1
|
Valenzuela G, Contreras HR, Marcelain K, Burotto M, González-Montero J. Understanding microRNA-Mediated Chemoresistance in Colorectal Cancer Treatment. Int J Mol Sci 2025; 26:1168. [PMID: 39940936 PMCID: PMC11818086 DOI: 10.3390/ijms26031168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) remains the second most lethal cancer worldwide, with incidence rates expected to rise substantially by 2040. Although biomarker-driven therapies have improved treatment, responses to standard chemotherapeutics, such as 5-fluorouracil (5-FU), oxaliplatin, and irinotecan, vary considerably. This clinical heterogeneity emphasizes the urgent need for novel biomarkers that can guide therapeutic decisions and overcome chemoresistance. microRNAs (miRNAs) have emerged as key post-transcriptional regulators that critically influence chemotherapy responses. miRNAs orchestrate post-transcriptional gene regulation and modulate diverse pathways linked to chemoresistance. They influence drug transport by regulating ABC transporters and affect metabolic enzymes like thymidylate synthase (TYMS). These activities shape responses to standard CRC chemotherapy agents. Furthermore, miRNAs can regulate the epithelial-mesenchymal transition (EMT). The miR-200 family (e.g., miR-200c and miR-141) can reverse EMT phenotypes, restoring chemosensitivity. Additionally, miRNAs like miR-19a and miR-625-3p show predictive value for chemotherapy outcomes. Despite these promising findings, the clinical translation of miRNA-based biomarkers faces challenges, including methodological inconsistencies and the dynamic nature of miRNA expression, influenced by the tumor microenvironment. This review highlights the critical role of miRNAs in elucidating chemoresistance mechanisms and their promise as biomarkers and therapeutic targets in CRC, paving the way for a new era of precision oncology.
Collapse
Affiliation(s)
- Guillermo Valenzuela
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago 8350499, Chile; (G.V.); (H.R.C.); (K.M.)
- Center for Cancer Prevention and Control (CECAN), Santiago 8380453, Chile
| | - Héctor R. Contreras
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago 8350499, Chile; (G.V.); (H.R.C.); (K.M.)
- Center for Cancer Prevention and Control (CECAN), Santiago 8380453, Chile
| | - Katherine Marcelain
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago 8350499, Chile; (G.V.); (H.R.C.); (K.M.)
- Center for Cancer Prevention and Control (CECAN), Santiago 8380453, Chile
| | - Mauricio Burotto
- Bradford Hill Clinical Research Center, Santiago 8380453, Chile;
| | - Jaime González-Montero
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago 8350499, Chile; (G.V.); (H.R.C.); (K.M.)
- Center for Cancer Prevention and Control (CECAN), Santiago 8380453, Chile
- Bradford Hill Clinical Research Center, Santiago 8380453, Chile;
| |
Collapse
|
2
|
Ragia G, Pallikarou M, Michou C, Manolopoulos VG. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Genes (Basel) 2024; 15:1491. [PMID: 39596691 PMCID: PMC11593693 DOI: 10.3390/genes15111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:MIR27A rs895819 polymorphism has emerged as a potential additional pharmacogenomic marker of fluoropyrimidine response. Current evidence on its potential effect on miR-27a expression, which represses DPD activity, leading to DPD deficiency and increased fluoropyrimidine-associated toxicity risk, is scarce and inconsistent. We have analyzed the effect of MIR27A rs895819 polymorphism on miR-27a-3p plasma expression levels under different models of inheritance to contribute further evidence on its plausible biological role in miR-27a expression. Methods: A total of 59 individuals with no medical history of cancer were included in this study. MIR27A rs895819 genotyping and miR-27a-3p expression were analyzed by using predesigned TaqMan assays. Results: The frequency of TT, TC, and CC genotypes was present at a prevalence of 50.8%, 44.1%, and 5.1%, respectively. Individuals carrying the CC genotype presented with decreased miR-27a-3p expression (0.422 fold-change versus TT, p = 0.041; 0.461 fold-change versus TC, p = 0.064), whereas no differences were present between TT and TC individuals (1.092 fold-change, p = 0.718). miR-27a-3p expression was decreased in CC individuals under a recessive model of inheritance (0.440 fold-change, p = 0.047). No differences were found in dominant (TT vs. TC+CC, 0.845 fold-change, p = 0.471) or over dominant (TT+CC vs. TC, 0.990 fold-change, p = 0.996) models of inheritance. Conclusions:MIR27A rs895819CC genotype leads to severely reduced miR-27a-3p expression in plasma. Further study of this association is warranted in cancer patients to apply MIR27A genotyping in therapeutics to identify fluoropyrimidine-treated patients who are at a decreased risk of experiencing fluoropyrimidine-induced severe toxicity.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
| | - Myria Pallikarou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
| | - Chrysoula Michou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece; (M.P.); (C.M.)
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Dragana Campus, 68100 Alexandroupolis, Greece
| |
Collapse
|
3
|
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8445-8475. [PMID: 38878089 DOI: 10.1007/s00210-024-03189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024]
Abstract
Among cancer-related deaths worldwide, colorectal cancer ranks second, accounting for 1.2% of deaths in those under 50 years and 0.6% of deaths in those between 50 and 54 years. The anticancer drug 5-fluorouracil is widely used to treat colorectal cancer. Due to a better understanding of the drug's mechanism of action, its anticancer activity has been increased through a variety of therapeutic alternatives. Clinical use of 5-FU has been severely restricted due to drug resistance. The chemoresistance mechanism of 5-FU is challenging to overcome because of the existence of several drug efflux transporters, DNA repair enzymes, signaling cascades, classical cellular processes, cancer stem cells, metastasis, and angiogenesis. Curcumin, a potent phytocompound derived from Curcuma longa, functions as a nuclear factor (NF)-κB inhibitor and sensitizer to numerous chemotherapeutic drugs. Piperine, an alkaloid found in Piper longum, inhibits cancer cell growth, causing cell cycle arrest and apoptosis. This review explores the mechanism of 5-FU-induced chemoresistance in colon cancer cells and the role of curcumin and piperine in enhancing the sensitivity of 5-FU-based chemotherapy. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Dorothy Bhattacharjya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Ikonnikova A, Fedorinov D, Gryadunov D, Heydarov R, Lyadova M, Moskalenko A, Mikhailovich V, Emelyanova M, Lyadov V. MIR27A Gene Polymorphism Modifies the Effect of Common DPYD Gene Variants on Severe Toxicity in Patients with Gastrointestinal Tumors Treated with Fluoropyrimidine-Based Anticancer Therapy. Int J Mol Sci 2024; 25:8503. [PMID: 39126072 PMCID: PMC11313059 DOI: 10.3390/ijms25158503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
To reduce severe fluoropyrimidine-related toxicity, pharmacogenetic guidelines recommend a dose reduction for carriers of four high-risk variants in the DPYD gene (*2A, *13, c.2846A>T, HapB3). The polymorphism in the MIR27A gene has been shown to enhance the predictive value of these variants. Our study aimed to explore whether rs895819 in the MIR27A gene modifies the effect of five common DPYD variants: c.1129-5923C>G (rs75017182, HapB3), c.2194G>A (rs1801160, *6), c.1601G>A (rs1801158, *4), c.496A>G (rs2297595), and c.85T>C (rs1801265, *9A). The study included 370 Caucasian patients with gastrointestinal tumors who received fluoropyrimidine-containing chemotherapy. Genotyping was performed using high-resolution melting analysis. The DPYD*6 allele was associated with overall severe toxicity and neutropenia with an increased risk particularly pronounced in patients carrying the MIR27A variant. All carriers of DPYD*6 exhibited an association with asthenia regardless of their MIR27A status. The increased risk of neutropenia in patients with c.496G was only evident in those co-carrying the MIR27A variant. DPYD*4 was also significantly linked to neutropenia risk in co-carriers of the MIR27A variant. Thus, we have demonstrated the predictive value of the *6, *4, and c.496G alleles of the DPYD gene, considering the modifying effect of the MIR27A polymorphism.
Collapse
Affiliation(s)
- Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
| | - Denis Fedorinov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology and Palliative Medicine Named after Academician A.I. Savitsky, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
| | - Rustam Heydarov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Marina Lyadova
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology, Novokuznetsk State Institute for Postgraduate Medical Education, 654005 Novokuznetsk, Russia
| | - Alexey Moskalenko
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
| | - Vladimir Mikhailovich
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (M.E.)
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (R.H.); (V.M.)
| | - Vladimir Lyadov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, 117152 Moscow, Russia; (D.F.); (M.L.); (A.M.); (V.L.)
- Department of Oncology and Palliative Medicine Named after Academician A.I. Savitsky, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
- Department of Oncology, Novokuznetsk State Institute for Postgraduate Medical Education, 654005 Novokuznetsk, Russia
| |
Collapse
|
5
|
Zhang T, Ambrodji A, Huang H, Bouchonville KJ, Etheridge AS, Schmidt RE, Bembenek BM, Temesgen ZB, Wang Z, Innocenti F, Stroka D, Diasio RB, Largiadèr CR, Offer SM. Germline cis variant determines epigenetic regulation of the anti-cancer drug metabolism gene dihydropyrimidine dehydrogenase ( DPYD). eLife 2024; 13:RP94075. [PMID: 38686795 PMCID: PMC11060711 DOI: 10.7554/elife.94075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Alisa Ambrodji
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences, University of BernBernSwitzerland
| | - Huixing Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Amy S Etheridge
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Brianna M Bembenek
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Zoey B Temesgen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
- Department of Pathology, University of Iowa Carver College of Medicine, University of IowaIowa CityUnited States
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
6
|
Zhang T, Ambrodji A, Huang H, Bouchonville KJ, Etheridge AS, Schmidt RE, Bembenek BM, Temesgen ZB, Wang Z, Innocenti F, Stroka D, Diasio RB, Largiadèr CR, Offer SM. Germline cis variant determines epigenetic regulation of the anti-cancer drug metabolism gene dihydropyrimidine dehydrogenase ( DPYD). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565230. [PMID: 37961517 PMCID: PMC10635067 DOI: 10.1101/2023.11.01.565230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Alisa Ambrodji
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3010 Bern, Switzerland
| | - Huixing Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Amy S. Etheridge
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Remington E. Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Brianna M. Bembenek
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zoey B. Temesgen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlo R. Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Pathology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Lead contact
| |
Collapse
|
7
|
Ragia G, Biziota E, Koukaki T, Amarantidis K, Manolopoulos VG. MIR27A rs895819 TC genotype increases risk of fluoropyrimidine-induced severe toxicity independently of DPYD variations. Pharmacogenomics 2024; 25:59-67. [PMID: 38353109 DOI: 10.2217/pgs-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Aim: MicroRNA 27a (miR-27a) regulates post-transcriptionally DPD activity. We have analyzed the association of MIR27A rs895819T>C variation, that modulates miR-27a expression, with fluropyrimidine-induced toxicity. Materials & methods: MIR27A rs895819T>C genotyping was conducted by TaqMan® allelic discrimination assay in 313 FP-treated cancer patients. Results: In overdominance (TC vs TT + CC), TC genotype was associated with grade 3-4 toxicity (p = 0.002), any grade toxicity (p = 0.052), and delayed drug administration or therapy discontinuation (p = 0.038). Odds of grade 3-4 toxicity were increased by both DPYD deficiency (OR: 8.923; p = 0.006) and MIR27A rs895819 TC genotype (OR: 3.865; p = 0.002). Conclusion: MIR27A rs895819 TC genotype is an independent risk factor for fluoropyrimidine-associated toxicity in the Greek population. Thus, MIR27A rs895819TC patients can be closely monitored for fluoropyrimidine-induced severe toxicity.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Eirini Biziota
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Triantafyllia Koukaki
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Kyriakos Amarantidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
8
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Medwid S, Wigle TJ, Ross C, Kim RB. Genetic Variation in miR-27a Is Associated with Fluoropyrimidine-Associated Toxicity in Patients with Dihydropyrimidine Dehydrogenase Variants after Genotype-Guided Dose Reduction. Int J Mol Sci 2023; 24:13284. [PMID: 37686089 PMCID: PMC10487873 DOI: 10.3390/ijms241713284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPYD) is the rate-limiting enzyme involved in the metabolism of fluoropyrimidine-based chemotherapy. However, single-nucleotide variants (SNVs) in DPYD only partially explain fluoropyrimidine-induced toxicity. The expression of DPYD has previously been shown to be regulated by microRNA-27a (miR-27a) and a common miR-27a SNV (rs895819) has been associated with an increased risk of toxicity in patients harboring a DPYD variant who received standard fluoropyrimidine dosing. We investigated if the miR-27a rs895819 SNV was associated with toxicity in DPYD wildtype patients and carriers of DPYD variants who received a reduced dose. The regulation of DPYD using miR-27a was investigated in HepG2 cells utilizing a miR-27a mimic. miR-27a overexpression decreased DPYD mRNA expression compared to control cells (p < 0.0001). In a cohort of patients that received pre-emptive DPYD genotyping, 45 patients had a DPYD variant and 180 were wildtype. Patients heterozygous for rs895819 had an increased risk of toxicity, which was seen in both patients who were wildtype for DPYD variants (OR (95%CI) = 1.99 (1.00-3.99)) and DPYD variant carriers (OR (95%CI) = 8.10 (1.16-86.21)). Therefore, miR-27a rs895819 may be a clinically relevant predictor of fluoropyrimidine-associated toxicities. Furthermore, toxicity was more profound in DPYD variant carriers, even after DPYD genotype-guided dose reduction. This suggests that patients may benefit from miR-27a genotyping to guide fluoropyrimidine dosing.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, University of Western Ontario, London, ON N6A 3K7, Canada; (S.M.); (T.J.W.); (C.R.)
- London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - Theodore J. Wigle
- Department of Medicine, University of Western Ontario, London, ON N6A 3K7, Canada; (S.M.); (T.J.W.); (C.R.)
- London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - Cameron Ross
- Department of Medicine, University of Western Ontario, London, ON N6A 3K7, Canada; (S.M.); (T.J.W.); (C.R.)
- London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - Richard B. Kim
- Department of Medicine, University of Western Ontario, London, ON N6A 3K7, Canada; (S.M.); (T.J.W.); (C.R.)
- London Health Sciences Centre, London, ON N6A 5A5, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
10
|
Lombardi P, Aimar G, Peraldo-Neia C, Bonzano A, Depetris I, Fenocchio E, Filippi R, Quarà V, Milanesio M, Cavalloni G, Gammaitoni L, Basiricò M, Cagnazzo C, Ostano P, Chiorino G, Aglietta M, Leone F. Fluoropyrimidine‑induced cardiotoxicity in colorectal cancer patients: a prospective observational trial (CHECKPOINT). Oncol Rep 2022; 49:31. [PMID: 36562382 PMCID: PMC9827273 DOI: 10.3892/or.2022.8468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Fluoropyrimidines (FP) are the backbone chemotherapy in colorectal cancer (CRC) treatment; however, their use is associated with cardiotoxicity, which is underreported. In the present study, it was aimed to prospectively determine the incidence rates and related risk factors of FP‑induced cardiotoxicity (FIC) in CRC patients and at identifying predictive biomarkers. A total of 129 consecutive previously untreated CRC patients underwent active cardiological monitoring, including 5‑items simplified questionnaire on symptoms, electrocardiogram (ECG) and plasma sample collection during FP chemotherapy. FIC was defined as the presence of ECG alterations and/or the arising of at least one symptom of chest pain, dyspnoea, palpitations or syncope. The primary objective was the evaluation of FIC incidence. Secondary objectives were the correlation of FIC with well‑known cardiological risk factors and the identification of circulating biomarkers (serum levels of troponin I, pro hormone BNP; miRNA analysis) as predictors of FIC. A total of 20 out of 129 (15.5%) patients experienced FIC. The most common symptoms were dyspnoea (60%) and chest pain (40%), while only 15% of patients presented ECG alterations, including one acute myocardial infarction. Retreatment with FP was attempted in 90% of patients with a favourable outcome. Despite 48% of patients having cardiological comorbidities, an increased FIC was not observed in this subgroup. Only the subgroup of females with the habit of alcohol consumption showed an increased risk of FIC. None of the circulating biomarkers evaluated demonstrated a clinical utility as FIC predictors. FIC can be an unexpected, life‑threatening adverse event that can limit the subsequent treatment choices in patients with CRC. In this prospective study, well‑known cardiological comorbidities were not related to higher FIC risk and circulating biomarkers predictive of toxicity could not be found. With careful monitoring, mainly based on symptoms, almost all patients completed the FP treatment.
Collapse
Affiliation(s)
- Pasquale Lombardi
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Phase 1 Unit, Agostino Gemelli Foundation University Hospital IRCCS, I-00168 Roma, Italy
| | - Giacomo Aimar
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Department of Oncology, S. Croce and Carle Hospital, I-12100 Cuneo, Italy
| | | | | | - Ilaria Depetris
- Division of Medical Oncology 1, AOU City of Health and Science of Turin, I-12126 Turin, Italy
| | - Elisabetta Fenocchio
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | - Roberto Filippi
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Division of Medical Oncology 1, AOU City of Health and Science of Turin, I-12126 Turin, Italy
| | - Virginia Quarà
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | | | - Giuliana Cavalloni
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | | | - Marco Basiricò
- Department of Public Health and Pediatric Sciences, AOU City of Health and Science of Turin, Regina Margherita Hospital, I-10126 Torino, Italy
| | - Celeste Cagnazzo
- Department of Public Health and Pediatric Sciences, AOU City of Health and Science of Turin, Regina Margherita Hospital, I-10126 Torino, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, I-13900 Biella, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, I-13900 Biella, Italy
| | - Massimo Aglietta
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | - Francesco Leone
- Department of Medical Oncology, Infermi Hospital of Biella, Ponderano, I-13875 Biella, Italy,Correspondence to: Dr Francesco Leone, Department of Medical Oncology, Infermi Hospital of Biella, 2 Via dei Ponderanesi, Ponderano, I-13875 Biella, Italy, E-mail:
| |
Collapse
|
11
|
Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol Transl Sci 2022; 5:1017-1033. [PMID: 36407958 PMCID: PMC9667542 DOI: 10.1021/acsptsci.2c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutics for the treatment of cancers associated with the aerodigestive tract, breast, and colorectal system. The efficacy of 5-FU is majorly affected by dihydropyrimidine dehydrogenase (DPD) as it degrades more than 80% of administered 5-FU into an inactive metabolite, dihydrofluorouracil. Herein we discuss the molecular mechanism of this inactivation by analyzing the interaction pattern and electrostatic complementarity of the DPD-5-FU complex. The basis of DPD overexpression in cancer cell lines due to significantly distinct levels of the miRNAs (miR-134, miR-27b, and miR-27a) compared to normal cells has also been outlined. Additionally, some kinases including sphingosine kinase 2 (SphK2) have been reported to correlate with DPD expression. Currently, to address this problem various strategies are reported in the literature, including 5-FU analogues (bypass the DPD-mediated inactivation), DPD downregulators (regulate the DPD expression levels in tumors), inhibitors (as promising adjuvants), and formulation development loaded with 5-FU (liposomes, nanoparticles, nanogels, etc.), which are briefly discussed in this Review.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Gera Narendra
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Baddipadige Raju
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Pankaj Kumar Singh
- Integrative
Physiology and Pharmacology, Institute of Biomedicine, Faculty of
Medicine, University of Turku, FI-20520Turku, Finland
| | - Om Silakari
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| |
Collapse
|
12
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|
13
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
14
|
Franczyk B, Rysz J, Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes (Basel) 2022; 13:311. [PMID: 35205356 PMCID: PMC8871547 DOI: 10.3390/genes13020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacogenomics is based on the understanding of the individual differences in drug use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable drug responses. The identification of DNA variants which markedly contribute to inter-individual variations in drug responses would improve the efficacy of treatments and decrease the rate of the adverse side effects of drugs. This review focuses only on the impact of polymorphisms within drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the maximum benefits without putting the patient at risk of life-threatening toxicities. However, the adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a few examples of such polymorphisms and their impact on the response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
15
|
Moosavy SH, Koochakkhani S, Barazesh M, Mohammadi S, Ahmadi K, Inchehsablagh BR, Kavousipour S, Eftekhar E, Mokaram P. In silico Analysis of Single Nucleotide Polymorphisms Associated with MicroRNA
Regulating 5-fluorouracil Resistance in Colorectal Cancer. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210930161618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the broad influence and reversible nature of microRNA (miRNA) on the
expression and regulation of target genes, researchers suggest that miRNAs and single nucleotide polymorphisms
(SNPs) in miRNA genes interfere with 5-fluorouracil (5-FU) drug resistance in colorectal
cancer chemotherapy.
Methods:
Computational assessment and cataloging of miRNA gene polymorphisms that target mRNA
transcripts directly or indirectly through regulation of 5-FU chemoresistance in CRC were screened out
by applying various universally accessible datasets such as miRNA SNP3.0 software.
Results:
1255 SNPs in 85 miRNAs affecting 5-FU resistance (retrieved from literature) were detected.
Computational analysis showed that 167 from 1255 SNPs alter microRNA expression levels leading to
inadequate response to 5-FU resistance in CRC. Among these 167 SNPs, 39 were located in the seed
region of 25/85 miRNA and were more critical than other SNPs. Has-miR-320a-5p with 4 SNP in seed
region was miRNA with the most number of SNPs. On the other hand, it has been identified that proteoglycan
in cancer, adherents junction, ECM-receptor interaction, Hippo signaling pathway, TGF-beta signaling
cascade, biosynthesis of fatty acid, and fatty acid metabolism were the most important pathways
targeted by these 85 predicted miRNAs.
Conclusion:
Our data suggest 39 SNPs in the seed region of 25 miRNAs as catalog in miRNA genes that
control the 5-FU resistance in CRC. These data also identify the most important pathways regulated by
miRNA.
Collapse
Affiliation(s)
- Seyed Hamid Moosavy
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad,
Iran
| | - Khadijeh Ahmadi
- Infection and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical
Science, Bandar Abbas, Iran
| | - Behnaz Rahnama Inchehsablagh
- Department of Physiology and Student Research Committee, Hormozgan University of
Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
16
|
Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, Budillon A. Epigenetic Approaches to Overcome Fluoropyrimidines Resistance in Solid Tumors. Cancers (Basel) 2022; 14:cancers14030695. [PMID: 35158962 PMCID: PMC8833539 DOI: 10.3390/cancers14030695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors (HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies, highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately improving the overall survival of cancer patients. Abstract Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.
Collapse
Affiliation(s)
- Laura Grumetti
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Rita Lombardi
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Federica Iannelli
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Biagio Pucci
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli IRCCS “Fondazione Pascale”, 80131 Naples, Italy;
| | - Elena Di Gennaro
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| | - Alfredo Budillon
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| |
Collapse
|
17
|
Gmeiner WH. A narrative review of genetic factors affecting fluoropyrimidine toxicity. PRECISION CANCER MEDICINE 2021; 4:38. [PMID: 34901834 PMCID: PMC8664072 DOI: 10.21037/pcm-21-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our objective is to document progress in developing personalized therapy with fluoropyrimidine drugs (FPs) to improve outcomes for cancer patients and to identify areas requiring further investigation. BACKGROUND FPs including 5-fluorouracil (5-FU), are among the most widely used drugs for treating colorectal cancer (CRC) and other gastrointestinal (GI) malignancies. While FPs confer a survival benefit for CRC patients, serious systemic toxicities, including neutropenia, occur in ~30% of patients with lethality in 0.5-1% of patients. While serious systemic toxicities may occur in any patient, patients with polymorphisms in DPYD, which encodes the rate-limiting enzyme for pyrimidine degradation are at very high risk. Other genetic factors affecting risk for 5-FU toxicity, including miR-27a, are under investigation. METHODS Literature used to inform the text of this article was selected from PubMed.gov from the National Library of Medicine while regulatory documents were identified via Google search. CONCLUSIONS Clinical studies to date have validated four DPYD polymorphisms (DPYD*2A, DPYD*13, c.2846A>T, HapB3) associated with serious toxicities in patients treated with 5-FU. Genetic screening for these is being implemented in the Netherlands and the UK and has been shown to be a cost-effective way to improve outcomes. Factors other than DPYD polymorphisms (e.g., miR-27a, TYMS, ENOSF1, p53) also affect 5-FU toxicity. Functional testing for deficient pyrimidine catabolism {defined as [U] >16 ng/mL or [UH2]:[U] <10} is being implemented in France and has demonstrated utility in identifying patients with elevated risk for 5-FU toxicity. Therapeutic drug monitoring (TDM) from plasma levels of 5-FU during first cycle treatment also is being used to improve outcomes and pharmacokinetic-based dosing is being used to increase the percent of patients within optimal area under the curve (AUC) (18-28 mg*h/L) values. Patients maintained in the optimal AUC range experienced significantly reduced systemic toxicities. As understanding the genetic basis for increased risk of 5-FU toxicity becomes more refined, the development of functional-based methods to optimize treatment is likely to become more widespread.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Powell NR, Zhao H, Ipe J, Liu Y, Skaar TC. Mapping the miRNA-mRNA Interactome in Human Hepatocytes and Identification of Functional mirSNPs in Pharmacogenes. Clin Pharmacol Ther 2021; 110:1106-1118. [PMID: 34314509 PMCID: PMC9007393 DOI: 10.1002/cpt.2379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
MiRNAs regulate the expression of hepatic genes involved in pharmacokinetics and pharmacodynamics. Genetic variants affecting miRNA binding (mirSNPs) have been associated with altered drug response, but previously used methods to identify miRNA binding sites and functional mirSNPs in pharmacogenes are indirect and limited by low throughput. We utilized the high-throughput chimeric-eCLIP assay to directly map thousands of miRNA-mRNA interactions and define the miRNA binding sites in primary hepatocytes. We then used the high-throughput PASSPORT-seq assay to functionally test 262 potential mirSNPs with coordinates overlapping the identified miRNA binding sites. Using chimeric-eCLIP, we identified a network of 448 miRNAs that collectively target 11,263 unique genes in primary hepatocytes pooled from 100 donors. Our data provide an extensive map of miRNA binding of each gene, including pharmacogenes, expressed in primary hepatocytes. For example, we identified the hsa-mir-27b-DPYD interaction at a previously validated binding site. A second example is our identification of 19 unique miRNAs that bind to CYP2B6 across 20 putative binding sites on the transcript. Using PASSPORT-seq, we then identified 24 mirSNPs that functionally impacted reporter mRNA levels. To our knowledge, this is the most comprehensive identification of miRNA binding sites in pharmacogenes. Combining chimeric-eCLIP with PASSPORT-seq successfully identified functional mirSNPs in pharmacogenes that may affect transcript levels through altered miRNA binding. These results provide additional insights into potential mechanisms contributing to interindividual variability in drug response.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Harrison Zhao
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Todd C. Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
DPYD Exome, mRNA Expression and Uracil Levels in Early Severe Toxicity to Fluoropyrimidines: An Extreme Phenotype Approach. J Pers Med 2021; 11:jpm11080792. [PMID: 34442436 PMCID: PMC8401253 DOI: 10.3390/jpm11080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Dihydropyrimidine dehydrogenase deficiency is a major cause of severe fluoropyrimidine-induced toxicity and could lead to interruption of chemotherapy or life-threatening adverse reactions. This study aimed to characterize the DPYD exon sequence, mRNA expression and in vivo DPD activity by plasma uracil concentration. It was carried out in two groups of patients with extreme phenotypes (toxicity versus control) newly treated with a fluoropyrimidine, during the first three cycles of treatment. A novel nonsense gene variant (c.2197insA) was most likely responsible for fluoropyrimidine-induced toxicity in one patient, while neither DPYD mRNA expression nor plasma uracil concentration was globally associated with early toxicity. Our present work may help improve pharmacogenetic testing to avoid severe and undesirable adverse reactions to fluoropyrimidine treatment and it also supports the idea of looking beyond DPYD.
Collapse
|
20
|
Hodroj K, Barthelemy D, Lega JC, Grenet G, Gagnieu MC, Walter T, Guitton J, Payen-Gay L. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open 2021; 6:100125. [PMID: 33895696 PMCID: PMC8095125 DOI: 10.1016/j.esmoop.2021.100125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/03/2022] Open
Abstract
Fluoropyrimidine-based chemotherapies are widely used to treat gastrointestinal tract, head and neck, and breast carcinomas. Severe toxicities mostly impact rapidly dividing cell lines and can occur due to the partial or complete deficiency in dihydropyrimidine dehydrogenase (DPD) catabolism. Since April 2020, the European Medicines Agency (EMA) recommends DPD testing before any fluoropyrimidine-based treatment. Currently, different assays are used to predict DPD deficiency; the two main approaches consist of either phenotyping the enzyme activity (directly or indirectly) or genotyping the four main deficiency-related polymorphisms associated with 5-fluorouracil (5-FU) toxicity. In this review, we focused on the advantages and limitations of these diagnostic methods: direct phenotyping by evaluation of peripheral mononuclear cell DPD activity (PBMC-DPD activity), indirect phenotyping assessed by uracil levels or UH2/U ratio, and genotyping DPD of four variants directly associated with 5-FU toxicity. The risk of 5-FU toxicity increases with uracil concentration. Having a pyrimidine-related structure, 5-FU is catabolised by the same physiological pathway. By assessing uracil concentration in plasma, indirect phenotyping of DPD is then measured. With this approach, in France, a decreased 5-FU dose is systematically recommended at a uracil concentration of 16 ng/ml, which may lead to chemotherapy under-exposure as uracil concentration is a continuous variable and the association between uracil levels and DPD activity is not clear. We aim herein to describe the different available strategies developed to improve fluoropyrimidine-based chemotherapy safety, how they are implemented in routine clinical practice, and the possible relationship with inefficacy mechanisms.
Collapse
Affiliation(s)
- K Hodroj
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - D Barthelemy
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France
| | - J-C Lega
- Hospices Civils de Lyon, Service de Médecine Interne et Vasculaire, Hôpital Lyon Sud, Pierre-Bénite, France
| | - G Grenet
- Hospices Civils de Lyon, Pole Santé Publique, Service Hospitalo-Universitaire de Pharmacotoxicologie, Lyon, France
| | - M-C Gagnieu
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - T Walter
- Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; Hospices Civils de Lyon, Service d'Oncologie Médicale, Hôpital Edouard Herriot, Lyon, France
| | - J Guitton
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Centre de Recherche en Cancerologie de Lyon-Ribosome, Traduction et Cancer, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - L Payen-Gay
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; EMR 3738 Ciblage Therapeutique en Oncologie, Faculté de Médecine Lyon Sud, Université Lyon 1, Université de Lyon, Oullins, France.
| |
Collapse
|
21
|
An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities. Cancers (Basel) 2021; 13:cancers13071497. [PMID: 33805100 PMCID: PMC8037940 DOI: 10.3390/cancers13071497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary 5-Fluorouracil (5-FU) is a chemotherapy drug that can cause severe toxicity in some patients. A protein, an action molecule in our cells, called dihydropyrimidine dehydrogenase, or DPD for short, is important in clearing 5-FU from the body. Some people have versions of DPD that do not clear 5-FU very well. This causes active drug to stay in the body too long, causing toxicities such as diarrhoea or low levels of blood cells important for fighting infections. Current guidelines identify four sequence changes in the gene that encodes DPD with high level evidence of an impact on protein activity. Our study aims to calculate the frequency of a set of variants identified in patients with DPD deficiency in patients that were part of a clinical trial called QUASAR 2. We go on to test how well the DPD deficiency variants and a set of common variants previously shown to be associated with 5-FU toxicity can predict a person’s risk of 5-Fluorouracil induced toxicity. Our research is important for working out the best way to identify patients at risk of toxicity so high risk patients can be given lower doses of 5-Fluorouracil or be treated with a different drug all together. Abstract Efficacy of 5-Fluorouracil (5-FU)-based chemotherapy is limited by significant toxicity. Tests based upon variants in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines with high level evidence of a link to dihydropyrimidine dehydrogenase (DPD) phenotype and 5-FU toxicity are available to identify patients at high risk of severe adverse events (AEs). We previously reported associations between rs1213215, rs2612091, and NM_000110.3:c.1906-14763G>A (rs12022243) and capecitabine induced toxicity in clinical trial QUASAR 2. We also identified patients with DPD deficiency alleles NM_000110.3: c.1905+1G>A, NM_000110.3: c.2846C>T, NM_000110.3:c.1679T>G and NM_000110.3:c.1651G>A. We have now assessed the frequency of thirteen additional DPYD deficiency variants in 888 patients from the QUASAR 2 clinical trial. We also compared the area under the curve (AUC)—a measure of diagnostic accuracy—of the high-level evidence variants from the CPIC guidelines plus and minus additional DPYD deficiency variants and or common variants associated with 5-FU toxicity. Including additional DPYD deficiency variants retained good diagnostic accuracy for serious adverse events (AEs) and improved sensitivity for predicting grade 4 haematological toxicities (sensitivity 0.75, specificity 0.94) but the improvement in AUC for this toxicity was not significant. Larger datasets will be required to determine the benefit of including additional DPYD deficiency variants not observed here. Genotyping two common alleles statistically significantly improves AUC for prediction of risk of HFS and may be clinically useful (AUC difference 0.177, sensitivity 0.84, specificity 0.31).
Collapse
|
22
|
Kato H, Naiki-Ito A, Suzuki S, Inaguma S, Komura M, Nakao K, Naiki T, Kachi K, Kato A, Matsuo Y, Takahashi S. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis 2021; 42:940-950. [PMID: 33640964 PMCID: PMC8283735 DOI: 10.1093/carcin/bgab017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The 5-year survival rate of pancreatic ductal carcinoma (PDAC) patients is <10% despite progress in clinical medicine. Strategies to prevent the development of PDAC are urgently required. The flavonoids Luteolin (Lut) and hesperetin (Hes) may be cancer-chemopreventive, but effects on pancreatic carcinogenesis in vivo have not been studied. Here, the chemopreventive effects of Lut and Hes on pancreatic carcinogenesis are assessed in the BOP-induced hamster PDAC model. Lut but not Hes suppressed proliferation of pancreatic intraepithelial neoplasia (PanIN) and reduced the incidence and multiplicity of PDAC in this model. Lut also inhibited the proliferation of hamster and human pancreatic cancer cells in vitro. Multi-blot and microarray assays revealed decreased phosphorylated STAT3 (pSTAT3) and dihydropyrimidine dehydrogenase (DPYD) on Lut exposure. To explore the relationship between DPYD and STAT3 activity, the former was silenced by RNAi or overexpressed using expression vectors, and the latter was inactivated by small molecule inhibitors or stimulated by IL6 in human PDAC cells. DPYD knock-down decreased, and overexpression increased, pSTAT3 and cell proliferation. DPYD expression was decreased by inactivation of STAT3 and increased by its activation. The frequency of pSTAT3-positive cells and DPYD expression was significantly correlated and was decreased in parallel by Lut in the hamster PDAC model. Finally, immunohistochemical analysis in 73 cases of human PDAC demonstrated that DPYD expression was positively correlated with the Ki-67 labeling index, and high expression was associated with poor prognosis. These results indicate that Lut is a promising chemopreventive agent for PDAC, targeting a novel STAT3-DPYD pathway.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenju Nakao
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenta Kachi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Akihisa Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Yoichi Matsuo
- Department of Gastroenterology Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| |
Collapse
|
23
|
Hawley ZCE, Campos-Melo D, Strong MJ. Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear Localization. J Mol Biol 2020; 432:166695. [PMID: 33137311 DOI: 10.1016/j.jmb.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that is integral to RNA processing. Among these functions is a critical role in microRNA (miRNA) biogenesis through interactions with the DROSHA and DICER complexes. It has been previously shown that there is a general reduction in miRNA levels within the spinal cord and spinal motor neurons of amyotrophic lateral sclerosis (ALS) patients. In addition, the most common pathological feature of ALS is re-distribution of TDP-43 from the nucleus to the cytoplasm where it forms cytoplasmic inclusions. Among miRNAs dysregulated in ALS, several are known to regulate TDP-43 expression. In this study, we demonstrate that TDP-43 is in a regulatory negative feedback network with miR-181c-5p and miR-27b-3p that is dependent on its nuclear localization within HEK293T cells. Further, we show that cellular stress which induces a redistribution of TDP-43 from the nucleus to the cytoplasm correlates with the reduced production of miR-27b-3p and miR-181c-5p. This suggests that reduced nuclear TDP-43 disrupts a negative feedback network between itself and miRNAs. These findings provide a further understanding of altered miRNA biogenesis as a key pathogenic process in ALS.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
24
|
Sabeti Aghabozorgi A, Moradi Sarabi M, Jafarzadeh-Esfehani R, Koochakkhani S, Hassanzadeh M, Kavousipour S, Eftekhar E. Molecular determinants of response to 5-fluorouracil-based chemotherapy in colorectal cancer: The undisputable role of micro-ribonucleic acids. World J Gastrointest Oncol 2020; 12:942-956. [PMID: 33005290 PMCID: PMC7510001 DOI: 10.4251/wjgo.v12.i9.942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/11/2020] [Accepted: 07/19/2020] [Indexed: 02/05/2023] Open
Abstract
5-flurouracil (5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer (CRC). Despite significant progress in the treatment of CRC during the last decades, 5-FU drug resistance remains the most important cause of failure in CRC therapy. Resistance to 5-FU is a complex and multistep process. Different mechanisms including microsatellite instability, increased expression level of key enzyme thymidylate synthase and its polymorphism, increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as the main determinants of resistance to 5-FU in CRC cells. Recently, micro-ribonucleic acids (miRNA) and their alterations were found to have a crucial role in 5-FU resistance. In this regard, the miRNA-mediated mechanisms of 5-FU drug resistance reside among the new fields of pharmacogenetics of CRC drug response that has not been completely discovered. Identification of the biological markers that are related to response to 5-FU-based chemotherapy is an emerging field of precision medicine. This approach will have an important role in defining those patients who are most likely to benefit from 5-FU-based chemotherapy in the future. Thereby, the identification of 5-FU drug resistance mechanisms is an essential step to predict and eventually overcome resistance. In the present comprehensive review, we will summarize the latest knowledge regarding the molecular determinants of response to 5-FU-based chemotherapy in CRC by emphasizing the role of miRNAs.
Collapse
Affiliation(s)
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1394491388, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Marziyeh Hassanzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| |
Collapse
|
25
|
Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920947342. [PMID: 32922521 PMCID: PMC7450467 DOI: 10.1177/1758835920947342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chemotherapy is identified as a curative approach to prolong the survival time of patients with colorectal cancer (CRC). Although great progress in therapeutic approaches has been achieved during the last decades, drug resistance still extensively persists and serves as a major hurdle to effective anticancer therapy for CRC. The mechanism of multidrug resistance remains unclear. Recently, mounting evidence suggests that a great number of microRNAs (miRNAs) may contribute to drug resistance in CRC. Certain of these miRNAs may thus be used as promising biomarkers for predicting drug response to chemotherapy or serve as potential targets to develop personalized therapy for patients with CRC. This review mainly summarizes recent advances in miRNAs and the molecular mechanisms underlying miRNA-mediated chemoresistance in CRC. We also discuss the potential role of drug resistance-related miRNAs as potential biomarkers (diagnostic and prognostic value) and envisage the future orientation and challenges in translating the findings on miRNA-mediated chemoresistance of CRC into clinical applications.
Collapse
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci 2020; 111:3142-3154. [PMID: 32536012 PMCID: PMC7469786 DOI: 10.1111/cas.14532] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Collapse
Affiliation(s)
- Sabrina Blondy
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Valentin David
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Department of pharmacy, University Hospital of Limoges, Limoges, France
| | - Mireille Verdier
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Muriel Mathonnet
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Aurélie Perraud
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Niki Christou
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| |
Collapse
|
27
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
28
|
Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br J Clin Pharmacol 2020; 87:237-255. [PMID: 32501544 DOI: 10.1111/bcp.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The field of pharmacogenomics has made great strides in oncology over the last 20 years and indeed a significant number of pre-emptive genetic tests are now routinely undertaken prior to anticancer drug administration. Many of these gene-drug interactions are the fruits of candidate gene and genome-wide association studies, which have largely focused on common genetic variants (allele frequency>1%). Examples where there is clinical utility include genotyping or phenotyping for G6PD to prevent rasburicase-induced RBC haemolysis, and TPMT to prevent thiopurine-induced bone marrow suppression. Other associations such as CYP2D6 status in determining the efficacy of tamoxifen are more controversial because of contradictory evidence from different sources, which has led to variability in the implementation of testing. As genomic technology becomes ever cheaper and more accessible, we must look to the additional data our genome can provide to explain interindividual variability in anticancer drug response. Clearly genes do not act on their own and it is therefore important to investigate genetic factors in conjunction with clinical factors, interacting concomitant drug therapies and other factors such as the microbiome, which can all affect drug disposition. Taking account of all of these factors, in conjunction with the somatic genome, is more likely to provide better predictive accuracy in determining anticancer drug response, both efficacy and safety. This review summarises the existing knowledge related to the pharmacogenomics of anticancer drugs and discusses areas of opportunity for further advances in personalisation of therapy in order to improve both drug safety and efficacy.
Collapse
Affiliation(s)
- Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
DPD status and fluoropyrimidines-based treatment: high activity matters too. BMC Cancer 2020; 20:436. [PMID: 32423482 PMCID: PMC7236295 DOI: 10.1186/s12885-020-06907-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background Dihydropyrimidine dehydrogenase (DPD) status is an indicator of a marked risk for toxicity following fluoropyrimidine (FP)-based chemotherapy. This notion is well-established for low DPD status but little is known about the clinical impact of high DPD activity. This study examined the possible link between high intrinsic lymphocytic DPD activity and overall survival, progression free survival and response to FP-based treatment in patients treated in our institution. Methods Lymphocytic DPD activity was assessed in a group of 136 patients receiving FP-based chemotherapy from 2004 to 2016. There were 105 digestive (77.2%), 24 breast (17.6%) and 7 head and neck cancers (5.2%). Cox or logistic regression models were applied with adjustment on all confounding factors that could modify OS, PFS or response. All models were stratified on the three cancer locations. A cut-off for DPD activity was assessed graphically and analytically. Results An optimal cut-off for DPD activity at 0.30 nmol/min/mg protein was identified as the best value for discriminating survivals and response. In multivariate analysis, individual lymphocytic DPD activity was significantly related to overall survival (p = 0.013; HR: 3.35 CI95%[1.27–8.86]), progression-free survival (p < 0.001; HR: 3.15 CI95%[1.75–5.66]) and response rate (p = 0.033; HR: 0.33 CI95%[0.12–0.92]) with a marked detrimental effect associated with high DPD activity. Conclusions DPD status screening should result in a two-pronged approach with FP dose reduction in case of low intrinsic DPD and, inversely, an increased FP dose for high intrinsic DPD. In a context of personalized FP-based treatment, this innovative strategy needs to be prospectively validated.
Collapse
|
30
|
miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer 2020; 122:1354-1366. [PMID: 32132656 PMCID: PMC7188668 DOI: 10.1038/s41416-020-0773-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metabolic reprogramming towards aerobic glycolysis in cancer supports unrestricted cell proliferation, survival and chemoresistance. The molecular bases of these processes are still undefined. Recent reports suggest crucial roles for microRNAs. Here, we provide new evidence of the implication of miR-27a in modulating colorectal cancer (CRC) metabolism and chemoresistance. METHODS A survey of miR-27a expression profile in TCGA-COAD dataset revealed that miR-27a-overexpressing CRCs are enriched in gene signatures of mitochondrial dysfunction, deregulated oxidative phosphorylation, mTOR activation and reduced chemosensitivity. The same pathways were analysed in cell lines in which we modified miR-27a levels. The response to chemotherapy was investigated in an independent cohort and cell lines. RESULTS miR-27a upregulation in vitro associated with impaired oxidative phosphorylation, overall mitochondrial activities and slight influence on glycolysis. miR-27a hampered AMPK, enhanced mTOR signalling and acted in concert with oncogenes and tumour cell metabolic regulators to force an aerobic glycolytic metabolism supporting biomass production, unrestricted growth and chemoresistance. This latter association was confirmed in our cohort of patients and cell lines. CONCLUSIONS We disclose an unprecedented role for miR-27a as a master regulator of cancer metabolism reprogramming that impinges on CRC response to chemotherapy, underscoring its theragnostic properties.
Collapse
|
31
|
Kushwaha PP, Gupta S, Singh AK, Prajapati KS, Shuaib M, Kumar S. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer. Antioxid Redox Signal 2020; 32:267-284. [PMID: 31656079 DOI: 10.1089/ars.2019.7918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Reactive oxygen species (ROS) production occurs primarily in the mitochondria as a by-product of cellular metabolism. ROS are also produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in response to growth factors and cytokines by normal physiological signaling pathways. NADPH oxidase, a member of NADPH oxidase (NOX) family, utilizes molecular oxygen (O2) to generate ROS such as hydrogen peroxide and superoxide. Imbalance between ROS production and its elimination is known to be the major cause of various human diseases. NOX family proteins are exclusively involved in ROS production, which makes them attractive target(s) for the treatment of ROS-mediated diseases including cancer. Recent Advances: Molecules such as Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2), N-methyl-d-aspartic acid (NMDA) receptors, nuclear factor-kappaB, KRAS, kallistatin, gene associated with retinoic-interferon-induced mortality-19, and deregulated metabolic pathways are involved in ROS production in association with NADPH oxidase. Critical Issues: Therapeutic strategies targeting NADPH oxidases in ROS-driven cancers are not very effective due to its complex regulatory circuit. Tumor suppressor microRNAs (miRNAs) viz. miR-34a, miR-137, miR-99a, and miR-21a-3p targeting NADPH oxidases are predominantly downregulated in ROS-driven cancers. miRNAs also regulate other cellular machineries such as Keap1/Nrf2 pathway and NMDA receptors involved in ROS production and consequently drug resistance. Here, we discuss the structure, function, and metabolic role of NADPH oxidase, NOX family protein-protein interaction, their association with other pathways, and NADPH oxidase alteration by miRNAs. Moreover, we also discuss and summarize studies on NADPH oxidase associated with various malignancies and their therapeutic implications. Future Directions: Targeting NADPH oxidases through miRNAs appears to be a promising strategy for the treatment of ROS-driven cancer.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sanjay Gupta
- The James and Eilleen Dicke Laboratory, Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Department of Nutrition, Case Western Reserve University, Cleveland, Ohio.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| | - Atul Kumar Singh
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Kumari Sunita Prajapati
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Mohd Shuaib
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
32
|
Helsby NA, Duley J, Burns KE, Bonnet C, Jeong SH, Brenman E, Barlow P, Sharples K, Porter D, Findlay M. A case-control study to assess the ability of the thymine challenge test to predict patients with severe to life threatening fluoropyrimidine-induced gastrointestinal toxicity. Br J Clin Pharmacol 2019; 86:155-164. [PMID: 31658382 DOI: 10.1111/bcp.14153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023] Open
Abstract
AIMS A previous study suggested that a thymine (THY) challenge dose could detect aberrant pharmacokinetics in known cases of fluoropyrimidine toxicity compared with healthy volunteers. The preliminary data suggested that urine sampling also could detect this aberrant disposition. The aim of this case-control study was to assess the ability of the urinary THY challenge test to discriminate cases of severe gastrointestinal toxicity in a cohort of patients treated with 5-fluorouracil or capecitabine. METHODS Patients (n = 37) received a 250 mg (per os) dose of THY and a cumulative urine sample was collected for 0-4 h. The urinary amounts of THY and metabolite dihydrothymine (DHT) were determined by liquid chromatography/mass spectrometry. Genomic DNA was analysed for DPYD gene variants. Renal function was estimated from blood creatinine levels. Cases (n = 9) and noncases (n = 23) of severe (grade ≥ 3) gastrointestinal toxicity were defined based on Common Terminology Criteria for Adverse Events. RESULTS The median THY/DHT ratios were 6.2 (interquartile range 2.9-6.4) in cases, including the 2 patients who were DPYD heterozygous carriers. However, this was not significantly different (P = .07) from the THY/DHT in noncases (median 2.6, interquartile range 2.8-4.2). Although creatinine clearance was lower (P = .001) in cases, renal function could not discriminate cases from noncases. However, logistic regression analysis using both of these explanatory variables could discriminate most cases (receiver operating characteristic area 0.8792, 95% confidence interval 0.72-1.00). CONCLUSIONS The THY challenge test combined with a patient's renal function may be useful as a phenotypic diagnostic test to detect risk of life-threatening fluoropyrimidine gastrointestinal toxicity.
Collapse
Affiliation(s)
- Nuala A Helsby
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - John Duley
- School of Pharmacy, University of Queensland, Australia
| | - Kathryn E Burns
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Claire Bonnet
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Soo Hee Jeong
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Elliott Brenman
- Blood and Cancer, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Paula Barlow
- Blood and Cancer, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Katrina Sharples
- Department of Mathematics and Statistics, University of Otago, New Zealand.,Cancer Trials New Zealand, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - David Porter
- Blood and Cancer, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Michael Findlay
- Blood and Cancer, Auckland City Hospital, Grafton, Auckland, New Zealand.,Cancer Trials New Zealand, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
33
|
Gasiulė S, Dreize N, Kaupinis A, Ražanskas R, Čiupas L, Stankevičius V, Kapustina Ž, Laurinavičius A, Valius M, Vilkaitis G. Molecular Insights into miRNA-Driven Resistance to 5-Fluorouracil and Oxaliplatin Chemotherapy: miR-23b Modulates the Epithelial–Mesenchymal Transition of Colorectal Cancer Cells. J Clin Med 2019; 8:E2115. [PMID: 31810268 PMCID: PMC6947029 DOI: 10.3390/jcm8122115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although treatment of colorectal cancer with 5-florouracil and oxaliplatin is widely used, it is frequently followed by a relapse. Therefore, there is an urgent need for profound understanding of chemotherapy resistance mechanisms as well as the profiling of predictive markers for individualized treatment. In this study, we identified the changes in 14 miRNAs in 5-fluouracil and 40 miRNAs in oxaliplatin-resistant cell lines by miRNA sequencing. The decrease in miR-224-5p expression in the 5-fluorouracil-resistant cells correlated with drug insensitivity due to its overexpression-induced drug-dependent apoptosis. On the other hand, the miR-23b/27b/24-1 cluster was overexpressed in oxaliplatin-resistant cells. The knockout of miR-23b led to the partial restoration of oxaliplatin susceptibility, showing the essential role of miR-23b in the development of drug resistance by this cluster. Proteomic analysis identified target genes of miR-23b and showed that endothelial-mesenchymal transition (EMT) was implicated in oxaliplatin insensibility. Data revealed that EMT markers, such as vimentin and SNAI2, were expressed moderately higher in the oxaliplatin-resistant cells and their expression increased further in the less drug-resistant cells, which had miR-23b knockout. This establishes that the balance of EMT contributes to the drug resistance, showing the importance of the miR-23b-mediated fine-tuning of EMT in oxaliplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Stasė Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Nadezda Dreize
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Raimundas Ražanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Laurynas Čiupas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Žana Kapustina
- Thermo Fisher Scientific Baltics, Vilnius LT-02241, Lithuania;
| | - Arvydas Laurinavičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius LT-08406, Lithuania;
- Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| |
Collapse
|
34
|
Potential Impact of MicroRNA Gene Polymorphisms in the Pathogenesis of Diabetes and Atherosclerotic Cardiovascular Disease. J Pers Med 2019; 9:jpm9040051. [PMID: 31775219 PMCID: PMC6963792 DOI: 10.3390/jpm9040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small (18–23 nucleotides), non-coding RNA molecules. They regulate the posttranscriptional expression of their target genes. MiRNAs control vital physiological processes such as metabolism, development, differentiation, cell cycle and apoptosis. The control of the gene expression by miRNAs requires efficient binding between the miRNA and their target mRNAs. Genome-wide association studies (GWASs) have suggested the association of single-nucleotide polymorphisms (SNPs) with certain diseases in various populations. Gene polymorphisms of miRNA target sites have been implicated in diseases such as cancers, diabetes, cardiovascular and Parkinson’s disease. Likewise, gene polymorphisms of miRNAs have been reported to be associated with diseases. In this review, we discuss the SNPs in miRNA genes that have been associated with diabetes and atherosclerotic cardiovascular disease in different populations. We also discuss briefly the potential underlining mechanisms through which these SNPs increase the risk of developing these diseases.
Collapse
|
35
|
Cui M, Yao X, Lin Y, Zhang D, Cui R, Zhang X. Interactive functions of microRNAs in the miR-23a-27a-24-2 cluster and the potential for targeted therapy in cancer. J Cell Physiol 2019; 235:6-16. [PMID: 31192453 DOI: 10.1002/jcp.28958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs about 19-22 nucleotides in length. Growing evidence has reported the significant role of miRNAs in various cancer-associated biological processes, such as proliferation, differentiation, apoptosis, metabolism, invasion, metastasis, and drug resistance. However, most studies focus on the targets of some individual miRNAs; the interactive and global functions of diverse miRNAs are still unclear and the phenomenon of the gathering of miRNAs in clusters has always been ignored. On the other hand, the fact that a single miRNA may regulate many genes and that numerous mRNAs are regulated by the same miRNA also makes it imperative to further study the cooperating characteristics of miRNAs in cancer. MiR-23a-27a-24-2 is located in the human chromosome 9q22, forming three mature miRNAs: miR-23a, miR27a, and miR-24, which are expressed abnormally in many malignant tumors. This review aims to summarize the interactive functions of miRNAs in miR-23a-27a-24-2 clusters in cancer from the perspectives of the regulation network, tumor microenvironment, and targeted therapy.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Yang Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
36
|
Stavraka C, Pouptsis A, Okonta L, DeSouza K, Charlton P, Kapiris M, Marinaki A, Karapanagiotou E, Papadatos-Pastos D, Mansi J. Clinical implementation of pre-treatment DPYD genotyping in capecitabine-treated metastatic breast cancer patients. Breast Cancer Res Treat 2019; 175:511-517. [PMID: 30746637 PMCID: PMC6533219 DOI: 10.1007/s10549-019-05144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Purpose Metastatic breast cancer (mBC) patients with DPYD genetic variants linked to loss of dihydropyrimidine dehydrogenase (DPD) activity are at risk of severe capecitabine-associated toxicities. However, prospective DPYD genotyping has not yet been implemented in routine clinical practice. Following a previous internal review in which two patients underwent lengthy hospitalisations whilst receiving capecitabine, and were subsequently found to be DPD deficient, we initiated routine DPYD genotyping prior to starting capecitabine. This study evaluates the clinical application of routine DPYD screening at a large cancer centre in London. Methods We reviewed medical records for consecutive patients with mBC who underwent DPYD genotyping before commencing capecitabine between December 2014 and December 2017. Patients were tested for four DPYD variants associated with reduced DPD activity. Results Sixty-six patients underwent DPYD testing. Five (8.4%) patients were found to carry DPYD genetic polymorphisms associated with reduced DPD activity; of these, two received dose-reduced capecitabine. Of the 61 patients with DPYD wild-type, 14 (23%) experienced grade 3 toxicities which involved palmar–plantar erythrodysesthesia (65%), and gastrointestinal toxicities (35%); no patient was hospitalised due to toxicity. Conclusions Prospective DPYD genotyping can be successfully implemented in routine clinical practice and can reduce the risk of severe fluoropyrimidine toxicities.
Collapse
Affiliation(s)
- Chara Stavraka
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Athanasios Pouptsis
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Leroy Okonta
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Karen DeSouza
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Philip Charlton
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Matthaios Kapiris
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Anthony Marinaki
- Purine Research Laboratory, Viapath, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
| | - Eleni Karapanagiotou
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Dionysis Papadatos-Pastos
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| | - Janine Mansi
- Breast Unit, Guy’s and St Thomas’ NHS Foundation Trust and King’s Biomedical Centre, 4th Floor, Bermondsey Wing, Great Maze Pond, London, SE1 9RT UK
| |
Collapse
|
37
|
Coenen MJH, Paulussen ADC, Breuer M, Lindhout M, Tserpelis DCJ, Steyls A, Bierau J, van den Bosch BJC. Evolution of Dihydropyrimidine Dehydrogenase Diagnostic Testing in a Single Center during an 8-Year Period of Time. Curr Ther Res Clin Exp 2018; 90:1-7. [PMID: 30510603 PMCID: PMC6258870 DOI: 10.1016/j.curtheres.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Fluoropyrimidine treatment can be optimized based on dihydropyrimidine dehydrogenase (DPD) activity. DPD dysfunction leads to increased exposure to active metabolites, which can result in severe or even fatal toxicity. Methods We provide an overview of 8 years of DPD diagnostic testing (n = 1194). Results Within the study period, our diagnostic test evolved from a single-enzyme measurement using first a radiochemical and then a nonradiochemical assay by ultra HPLC-MS in peripheral blood mononuclear cells with uracil, to a combined enzymatic and genetic test (ie, polymerase chain reaction) followed by Sanger sequence analysis of 4 variants of the DPYD gene (ie, DPYD*2A, DPYD*13, c.2846A>T, and 1129-5923C>G; allele frequencies 0.58%, 0.03%, 0.29%, and 1.35%, respectively). Patients who have 1 of the 4 variants tested (n = 814) have lower enzyme activity than the overall patient group. The majority of patients with the DPYD*2A variant (83%) consistently showed decreased enzyme activity. Only 24 (25.3%) of 95 patients (tested for 4 variants) with low enzyme activity carried a variant. Complete DPYD sequencing in a subgroup with low enzyme activity and without DPYD*2A variant (n = 47) revealed 10 genetic variants, of which 4 have not been described previously. We did not observe a strong link between DPYD genotype and enzyme activity. Conclusions Previous studies have shown that DPD status should be determined before treatment with fluoropyrimidine agents to prevent unnecessary side effects with possible fatal consequences. Our study in combination with literature shows that there is a discrepancy between the DPD enzyme activity and the presence of clinically relevant single nucleotide polymorphisms. At this moment, a combination of a genetic and enzyme test is preferable for diagnostic testing. (Curr Ther Res Clin Exp. 2018; 79:XXX–XXX).
Collapse
Affiliation(s)
- Marieke J H Coenen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Aimée D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marc Breuer
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn Lindhout
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Demis C J Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anja Steyls
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bianca J C van den Bosch
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
38
|
Dong X, Zhong N, Fang Y, Cai Q, Lu M, Lu Q. MicroRNA 27b-3p Modulates SYK in Pediatric Asthma Induced by Dust Mites. Front Pediatr 2018; 6:301. [PMID: 30406061 PMCID: PMC6204538 DOI: 10.3389/fped.2018.00301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
The PI3K-AKT pathway is known to regulate cytokines in dust mite-induced pediatric asthma. However, the underlying molecular steps involved are not clear. In order to clarify further the molecular steps, this study investigated the expression of certain genes and the involvement of miRNAs in the PI3K-AKT pathway, which might affect the resultant cytokine-secretion. in-vivo and in-vitro ELISA, qRT-PCR and microarrays analyses were used in this study. A down-expression of miRNA-27b-3p in dust mite induced asthma group (group D) was found by microarray analysis. This was confirmed by qRT-PCR that found the miRNA-27b-3p transcripts that regulated the expression of SYK and EGFR were also significantly decreased (p < 0.01) in group D. The transcript levels of the SYK and PI3K genes were higher, while those of EGFR were lower in the former group. Meanwhile, we found significant differences in plasma concentrations of some cytokines between the dust mite-induced asthma subjects and the healthy controls. On the other hand, this correlated with the finding that the transcripts of SYK and its downstream PI3K were decreased in HBE transfected with miRNA-27b-3p, but were increased in HBE transfected with the inhibitor in vitro. Our results indicate that the differential expression of the miRNAs in dust mite-induced pediatric asthma may regulate their target gene SYK and may have an impact on the PI3K-AKT pathway associated with the production of cytokines. These findings should add new insight into the pathogenesis of pediatric asthma.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Nanbert Zhong
- Shanghai Children's Hospital, Shanghai, China
- Department of Human Genetics, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
- Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China
- Peking University Center of Medical Genetics, Peking University Health Science Centre, Beijing, China
| | - Yudan Fang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Qin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Min Lu
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Quan Lu
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
39
|
Marjaneh RM, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. The role of microRNAs in 5-FU resistance of colorectal cancer: Possible mechanisms. J Cell Physiol 2018; 234:2306-2316. [PMID: 30191973 DOI: 10.1002/jcp.27221] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally. Despite recent advances in therapeutic approaches, this cancer continues to have a poor prognosis, particularly when diagnosed late. 5-Fluorouracil (5-FU) has been commonly prescribed for patients with CRC, but resistance to 5-FU is one of the main reasons for failure in the treatment of this condition. Recently, microRNAs (miRNAs) have been established as a means of modifying the signaling pathways involved in initiation and progression of CRC and their role as oncogene or tumor suppressor have been investigated in various studies. Moreover, miRNAs through various mechanisms play an important role in inducing tumor resistance or sensitivity to anticancer drugs. Detecting and targeting these mechanisms may be a new therapeutic approach. This review summarizes the current knowledge about the potential roles of miRNAs in 5-FU resistance, with particular emphasis on molecular mechanism involved.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Perso Falmer, Brighton, UK
| | - Amir Avan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
41
|
Hamzic S, Amstutz U, Largiadèr CR. Come a long way, still a ways to go: from predicting and preventing fluoropyrimidine toxicity to increased efficacy? Pharmacogenomics 2018; 19:689-692. [PMID: 29783877 DOI: 10.2217/pgs-2018-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Seid Hamzic
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.,Graduate School for Cellular & Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Ursula Amstutz
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Carlo R Largiadèr
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| |
Collapse
|
42
|
Genome sequencing reveals a novel genetic mechanism underlying dihydropyrimidine dehydrogenase deficiency: A novel missense variant c.1700G>A and a large intragenic inversion in DPYD
spanning intron 8 to intron 12. Hum Mutat 2018; 39:947-953. [DOI: 10.1002/humu.23538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
|
43
|
Zanger UM, Klein K, Kugler N, Petrikat T, Ryu CS. Epigenetics and MicroRNAs in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:33-64. [PMID: 29801581 DOI: 10.1016/bs.apha.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Germline pharmacogenetics has so far mainly studied common variants in "pharmacogenes," i.e., genes encoding drug metabolizing enzymes and transporters (DMET genes), certain auxiliary and regulatory genes, and drug target genes. Despite remarkable progress in understanding genetically determined differences in pharmacokinetics and pharmacodynamics of drugs, currently known common variants even in important pharmacogenes explain genetic variability only partially. This suggests "missing heritability" that may in part be due to rare variants in the classical pharmacogenes, but current evidence suggests that largely unexplored resources with potential for pharmacogenetics exist, both within already known pharmacogenes and in entirely new areas. In particular, recent studies suggest that epigenetic processes and noncoding RNAs, including mostly microRNAs (miRNAs), represent important and largely unexplored layers of DMET gene regulation that may fill some of the gaps in understanding interindividual variability and lead to new biomarkers. In this chapter we summarize recent advances in the understanding of genetic variability in epigenetic and miRNA-mediated processes with focus on their significance for DMET regulation and pharmacokinetic or pharmacological endpoints.
Collapse
Affiliation(s)
- Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University Hospital Tübingen, Tübingen, Germany.
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Tamara Petrikat
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Chang S Ryu
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
44
|
Ye P, Ke X, Zang X, Sun H, Dong Z, Lin J, Wang L, Liu W, Miao G, Tan Y, Tong W, Xiao H, Gao L. Up-regulated MiR-27-3p promotes the G1-S phase transition by targeting inhibitor of growth family member 5 in osteosarcoma. Biomed Pharmacother 2018; 101:219-227. [PMID: 29494959 DOI: 10.1016/j.biopha.2018.02.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) play an essential role in regulating malignant progression of tumour cells by inhibiting translation or stability of messenger RNA. However, the expression pattern and regulatory mechanism of miR-27-3p in osteosarcoma remains unclear. METHODS We examined the expression of miR-27-3p in 5 osteosarcoma cell lines compared with that in 2 normal osteocyte cell lines. Osteosarcoma cells U-2OS and MG-63 were transduced to up-regulate or down-regulate the expression of miR-27-3p. The 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide, or MTT, assay, colony formation assays, BrdUrd labelling, immunofluorescence, anchorage-independent growth ability assay and flow cytometry analysis were used to test the effect of miR-27-3p. Luciferase assays were added to verify the direct relationship between miR-27-3p and the predicted target gene inhibitor of growth family member 5 (ING5). RESULTS The expression of miR-27-3p was significantly increased in examined osteosarcoma cell lines compared with that in normal osteocyte cell lines. Up-regulation of miR-27-3p significantly accelerated osteosarcoma cell growth via promoting G1-S transition. In addition, the opposite result was observed in miR-27-3p-down-regulated cells. Up-regulation of ING5 significantly attenuated the miR-27-3p-induced proliferation in osteosarcoma cells. CONCLUSIONS These data suggested that miR-27-3p could promote the G1-S phase transition that leads to proliferation by down-regulating the expression of ING5 in osteosarcoma.
Collapse
Affiliation(s)
- Pei Ye
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Xueping Ke
- Department of Gastroenterology, the Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510175, China
| | - Xuehui Zang
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Hui Sun
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Zhixing Dong
- Department of Radiology, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Jun Lin
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Lihui Wang
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Wenzhou Liu
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Guiqiang Miao
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Yongtao Tan
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Weilai Tong
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Haichang Xiao
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China
| | - Lihua Gao
- Department of Orthopedics, Nanhai Affiliated Hospital of Southern Medical University, Foshan, Guangdong, 528000, China.
| |
Collapse
|
45
|
[Dihydropyrimidine déhydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks]. Bull Cancer 2018; 105:397-407. [PMID: 29486921 DOI: 10.1016/j.bulcan.2018.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022]
Abstract
Fluoropyrimidines (FU) are still the most prescribed anticancer drugs for the treatment of solid cancers. However, fluoropyrimidines cause severe toxicities in 10 to 40% of patients and toxic deaths in 0.2 to 0.8% of patients, resulting in a real public health problem. The main origin of FU-related toxicities is a deficiency of dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme of 5-FU catabolism. DPD deficiency may be identified through pharmacogenetics testing including phenotyping (direct or indirect measurement of enzyme activity) or genotyping (detection of inactivating polymorphisms on the DPYD gene). Approximately 3 to 15% of patients exhibit a partial deficiency and 0.1 to 0.5% a complete DPD deficiency. Currently, there is no regulatory obligation for DPD deficiency screening in patients scheduled to receive a fluoropyrimidine-based chemotherapy. Based on the levels of evidence from the literature data and considering current French practices, the Group of Clinical Pharmacology in Oncology (GPCO)-UNICANCER and the French Network of Pharmacogenetics (RNPGx) recommend the following: (1) to screen DPD deficiency before initiating any chemotherapy containing 5-FU or capecitabine; (2) to perform DPD phenotyping by measuring plasma uracil (U) concentrations (possibly associated with dihydrouracil/U ratio), and DPYD genotyping (variants *2A, *13, p.D949V, HapB3); (3) to reduce the initial FU dose (first cycle) according to DPD status, if needed, and further, to consider increasing the dose at subsequent cycles according to treatment tolerance. In France, 17 public laboratories currently undertake routine screening of DPD deficiency.
Collapse
|
46
|
Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, Klein TE, McLeod HL, Caudle KE, Diasio RB, Schwab M. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther 2017; 103:210-216. [PMID: 29152729 DOI: 10.1002/cpt.911] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
The purpose of this guideline is to provide information for the interpretation of clinical dihydropyrimidine dehydrogenase (DPYD) genotype tests so that the results can be used to guide dosing of fluoropyrimidines (5-fluorouracil and capecitabine). Detailed guidelines for the use of fluoropyrimidines, their clinical pharmacology, as well as analyses of cost-effectiveness are beyond the scope of this document. The Clinical Pharmacogenetics Implementation Consortium (CPIC® ) guidelines consider the situation of patients for which genotype data are already available (updates available at https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/).
Collapse
Affiliation(s)
- Ursula Amstutz
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Linda M Henricks
- Department of Clinical Pharmacology, Division of Medical Oncology and Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Barbarino
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology and Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute and the Department of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kelly E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
47
|
Henricks LM, Kienhuis E, de Man FM, van der Veldt AA, Hamberg P, van Kuilenburg AB, van Schaik RH, Lunenburg CA, Guchelaar HJ, Schellens JH, Mathijssen RH. Treatment Algorithm for Homozygous or Compound Heterozygous DPYD Variant Allele Carriers With Low-Dose Capecitabine. JCO Precis Oncol 2017; 1:1-10. [DOI: 10.1200/po.17.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Linda M. Henricks
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Emma Kienhuis
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Femke M. de Man
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Astrid A.M. van der Veldt
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Paul Hamberg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - André B.P. van Kuilenburg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Ron H.N. van Schaik
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Carin A.T.C. Lunenburg
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Guchelaar
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Jan H.M. Schellens
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| | - Ron H.J. Mathijssen
- Linda M. Henricks, Astrid A.M. van der Veldt, and Jan H.M. Schellens, the Netherlands Cancer Institute; André B.P. van Kuilenburg, Academic Medical Center, Amsterdam; Emma Kienhuis, Femke M. de Man, Astrid A.M. van der Veldt, Ron H.N. van Schaik, and Ron H.J. Mathijssen, Erasmus Medical Center; Paul Hamberg, Franciscus Gasthuis & Vlietland, Rotterdam; Carin A.T.C. Lunenburg and Henk-Jan Guchelaar, Leiden University Medical Center, Leiden; and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
48
|
Nie Q, Shrestha S, Tapper EE, Trogstad-Isaacson CS, Bouchonville KJ, Lee AM, Wu R, Jerde CR, Wang Z, Kubica PA, Offer SM, Diasio RB. Quantitative Contribution of rs75017182 to Dihydropyrimidine Dehydrogenase mRNA Splicing and Enzyme Activity. Clin Pharmacol Ther 2017; 102:662-670. [PMID: 28295243 PMCID: PMC6138243 DOI: 10.1002/cpt.685] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD; DPYD gene) variants have emerged as reliable predictors of adverse toxicity to the chemotherapy agent 5-fluorouracil (5-FU). The intronic DPYD variant rs75017182 has been recently suggested to promote alternative splicing of DPYD. However, both the extent of alternative splicing and the true contribution of rs75017182 to DPD function remain unclear. In the present study we quantified alternative splicing and DPD enzyme activity in rs75017182 carriers utilizing healthy volunteer specimens from the Mayo Clinic Biobank. Although the alternatively spliced transcript was uniquely detected in rs75017182 carriers, canonically spliced DPYD levels were only reduced by 30% (P = 2.8 × 10-6 ) relative to controls. Similarly, DPD enzyme function was reduced by 35% (P = 0.025). Carriers of the well-studied toxicity-associated variant rs67376798 displayed similar reductions in DPD activity (31% reduction). The modest effects on splicing and function suggest that rs75017182 may have clinical utility as a predictor of 5-FU toxicity similar to rs67376798.
Collapse
Affiliation(s)
- Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Shikshya Shrestha
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Erin E. Tapper
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Adam M. Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Calvin R. Jerde
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Cancer Center, Rochester, MN 55905 USA
| | - Zhiquan Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Phillip A. Kubica
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic College of Medicine, Mayo Clinic, 200 1 St. SW, Rochester, MN 55905 USA
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Cancer Center, Rochester, MN 55905 USA
- Mayo Clinic College of Medicine, Mayo Clinic, 200 1 St. SW, Rochester, MN 55905 USA
| |
Collapse
|
49
|
MiRNA-target network analysis identifies potential biomarkers for Traditional Chinese Medicine (TCM) syndrome development evaluation in hepatitis B caused liver cirrhosis. Sci Rep 2017; 7:11054. [PMID: 28887510 PMCID: PMC5591282 DOI: 10.1038/s41598-017-11351-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B is one of most etiologies of Liver cirrhosis in China, and clinically lacks the effective strategy for Hepatitis B caused cirrhosis (HBC) therapy. As a complementary and alternative medicine, Chinese Traditional Medicine (TCM) has special therapeutic effects for HBC. Here, we focus on the evolution process of HBC TCM syndromes, which was from Excessive (Liver-Gallbladder Dampness-Heat Syndrome, LGDHS) to Deficient (Liver-Kidney Deficiency Syndrome, LKYDS) via Excessive-Deficient syndrome (Liver-Depression and Spleen-Deficiency Syndrome, LDSDS). Using R package, 16 miRNAs in LGDHS/Normal, 48 miRNAs in LDSDS/LGDHS, and 16 miRNAs in LKYDS/LDSDS were identified, respectively. The miRNA-target networks show that the LDSDS was most stability and complicated. Subsequently, 4 kernel miRNAs with LGDHS-LDSDS process, and 5 kernel miRNAs with LDSDS-LKYDS process were screened. Using RT-qPCR data, p1 (hsa-miR-17-3p, -377-3p, -410-3p and -495) and p2 miRNA panel (hsa-miR-377-3p, -410-3p, -27a-3p, 149-5p and 940) were identified by Logistic Regression Model, which clearly improve the accuracy of TCM syndrome classification. The rebuilt miRNA-target network shows that the LDSDS is a critical point and might determine the evolution directions of HBC TCM syndrome. This study suggests that the identified kernel miRNAs act as potential biomarkers and benefit to evaluate the evolution tendency of HBC TCM syndromes.
Collapse
|
50
|
Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 2017; 7:1350-1371. [PMID: 28670496 PMCID: PMC5489783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023] Open
Abstract
Chemo-resistance, which is the main obstacle in cancer therapy, is caused by the onset of drug-resistant cells in the heterogeneous cell population in cancer tissues. MicroRNAs regulate gene expression at the post-transcriptional level, and they are involved in many different biological processes, including cell proliferation, differentiation, metabolism, stress response, and apoptosis. The aberrant expression of microRNAs plays a major pathogenic role from the early stages of the carcinogenesis process. Recently, microRNAs have been reported to play an important role in inducing resistance to anti-cancer drugs. Specific microRNA alterations occur selectively in cancer cells, rendering these cells resistant to various chemotherapeutic agents. For example, resistance to 5-fluorouracil is mediated by alterations in miR-21, miR-27a/b, and miR-155; the sensitivity to Docetaxel is influenced by miR-98, miR-192, miR-194, miR-200b, miR-212, and miR-424; and the resistance to Cisplatin is mediated by miR-let-7, miR-15, miR-16 miR-21 and miR-214. Chemo-resistant cancer cells are characterized by altered functions in enzymes that are involved in microRNA maturation, primarily including Dicer, as demonstrated in ovarian cancer, oral squamous cell carcinoma, breast cancer and cervical cancer. Based on the evidence reviewed in this paper, various strategies have been developed to artificially re-establish microRNA expression in resistant cells, thus restoring chemo-sensitivity. These strategies employ synthetic analogs, anti-microRNA oligonucleotides, locked nucleic acid, microRNA sponges, drugs that inhibit DNA methylation or histone deacetylation, and the introduction of microRNA mimics. The ability to modulate microRNA expression is a promising strategy for overcoming the problem of drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Health Sciences, University of GenoaItaly
| | | | | | - Dinara Zhabayeva
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Alberto Izzotti
- Department of Health Sciences, University of GenoaItaly
- IRCCS AOU San Martino ISTGenoa, Italy
| |
Collapse
|