immunotherapy targets.
Collapse
Affiliation(s)
- Yang Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Sudheshna Bodapati
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cheryl J Wong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02138, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
34
|
Fan X, Nijman HW, de Bruyn M, Elsinga PH. ImmunoPET provides a novel way to visualize the CD103 + tissue-resident memory T cell to predict the response of immune checkpoint inhibitors. EJNMMI Res 2024; 14:5. [PMID: 38182929 PMCID: PMC10769965 DOI: 10.1186/s13550-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have made significant progress in oncotherapy improving survival of patients. However, the benefits are limited to only a small subgroup of patients who could achieve durable responses. Early prediction of response may enable treatment optimization and patient stratification. Therefore, developing appropriate biomarkers is critical to monitoring efficacy and assessing patient response to ICIs. MAIN BODY Herein, we first introduce a new potential biomarker, CD103, expressed on tissue-resident memory T cells, and discuss the potential application of CD103 PET imaging in predicting immune checkpoint inhibitor treatment. In addition, we describe the current targets of ImmunoPET and compare these targets with CD103. To assess the benefit of PET imaging, a comparative analysis between ImmunoPET and other imaging techniques commonly employed for tumor diagnosis was performed. Additionally, we compare ImmunoPET and immunohistochemistry (IHC), a widely utilized clinical method for biomarker identification with respect to visualizing the immune targets. CONCLUSION CD103 ImmunoPET is a promising method for determining tumor-infiltrating lymphocytes (TILs) load and response to ICIs, thereby addressing the lack of reliable biomarkers in cancer immunotherapy. Compared to general T cell markers, CD103 is a specific marker for tissue-resident memory T cells, which number increases during successful ICI therapy. ImmunoPET offers noninvasive, dynamic imaging of specific markers, complemented by detailed molecular information from immunohistochemistry (IHC). Radiomics can extract quantitative features from traditional imaging methods, while near-infrared fluorescence (NIRF) imaging aids tumor detection during surgery. In the era of precision medicine, combining such methods will offer a more comprehensive approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
35
|
von Witzleben A, Ellis M, Thomas GJ, Hoffmann TK, Jackson R, Laban S, Ottensmeier CH. Tumor-Infiltrating CD103+ Tissue-Resident Memory T Cells and CD103-CD8+ T Cells in HNSCC Are Linked to Outcome in Primary but not Metastatic Disease. Clin Cancer Res 2024; 30:224-234. [PMID: 37874322 DOI: 10.1158/1078-0432.ccr-23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/14/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE High numbers of tumor-infiltrating lymphocytes (TIL) are linked to better survival in patients with cancer. Tissue-resident memory T cells (TRM; CD8+CD103+) are recognized as a key player of anticancer immune response. To assess TRM cells in primary, metastatic, and recurrent head and neck squamous cell carcinoma (HNSCC), we developed a tissue microarray (TMA) and used multiplex IHC (MxIHC). EXPERIMENTAL DESIGN Samples from primary tumors of 379 HNSCC cases treated at Southampton Hospitals between 2000 and 2016 were collected and analyzed. Of these, 105 cases had lymph node metastases and 82 recurrences. A TMA was generated with triplicate cores for each sample. MxIHC with a stain-and-strip approach was performed using CD8, CD103, and TIM3. Scanned slides were analyzed (digital image analysis) and quality checked (QC). RESULTS After QC, 194 primary tumors, 76 lymph node metastases, and 65 recurrences were evaluable. Alcohol consumption was statistically significantly correlated with a reduction of TRM cells in primary tumors (nondrinker vs. heavy drinker: P = 0.0036). The known survival benefit of TRM cell infiltration in primary tumors was not found for lymph node metastasis. In recurrences, a high TRM cell number led to a favorable outcome after 12 months. The checkpoint molecule TIM3, was expressed significantly higher on TRM and non-TRM cells in the lymph node compared with primary tumors (P < 0.0001), which was also seen in recurrences (P = 0.0134 and P = 0.0007, respectively). CONCLUSIONS We confirm the prognostic impact of TIL in primary tumors and in recurrences. TRM cell density in lymph node metastases was not linked to outcome. The role of TIM3, as a therapeutic target remains to be defined.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
| | - Matthew Ellis
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
| | - Gareth J Thomas
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - Richard Jackson
- Liverpool Clinical Trials Center, University of Liverpool, Liverpool, United Kingdom
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - Christian H Ottensmeier
- Liverpool Head and Neck Center, Institute of Systems, Molecular and Integrative Biology and Liverpool CRUK and NIHR Experimental Cancer Medicine Center, UK University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
36
|
Wang WN, Koguchi-Yoshioka H, Nimura K, Watanabe R, Tanemura A, Fujimoto M, Wataya-Kaneda M. Distinct Transcriptional Profiles in the Different Phenotypes of Neurofibroma from the Same Subject with Neurofibromatosis 1. J Invest Dermatol 2024; 144:133-141.e4. [PMID: 37301319 DOI: 10.1016/j.jid.2023.03.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023]
Abstract
Neurofibromatosis 1 is a prevalent hereditary neurocutaneous disorder. Among the clinical phenotypes of neurofibromatosis 1, cutaneous neurofibroma (cNF) and plexiform neurofibroma (pNF) have distinct clinical manifestations, and pNF should be closely monitored owing to its malignant potential. However, the detailed distinct features of neurofibromatosis 1 phenotypes remain unknown. To determine whether the transcriptional features and microenvironment of cNF and pNF differ, single-cell RNA sequencing was performed on isolated cNF and pNF cells from the same patient. Six cNF and five pNF specimens from different subjects were also immunohistochemically analyzed. Our findings revealed that cNF and pNF had distinct transcriptional profiles even within the same subject. pNF is enriched in Schwann cells with characteristics similar to those of their malignant counterpart, fibroblasts, with a cancer-associated fibroblast-like phenotype, angiogenic endothelial cells, and M2-like macrophages, whereas cNF is enriched in CD8 T cells with tissue residency markers. The results of immunohistochemical analyses performed on different subjects agreed with those of single-cell RNA sequencing. This study found that cNF and pNF, the different neurofibromatosis phenotypes in neurofibromatosis 1, from the same subject are transcriptionally distinct in terms of the cell types involved, including T cells.
Collapse
Affiliation(s)
- Wei-Ning Wang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
37
|
Miao D, Zhao J, Han Y, Zhou J, Li X, Zhang T, Li W, Xia Y. Management of locally advanced non-small cell lung cancer: State of the art and future directions. Cancer Commun (Lond) 2024; 44:23-46. [PMID: 37985191 PMCID: PMC10794016 DOI: 10.1002/cac2.12505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023] Open
Abstract
Lung cancer is the second most common and the deadliest type of cancer worldwide. Clinically, non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer; approximately one-third of affected patients have locally advanced NSCLC (LA-NSCLC, stage III NSCLC) at diagnosis. Because of its heterogeneity, LA-NSCLC often requires multidisciplinary assessment. Moreover, the prognosis of affected patients is much below satisfaction, and the efficacy of traditional therapeutic strategies has reached a plateau. With the emergence of targeted therapies and immunotherapies, as well as the continuous development of novel radiotherapies, we have entered an era of novel treatment paradigm for LA-NSCLC. Here, we reviewed the landscape of relevant therapeutic modalities, including adjuvant, neoadjuvant, and perioperative targeted and immune strategies in patients with resectable LA-NSCLC with/without oncogenic alterations; as well as novel combinations of chemoradiation and immunotherapy/targeted therapy in unresectable LA-NSCLC. We addressed the unresolved challenges that remain in the field, and examined future directions to optimize clinical management and increase the cure rate of LA-NSCLC.
Collapse
Affiliation(s)
- Da Miao
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
- Department of OncologyShaoxing Second HospitalShaoxingZhejiangP. R. China
| | - Jing Zhao
- Department of Medical OncologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Ying Han
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
- Department of ChemoradiotherapyThe Affiliated People's Hospital of Ningbo UniversityNingboZhejiangP. R. China
| | - Jiaqi Zhou
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
- Key Discipline of Jiaxing Respiratory Medicine Construction ProjectJiaxing Key Laboratory of Precision Treatment for Lung CancerAffiliated Hospital of Jiaxing UniversityJiaxingZhejiangP. R. China
| | - Xiuzhen Li
- Department of PathologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Ting Zhang
- Department of Radiation OncologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
38
|
Federico M. The Limitations of Current T Cell-Driven Anticancer Immunotherapies Can Be Overcome with an Original Extracellular-Vesicle-Based Vaccine Strategy. Vaccines (Basel) 2023; 11:1847. [PMID: 38140250 PMCID: PMC10747787 DOI: 10.3390/vaccines11121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of tumors associated with defects in immune surveillance often involve the impairment of key functions of T lymphocytes. Therefore, several anticancer immunotherapies have focused on the induction/strengthening of the tumor-specific activity of T cells. In particular, strategies based on immune checkpoint inhibitors, CAR-T cells, and mRNA vaccines share a common goal of inducing/recovering an effective antitumor cytotoxic activity, often resulting in either exhausted or absent in patients' lymphocytes. In many instances, these approaches have been met with success, becoming part of current clinic protocols. However, the most practiced strategies sometimes also pay significant tolls in terms of adverse events, a lack of target specificity, tumor escape, and unsustainable costs. Hence, new antitumor immunotherapies facing at least some of these issues need to be explored. In this perspective article, the characteristics of a novel CD8+ T cell-specific anticancer vaccine strategy based on in vivo-engineered extracellular vesicles are described. How this approach can be exploited to overcome at least some of the limitations of current antitumor immunotherapies is also discussed.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
39
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
40
|
Xiao Z, Yan R, Liu H, Huang X, Liang Z, An G, Ge Y. Preventive Treatment with PD-1 Antibody Increases Tissue-resident Memory T Cells Infiltration and Delays Esophageal Carcinogenesis. Cancer Prev Res (Phila) 2023; 16:669-679. [PMID: 37857481 PMCID: PMC10690045 DOI: 10.1158/1940-6207.capr-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Numerous studies and clinical trials have shown that immune checkpoint inhibitors can effectively prevent tumor growth and metastasis in esophageal squamous cell carcinoma (ESCC) patients. In this study, we aimed to evaluate the anti-tumor effects of PD-1 antibody preventive treatment in patients with early stages ESCC as well as patients with high-grade intraepithelial neoplasia (HGIN). We first established an ESCC model using C57BL/6J mice treated with the chemical carcinogen 4- NQO and observed esophageal lesions at different time points. Second, we compared the antitumor efficacy of PD-1 antibody treatment in mice at the ESCC stage and PD-1 antibody preventive treatment in mice at the HGIN stage. The results showed that PD-1 antibody preventive treatment effectively impeded the progression of 4NQO-induced esophageal tumorigenesis. IHC analysis was performed to observe the infiltration of immune cells into the tumor microenvironment. It has been shown that active tissue-resident memory T cells can be induced and resided into the tumor microenvironment for a long period after treatment with PD-1 antibody. Reexposure to the oncogenic environment colonized by CD8+TRM cells can still exert antitumor effects. These results provide new strategies for the treatment of patients with early stage ESCC and HGIN. PREVENTION RELEVANCE Immune checkpoint inhibitors have shown promising results in multiple tumor species. However, there is currently no clinical application to evaluate their therapeutic value in cancer preventive treatment. Prophylactic use of immune checkpoint inhibitors in the early stages of ESCC may provide long-term benefits to patients.
Collapse
Affiliation(s)
- Zeru Xiao
- Beijing Chao-Yang Hospital, Department of Oncology, Capital Medical University, Beijing, China
| | - Rui Yan
- Beijing Chao-Yang Hospital, Department of Oncology, Capital Medical University, Beijing, China
| | - Heshu Liu
- Beijing Tongren Hospital, Department of Oncology, Capital Medical University, Beijing, China
| | - Xuying Huang
- Chinese Institutes for Medical Research, Beijing, China
| | - Ziwei Liang
- Beijing Chao-Yang Hospital, Department of Oncology, Capital Medical University, Beijing, China
| | - Guangyu An
- Beijing Chao-Yang Hospital, Department of Oncology, Capital Medical University, Beijing, China
| | - Yang Ge
- Beijing Chao-Yang Hospital, Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Fan X, Ważyńska MA, Kol A, Perujo Holland N, Fernandes B, van Duijnhoven SMJ, Plat A, van Eenennaam H, Elsinga PH, Nijman HW, de Bruyn M. Development of [ 89Zr]Zr-hCD103.Fab01A and [ 68Ga]Ga-hCD103.Fab01A for PET imaging to noninvasively assess cancer reactive T cell infiltration: Fab-based CD103 immunoPET. EJNMMI Res 2023; 13:100. [PMID: 37985555 PMCID: PMC10661679 DOI: 10.1186/s13550-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND CD103 is an integrin specifically expressed on the surface of cancer-reactive T cells. The number of CD103+ T cells significantly increases during successful immunotherapy and might therefore be an attractive biomarker for noninvasive PET imaging of immunotherapy response. Since the long half-life of antibodies preclude repeat imaging of CD103+ T cell dynamics early in therapy, we therefore here explored PET imaging with CD103 Fab fragments radiolabeled with a longer (89Zr) and shorter-lived radionuclide (68Ga). METHODS Antihuman CD103 Fab fragment Fab01A was radiolabeled with 89Zr or 68Ga, generating [89Zr]Zr-hCD103.Fab01A and [68Ga]Ga-hCD103.Fab01A, respectively. In vivo evaluation of these tracers was performed in male nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103-expressing CHO (CHO.CD103) or CHO-wildtype (CHO.K1) xenografts, followed by serial PET imaging and ex vivo bio-distribution. RESULTS [89Zr]Zr-hCD103.Fab01A showed high tracer uptake in CD103+ xenografts as early as 3 h post-injection. However, the background signal remained high in the 3- and 6-h scans. The background was relatively low at 24 h after injection with sufficient tumor uptake. [68Ga]Ga-hCD103.Fab01Ashowed acceptable uptake and signal-to-noise ratio in CD103+ xenografts after 3 h, which decreased at subsequent time points. CONCLUSION [89Zr]Zr-hCD103.Fab01A demonstrated a relatively low background and high xenograft uptake in scans as early as 6 h post-injection and could be explored for repeat imaging during immunotherapy in clinical trials. 18F or 64Cu could be explored as alternative to 68Ga in optimizing half-life and radiation burden of the tracer.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marta A Ważyńska
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Kol
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Noemi Perujo Holland
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruna Fernandes
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Annechien Plat
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
42
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
43
|
Bayerl F, Bejarano DA, Bertacchi G, Doffin AC, Gobbini E, Hubert M, Li L, Meiser P, Pedde AM, Posch W, Rupp L, Schlitzer A, Schmitz M, Schraml BU, Uderhardt S, Valladeau-Guilemond J, Wilflingseder D, Zaderer V, Böttcher JP. Guidelines for visualization and analysis of DC in tissues using multiparameter fluorescence microscopy imaging methods. Eur J Immunol 2023; 53:e2249923. [PMID: 36623939 DOI: 10.1002/eji.202249923] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Felix Bayerl
- Institute of Molecular Immunology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Giulia Bertacchi
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne-Claire Doffin
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Elisa Gobbini
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Margaux Hubert
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Lijian Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara U Schraml
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Stefan Uderhardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jenny Valladeau-Guilemond
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany
| |
Collapse
|
44
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
45
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
47
|
Martinez-Morilla S, Moutafi M, Fernandez AI, Jessel S, Divakar P, Wong PF, Garcia-Milian R, Schalper KA, Kluger HM, Rimm DL. Digital spatial profiling of melanoma shows CD95 expression in immune cells is associated with resistance to immunotherapy. Oncoimmunology 2023; 12:2260618. [PMID: 37781235 PMCID: PMC10540659 DOI: 10.1080/2162402x.2023.2260618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Although immune checkpoint inhibitor (ICI) therapy has dramatically improved outcome for metastatic melanoma patients, many patients do not benefit. Since adverse events may be severe, biomarkers for resistance would be valuable, especially in the adjuvant setting. We performed high-plex digital spatial profiling (DSP) using the NanoString GeoMx® on 53 pre-treatment specimens from ICI-treated metastatic melanoma cases. We interrogated 77 targets simultaneously in four molecular compartments defined by S100B for tumor, CD68 for macrophages, CD45 for leukocytes, and nonimmune stromal cells defined as regions negative for all three compartment markers but positive for SYTO 13. For DSP validation, we confirmed the results obtained for some immune markers, such as CD8, CD4, CD20, CD68, CD45, and PD-L1, by quantitative immunofluorescence (QIF). In the univariable analysis, 38 variables were associated with outcome, 14 of which remained significant after multivariable adjustment. Among them, CD95 was further validated using multiplex immunofluorescence in the Discovery immunotherapy (ITX) Cohort and an independent validation cohort with similar characteristics, showing an association between high levels of CD95 and shorter progression-free survival. We found that CD95 in stroma was associated with resistance to ICI. With further validation, this biomarker could have value to select patients that will not benefit from immunotherapy.
Collapse
Affiliation(s)
| | - Myrto Moutafi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Shlomit Jessel
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Pok Fai Wong
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Kurt A. Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Harriet M. Kluger
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Mittra S, Harding SM, Kaech SM. Memory T Cells in the Immunoprevention of Cancer: A Switch from Therapeutic to Prophylactic Approaches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:907-916. [PMID: 37669503 PMCID: PMC10491418 DOI: 10.4049/jimmunol.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 09/07/2023]
Abstract
Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.
Collapse
Affiliation(s)
- Siddhesh Mittra
- University of Toronto Schools, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane M. Harding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Immunology, University of Toronto; Toronto, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Wassmer CH, El Hajji S, Papazarkadas X, Compagnon P, Tabrizian P, Lacotte S, Toso C. Immunotherapy and Liver Transplantation: A Narrative Review of Basic and Clinical Data. Cancers (Basel) 2023; 15:4574. [PMID: 37760542 PMCID: PMC10526934 DOI: 10.3390/cancers15184574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have improved the management of patients with intermediate- and advanced-stage HCC, even making some of them potential candidates for liver transplantation. However, acute rejection has been observed after ICI therapy, challenging its safety in transplant settings. We summarize the key basic impact of immune checkpoints on HCC and liver transplantation. We analyze the available case reports and case series on the use of ICI therapy prior to and after liver transplantation. A three-month washout period is desirable between ICI therapy and liver transplantation to reduce the risk of acute rejection. Whenever possible, ICIs should be avoided after liver transplantation, and especially so early after a transplant. Globally, more robust prospective data in the field are required.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Sofia El Hajji
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Xenofon Papazarkadas
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Parissa Tabrizian
- Mount Sinai Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA;
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (S.E.H.); (X.P.); (S.L.); (C.T.)
| |
Collapse
|
50
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|