1
|
Liu Z, Dou Y, Lu C, Han R, He Y. Neutrophil extracellular traps in tumor metabolism and microenvironment. Biomark Res 2025; 13:12. [PMID: 39849606 PMCID: PMC11756210 DOI: 10.1186/s40364-025-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention. Within the tumor microenvironment and metabolism, NETs exhibit multifaceted roles, such as promoting the proliferation and migration of tumor cells, influencing redox balance, triggering angiogenesis, and driving metabolic reprogramming. This review offers a comprehensive analysis of the link between NETs and tumor metabolism, emphasizing areas that remain underexplored. These include the interaction of NETs with tumor mitochondria, their effect on redox states within tumors, their involvement in metabolic reprogramming, and their contribution to angiogenesis in tumors. Such insights lay a theoretical foundation for a deeper understanding of the role of NETs in cancer development. Moreover, the review also delves into potential therapeutic strategies that target NETs and suggests future research directions, offering new perspectives on the treatment of cancer and other related diseases.
Collapse
Affiliation(s)
- Zhanrui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Bishan hospital of Chongqing medical university, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Alden SL, Charmsaz S, Li HL, Tsai HL, Danilova L, Munjal K, Brancati M, Warner A, Howe K, Griffin E, Nakazawa M, Thoburn C, Gizzi J, Hernandez A, Gross NE, Coyne EM, Hallab E, Shin SS, Durham J, Lipson EJ, Ged Y, Baretti M, Hoffman-Censits J, Seiwert TY, Guha A, Bansal S, Tang L, Chandler GS, Mohindra R, Garonce-Hediger R, Jaffee EM, Ho WJ, Kao C, Yarchoan M. Pan-tumor analysis to investigate the obesity paradox in immune checkpoint blockade. J Immunother Cancer 2025; 13:e009734. [PMID: 39832896 PMCID: PMC11748946 DOI: 10.1136/jitc-2024-009734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Obesity is a risk factor for developing cancer but is also associated with improved outcomes after treatment with immune checkpoint inhibitors (ICIs), a phenomenon called the obesity paradox. To interrogate mechanisms of divergent immune responses in obese and non-obese patients, we examined the relationship among obesity status, clinical responses, and immune profiles from a diverse, pan-tumor cohort of patients treated with ICI-based therapy. METHODS From June 2021 to March 2023, we prospectively collected serial peripheral blood samples from patients with advanced or metastatic solid tumors who received ICI as standard of care at Johns Hopkins. Patients were stratified by obesity status at treatment initiation, with obesity defined as body mass index (BMI)≥30 at treatment initiation and BMI≥18.5 and <30 considered non-obese; underweight patients (BMI<18.5) were excluded. We evaluated the concentration of 37 cytokines and used cytometry by time of flight to characterize immune cell clusters and cell-surface expression markers at baseline and on-treatment. RESULTS We enrolled 94 patients, of whom 30 (32%) were obese and 64 (68%) were non-obese. Compared with non-obese patients, obese patients had superior progression-free survival (HR: 0.44 (95% CI: 0.24 to 0.81), p=0.01) and overall survival (OS) (HR: 0.24 (95% CI: 0.07 to 0.80), p=0.02). Obese patients had lower serum IL-15 levels at treatment baseline and lower on-treatment levels of IL-6, IL-8, and IL-15. Low on-treatment IL-6 was associated with improved OS (HR: 0.27 (95% CI: 0.08 to 0.88), p=0.03), as was low on-treatment IL-8 (HR: 0.19 (95% CI: 0.05 to 0.70), p=0.01). Obese patients demonstrated lower levels of T effector cells with reduced expression of cytotoxicity markers and higher expression of exhaustion markers at baseline and on-treatment. CONCLUSIONS Obese and non-obese patients with cancer have divergent immunological responses to ICIs. Obesity is associated with reduced levels of certain inhibitory cytokines and higher expression of T-cell exhaustion markers. ICI-based therapy may more effectively reverse T-cell dysfunction in obese patients, potentially contributing to the paradoxically improved responses in this population.
Collapse
Affiliation(s)
- Stephanie L Alden
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Howard L Li
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hua-Ling Tsai
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Madelena Brancati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aanika Warner
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn Howe
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ervin Griffin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chris Thoburn
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Gizzi
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicole E Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erin M Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elsa Hallab
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah S Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evan J Lipson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yasser Ged
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marina Baretti
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tanguy Y Seiwert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aditi Guha
- Genentech Inc, South San Francisco, California, USA
| | | | - Laura Tang
- Genentech Inc, South San Francisco, California, USA
| | | | | | | | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Cancer Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Cancer Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chester Kao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Cancer Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Dall'Olio FG, Zrafi W, Roelants V, Ambrosini V, Fourquet A, Mitea C, Passiglia F, Bauckneht M, Bonardel G, Conci N, Benitez JC, Arena V, Namour C, Naigeon M, Monnet I, Beshiri K, Hoton D, Dursun S, Danlos FX, Argalia G, Aldea M, Rovera G, Derosa L, Iebba V, Gietema HA, Gounant V, Lacroix V, Remon J, Gautheret D, Chaput N, Job B, Kannouche PL, Velasco-Nuño M, Zitvogel L, Cella E, Chícharo de Freitas JR, Vasseur D, Bettaieb MA, Tagliamento M, Hendriks L, Italiano A, Planchard D, Marabelle A, Barlesi F, Novello S, De Andreis D, Aboubakar Nana F, Ardizzoni A, Zalcman G, Garcia C, Besse B. Metabolic Tumor Volume Assessed by 18F FDG-PET CT Scan as a Predictive Biomarker for Immune Checkpoint Blockers in Advanced NSCLC and Its Biological Correlates. Clin Cancer Res 2025; 31:352-364. [PMID: 39437011 DOI: 10.1158/1078-0432.ccr-24-1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aimed to explore metabolic tumor volume (MTV) as assessed by 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG-PET/CT) and understand its biological meaning in patients with non-small cell lung cancer (NSCLC) exposed to immune checkpoint blockers (ICB). EXPERIMENTAL DESIGN In this study, patients with advanced NSCLC and a positive PET scan within 42 days of first-line treatment were enrolled in 11 institutions across four countries. Total MTV (tMTV) was analyzed, with a 42% maximum standardized uptake value threshold. Survival was analyzed according to high tMTV (≥median). Plasma proteomic profile, whole exome, transcriptome, and other analyses were performed on monocentric cohorts to explore its biological correlates. RESULTS Of the 518 patients included, 167 received ICBs, 257 had chemotherapy plus ICBs, and 94 had chemotherapy. Median tMTV was 99 cm3. Median overall survival (OS) for patients with high tMTV treated with ICBs was 11.4 vs. 29.6 months (P < 0.0012) for those with low tMTV. In patients who received chemotherapy-ICB, tMTV did not correlate with OS (P = 0.099). In patients with programmed death-ligand 1 (PD-L1) ≥1% and high tMTV, chemotherapy-ICB combination was associated with longer OS compared with ICBs alone (20 vs. 11.4 months; P = 0.026), while no survival differences were observed in the low tMTV group. High tMTV correlated (and its detrimental effect seems to be driven) with a specific proteomic profile and increase in genomic instability. CONCLUSIONS Our analysis indicates high tMTV is linked to an increase in systemic inflammation, specific cytokines production, and chromosomal instability. tMTV may serve as one of the biomarkers to select the best upfront strategy in patients with PD-L1-positive advanced NSCLC.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- METSY Laboratory Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, UMR 9018 CNRS and Université Paris-Saclay, Villejuif, France
| | - Wael Zrafi
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Veronique Roelants
- Nuclear Medicine Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Aloyse Fourquet
- Department of Nuclear Medicine, Hôpital Bichat-Claude Bernard, AP-HP.Nord, Univesité Paris Cité, Paris, France
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gerald Bonardel
- Department of Nuclear Medicine, Centre Cardiologique du Nord, Saint-Denis, France
| | - Nicole Conci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jose Carlos Benitez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Malaga, Spain
- Research Biomedical Institute of Malaga (IBIMA), Malaga, Spain
| | - Vincenzo Arena
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Céline Namour
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Isabelle Monnet
- Pneumology Department, Intercommunal Hospital of Creteil (CHI), Creteil, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - Delphine Hoton
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Safiye Dursun
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - François Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy, Villejuif, France
| | - Giulia Argalia
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mihaela Aldea
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Guido Rovera
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Hester A Gietema
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
- Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | - Valerie Gounant
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, IREC, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jordi Remon
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Daniel Gautheret
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Bastien Job
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | | | - Monica Velasco-Nuño
- Department of Nuclear Medicine Hospital HM Nou Delfos, HM Hospitales, Barcelona, Spain
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Eugenia Cella
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | - Marco Tagliamento
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | - Lizza Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Fabrice Barlesi
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | | | | | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gerard Zalcman
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Camilo Garcia
- Nuclear Medicine Department, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
5
|
Li M, Liu Y, Wang J, Wang Y, Yang Y, Yang A. Neutrophil extracellular DNA traps activate the TLR9 signaling pathway of pancreatic ductal epithelial cells in patients with type 2 autoimmune pancreatitis. Int Immunopharmacol 2025; 144:113673. [PMID: 39616853 DOI: 10.1016/j.intimp.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
The presence of neutrophil infiltration around the pancreatic ducts has been found to be associated with type 2 autoimmune pancreatitis (AIP). However, the functional role and clinical significance of neutrophil migration in the progression of pancreatitis is not fully understood. Here, we found that neutrophil extracellular traps (NETs) are abundant around the pancreatic duct in patients with type 2 AIP. We also observed an increased expression of toll-like receptor 9 (TLR9) in pancreatic ductal epithelial cells (HPDEC) in type 2 AIP patients compared to other pancreatic diseases. TLR9 acts as the DNA component of NETs (NET-DNA) receptor in HPDEC, which senses extracellular DNA and subsequently activates the NF-κB pathway to promote neutrophil recruitment and induce NET formation. In addition, our results indicated that the hydroxychloroquine (HCQ), acting as a TLR9 antagonist, could effectively inhibit the activation of inflammatory pathways, reduce neutrophil migration and block the positive feedback loop. The intervention positions HCQ acts as a potential target drug for the clinical treatment of type 2 AIP.
Collapse
Affiliation(s)
- Meizi Li
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yixiao Liu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Junmin Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
6
|
Guinn S, Perez B, Tandurella JA, Ramani M, Lee JW, Zabransky DJ, Kartalia E, Patel J, Zlomke H, Nicolson N, Shin S, Barrett B, Sun N, Hernandez A, Coyne E, Cannon C, Gross NE, Charmsaz S, Cho Y, Leatherman J, Lyman M, Mitchell J, Kagohara LT, Goggins MG, Lafaro KJ, He J, Shubert C, Burns W, Zheng L, Fertig EJ, Jaffee EM, Burkhart RA, Ho WJ, Zimmerman JW. Cancer associated fibroblasts drive epithelial to mesenchymal transition and classical to basal change in pancreatic ductal adenocarcinoma cells with loss of IL-8 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631784. [PMID: 39829906 PMCID: PMC11741337 DOI: 10.1101/2025.01.07.631784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, in part resulting from cellular heterogeneity that supports overall tumorigenicity. Cancer associated fibroblasts (CAF) are key determinants of PDAC biology and response to systemic therapy. While CAF subtypes have been defined, the effects of patient-specific CAF heterogeneity and plasticity on tumor cell behavior remain unclear. Here, multi-omics was used to characterize the tumor microenvironment (TME) in tumors from patients undergoing curative-intent surgery for PDAC. In these same patients, matched tumor organoid and CAF lines were established to functionally validate the impact of CAFs on the tumor cells. CAFs were found to drive epithelial-mesenchymal transition (EMT) and a switch in tumor cell classificiaton from classical to basal subtype. Furthermore, we identified CAF-specific interleukin 8 (IL-8) as an important modulator of tumor cell subtype. Finally, we defined neighborhood relationships between tumor cell and T cell subsets.
Collapse
Affiliation(s)
- Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brayan Perez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph A Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mili Ramani
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jae W Lee
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jignasha Patel
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haley Zlomke
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman Nicolson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin Barrett
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas Sun
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexei Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Courtney Cannon
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicole E Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yeonju Cho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacob Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael G Goggins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kelly J Lafaro
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Shubert
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Burns
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Genome Sciences, Department of Medicine, and Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard A Burkhart
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- BloombergKimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Li H, Liang X, Ma J, Liu Q, Lin Y, Tang J, Ren Z, Liang Z. IL-8 Downregulation Mediates the Beneficial Effects of Infection-Induced Fever on Breast Cancer Prognosis. J Inflamm Res 2025; 18:405-419. [PMID: 39802515 PMCID: PMC11725275 DOI: 10.2147/jir.s496099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Previous studies have reported that infection-induced fever is associated with improved breast cancer prognosis, potentially through the modulation of cytokines. However, the key cytokines and the underlying mechanisms through which fever exerts its anti-tumor effects remain unclear. Patients and Methods A total of 794 breast cancer patients were recruited between 2008 and 2017, with follow-up extending until October 31st, 2023. Infection-induced fever was assessed using questionnaires, while a multiplex assay evaluated a panel of 27 cytokines. The mediation effects of various cytokines were analyzed through model-based causal mediation analysis. Additionally, we explored modifications to these mediation effect by examining interactions among the cytokines themselves as well as their interactions with infection-induced fever. Bioinformatic analyses were conducted to elucidate the biological pathways mediating infection-induced fever. Results The relationship between infection-induced fever and improved breast cancer prognosis was mediated by a decrease in interleukin-8 (IL-8) levels. Furthermore, our findings revealed that the downregulation of IL-8, which mediates the beneficial effects of fever, was antagonized by IL-2, IL12p70 and IL-7. By intersecting the biological pathways influenced by IL-8, alongside those affected by IL-2, IL12p70, or IL-7, we found that these latter cytokines antagonized the mediation effects of IL-8 via regulating critical pathways such as neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Conclusion Infection-induced fever may improve breast cancer prognosis through IL-8 downregulation and the mediation mechanisms may be involved in neutrophil degranulation, extracellular matrix organization and asparagine N-linked glycosylation. Such findings not only provide valuable insights into effectively managing febrile responses for breast cancer patients, but also underscore the therapeutic potential of cytokines in breast cancer patients.
Collapse
Affiliation(s)
- Heliang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiafan Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Junpeng Tang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zefang Ren
- The School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhuozhi Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Zenith Institute of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Kawataki S, Kubota Y, Katayama K, Imoto S, Takekawa M. GADD45β-MTK1 signaling axis mediates oncogenic stress-induced activation of the p38 and JNK pathways. Cancer Sci 2025; 116:128-142. [PMID: 39526327 PMCID: PMC11711059 DOI: 10.1111/cas.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The ERK pathway governs essential biological processes such as cell proliferation and survival, and its hyperactivation by various oncogenes ultimately drives carcinogenesis. However, normal mammalian cells typically recognize aberrant ERK signaling as oncogenic stress and respond by inducing cell cycle arrest or apoptosis through activation of the p38 and JNK pathways. Despite the critical role of this response in preventing carcinogenesis, the precise molecular mechanisms underlying oncogene-induced, ERK-dependent activation of p38/JNK and its tumor-suppressive effects remain unclear. Here, we demonstrate that MAP three kinase 1 (MTK1), a stress-responsive MAPKKK, serves as a key mediator of p38/JNK activation induced by oncogenic ERK signaling. Mechanistically, aberrant ERK signaling induces sustained expression of the transcription factor early growth response protein 1 (EGR1), which promotes the production of the MTK1 activator GADD45β, leading to persistent activation of MTK1-p38/JNK signaling. Gene knockout and transcriptome analyses revealed that this GADD45β/MTK1-mediated cross-talk between the ERK and p38/JNK pathways preferentially upregulates a specific set of genes involved in apoptosis and the immune response. Notably, the expression of EGR1, GADD45β, and MTK1 is frequently downregulated in many cancers with high ERK activity, resulting in the disruption of the tumor-suppressive ERK-p38/JNK cross-talk. Restoring GADD45β expression in cancer cells reactivates p38/JNK signaling and suppresses tumorigenesis. Our findings delineate a molecular mechanism by which normal cells sense and respond to oncogenic stress to prevent abnormal growth, and highlight the significance of its dysregulation in cancer.
Collapse
Affiliation(s)
- Saeko Kawataki
- Division of Cell Signaling and Molecular Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Kotoe Katayama
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Seiya Imoto
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| |
Collapse
|
9
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
10
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
11
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
12
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
14
|
Wang J, Beghelli D, Amici A, Sut S, Dall’Acqua S, Lupidi G, Dal Ben D, Bistoni O, Tomassoni D, Belletti B, Musa S, Mahajna J, Pucciarelli S, Marchini C. Chaga Mushroom Triterpenoids Inhibit Dihydrofolate Reductase and Act Synergistically with Conventional Therapies in Breast Cancer. Biomolecules 2024; 14:1454. [PMID: 39595631 PMCID: PMC11591880 DOI: 10.3390/biom14111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Inonotus obliquus (Chaga) is a medicinal mushroom with several pharmacological properties that is used as a tea in traditional Chinese medicine. In this study, Chaga water extract was digested in vitro to mimic the natural processing and absorption of its biocomponents when it is consumed as functional beverage, and its anticancer activities were evaluated in breast cancer (BC) cell lines, representing HER2-positive and triple-negative subtypes. After chemical characterization by liquid chromatography/mass spectrometry (HR-QTOF) analysis, the effect of Chaga biocomponents on cell viability and cell cycle progression was assessed by MTT assay, FACS analysis, and Western blot. Dihydrofolate reductase (DHFR) activity was measured by an enzymatic assay. Four highly bioactive triterpenoids (inotodiol, trametenolic acid, 3-hydroxy-lanosta-8,24-dien-21-al, and betulin) were identified as the main components, able to decrease BC cell viability and block the cell cycle in G0/G1 by inducing the downregulation of cyclin D1, CDK4, cyclin E, and phosphorylated retinoblastoma protein. DHFR was identified as their crucial target. Moreover, bioactive Chaga components exerted a synergistic action with cisplatin and with trastuzumab in SK-BR-3 cells by inhibiting both HER2 and HER1 activation and displayed an immunomodulatory effect. Thus, Inonotus obliquus represents a source of triterpenoids that are effective against aggressive BC subtypes and display properties of targeted drugs.
Collapse
Affiliation(s)
- Junbiao Wang
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Stefania Sut
- DAFNAE Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, 35020 Legnaro, Italy;
| | - Stefano Dall’Acqua
- DSF Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy;
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Diego Dal Ben
- School of Pharmacy-Chemistry Interdisciplinary Project (CHIP), University of Camerino, 62032 Camerino, Italy;
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Sanaa Musa
- Natural Compounds and Organic Synthesis, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel; (S.M.); (J.M.)
- Department of Biotechnology, Tel Hai College, Kiryat Shmona 1220800, Israel
| | - Jamal Mahajna
- Natural Compounds and Organic Synthesis, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel; (S.M.); (J.M.)
- Cancer Drug Discovery Program, Migal, Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| |
Collapse
|
15
|
Liu J, Zhu W, Xia L, Zhu Q, Mao Y, Shen Y, Li M, Zhang Z, Du J. Identification of CAPG as a potential prognostic biomarker associated with immune cell infiltration and ferroptosis in uterine corpus endometrial carcinoma. Front Endocrinol (Lausanne) 2024; 15:1452219. [PMID: 39600941 PMCID: PMC11588481 DOI: 10.3389/fendo.2024.1452219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Capping actin protein, gelsolin-like (CAPG) is a potential therapeutic target in various cancers. However, the potential immunotherapeutic effects and prognostic value of CAPG in uterine corpus endometrial carcinoma (UCEC) remain unclear. Methods The characterization, methylation effects, prognostic value, targeted miRNAs of CAPG, and the correlation of CAPG with immune cell infiltration and ferroptosis in UCEC were investigated using multiple public databases and online tools. Furtherly, we explored the potential physiological function of CAPG using EdU and Transwell migration assays, identified the cell localization and expression of CAPG and GPX4 by immunofluorescence, and detected the intracellular Fe2+ levels using a FerroOrange fluorescent probe in Ishikawa cells. Additionally, the OncoPredict package was used to analyze the potential chemotherapeutic drugs for UCEC. Results CAPG showed generally high expression in tumor group. The overall survival rate of the high-risk group was significantly lower than that of the low-risk group. Enrichment analysis indicated that CAPG is involved in immune-related pathways and is closely associated with the tumor microenvironment. CAPG expression levels were affected by abnormal DNA methylation and/or targeted miRNAs, infiltration levels and marker genes of various immune cells, thereby impacting immune response, ferroptosis, and patient prognosis. Ferroptosis analysis indicated that ALOX5 and VLDLR were the top CAPG-related ferroptosis markers; glutathione metabolism levels in tumor group were generally high, and decitabine was a ferroptosis inducer. CAPG-siRNA suppressed the cell proliferation and invasion, and markedly elevated the expression levels of immune-related genes IL8, TNF, TLR4 and the intracellular Fe2+ levels. CAPG co-located with GPX4 in nucleus and co-regulated ferroptosis and metabolism in Ishikawa cells. Moreover, four chemotherapy drugs showed better sensitivity to UCEC patients in the low-risk cohort. Conclusions CAPG may serve as a potential biomarker of UCEC owing to its role in modulating the immune response and ferroptosis, providing novel perspectives for combined immunotherapy of UCEC.
Collapse
Affiliation(s)
- Junwei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weiqiang Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingjin Xia
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Qianxi Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Mao
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Min Li
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Du
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Wu X, Fang S. Comparison of differences in immune cells and immune microenvironment among different kinds of oncolytic virus treatments. Front Immunol 2024; 15:1494887. [PMID: 39588373 PMCID: PMC11586384 DOI: 10.3389/fimmu.2024.1494887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Oncolytic viruses are either naturally occurring or genetically engineered viruses that can activate immune cells and selectively replicate in and destroy cancer cells without damaging healthy tissues. Oncolytic virus therapy (OVT) represents an emerging treatment approach for cancer. In this review, we outline the properties of oncolytic viruses and then offer an overview of the immune cells and tumor microenvironment (TME) across various OVTs. A thorough understanding of the immunological mechanisms involved in OVTs could lead to the identification of novel and more effective therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Gao J, Liu J, Lu J, Zhang X, Zhang W, Li Q, Cai J, Li M, Gan Y, Tang Y, Wu S. SKAP1 Expression in Cancer Cells Enhances Colon Tumor Growth and Impairs Cytotoxic Immunity by Promoting Neutrophil Extracellular Trap Formation via the NFATc1/CXCL8 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403430. [PMID: 39269257 PMCID: PMC11538704 DOI: 10.1002/advs.202403430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Indexed: 09/15/2024]
Abstract
The mechanisms underlying the development and progression of colon cancer are not fully understood. Herein, Src kinase associated phosphoprotein 1 (SKAP1), an immune cell adaptor, is identified as a novel colon cancer-related gene. SKAP1 expression is significantly increased in colon cancer cells. High SKAP1 levels are independently predictive of poor survival in patients with colon cancer. Notably, SKAP1 expression in colon cancer cells exerted a significant tumor-promoting effect in vivo rather than in vitro. Screening of tumor-infiltrating immune cells revealed the involvement of neutrophils in SKAP1-induced colon tumor promotion. Enhanced formation of neutrophil extracellular traps (NETs) is found to be a key downstream event that contributed to the pro-tumor role of SKAP1. In colon cancer cells, SKAP1 increased the expression of C-X-C motif chemokine ligand 8 (CXCL8) via nuclear factor of activated T cells c1 (NFATc1). The blockade of CXCL8 or NFATc1 largely attenuated neutrophil infiltration, NET formation, and tumor promotion induced by SKAP1. Furthermore, inhibiting SKAP1-induced NET significantly enhanced the antitumor efficiency of adoptive natural killer cell therapy in colon tumor models. In conclusion, SKAP1 significantly promotes colon cancer growth via the cancer cell/neutrophil NFATc1/CXCL8/NET axis, suggesting that SKAP1 is a potential target for colon cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jun Liu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Jilin Lu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Xiaofei Zhang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jiayi Cai
- Clinical Research UnitRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Mengjun Li
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yifan Tang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Shuangjie Wu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| |
Collapse
|
18
|
Roy M, Sengupta R, Chakraborty BC, Chatterjee U, von Stebut E, Kaye PM, Chatterjee M. Role of neutrophils in the pathogenesis of Post Kala-azar Dermal Leishmaniasis (PKDL). PLoS Negl Trop Dis 2024; 18:e0012655. [PMID: 39602398 PMCID: PMC11602034 DOI: 10.1371/journal.pntd.0012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Post Kala-azar Dermal Leishmaniasis (PKDL) is a dermal sequel of visceral leishmaniasis (VL), poses a significant threat to the success of ongoing kala-azar elimination program, due to its potential role in sustaining transmission cycles and complicating disease management strategies. In VL, neutrophils have been identified as the 'first line of defence', having multiple roles in disease pathogenesis, but their role in PKDL, if any, still remains elusive; presenting a critical gap in knowledge, and was the aim of this study. METHODOLOGY/PRINCIPAL FINDINGS In a cohort of PKDL patients, CD66b+ neutrophils were quantified in skin biopsies, followed by immunostaining of FFPE sections to identify activated neutrophils (CD66b+/CD64+) and degranulated (CD66b+/MPO+), along with expression of neutrophil elastase (NE), matrix metalloprotease 9 (MMP9) and collagen I. Plasma levels of neutrophil chemo-attractants CXCL8/1/2/5, CCL2 and 20 and cytokines, (IL-6, IFN-γ, IL-4, IL-10, TNF-α, IL-17 and IL-22, 23) were evaluated by a multiplex assay, while lesional expression of IL-8, IL-10 and IL-17 was evaluated by immunohistochemistry. As compared to healthy individuals (control skin samples), PKDL cases at the lesional sites had an increased number of activated CD66b+ neutrophils (positive for CD64+, MPO+ and NE+). The plasma levels of neutrophil chemo-attractants, pro-inflammatory and regulatory cytokines were raised as was circulating and lesional IL-8, along with an enhanced lesional expression of IL-10 and IL-17A. An increase in circulatory and lesional MMP9 was accompanied by decreased collagen I, suggesting disintegration of matrix integrity. CONCLUSIONS/SIGNIFICANCE Taken together, in PKDL, activated neutrophils possibly contribute towards modulating the lesional landscape. Understanding this involvement of neutrophils in patients with PKDL, particularly in the absence of an animal model, could offer better understanding of the disease pathogenesis and provide insights into novel therapeutic strategies for the ongoing elimination program.
Collapse
Affiliation(s)
- Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Bidhan Chandra Chakraborty
- Multidisciplinary Research Unit (MRU) Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Uttara Chatterjee
- Pathology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| |
Collapse
|
19
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
20
|
Lei K, Sun M, Chen X, Wang J, Liu X, Ning Y, Ping S, Gong R, Zhang Y, Qing G, Zhao C, Ren H. hnRNPAB Promotes Pancreatic Ductal Adenocarcinoma Extravasation and Liver Metastasis by Stabilizing MYC mRNA. Mol Cancer Res 2024; 22:1022-1035. [PMID: 38967522 DOI: 10.1158/1541-7786.mcr-24-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. hnRNPAB was highly expressed in PDAC tissues compared with normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in patients with PDAC. hnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. hnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life. hnRNPAB induced PDAC cells to secrete CXCL8 via MYC, which promoted neutrophil recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: hnRNPAB participates in the posttranscriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.
Collapse
Affiliation(s)
- Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Mingyue Sun
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Xianghan Chen
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Jia Wang
- Qingdao Medical College, Qingdao University, Qingdao, P. R. China
| | - Xiaolan Liu
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ying Ning
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Shuai Ping
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Ruining Gong
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Yu Zhang
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Gong Qing
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Chenyang Zhao
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - He Ren
- Tumor Immunology and Cytotherapy of Medical Research Center, Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), Affiliated Hospital of Qingdao University, Qingdao, P. R. China
- Center for GI Cancer Diagnosis and Treatment, Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| |
Collapse
|
21
|
Tang Z, Hu J, Li XC, Wang W, Zhang HY, Guo YY, Shuai X, Chu Q, Xie C, Lin D, Zhong B. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression. Dev Cell 2024:S1534-5807(24)00629-4. [PMID: 39515330 DOI: 10.1016/j.devcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Neutrophils in the tumor microenvironment (TME) are heterogeneous populations associated with cancer prognosis and immunotherapy. However, the plasticity and function of heterogeneous neutrophils in the TME of non-small-cell lung cancer (NSCLC) remain unclear. Here, we show that neutrophils produce high levels of interleukin (IL)-8, which induce the differentiation of CD74highSiglecFlow neutrophils and suppress the generation of CD74lowSiglecFhigh neutrophils in the TME of IL-8-humanized NSCLC mice. The CD74highSiglecFlow neutrophils boost anti-tumor T cell responses via antigen cross-presentation. Deleting CD74 in IL-8-humanized neutrophils impairs T cell activation and exacerbates NSCLC progression, whereas a CD74 agonist enhances T cell activation and the efficacy of anti-programmed cell death 1 (PD-1) or osimertinib therapies. Additionally, the CD74highCD63low neutrophils in the TME and peripheral blood of advanced NSCLC patients phenocopy the CD74highSiglecFlow neutrophils in the TME of NSCLC mice and correlate well with the responsiveness to anti-PD-1 plus chemotherapies. These findings demonstrate an IL-8-CD74high neutrophil axis that promotes anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu-Chang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Yue Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Zhao KY, Chen GY, Huang H, Jiao XD, Li XP, Zhang J. PoCXCL8, a teleost chemokine, exerts direct bactericidal, chemotactic/phagocytic, and NETs releasing properties, promoting host anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109874. [PMID: 39241818 DOI: 10.1016/j.fsi.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce. In this research, we investigated the antibacterial property and leukocyte activation of PoCXCL8. PoCXCL8 consists of 100 amino acid residues, with a conserved chemokine CXC domain. PoCXCL8 was expressed in various tissues, with the highest level in liver and the lowest level in muscle, and sharply induced by V. harveyi or E. tarda in liver, spleen, and head kidney. In vitro, the recombinant PoCXCL8 (rPoCXCL8) could bind to Bacillus subtilis, Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Staphylococcus aureus, and Micrococcus luteus, affect the growth of E. coli, E. tarda, M. luteus, and P. fluorescens, and have a direct bactericidal effect on E. coli and E. tarda. Moreover, rPoCXCL8 was able to bind the outer membranal protein rPilA of E. tarda. In addition, rPoCXCL8 could bind to PBLs, activating the PBLs activity including chemotaxis, proliferation, phagocytosis, reactive oxygen species, acid phosphatase activity. At same time, rPoCXCL8 could induce neutrophil to generate neutrophil extracellular traps (NETs) and promote the expression of inflammatory genes including IL-1β, IL6, MMP13, TNF-α, and NF-κB. In flounder, the presence of rPoCXCL8 could enhance the in vivo resistance to E. tarda in liver, spleen, and head kidney. Moreover, the PoCXCL8-deficient could attenuate the fish defense against E. tarda infection in in spleen and head kidney. In conclusion, these results provided new insights into the antibacterial properties of CXCL8 in P. olivaceus.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Guan-Yu Chen
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
24
|
Lindholm A, Abrahamsen ML, Buch-Larsen K, Marina D, Andersson M, Helge JW, Schwarz P, Dela F, Gillberg L. Pro-inflammatory cytokines increase temporarily after adjuvant treatment for breast cancer in postmenopausal women: a longitudinal study. Breast Cancer Res 2024; 26:142. [PMID: 39415181 PMCID: PMC11481761 DOI: 10.1186/s13058-024-01898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Breast cancer patients have an increased risk of cardiometabolic disease and for many patients, adjuvant therapy causes an altered lipid profile, insulin resistance and inflammation. Previous follow-up studies are inconclusive regarding the duration of therapy-induced inflammation. We examined the acute and persistent changes of adjuvant chemotherapy on inflammatory and metabolic health markers in breast cancer patients. METHODS Plasma levels of IL-6, IL-8, IL-10, IFN-γ, TNF-α, high-sensitivity C-reactive protein (hsCRP) and metabolic health parameters were analyzed before, shortly after and every six months up to two years after adjuvant chemotherapy treatment in 51 postmenopausal early breast cancer (EBC) patients, as well as in 41 healthy age- and BMI-matched controls. A target-specific multiplex assay was applied for cytokine measurements. RESULTS Before initiation of adjuvant therapy, plasma IL-8 levels were higher in EBC patients (31%, p = 0.0001). Also, a larger proportion of the patients had a hsCRP level above 2 mg/L (41%) compared to the controls (17%, Χ2 = 5.15, p = 0.023). Plasma levels of all five cytokines, but not hsCRP, were significantly increased after compared to before adjuvant chemotherapy (15-48% increase; all p ≤ 0.05). Already six months after ending chemotherapy treatment, all plasma cytokine levels were significantly reduced and close to pre-chemotherapy levels. Adjuvant chemotherapy caused a worsened lipid profile (increased triglycerides, lower HDL levels), insulin resistance and increased plasma insulin levels that remained high during the first year after chemotherapy. CONCLUSION Postmenopausal women with EBC have temporarily increased plasma levels of pro-inflammatory cytokines after adjuvant chemotherapy. Although transient, the therapy-induced increase in plasma cytokine levels, together with dyslipidemia and insulin resistance, may contribute to cardiometabolic risk in breast cancer patients treated with adjuvant chemotherapy. TRIAL REGISTRATION The clinical trial (registration number NCT03784651) was registered on www. CLINICALTRIALS gov on 24 December 2018.
Collapse
Affiliation(s)
- Agnes Lindholm
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Marie-Louise Abrahamsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | | | - Djordje Marina
- Department of Endocrinology, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Jørn Wulff Helge
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology, Rigshospitalet, 2100, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Biochemistry and Physiology, Riga Stradins University, Riga, Latvia
| | - Linn Gillberg
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
25
|
Yang Y, Yang J, Li L, Shao Y, Liu L, Sun B. Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours. BMC Cancer 2024; 24:1244. [PMID: 39379856 PMCID: PMC11463147 DOI: 10.1186/s12885-024-12993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
As frontline cells, the precise recruitment of neutrophils is crucial for resolving inflammation and maintaining the homeostasis of the organism. Increasing evidence suggests the pivotal role of neutrophil chemotaxis in cancer progression and metastasis. Here, we collected clinical data and peripheral blood samples from patients with tumours to examine the alterations in the neutrophil quantity and chemotactic function using the Cell Chemotaxis Analysis Platform (CCAP). Transcriptome sequencing data of pan-cancer were obtained from The Cancer Genome Atlas (TCGA). Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, we selected a total of 29 genes from 155 neutrophil- and chemotaxis-related genes to construct the ChemoScore model. Meanwhile, nomogram-based comprehensive model was established for clinical application. Furthermore, immunofluorescence (IF) staining was employed to assess the relationship between the neutrophils infiltrating and the survival outcomes of tumours. In this observational study, the chemotactic function of neutrophils was notably diminished in patients. The establishment and validation of ChemoScore suggested neutrophil chemotaxis to be a risk factor in most tumours, whereby higher scores were associated with poorer survival outcomes and were correlated with various immune cells and malignant biological processes. Moreover, IF staining of tumour tissue substantiated the adverse correlation between neutrophil infiltration and the survival of patients with lung adenocarcinoma (P = 0.0002) and colon adenocarcinoma (P = 0.0472). Taken together, patients with tumours demonstrated a decrease in chemotactic function. ChemoScore potentially prognosticates the survival of patients with tumours. Neutrophil chemotaxis provides novel directions and theoretical foundations for anti-tumour treatment.
Collapse
Affiliation(s)
- Yunxi Yang
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Jun Yang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Yiming Shao
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272000, China
| | - Lu Liu
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, 215002, China.
| |
Collapse
|
26
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2024:S0962-8924(24)00187-9. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
27
|
Kang DH, Choi CM, Park CK, Oh IJ, Kim YC, Yoon SH, Kim Y, Lee JE. Immune Checkpoint Inhibitor Score Predicts Survival Benefit of Immunotherapy in Patients with Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:483-493. [PMID: 38749491 PMCID: PMC11468437 DOI: 10.4046/trd.2023.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 05/12/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The use of immune checkpoint inhibitors (ICIs) in patients with advanced lung cancer is increasing. Despite ongoing studies to predict the efficacy of ICIs, its use in clinical practice remains difficult. Thus, we aimed to discover a predictive marker by analyzing blood cell characteristics and developing a scoring system for patients treated with ICIs. METHODS This was a prospective multicenter study in patients with advanced nonsmall cell lung cancer (NSCLC) who received ICIs as second-line treatment from June 2021 to November 2022. Blood cell parameters in routine blood samples were evaluated using an automated hematology analyzer. Immune checkpoint inhibitor score (IChIS) was calculated as the sum of neutrophil count score and immature granulocyte score. RESULTS A total of 143 patients from four institutions were included. The treatment response was as follows: partial response, 8.4%; stable disease, 37.1%; and progressive disease, 44.8%. Median progression-free survival and overall survival after ICI treatment was 3.0 and 8.3 months, respectively. Median progression-free survival in patients with an IChIS of 0 was 4.0 months, which was significantly longer than 1.9 months in patients with an IChIS of 1 and 1.0 month in those with an IChIS of 2 (p=0.001). The median overall survival in patients with an IChIS of 0 was 10.2 months, which was significantly longer than 6.8 and 1.8 months in patients with an IChIS of 1 and 2, respectively (p<0.001). CONCLUSION Baseline IChIS could be a potential biomarker for predicting survival benefit of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Da Hyun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine/Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Seong Hoon Yoon
- Department of Pulmonology and Allergy, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yoonjoo Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Rosenzweig N, Kleemann KL, Rust T, Carpenter M, Grucci M, Aronchik M, Brouwer N, Valenbreder I, Cooper-Hohn J, Iyer M, Krishnan RK, Sivanathan KN, Brandão W, Yahya T, Durao A, Yin Z, Chadarevian JP, Properzi MJ, Nowarski R, Davtyan H, Weiner HL, Blurton-Jones M, Yang HS, Eggen BJL, Sperling RA, Butovsky O. Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease. Nat Med 2024; 30:2990-3003. [PMID: 38961225 DOI: 10.1038/s41591-024-03122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFβ and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.
Collapse
Affiliation(s)
- Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Rust
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Madison Carpenter
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madeline Grucci
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nieske Brouwer
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabel Valenbreder
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joya Cooper-Hohn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Malvika Iyer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kisha N Sivanathan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandão
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roni Nowarski
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Zhao KY, Fang Y, Xu RJ, Zhang J, Sun B, Li XP. PoIL8-L, a teleost interleukin-8 like, enhances leukocyte cellular vitality and host defense against bacterial infections in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109876. [PMID: 39236861 DOI: 10.1016/j.fsi.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Interleukin-8 (IL-8), a CXC chemokine, exerts pivotal effect on cell migration, inflammatory response, and immune regulation. In this study, we examined the immunological characteristics of an IL-8 like homologue (PoIL8-L) in Japanese flounder (Paralichthys olivaceus). PoIL8-L contains a conserved chemokine CXC domain and 105 amino acid residues. PoIL8-L expression in tissues was constitutive, and significantly regulated by V. havieri or E. tarda infection. In vitro, rPoIL8-L could bind to eight tested bacteria, exhibited bacteriostatic and bactericidal effects against certain bacteria, and could bind to the targeted bacterial Ⅳ pilin protein rPilA of E. tarda. Furthermore, rPoIL8-L could attach to peripheral blood leukocytes, and enhance their immune genes expression, respiratory burst, chemotaxis, proliferation, acid phosphatase activity, and phagocytic activity. Additionally, rPoIL8-L induce neutrophils to extrude neutrophil extracellular traps. In vivo, rPoIL8-L could promote host resistance to E. tarda infection. In summary, these findings provide fresh perspectives on the immunological antibacterial properties of IL-8 in teleost.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Yue Fang
- School of Ocean, Yantai University, Yantai, China
| | | | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Bin Sun
- School of Ocean, Fujian Polytechnic Normal University, Fuzhou, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
30
|
Xiao C, Feng X, Zhao Z, Ding G, Gao Y. Global research trends and focus on the link between neutrophil extracellular traps and tumor: a bibliometric and visualization analysis from 2006 to 2024. Front Immunol 2024; 15:1452104. [PMID: 39381001 PMCID: PMC11459091 DOI: 10.3389/fimmu.2024.1452104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) have long been consistently considered an innate immune defense against foreign pathogens, but this oversimplified view has decelerated the progression of perceiving NET biology in chronic diseases. It is now increasingly accepted that NETs are not exclusive to anti-infection responses, but are also central players with a double-edged sword role in cancer progression. NETs have gradually emerged as tumor diagnostic, predictive, and prognostic biomarkers, and strenuous endeavors have been devoted to tapping their potential as new therapeutic targets. Correspondingly, the boom in studies on NETs and tumors in recent years has achieved a series of scientific outputs, which opens up a new perspective for perceiving the sophisticated landscapes of the tumor immune microenvironment. However, there is still much room to translate NET-targeted immunotherapies into clinical practice. Therefore, it is necessary to explore the knowledge structure and latent hotspots of the links between NETs and tumors using bibliometric analysis. Methods NETs and tumor publications from 2006 to 2024 were extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were conducted using Microsoft Excel, VOSviewer, CiteSpace, and R-bibliometrix. Results The analysis included 1,339 publications authored by 7,747 scholars affiliated with 1,926 institutions across 70 countries/regions with relevant articles published in 538 journals. Despite China's maximum number of publications, the United States has continued to dominate the field as a global cooperation center with overwhelming citation counts. Frontiers in Immunology published the most number of publications, whereas Blood was the most cited journal. Wagner, Denisa D. and Kaplan, Mariana J. are concurrently in both the top 10 most prolific authors and cited author lists. Tumor microenvironment and immunotherapy will likely be the focus of future research. Conclusions A comprehensive bibliometric analysis was first conducted to map the current landscape and knowledge structure of the link between NETs and tumors in the hope of providing guidance and fresh perspectives for further research in this field. NETs are promising antitumor targets, and perhaps the eventual destination in the realm is to translate NET-targeted immunotherapies into clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South
University, Changsha, China
| |
Collapse
|
31
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Teijeira A, Garasa S, Ochoa MC, Sanchez-Gregorio S, Gomis G, Luri-Rey C, Martinez-Monge R, Pinci B, Valencia K, Palencia B, Barbés B, Bolaños E, Azpilikueta A, García-Cardosa M, Burguete J, Eguren-Santamaría I, Garate-Soraluze E, Berraondo P, Perez-Gracia JL, de Andrea CE, Rodriguez-Ruiz ME, Melero I. Low-Dose Ionizing γ-Radiation Elicits the Extrusion of Neutrophil Extracellular Traps. Clin Cancer Res 2024; 30:4131-4142. [PMID: 38630754 PMCID: PMC11393545 DOI: 10.1158/1078-0432.ccr-23-3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes, and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice for assessing their effects on metastasis. Circulating NETs in irradiated patients with cancer were measured using ELISA methods for detecting MPO-DNA complexes and citrullinated histone 3. RESULTS Irradiation of neutrophils with very low γ-radiation doses (0.5-1 Gy) elicits NET formation in a manner dependent on oxidative stress, NADPH oxidase activity, and autocrine IL8. Radiation-induced NETs interfere with NK cell and T-cell cytotoxicity. As a consequence, preinjection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion, and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments. See related commentary by Mowery and Luke, p. 3965.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Rafael Martinez-Monge
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Beatrice Pinci
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Karmele Valencia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Solid Tumors Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Benigno Barbés
- Department of Radiation Physics and Radiation Protection, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marina García-Cardosa
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Javier Burguete
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Iñaki Eguren-Santamaría
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L Perez-Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Carlos E de Andrea
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Anatomy, Physiology and Pathology, Universidad de Navarra, Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Mowery YM, Luke JJ. NETosis Impact on Tumor Biology, Radiation, and Systemic Therapy Resistance. Clin Cancer Res 2024; 30:3965-3967. [PMID: 39007757 PMCID: PMC11398986 DOI: 10.1158/1078-0432.ccr-24-1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Neutrophil extracellular trap (NET)osis via lytic neutrophil death or neutrophil activation is associated with standard cancer therapies, notably including radiotherapy; is immunosuppressive; and may enhance metastasis and treatment resistance. This emerging area of research should be prioritized in drug development and standard of care treatment paradigms including radiation therapy, chemotherapy, and immunotherapy. See related article by Teijeira et al., p. 4131.
Collapse
Affiliation(s)
- Yvonne M Mowery
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Horaguchi S, Nakahara Y, Igarashi Y, Kouro T, Wei F, Murotani K, Udagawa S, Higashijima N, Matsuo N, Murakami S, Kato T, Kondo T, Xiang H, Kasajima R, Himuro H, Tsuji K, Mano Y, Komahashi M, Miyagi Y, Saito H, Azuma K, Uehara S, Sasada T. Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines 2024; 12:1831. [PMID: 39200295 PMCID: PMC11351864 DOI: 10.3390/biomedicines12081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) released from neutrophils are related to cancer progression. However, the relationship between the therapeutic effects of immune checkpoint inhibitors (ICIs) such as anti-PD-1 and anti-PD-L1 antibodies and plasma NET concentration in patients with non-small cell lung cancer (NSCLC) is poorly understood. In this study, concentrations of citrullinated histone H3 (CitH3), a surrogate marker of NETs, in plasma before/after treatment were examined in patients with advanced or recurrent NSCLC undergoing ICI treatment (n = 185). The clinical significances of NET levels before/after treatment and posttreatment changes were statistically evaluated. As a result, multivariate Cox analysis showed that high NET levels before treatment were statistically significant predictors of unfavorable overall survival (OS; p < 0.001, HR 1.702, 95% CI 1.356-2.137) and progression-free survival (PFS; p < 0.001, HR 1.566, 95% CI 1.323-1.855). The Kaplan-Meier curves showed significant separation between the high- and low-NET groups in OS (p = 0.002) and PFS (p < 0.001). Additionally, high NET levels after treatment were also significantly associated with worse OS (p < 0.001) and PFS (p < 0.001) by multivariate Cox analysis. Notably, the pretreatment NET levels were significantly correlated with the plasma levels of NET-related inflammatory cytokines, such as IL-6 and IL-8, and with NET-related gene expression and immune-suppressive profile in peripheral blood mononuclear cells. Our findings suggest that NETs released from activated neutrophils might reduce the clinical efficacy of ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Shun Horaguchi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara 252-0375, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Taku Kouro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Feifei Wei
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Kenta Murotani
- Biostatistics Center, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Seiichi Udagawa
- Mathematics Section, Division of Natural Sciences, Nihon University School of Medicine, Tokyo 173-0032, Japan;
| | - Naoko Higashijima
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (N.M.); (K.A.)
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Tetsuro Kondo
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Huihui Xiang
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Hidetomo Himuro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Kayoko Tsuji
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Yasunobu Mano
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Mitsuru Komahashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (N.M.); (K.A.)
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| |
Collapse
|
35
|
Kromidas E, Geier A, Weghofer A, Liu HY, Weiss M, Loskill P. Immunocompetent PDMS-Free Organ-on-Chip Model of Cervical Cancer Integrating Patient-Specific Cervical Fibroblasts and Neutrophils. Adv Healthc Mater 2024; 13:e2302714. [PMID: 38029413 DOI: 10.1002/adhm.202302714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
Despite preventive measures and available treatments, cervical cancer still ranks as the fourth most prevalent cancer among women worldwide and remains the leading cause of cancer death in women in many developing countries. To gain further insights into pathogenesis and to develop novel (immuno)therapies, more sophisticated human models recreating patient heterogeneities and including aspects of the tumor microenvironment are urgently required. A novel polydimethylsiloxane-free microfluidic platform, designed specifically for the generation and ccultivation of cervical cancerous tissue, is introduced. The microscale open-top tissue chambers of the cervical cancer-on-chip (CCoC) enable facile generation and long-term cultivation of SiHa spheroids in co-culture with donor-derived cervical fibroblasts. The resulting 3D tissue emulates physiological architecture and allows dissection of distinct effects of the stromal tissue on cancer viability and growth. Treatment with cisplatin at clinically-relevant routes of administration and dosing highlights the platform's applicability for drug testing. Moreover, the model is amenable for integration and recruitment of donor-derived neutrophils from the microvasculature-like channel into the tissue, all while retaining their ability to produce neutrophil extracellular traps. In the future, the immunocompetent CCoC featuring donor-specific primary cells and tumor spheroids has the potential to contribute to the development of new (immuno)therapeutic options.
Collapse
Affiliation(s)
- Elena Kromidas
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Alicia Geier
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Adrian Weghofer
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Hui-Yu Liu
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Martin Weiss
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- Department for Women's Health, Faculty of Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074, Tübingen, Germany
| |
Collapse
|
36
|
Han AX, Long BY, Li CY, Huang DD, Xiong EQ, Li FJ, Wu GL, Liu Q, Yang GB, Hu HY. Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma. Apoptosis 2024; 29:1090-1108. [PMID: 38519636 DOI: 10.1007/s10495-024-01947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as "hot" tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients.
Collapse
Affiliation(s)
- A Xuan Han
- Department of General Surgery, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijing, China
| | - B Yaping Long
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
| | - C Yao Li
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
- Medical School of Chinese People's Liberation Army (PLA), Haidian District, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - D Di Huang
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
| | - E Qi Xiong
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
| | - F Jinfeng Li
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - G Liangliang Wu
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Qiaowei Liu
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
- Department of Emergency, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 8 Dongdajie Road, Fengtai District, Beijing, 100071, China.
| | - G Bo Yang
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
| | - H Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China.
- Medical School of Chinese People's Liberation Army (PLA), Haidian District, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
37
|
Garcinuño S, Lalueza A, Gil-Etayo FJ, Díaz-Simón R, Lizasoain I, Moraga A, Diaz-Benito B, Naranjo L, Cabrera-Marante O, Pleguezuelo DE, Ruiz-Ruigomez M, Ayuso B, Arrieta E, Folgueira D, Paz-Artal E, Cueto C, Lumbreras C, Serrano A, Serrano M. Immune dysregulation is an important factor in the underlying complications in Influenza infection. ApoH, IL-8 and IL-15 as markers of prognosis. Front Immunol 2024; 15:1443096. [PMID: 39176097 PMCID: PMC11339618 DOI: 10.3389/fimmu.2024.1443096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Influenza virus infection can cause a range of clinical symptoms, including respiratory failure (RF) and even death. The mechanisms responsible for the most severe forms of the disease are not yet well understood. The objective is to assess the initial immune response upon admission and its potential impact on infection progression. Methods We conducted a prospective observational study of patients with influenza virus infection who required admission to a tertiary hospital in the 2017/18 and 2018/19 flu seasons. Immune markers, surrogate markers of neutrophil activation, and blood levels of DNase I and Apolipoprotein-H (ApoH) were determined in the first serum sample available during hospital care. Patients were followed until hospital discharge or death. Initially, 792 patients were included. From this group, 107 patients with poor evolution were selected, and a random control group was matched by day of admission. Results Patients with poor outcomes had significantly reduced ApoH levels, a soluble protein that regulate both complement and coagulation pathways. In multivariate analysis, low plasma levels of ApoH (OR:5.43; 2.21-13.4), high levels of C- reactive protein (OR:2.73: 1.28-5.4), hyperferritinemia (OR:2.83; 1.28-5.4) and smoking (OR:3.41; 1.04-11.16), were significantly associated with a worse prognosis. RF was independently associated with low levels of ApoH (OR: 5.12; 2.02-1.94), while high levels of IL15 behaved as a protective factor (OR:0.30; 0.12-0.71). Discussion Therefore, in hospitalized influenza patients, a dysregulated early immune response is associated with a worse outcome. Adequate plasma levels of ApoH are protective against severe influenza and RF and High levels of IL15 protect against RF.
Collapse
Affiliation(s)
- Sara Garcinuño
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Antonio Lalueza
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Red de Infecciones en Inmunodeprimidos no VIH e infecciones relacionadas con la asistencia sanitaria (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raquel Díaz-Simón
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ignacio Lizasoain
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana Moraga
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Cell Biology Department, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Blanca Diaz-Benito
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Naranjo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Oscar Cabrera-Marante
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Enrique Pleguezuelo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Ruiz-Ruigomez
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Ayuso
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estibaliz Arrieta
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Dolores Folgueira
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Cecilia Cueto
- Biochemistry Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Lumbreras
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Red de Infecciones en Inmunodeprimidos no VIH e infecciones relacionadas con la asistencia sanitaria (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Serrano
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Red de Centros de Investigación Biomédica en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Serrano
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
38
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
39
|
Li YN, Su JL, Tan SH, Chen XL, Cheng TL, Jiang Z, Luo YZ, Zhang LM. Machine learning based on metabolomics unveils neutrophil extracellular trap-related metabolic signatures in non-small cell lung cancer patients undergoing chemoimmunotherapy. World J Clin Cases 2024; 12:4091-4107. [PMID: 39015934 PMCID: PMC11235537 DOI: 10.12998/wjcc.v12.i20.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Jia-Lin Su
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Shu-Hua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Xing-Long Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Tian-Li Cheng
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Zhou Jiang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Yong-Zhong Luo
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| |
Collapse
|
40
|
Shao S, Delk NA, Jones CN. A microphysiological system reveals neutrophil contact-dependent attenuation of pancreatic tumor progression by CXCR2 inhibition-based immunotherapy. Sci Rep 2024; 14:14142. [PMID: 38898176 PMCID: PMC11187156 DOI: 10.1038/s41598-024-64780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells recruit neutrophils from the bloodstream into the tumor tissue, where these immune cells promote the progression of numerous solid tumors. Studies in mice suggest that blocking neutrophil recruitment to tumors by inhibition of neutrophil chemokine receptor CXCR2 could be a potential immunotherapy for pancreatic cancer. Yet, the mechanisms by which neutrophils promote tumor progression in humans, as well as how CXCR2 inhibition could potentially serve as a cancer therapy, remain elusive. In this study, we developed a human cell-based microphysiological system to quantify neutrophil-tumor spheroid interactions in both "separated" and "contact" scenarios. We found that neutrophils promote the invasion of tumor spheroids through the secretion of soluble factors and direct contact with cancer cells. However, they promote the proliferation of tumor spheroids solely through direct contact. Interestingly, treatment with AZD-5069, a CXCR2 inhibitor, attenuates invasion and proliferation of tumor spheroids by blocking direct contact with neutrophils. Our findings also show that CXCR2 inhibition reduces neutrophil migration toward tumor spheroids. These results shed new light on the tumor-promoting mechanisms of human neutrophils and the tumor-suppressive mechanisms of CXCR2 inhibition in pancreatic cancer and may aid in the design and optimization of novel immunotherapeutic strategies based on neutrophils.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Nikki A Delk
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Caroline N Jones
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
41
|
Enfield KS, Colliver E, Lee C, Magness A, Moore DA, Sivakumar M, Grigoriadis K, Pich O, Karasaki T, Hobson PS, Levi D, Veeriah S, Puttick C, Nye EL, Green M, Dijkstra KK, Shimato M, Akarca AU, Marafioti T, Salgado R, Hackshaw A, Jamal-Hanjani M, van Maldegem F, McGranahan N, Glass B, Pulaski H, Walk E, Reading JL, Quezada SA, Hiley CT, Downward J, Sahai E, Swanton C, Angelova M. Spatial Architecture of Myeloid and T Cells Orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov 2024; 14:1018-1047. [PMID: 38581685 PMCID: PMC11145179 DOI: 10.1158/2159-8290.cd-23-1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Philip S. Hobson
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Dina Levi
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Emma L. Nye
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Krijn K. Dijkstra
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Masako Shimato
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ayse U. Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, United Kingdom
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | | | | | - James L. Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Pre-cancer Immunology Laboratory, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Sergio A. Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Crispin T. Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
42
|
Quiroga J, Cortes B, Sarmiento J, Morán G, Henríquez C. Characterization of extracellular trap production and release by equine neutrophils in response to different stimuli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105151. [PMID: 38423491 DOI: 10.1016/j.dci.2024.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.
Collapse
Affiliation(s)
- John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Bayron Cortes
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
43
|
Jin C, Lu X, Yang M, Hou S. Integrative analysis indicates the potential values of ANKRD53 in stomach adenocarcinoma. Discov Oncol 2024; 15:188. [PMID: 38801557 PMCID: PMC11130106 DOI: 10.1007/s12672-024-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Ankyrin repeat domain 53 (ANKRD53) plays an important role in maintaining chromosome integrity and stability, and chromosome instability is associated with cancer. Through integrative analysis, this study investigates the potential value of ANKRD53 in stomach adenocarcinoma (STAD). METHODS RNA-seq and scRNA-seq data were used for integrative analysis based on online databases. Expression of ANKRD53 was confirmed by RT-PCR after bioinformatic analysis. Kaplan-Meier and Cox regression analyses were performed to evaluate the prognostic value of ANKRD53 in STAD. Gene set enrichment analysis (GSEA) was performed to evaluate ANKRD53-related signaling pathways. In addition, the interaction of ANKRD53 with immunity was also investigated. RESULTS RT-PCR in STAD cell lines confirmed that ANKRD53 was downregulated in STAD samples compared to normal samples in the online databases. As an independent predictive biomarker, ANKRD53 was combined with other clinicopathological parameters to create a prognostic nomogram. Using GSEA, ANKRD53 was found to be involved in five pathways, including the TGF-β signaling pathway. Further investigation revealed that ANKRD53 was associated with immune checkpoint molecules, immunological pathways, and immunotherapy, in addition to MSI, TMB and neoantigens. In addition, scRNA-seq data revealed that ANKRD53 is mainly expressed in CD8+ T and dendritic cells. CONCLUSIONS ANKRD53 is an important biomarker for STAD that deserves further attention.
Collapse
Affiliation(s)
- Chunjing Jin
- Laboratory Medicine Center, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Xu Lu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Minfeng Yang
- School of Public Health, Nantong University, Nantong, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China.
| |
Collapse
|
44
|
Zhu D, Lu Y, Yan Z, Deng Q, Hu B, Wang Y, Wang W, Wang Y, Wang Y. A β-Carboline Derivate PAD4 Inhibitor Reshapes Neutrophil Phenotype and Improves the Tumor Immune Microenvironment against Triple-Negative Breast Cancer. J Med Chem 2024; 67:7973-7994. [PMID: 38728549 DOI: 10.1021/acs.jmedchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of β-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Zhanchao Yan
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
| | - Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P. R. China
| | - Yanming Wang
- The First Affiliated Hospital of Henan University, Center for Clinical Research and Translational Medicine, Laboratory of Epigenetics, Henan University, Kaifeng 475004, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, P. R. China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
45
|
Jing W, Wang G, Cui Z, Li X, Zeng S, Jiang X, Li W, Han B, Xing N, Zhao Y, Chen S, Shi B. Tumor-neutrophil cross talk orchestrates the tumor microenvironment to determine the bladder cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2312855121. [PMID: 38713626 PMCID: PMC11098120 DOI: 10.1073/pnas.2312855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Zhiwei Cui
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shuyan Zeng
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xin Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Wushan Li
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Shandong First Medical University, Jinan, Shandong Province250000, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Nianzeng Xing
- Department of Urology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing10021, China
| | - Yunxue Zhao
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| |
Collapse
|
46
|
Wang H, Yang R, Liu D, Li W. Association of pretreatment neutrophil-to-lymphocyte ratio with clinical outcomes in cancer immunotherapy: An evidence synthesis from 30 meta-analyses. Int Immunopharmacol 2024; 132:111936. [PMID: 38579566 DOI: 10.1016/j.intimp.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The Neutrophil-to-lymphocyte ratio (NLR) holds relevance in cancer immunotherapy outcomes, yet its validation remains limited. Thus, we conducted an umbrella review to comprehensively assess the association between pretreatment NLR and immunotherapy outcomes, along with evaluating their credibility and strength. METHODS Electronic databases, including PubMed, Web of Science, Embase, Scopus, and Cochrane, were systematically searched for eligible systematic reviews and meta-analyses. Quality assessment and evidence grading utilized AMSTAR, GRADE, and additional classification criteria, following PRISMA and PRIOR guidelines. RESULTS Thirty unique meta-analyses were included, with 24 associations (80%) exhibiting statistical significance. Notably, associations between pretreatment NLR and the prognosis of renal cell carcinoma, hepatocellular carcinoma, melanoma, and non-small cell lung cancer garnered highly suggestive or convincing evidence grading. CONCLUSIONS Elevated pretreatment NLR correlates with poor outcomes in cancer immunotherapy, suggesting its potential as a biomarker for identifying appropriate treatment populations and predicting clinical outcomes. Nevertheless, further validation through prospective cohort studies is warranted.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ruiyuan Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu 610041, Sichuan, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu 610041, Sichuan, China.
| |
Collapse
|
47
|
Xiong G, Chen Z, Liu Q, Peng F, Zhang C, Cheng M, Ling R, Chen S, Liang Y, Chen D, Zhou Q. CD276 regulates the immune escape of esophageal squamous cell carcinoma through CXCL1-CXCR2 induced NETs. J Immunother Cancer 2024; 12:e008662. [PMID: 38724465 PMCID: PMC11086492 DOI: 10.1136/jitc-2023-008662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.
Collapse
Affiliation(s)
- Gan Xiong
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhi Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qianwen Liu
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Caihua Zhang
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Maosheng Cheng
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shuang Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yu Liang
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Demeng Chen
- Center for Translational Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Liu P, Wang Y, Li X, Liu Z, Sun Y, Liu H, Shao Z, Jiang E, Zhou X, Shang Z. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer-associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p-ACLY axis. Cancer Sci 2024; 115:1433-1445. [PMID: 38494608 PMCID: PMC11093202 DOI: 10.1111/cas.16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Lipid metabolic reprogramming of tumor cells has been proven to play a critical role in tumor initiation and development. However, lipid metabolism in cancer-associated fibroblasts (CAFs) has rarely been studied, particularly in CAFs of oral squamous cell carcinoma (OSCC). Additionally, the molecular mechanism by which tumor cells regulate lipid metabolism in fibroblasts is unclear. In this study, we found that phosphorylated ATP citrate lyase (p-ACLY), a key lipid metabolic enzyme, was upregulated in OSCC CAFs. Compared to paracancerous normal fibroblasts, CAFs showed enhanced lipid synthesis, such as elevated cytosolic acetyl-CoA level and accumulation of lipid droplets. Conversely, reduction of p-ACLY level blocked this biological process. In addition, blocking lipid synthesis in CAFs or inhibiting fatty acid uptake by OSCC cells reduced the promotive effects of CAFs on OSCC cell proliferation, invasion, and migration. These findings suggested that CAFs are one of lipid sources required for OSCC progression. Mechanistically, AKT signaling activation was involved in the upregulation of p-ACLY level and lipid synthesis in CAFs. Interleukin-8 (IL8), an exocrine cytokine of OSCC cells, could activate AKT and then phosphorylate ACLY in fibroblasts. This study suggested that the IL8/AKT/p-ACLY axis could be considered as a potential target for OSCC treatment.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yue Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xiang Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhenan Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yunqing Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hanzhe Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhe Shao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Head and Neck Oncology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Erhui Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Head and Neck Oncology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xiaocheng Zhou
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhengjun Shang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
49
|
Augustin RC, Luke JJ. Rapidly Evolving Pre- and Post-surgical Systemic Treatment of Melanoma. Am J Clin Dermatol 2024; 25:421-434. [PMID: 38409643 PMCID: PMC11552441 DOI: 10.1007/s40257-024-00852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
With the development of effective BRAF-targeted and immune-checkpoint immunotherapies for metastatic melanoma, clinical trials are moving these treatments into earlier adjuvant and perioperative settings. BRAF-targeted therapy is a standard of care in resected stage III-IV melanoma, while anti-programmed death-1 (PD1) immunotherapy is now a standard of care option in resected stage IIB through IV disease. With both modalities, recurrence-free survival and distant-metastasis-free survival are improved by a relative 35-50%, yet no improvement in overall survival has been demonstrated. Neoadjuvant anti-PD1 therapy improves event-free survival by approximately an absolute 23%, although improvements in overall survival have yet to be demonstrated. Understanding which patients are most likely to recur and which are most likely to benefit from treatment is now the highest priority question in the field. Biomarker analyses, such as gene expression profiling of the primary lesion and circulating DNA, are preliminarily exciting as potential biomarkers, though each has drawbacks. As in the setting of metastatic disease, markers that inform positive outcomes include interferon-γ gene expression, PD-L1, and high tumor mutational burden, while negative predictors of outcome include circulating factors such as lactate dehydrogenase, interleukin-8, and C-reactive protein. Integrating and validating these markers into clinically relevant models is thus a high priority. Melanoma therapeutics continues to advance with combination adjuvant approaches now investigating anti-PD1 with lymphocyte activation gene 3 (LAG3), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and individualized neoantigen therapies. How this progress will be integrated into the management of a unique patient to reduce recurrence, limit toxicity, and avoid over-treatment will dominate clinical research and patient care over the next decade.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, 5150 Centre Ave. Room 1.27C, Pittsburgh, PA, 15232, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jason J Luke
- UPMC Hillman Cancer Center, 5150 Centre Ave. Room 1.27C, Pittsburgh, PA, 15232, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Li G, Tanaka T, Ouchida T, Kaneko MK, Suzuki H, Kato Y. Cx 1Mab-1: A Novel Anti-mouse CXCR1 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2024; 43:59-66. [PMID: 38593439 DOI: 10.1089/mab.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|