1
|
Khalid W, Aslam A, Ahmed N, Sarfraz M, Khan JA, Mohsin S, Rajoka MSR, Nazir I, Amirzada MI. Human Plasma-Derived Exosomes: A Promising Carrier System for the Delivery of Hydroxyurea to Combat Breast Cancer. AAPS PharmSciTech 2025; 26:42. [PMID: 39843767 DOI: 10.1208/s12249-024-03028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method. The exosomes and Exo-HU were characterized for their size distribution, drug entrapment efficiency, in-vitro drug release profile, morphological analysis and cytotoxic effects on MCF-7 cell line. The results showed a mean size of 178.8 nm and a zeta potential of -18.3 mV, indicating good stability and 70% encapsulation effectiveness for HU. Exo-HU produced sustained drug release action with a considerable percentage released within 72 h. The morphological analysis indicated that the plasma derived exosomes were spherical, and cup shaped. In cytotoxicity studies on MCF-7 cells, Exo-HU has reduced cell viability compared to HU and blank exosomes. Findings of this study showed that human plasma-derived exosomes have been considered as effective delivery vehicle for hydroxyurea, potentially improving breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Wajeeha Khalid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Afeefa Aslam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, 64141, Al Ain, United Arab Emirates
| | | | - Sabeeh Mohsin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
2
|
Parma D, Giliberto F, Szijan I. Genomic alterations in retinoblastoma tumors of Argentine patients. Ophthalmic Genet 2024; 45:608-615. [PMID: 39356046 DOI: 10.1080/13816810.2024.2408371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Retinoblastoma is initiated by inactivation of RB1 gene, but additional alterations may be required for tumor progression. Substitution and INDEL variants in different genes, aside RB1, are infrequent, while large copy number variants (CNVs) like gains on 1q, 2p, 6p and loss on 16q are common, they include oncogenes or tumor suppressors and are typical of retinoblastoma. AIM To provide the molecular profile that is useful for prognosis and understanding of retinoblastoma development. METHODS To identify genomic variants in six retinoblastoma tumors whole exome sequencing and informatic analysis were performed. RESULTS RB1 was the only gene with nonsense or frameshift mutations. SNVs in other 11 genes were missense and at non-canonical splice-sites, all nonpathogenic. CNVs, similar to those reported, were identified in all retinoblastoma tumors. The most frequent were 1q gain and 16q loss. Additionally, deletions were identified on 13q, including RB1 gene, and on the X chromosome, including BCOR gene, the most frequently mutated, after RB1, in retinoblastoma. The number of CNVs detected in each tumor was between 1 and 7, depending on the age at diagnosis. CONCLUSION The analysis of genomic alterations in retinoblastoma is useful to understand the severity of tumor progression and to apply appropriate treatments.
Collapse
Affiliation(s)
- Diana Parma
- Department of Genetics, Pharmacy and Biochemistry Faculty, Hospital de Clínicas UBA INIGEM UBA CONICET, Buenos Aires, Argentina
| | - Florencia Giliberto
- Department of Genetics, Pharmacy and Biochemistry Faculty, Hospital de Clínicas UBA INIGEM UBA CONICET, Buenos Aires, Argentina
| | - Irene Szijan
- Department of Genetics, Pharmacy and Biochemistry Faculty, Hospital de Clínicas UBA INIGEM UBA CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Vincent A, Krishnakumar S, Parameswaran S. Heterozygous RB1 mutation enhanced ATP production in human iPSC-derived retinal organoids. Mol Biol Rep 2024; 51:606. [PMID: 38704498 DOI: 10.1007/s11033-024-09564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, 41, College Road, Chennai, Tamilnadu, India
- School of Chemical and Biotechnology, SASTRA Deemed-to-Be University, Thanjavur, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, 41, College Road, Chennai, Tamilnadu, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, 41, College Road, Chennai, Tamilnadu, India.
| |
Collapse
|
4
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
5
|
Uchida C, Niida H, Sakai S, Iijima K, Kitagawa K, Ohhata T, Shiotani B, Kitagawa M. p130RB2 positively contributes to ATR activation in response to replication stress via the RPA32-ETAA1 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119484. [PMID: 37201767 DOI: 10.1016/j.bbamcr.2023.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.
Collapse
Affiliation(s)
- Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
6
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
Affiliation(s)
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
7
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
8
|
Tsuji J, Li T, Grinshpun A, Coorens T, Russo D, Anderson L, Rees R, Nardone A, Patterson C, Lennon NJ, Cibulskis C, Leshchiner I, Tayob N, Tolaney SM, Tung N, McDonnell DP, Krop IE, Winer EP, Stewart C, Getz G, Jeselsohn R. Clinical Efficacy and Whole-Exome Sequencing of Liquid Biopsies in a Phase IB/II Study of Bazedoxifene and Palbociclib in Advanced Hormone Receptor-Positive Breast Cancer. Clin Cancer Res 2022; 28:5066-5078. [PMID: 36215125 PMCID: PMC9722539 DOI: 10.1158/1078-0432.ccr-22-2305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Sensitivity to endocrine therapy (ET) is critical for the clinical benefit from the combination of palbociclib plus ET in hormone receptor-positive/HER2-negative (HR+/HER2-) advanced breast cancer. Bazedoxifene is a third-generation selective estrogen receptor (ER) modulator and selective ER degrader with activity in preclinical models of endocrine-resistant breast cancer, including models harboring ESR1 mutations. Clinical trials in healthy women showed that bazedoxifene is well tolerated. PATIENTS AND METHODS We conducted a phase Ib/II study of bazedoxifene plus palbociclib in patients with HR+/HER2- advanced breast cancer who progressed on prior ET (N = 36; NCT02448771). RESULTS The study met its primary endpoint, with a clinical benefit rate of 33.3%, and the safety profile was consistent with what has previously been seen with palbociclib monotherapy. The median progression-free survival (PFS) was 3.6 months [95% confidence interval (CI), 2.0-7.2]. An activating PIK3CA mutation at baseline was associated with a shorter PFS (HR = 4.4; 95% CI, 1.5-13; P = 0.0026), but activating ESR1 mutations did not impact the PFS. Longitudinal plasma circulating tumor DNA whole-exome sequencing (WES; N = 68 plasma samples) provided an overview of the tumor heterogeneity and the subclonal genetic evolution, and identified actionable mutations acquired during treatment. CONCLUSIONS The combination of palbociclib and bazedoxifene has clinical efficacy and an acceptable safety profile in a heavily pretreated patient population with advanced HR+/HER2- breast cancer. These results merit continued investigation of bazedoxifene in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuji
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | - Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tim Coorens
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Douglas Russo
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | - Leilani Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Rebecca Rees
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | | | - Niall J. Lennon
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Carrie Cibulskis
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | | | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Nadine Tung
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC, USA
| | - Ian E. Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center and Department of Pathology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| |
Collapse
|
9
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
10
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
11
|
Swargiary P, Boruah N, Singh CS, Chatterjee A. Genome-wide analysis of DNaseI hypersensitivity unveils open chromatin associated with histone H3 modifications after areca nut with lime exposure. Mutagenesis 2022; 37:182-190. [DOI: 10.1093/mutage/geac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Research over the years revealed that precocious anaphase, securin overexpression, and genome instability in both target and nontarget cells are significantly associated with the increased risk of areca nut (AN) and lime-induced oral, esophageal, and gastric cancers. Further, hyperphosphorylation of Rb and histone H3 epigenetic modifications both globally and in the promoter region of the securin gene were demonstrated after AN + lime exposure. This study aims whether the extract of raw AN + lime relaxes chromatin structure which further facilitates the histone H3 epigenetic modifications during the initial phase of carcinogenesis. Three groups of mice (10 in each group) were used. The treated group consumed 1 mg/day/mice of AN extract with lime ad libitum in the drinking water for 60 days. The dose was increased by 1 mg every 60 days. Isolated nuclei were digested with DNaseI and 2 kb and below DNA was eluted from the agarose gel, purified and PCR amplified by using securin and GAPDH primers. Securin and E2F1 expression, pRb phosphorylation, and histone epigenetic modifications were analyzed by immunohistochemistry. The number of DNA fragments within 2 kb in size after DNaseI treatment was higher significantly in AN + lime exposed tissue samples than in the untreated one. The PCR result showed that the number of fragments bearing securin gene promoter and GAPDH gene was significantly higher in AN + lime exposed DNaseI-treated samples. Immunohistochemistry data revealed increased Rb hyperphosphorylation, upregulation of E2F1, and securin in the AN + lime-treated samples. Increased trimethylation of histone H3 lysine 4 and acetylation of H3 lysine 9 and 18 were observed globally in the treated samples. Therefore, the results of this study have led to the hypothesis that AN + lime exposure relaxes the chromatin, changes the epigenetic landscape, and deregulates the Rb–E2F1 circuit which might be involved in the upregulation of securin and some other proto-oncogenes that might play an important role in the initial phases of AN + lime mediated carcinogenesis.
Collapse
Affiliation(s)
- Pooja Swargiary
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
- Department of Biotechnology, Royal School of Biosciences, The Assam Royal Global University , Guwahati, Assam 781035 , India
| |
Collapse
|
12
|
Soria-Bretones I, Thu KL, Silvester J, Cruickshank J, El Ghamrasni S, Ba-alawi W, Fletcher GC, Kiarash R, Elliott MJ, Chalmers JJ, Elia AC, Cheng A, Rose AAN, Bray MR, Haibe-Kains B, Mak TW, Cescon DW. The spindle assembly checkpoint is a therapeutic vulnerability of CDK4/6 inhibitor-resistant ER + breast cancer with mitotic aberrations. SCIENCE ADVANCES 2022; 8:eabq4293. [PMID: 36070391 PMCID: PMC9451148 DOI: 10.1126/sciadv.abq4293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are standard first-line treatments for metastatic ER+ breast cancer. However, acquired resistance to CDK4/6i invariably develops, and the molecular phenotypes and exploitable vulnerabilities associated with resistance are not yet fully characterized. We developed a panel of CDK4/6i-resistant breast cancer cell lines and patient-derived organoids and demonstrate that a subset of resistant models accumulates mitotic segregation errors and micronuclei, displaying increased sensitivity to inhibitors of mitotic checkpoint regulators TTK and Aurora kinase A/B. RB1 loss, a well-recognized mechanism of CDK4/6i resistance, causes such mitotic defects and confers enhanced sensitivity to TTK inhibition. In these models, inhibition of TTK with CFI-402257 induces premature chromosome segregation, leading to excessive mitotic segregation errors, DNA damage, and cell death. These findings nominate the TTK inhibitor CFI-402257 as a therapeutic strategy for a defined subset of ER+ breast cancer patients who develop resistance to CDK4/6i.
Collapse
Affiliation(s)
- Isabel Soria-Bretones
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Kelsie L. Thu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Sciences, St. Michael’s Hospital , Toronto,, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wail Ba-alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Graham C. Fletcher
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Reza Kiarash
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mitchell J. Elliott
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto , ON, Canada
| | - Jordan J. Chalmers
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrea C. Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Albert Cheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - April A. N. Rose
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Mark R. Bray
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto , ON, Canada
| |
Collapse
|
13
|
Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, Brasó-Maristany F, Ibrahimi N, Kannan S, Mina L, Herrera-Abreu MT, Òdena A, Sánchez-Guixé M, Capelán M, Azaro A, Bruna A, Rodríguez O, Guzmán M, Grueso J, Viaplana C, Hernández J, Su F, Lin K, Clarke RB, Caldas C, Arribas J, Michiels S, García-Sanz A, Turner NC, Prat A, Nuciforo P, Dienstmann R, Verma CS, Lopez-Bigas N, Scaltriti M, Arnedos M, Saura C, Serra V. High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER + breast cancer. Nat Commun 2022; 13:5258. [PMID: 36071033 PMCID: PMC9452562 DOI: 10.1038/s41467-022-32828-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Collapse
Affiliation(s)
- Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Laia Monserrat
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mafalda Oliveira
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nusaibah Ibrahimi
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | - Leonardo Mina
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | | | - Andreu Òdena
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Capelán
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Analía Azaro
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Pediatric Cancer Evolution Group, The Institute of Cancer Research, London, UK
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Hernández
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Faye Su
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Kui Lin
- Genentech, Inc., South San Francisco, California, USA
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Manchester, UK
| | | | - Joaquín Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | | | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Department of Oncology, IOB Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Scaltriti
- Departments of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Monica Arnedos
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Inserm Unit U981, Villejuif, France
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
14
|
Lee C, Kim J. Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 2022; 23:192. [PMID: 35527780 PMCID: PMC9073582 DOI: 10.3892/ol.2022.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
15
|
Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies. Proc Natl Acad Sci U S A 2022; 119:e2117857119. [PMID: 35412907 PMCID: PMC9169787 DOI: 10.1073/pnas.2117857119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare human hereditary disorders provide unequivocal evidence of the role of gene mutations in human disease pathogenesis and offer powerful insights into their influence on human disease development. Using a hereditary retinoblastoma (RB) patient–derived induced pluripotent stem cell (iPSC) platform, we elucidate the role of pRB/E2F3a in regulating spliceosomal gene expression. Pharmacological inhibition of the spliceosome in RB1-mutant cells preferentially increases splicing abnormalities of genes involved in cancer-promoting signaling and impairs cell proliferation and tumorigenesis. Expression of pRB/E2F3a–regulated spliceosomal proteins is negatively associated with pRB expression and correlates with poor clinical outcomes of osteosarcoma (OS) patients. Our findings strongly indicate that the spliceosome is an “Achilles’ heel” of RB1-mutant OS. The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC–derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a–regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.
Collapse
|
16
|
Wong KM, King DA, Schwartz EK, Herrera RE, Morrison AJ. Retinoblastoma protein regulates carcinogen susceptibility at heterochromatic cancer driver loci. Life Sci Alliance 2022; 5:e202101134. [PMID: 34983823 PMCID: PMC8739494 DOI: 10.26508/lsa.202101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.
Collapse
Affiliation(s)
- Ka Man Wong
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Devin A King
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Erin K Schwartz
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
17
|
Krishnan B, Yasuhara T, Rumde P, Stanzione M, Lu C, Lee H, Lawrence MS, Zou L, Nieman LT, Sanidas I, Dyson NJ. Active RB causes visible changes in nuclear organization. J Cell Biol 2022; 221:e202102144. [PMID: 35019938 PMCID: PMC8759594 DOI: 10.1083/jcb.202102144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
RB restricts G1/S progression by inhibiting E2F. Here, we show that sustained expression of active RB, and prolonged G1 arrest, causes visible changes in chromosome architecture that are not directly associated with E2F inhibition. Using FISH probes against two euchromatin RB-associated regions, two heterochromatin domains that lack RB-bound loci, and two whole-chromosome probes, we found that constitutively active RB (ΔCDK-RB) promoted a more diffuse, dispersed, and scattered chromatin organization. These changes were RB dependent, were driven by specific isoforms of monophosphorylated RB, and required known RB-associated activities. ΔCDK-RB altered physical interactions between RB-bound genomic loci, but the RB-induced changes in chromosome architecture were unaffected by dominant-negative DP1. The RB-induced changes appeared to be widespread and influenced chromosome localization within nuclei. Gene expression profiles revealed that the dispersion phenotype was associated with an increased autophagy response. We infer that, after cell cycle arrest, RB acts through noncanonical mechanisms to significantly change nuclear organization, and this reorganization correlates with transitions in cellular state.
Collapse
Affiliation(s)
- Badri Krishnan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Takaaki Yasuhara
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Purva Rumde
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Marcello Stanzione
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Chenyue Lu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Hanjun Lee
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Linda T. Nieman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA
| |
Collapse
|
18
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
19
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
20
|
Boruah N, Singh CS, Swargiary P, Dkhar H, Chatterjee A. Securin overexpression correlates with the activated Rb/E2F1 pathway and histone H3 epigenetic modifications in raw areca nut-induced carcinogenesis in mice. Cancer Cell Int 2022; 22:30. [PMID: 35033090 PMCID: PMC8761315 DOI: 10.1186/s12935-022-02442-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022] Open
Abstract
Background Raw areca nut (RAN) consumption induces oral, esophageal and gastric cancers, which are significantly associated with the overexpression of pituitary tumor transforming gene 1/securin and chromosomal instability (CIN). An association of Securin/PTTG1 upregulation and gastric cancer in human was also demonstrated earlier. Since the molecular mechanism underlying securin upregulation remains unclear, this study intended to investigate the association of securin upregulation with the Rb-E2F1 circuit and epigenetic histone (H3) modification patterns both globally and in the promoter region of the securin gene. Methods Six groups of mice were used, and in the treated group, each mouse consumed 1 mg of RAN extract with lime per day ad libitum in the drinking water for 60 days, after which the dose was increased by 1 mg every 60 days. Histopathological evaluation of stomach tissues was performed and securin expression was analysed by immunoblotting as well as by immunohistochemistry. ChIP-qPCR assays were performed to evaluate the recruitment of different histone modifications in the core promoter region of securin gene as well as its upstream and downstream regions. Results All mice developed gastric cancer with securin overexpression after 300 days of feeding. Immunohistochemistry data revealed hyperphosphorylation of Rb and upregulation of E2F1 in the RAN-treated samples. Increased trimethylation of H3 lysine 4 and acetylation of H3 lysine 9 and 18 both globally and in the promoter region of the securin gene were observed by increasing the levels of lysine-N-methyltransferase 2A, lysine-acetyltransferase, EP-300 and PCAF after RAN treatment. ChIP-qPCR data revealed that the quantity of DNA fragments retrieved from the immunoprecipitated samples was maximum in the -83 to -192 region than further upstream and the downstream of the promoter for H3K4Me3, H3K9ac, H3K18ac and H3K9me3. Conclusions RAN-mediated pRb-inactivation induced securin upregulation, a putative E2F1 target, by inducing misregulation in chromatin remodeling in its promoter region, which led to transcriptional activation and subsequent development of chromosomal instability. Therefore, present results have led to the hypothesis that RAN-induced changes in the epigenetic landscape, securin overexpression and subsequent elevation of chromosomal instability is probably byproducts of inactivation of the pRb pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02442-z.
Collapse
Affiliation(s)
- Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Pooja Swargiary
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Hughbert Dkhar
- Histopathology Division, Nazareth Hospital, Laitumkhrah, Shillong, 793003, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
21
|
The Retinoblastoma Tumor Suppressor Is Required for the NUP98-HOXA9-Induced Aberrant Nuclear Envelope Phenotype. Cells 2021; 10:cells10112851. [PMID: 34831074 PMCID: PMC8616146 DOI: 10.3390/cells10112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 gene are recurrently identified in leukemia; yet, the cellular defects accompanying NUP98 fusion proteins are poorly characterized. NUP98 fusions cause changes in nuclear and nuclear envelope (NE) organization, in particular, in the nuclear lamina and the lamina associated polypeptide 2α (LAP2α), a regulator of the tumor suppressor retinoblastoma protein (RB). We demonstrate that, for NUP98-HOXA9 (NHA9), the best-studied NUP98 fusion protein, its effect(s) on nuclear architecture largely depend(s) on RB. Morphological alterations caused by the expression of NHA9 are largely diminished in the absence of RB, both in human cells expressing the human papillomavirus 16 E7 protein and in mouse embryonic fibroblasts lacking RB. We further show that NHA9 expression associates with distinct histone modification. Moreover, the pattern of trimethylation of histone H3 lysine-27 is affected by NHA9, again in an RB-dependent manner. Our results pinpoint to an unexpected interplay between NUP98 fusion proteins and RB, which may contribute to leukemogenesis.
Collapse
|
22
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Stingi A, Cirillo L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays 2021; 43:e2000289. [PMID: 34081334 PMCID: PMC8209829 DOI: 10.1002/bies.202000289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Despite huge efforts towards understanding the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pathogenesis, little is known about the long‐term consequences of the disease. Here, we critically review existing literature about oncogenesis as a potential long‐term effect of SARS‐CoV‐2 infection. Like other viral infections, SARS‐CoV‐2 may promote cancer onset by inhibiting tumor suppressor genes. We conclude that, although unlikely, such hypothesis cannot be excluded a priori and we delineate an experimental approach to address it. Also see the video abstract here: https://youtu.be/TBUTDSLR7vY
Collapse
Affiliation(s)
- Aureliano Stingi
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luca Cirillo
- Cancer Biology Division, The Institute of Cancer Research, London, UK
| |
Collapse
|
24
|
A survey of cancer genome signatures identifies genes connected to distinct chromosomal instability phenotypes. THE PHARMACOGENOMICS JOURNAL 2021; 21:390-401. [PMID: 33731882 DOI: 10.1038/s41397-021-00217-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Certain breast and ovarian cancers are characterised by high levels of chromosomal instability. We established a suite of eleven SNP array-based signatures of various forms of chromosomal instability. To understand what biological mechanisms might underpin these signatures, we generated and assembled genetic-feature data including allele-specific expression, fusion genes, gene expression, methylation, somatic coding mutations and protein expression. For each signature, we extracted a compendium of significantly associated genetic features using machine learning. We established an association between subchromosomal allelic imbalance-based measures and DNA repair genes. Numerical chromosomal instability and chromothripsis were found to have distinct genetic associations but shared a relationship to mitotic processes, while whole-genome doubling was characterised by TP53 mutation, and high AURKA and GINS1 expression. Furthermore, we identified two genetically distinct forms of tandem duplicator phenotypes. These findings identify potentially novel genomic targets for validation and drug development for specific subsets of breast and ovarian cancer.
Collapse
|
25
|
Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel) 2021; 13:cancers13050934. [PMID: 33668093 PMCID: PMC7956360 DOI: 10.3390/cancers13050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Retinoblastoma (RB) proteins and E2F transcription factors partner together to regulate the cell cycle in many eukaryotic organisms. In organisms that lack one or both of these proteins, other proteins have taken on the essential function of cell cycle regulation. RB and E2F also have important functions outside of the cell cycle, including DNA repair. This review summarizes the non-canonical functions of RB and E2F in maintaining genome integrity and raises the question of whether such functions have always been present or have evolved more recently. Abstract Members of the E2F transcription factor family regulate the expression of genes important for DNA replication and mitotic cell division in most eukaryotes. Homologs of the retinoblastoma (RB) tumor suppressor inhibit the activity of E2F factors, thus controlling cell cycle progression. Organisms such as budding and fission yeast have lost genes encoding E2F and RB, but have gained genes encoding other proteins that take on E2F and RB cell cycle-related functions. In addition to regulating cell proliferation, E2F and RB homologs have non-canonical functions outside the mitotic cell cycle in a variety of eukaryotes. For example, in both mammals and plants, E2F and RB homologs localize to DNA double-strand breaks (DSBs) and directly promote repair by homologous recombination (HR). Here, we discuss the parallels between mammalian E2F1 and RB and their Arabidopsis homologs, E2FA and RB-related (RBR), with respect to their recruitment to sites of DNA damage and how they help recruit repair factors important for DNA end resection. We also explore the question of whether this role in DNA repair is a conserved ancient function of the E2F and RB homologs in the last eukaryotic common ancestor or whether this function evolved independently in mammals and plants.
Collapse
|
26
|
Kim SJ, MacDonald JI, Dick FA. Phosphorylation of the RB C-terminus regulates condensin II release from chromatin. J Biol Chem 2021; 296:100108. [PMID: 33219128 PMCID: PMC7948394 DOI: 10.1074/jbc.ra120.016511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) plays an important role in biological processes such as cell cycle control, DNA damage repair, epigenetic regulation, and genome stability. The canonical model of RB regulation is that cyclin-CDKs phosphorylate and render RB inactive in late G1/S, promoting entry into S phase. Recently, monophosphorylated RB species were described to have distinct cell-cycle-independent functions, suggesting that a phosphorylation code dictates diversity of RB function. However, a biologically relevant, functional role of RB phosphorylation at non-CDK sites has remained elusive. Here, we investigated S838/T841 dual phosphorylation, its upstream stimulus, and downstream functional output. We found that mimicking T-cell receptor activation in Jurkat leukemia cells induced sequential activation of downstream kinases including p38 MAPK and RB S838/T841 phosphorylation. This signaling pathway disrupts RB and condensin II interaction with chromatin. Using cells expressing a WT or S838A/T841A mutant RB fragment, we present evidence that deficiency for this phosphorylation event prevents condensin II release from chromatin.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada
| | - James I MacDonald
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
27
|
Wang M, Qiao X, Cooper T, Pan W, Liu L, Hayball J, Lin J, Cui X, Zhou Y, Zhang S, Zou Y, Zhang R, Wang X. HPV E7-mediated NCAPH ectopic expression regulates the carcinogenesis of cervical carcinoma via PI3K/AKT/SGK pathway. Cell Death Dis 2020; 11:1049. [PMID: 33311486 PMCID: PMC7732835 DOI: 10.1038/s41419-020-03244-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cervical cancer is one of the most common gynecological tumors in the world, and human papillomavirus (HPV) infection is its causative agent. However, the molecular mechanisms involved in the carcinogenesis of cervical cancer still require clarification. Here we found that knockdown of Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) gene expression significantly inhibited the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of cervical cancer cells in vitro, and restrained xenograft tumor formation in vivo. Intriguingly, HPV E7 could form a positive feedback loop with NCAPH. E7 upregulated NCAPH gene expression via E2F1 which initiated NCAPH transcription by binding to its promoter directly. Silencing of NCAPH reduced E7 transcription via promoting the transition of AP-1 heterodimer from c-Fos/c-Jun to Fra-1/c-Jun. Moreover, the E7-mediated NCAPH overexpression was involved in the activation of the PI3K/AKT/SGK signaling pathway. In vivo, NCAPH expression in cervical cancer tissues was significantly higher than which in normal cervix and high-grade squamous intraepithelial lesion (HSIL) tissues, and its expression was significantly correlated with tumor size, depth of invasion and lymph node metastasis. Patients with high NCAPH expression had a significantly better survival outcomes than those with low-expression, suggesting that NCAPH-induced cell proliferation might sensitize cancer cells to adjuvant therapy. In conclusion, our results revealed the role of NCAPH in the carcinogenesis of cervical cancer in vitro and in vivo. The interaction between E7 and NCAPH expands the mechanism of HPV induced tumorigenesis and that of host genes regulating HPV E7.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.,Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaowen Qiao
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, Clinical and Health Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Wei Pan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Liang Liu
- Experimental Therapeutics Laboratory, Clinical and Health Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - John Hayball
- Experimental Therapeutics Laboratory, Clinical and Health Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Jiaxiang Lin
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Xiujie Cui
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Yabin Zhou
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Shule Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Ying Zou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Ranran Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, PR China. .,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
28
|
Weyburne E, Bosco G. Cancer-associated mutations in the condensin II subunit CAPH2 cause genomic instability through telomere dysfunction and anaphase chromosome bridges. J Cell Physiol 2020; 236:3579-3598. [PMID: 33078399 PMCID: PMC7983937 DOI: 10.1002/jcp.30113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
Abstract
Genome instability in cancer drives tumor heterogeneity, undermines the success of therapies, and leads to metastasis and recurrence. Condensins are conserved chromatin‐binding proteins that promote genomic stability, mainly by ensuring proper condensation of chromatin and mitotic chromosome segregation. Condensin mutations are found in human tumors, but it is not known how or even if such mutations promote cancer progression. In this study, we focus on condensin II subunit CAPH2 and specific CAPH2 mutations reported to be enriched in human cancer patients, and we test how CAPH2 cancer‐specific mutations may lead to condensin II complex dysfunction and contribute to genome instability. We find that R551P, R551S, and S556F mutations in CAPH2 cause genomic instability by causing DNA damage, anaphase defects, micronuclei, and chromosomal instability. DNA damage and anaphase defects are caused primarily by ataxia telangiectasia and Rad3‐related‐dependent telomere dysfunction, as anaphase bridges are enriched for telomeric repeat sequences. We also show that these mutations decrease the binding of CAPH2 to the ATPase subunit SMC4 as well as the rest of the condensin II complex, and decrease the amount of CAPH2 protein bound to chromatin. Thus, in vivo the R551P, R551S, and S556F cancer‐specific CAPH2 mutant proteins are likely to impair condensin II complex formation, impede condensin II activity during mitosis and interphase, and promote genetic heterogeneity in cell populations that can lead to clonal outgrowth of cancer cells with highly diverse genotypes.
Collapse
Affiliation(s)
- Emily Weyburne
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
29
|
Retinoblastoma: Etiology, Modeling, and Treatment. Cancers (Basel) 2020; 12:cancers12082304. [PMID: 32824373 PMCID: PMC7465685 DOI: 10.3390/cancers12082304] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma is a retinal cancer that is initiated in response to biallelic loss of RB1 in almost all cases, together with other genetic/epigenetic changes culminating in the development of cancer. RB1 deficiency makes the retinoblastoma cell-of-origin extremely susceptible to cancerous transformation, and the tumor cell-of-origin appears to depend on the developmental stage and species. These are important to establish reliable preclinical models to study the disease and develop therapies. Although retinoblastoma is the most curable pediatric cancer with a high survival rate, advanced tumors limit globe salvage and are often associated with high-risk histopathological features predictive of dissemination. The advent of chemotherapy has improved treatment outcomes, which is effective for globe preservation with new routes of targeted drug delivery. However, molecularly targeted therapeutics with more effectiveness and less toxicity are needed. Here, we review the current knowledge concerning retinoblastoma genesis with particular attention to the genomic and transcriptomic landscapes with correlations to clinicopathological characteristics, as well as the retinoblastoma cell-of-origin and current disease models. We further discuss current treatments, clinicopathological correlations, which assist in guiding treatment and may facilitate globe preservation, and finally we discuss targeted therapeutics for future treatments.
Collapse
|
30
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
31
|
Knudsen ES, Nambiar R, Rosario SR, Smiraglia DJ, Goodrich DW, Witkiewicz AK. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun Biol 2020; 3:158. [PMID: 32242058 PMCID: PMC7118159 DOI: 10.1038/s42003-020-0873-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene (RB1) plays a critical role in coordinating multiple pathways that impact cancer initiation, disease progression, and therapeutic responses. Here we probed molecular features associated with the RB-pathway across 31 tumor-types. While the RB-pathway has been purported to exhibit multiple mutually exclusive genetic events, only RB1 alteration is mutually exclusive with deregulation of CDK4/6 activity. An ER+ breast cancer model with targeted RB1 deletion was used to identify signatures of CDK4/6 activity and RB-dependency (CDK4/6-RB integrated signature). This signature was prognostic in tumor-types with gene expression features indicative of slower growth. Single copy loss on chromosome 13q encompassing the RB1 locus is prevalent in many cancers, yielding reduced expression of multiple genes in cis, and is inversely related to the CDK4/6-RB integrated signature supporting a cause-effect relationship. Genes that are positively and inversely correlated with the CDK4/6-RB integrated signature define new tumor-specific pathways associated with RB-pathway activity.
Collapse
Affiliation(s)
- Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA. .,Department of Molecular and Cellular Biology, Buffalo, USA. .,Center for Personalized Medicine, Buffalo, USA.
| | - Ram Nambiar
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Molecular and Cellular Biology, Buffalo, USA
| | - Spencer R Rosario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Genetics and Genomics, Buffalo, USA
| | - Dominic J Smiraglia
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Genetics and Genomics, Buffalo, USA
| | - David W Goodrich
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Pharmacology and Therapeutics, Buffalo, USA
| | - Agnieszka K Witkiewicz
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA. .,Center for Personalized Medicine, Buffalo, USA. .,Department of Pathology, Buffalo, USA.
| |
Collapse
|
32
|
Tumor Milieu Controlled by RB Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21072450. [PMID: 32244804 PMCID: PMC7177274 DOI: 10.3390/ijms21072450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.
Collapse
|
33
|
Pei X, Du E, Sheng Z, Du W. Rb family-independent activating E2F increases genome stability, promotes homologous recombination, and decreases non-homologous end joining. Mech Dev 2020; 162:103607. [PMID: 32217105 DOI: 10.1016/j.mod.2020.103607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 11/15/2022]
Abstract
The retinoblastoma protein Rb is a prototype tumor suppressor inactivated in a variety of cancers. In addition to deregulated cell proliferation, Rb inactivation also causes genome instability that contributes to tumorigenesis. Although the genome instability effects of Rb inactivation was shown to be mediated mainly by E2F-independent mechanisms, little is known about whether the constitutive free activating E2F proteins released by Rb-inactivation affects genome stability. In this manuscript, we take advantage of the dE2F1su89 mutant, which contains a point mutation in the conserved Rb-binding domain that disrupts its interaction with the Rb family proteins, to characterize the effect of constitutive free activating E2F on genome stability in the presence of WT Rb. We showed that dE2F1su89 promoted genome stability in the mwh genome stability assay. We found that the genome stability effects of dE2F1su89 was sensitive to the levels of activating E2F activity and to the levels of E2F targets involved in DNA replication and repair but not to the level of E2F cell cycle target Cyclin E. Importantly, we showed that dE2F1su89 promoted DNA double-strand break (DSB) repair by homologous recombination and decreased DSB repair by Non-homologous end joining (NHEJ). These results show that the constitutive free activating E2F promotes genome stability, which potentially contributes the observed tumor development in E2F1 knockout mice and the reported NHEJ defects in Rb mutant cells. These results also explain why constitutive free activating E2F alone was not sufficient for tumor development.
Collapse
Affiliation(s)
- Xun Pei
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) St, Chicago, IL 60637, United States of America
| | - Elbert Du
- Harvard University, Cambridge, MA 02138, United States of America
| | - Zhentao Sheng
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) St, Chicago, IL 60637, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) St, Chicago, IL 60637, United States of America.
| |
Collapse
|
34
|
Ishak CA, De Carvalho DD. Reactivation of Endogenous Retroelements in Cancer Development and Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Domesticated retroelements contribute extensively as regulatory elements within host gene networks. Upon germline integration, retroelement mobilization is restricted through epigenetic silencing, mutational degradation, and innate immune defenses described as the viral mimicry response. Recent discoveries reveal how early events in tumorigenesis reactivate retroelements to facilitate onco-exaptation, replication stress, retrotransposition, mitotic errors, and sterile inflammation, which collectively disrupt genome integrity. The characterization of altered epigenetic homeostasis at retroelements in cancer cells also reveals new epigenetic targets whose inactivation can bolster responses to cancer therapies. Recent discoveries reviewed here frame reactivated retroelements as both drivers of tumorigenesis and therapy responses, where their reactivation by emerging epigenetic therapies can potentiate immune checkpoint blockade, cancer vaccines, and other standard therapies.
Collapse
Affiliation(s)
- Charles A. Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
35
|
An RB-Condensin II Complex Mediates Long-Range Chromosome Interactions and Influences Expression at Divergently Paired Genes. Mol Cell Biol 2020; 40:MCB.00452-19. [PMID: 31685548 DOI: 10.1128/mcb.00452-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Interphase chromosomes are organized into topologically associated domains in order to establish and maintain integrity of transcriptional programs that remain poorly understood. Here, we show that condensin II and TFIIIC are recruited to bidirectionally transcribed promoters by a mechanism that is dependent on the retinoblastoma (RB) protein. Long-range chromosome contacts are disrupted by loss of condensin II loading, which leads to altered expression at bidirectional gene pairs. This study demonstrates that mammalian condensin II functions to organize long-range chromosome contacts and regulate transcription at specific genes. In addition, RB dependence of condensin II suggests that widespread misregulation of chromosome contacts and transcriptional alterations are a consequence of RB mutation.
Collapse
|
36
|
Greenspan LJ, Matunis EL. Retinoblastoma Intrinsically Regulates Niche Cell Quiescence, Identity, and Niche Number in the Adult Drosophila Testis. Cell Rep 2019; 24:3466-3476.e8. [PMID: 30257208 PMCID: PMC6226258 DOI: 10.1016/j.celrep.2018.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Homeostasis in adult tissues depends on the precise regulation of stem cells and their surrounding microenvironments, or niches. Here, we show that the cell cycle inhibitor and tumor suppressor Retinoblastoma (RB) is a critical regulator of niche cells in the Drosophila testis. The testis contains a single niche, composed of somatic hub cells, that signals to adjacent germline and somatic stem cells. Hub cells are normally quiescent, but knockdown of the RB homolog Rbf in these cells causes them to proliferate and convert to somatic stem cells. Over time, mutant hub cell clusters enlarge and split apart, forming ectopic hubs surrounded by active stem cells. Furthermore, we show that Rbf’s ability to restrict niche number depends on the transcription factors E2F and Escargot and the adhesion molecule E-cadherin. Together this work reveals how precise modulation of niche cells, not only the stem cells they support, can drive regeneration and disease. Greenspan and Matunis find that the tumor suppressor Retinoblastoma is required in niche cells to maintain quiescence, cell fate, and niche number. Loss of Retinoblastoma causes niche cell divisions, conversion to somatic stem cells, and ectopic niche formation through niche fission, suggesting that mutations in niche cells may drive disease.
Collapse
Affiliation(s)
- Leah J Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Deutschman E, Ward JR, Kumar A, Ray G, Welch N, Lemieux ME, Dasarathy S, Longworth MS. Condensin II protein dysfunction impacts mitochondrial respiration and mitochondrial oxidative stress responses. J Cell Sci 2019; 132:jcs233783. [PMID: 31653782 PMCID: PMC6899004 DOI: 10.1242/jcs.233783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
The maintenance of mitochondrial respiratory function and homeostasis is essential to human health. Here, we identify condensin II subunits as novel regulators of mitochondrial respiration and mitochondrial stress responses. Condensin II is present in the nucleus and cytoplasm. While the effects of condensin II depletion on nuclear genome organization are well studied, the effects on essential cytoplasmic and metabolic processes are not as well understood. Excitingly, we observe that condensin II chromosome-associated protein (CAP) subunits individually localize to different regions of mitochondria, suggesting possible mitochondrial-specific functions independent from those mediated by the canonical condensin II holocomplex. Changes in cellular ATP levels and mitochondrial respiration are observed in condensin II CAP subunit-deficient cells. Surprisingly, we find that loss of NCAPD3 also sensitizes cells to oxidative stress. Together, these studies identify new, and possibly independent, roles for condensin II CAP subunits in preventing mitochondrial damage and dysfunction. These findings reveal a new area of condensin protein research that could contribute to the identification of targets to treat diseases where aberrant function of condensin II proteins is implicated.
Collapse
Affiliation(s)
- Emily Deutschman
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University Cleveland, OH 44106, USA
| | - Jacqueline R Ward
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Greeshma Ray
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | - Srinivisan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Wei R, Ren X, Kong H, Lv Z, Chen Y, Tang Y, Wang Y, Xiao L, Yu T, Hacibekiroglu S, Liang C, Nagy A, Bremner R, Chen D. Rb1/Rbl1/Vhl loss induces mouse subretinal angiomatous proliferation and hemangioblastoma. JCI Insight 2019; 4:127889. [PMID: 31613797 DOI: 10.1172/jci.insight.127889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Von Hippel-Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA-sequencing, ChIP, and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus. Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP) and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.
Collapse
Affiliation(s)
- Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Kong
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Lv
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Chen Liang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Chen WS, Aggarwal R, Zhang L, Zhao SG, Thomas GV, Beer TM, Quigley DA, Foye A, Playdle D, Huang J, Lloyd P, Lu E, Sun D, Guan X, Rettig M, Gleave M, Evans CP, Youngren J, True L, Lara P, Kothari V, Xia Z, Chi KN, Reiter RE, Maher CA, Feng FY, Small EJ, Alumkal JJ. Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. Eur Urol 2019; 76:562-571. [PMID: 30928160 PMCID: PMC6764911 DOI: 10.1016/j.eururo.2019.03.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is the lethal form of the disease. Several recent studies have identified genomic alterations in mCRPC, but the clinical implications of these genomic alterations have not been fully elucidated. OBJECTIVE To use whole-genome sequencing (WGS) to assess the association between key driver gene alterations and overall survival (OS), and to use whole-transcriptome RNA sequencing to identify genomic drivers of enzalutamide resistance. DESIGN, SETTING, AND PARTICIPANTS We performed survival analyses and gene set enrichment analysis (GSEA) on WGS and RNA sequencing results for a cohort of 101 mCRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS OS was the clinical endpoint for all univariate and multivariable survival analyses. Candidate drivers of enzalutamide resistance were identified in an unbiased manner, and mutations of the top candidate were further assessed for enrichment among enzalutamide-resistant patients using Fisher's exact test. RESULTS AND LIMITATIONS Harboring two DNA alterations in RB1 was independently predictive of poor OS (median 14.1 vs 42.0mo; p=0.007) for men with mCRPC. GSEA identified the Wnt/β-catenin pathway as the top differentially modulated pathway among enzalutamide-resistant patients. Furthermore, β-catenin mutations were exclusive to enzalutamide-resistant patients (p=0.01) and independently predictive of poor OS (median 13.6 vs 41.7mo; p=0.025). CONCLUSIONS The presence of two RB1 DNA alterations identified in our WGS analysis was independently associated with poor OS among men with mCRPC. The Wnt/β-catenin pathway plays an important role in enzalutamide resistance, with differential pathway expression and enrichment of β-catenin mutations in enzalutamide-resistant patients. Moreover, β-catenin mutations were predictive of poor OS in our cohort. PATIENT SUMMARY We observed a correlation between genomic findings for biopsy samples from metastases from men with metastatic castration-resistant prostate cancer (mCRPC) and clinical outcomes. This work sheds new light on clinically relevant genomic alterations in mCRPC and provides a roadmap for the development of new personalized treatment regimens in mCRPC.
Collapse
Affiliation(s)
- William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Yale School of Medicine, New Haven, CT, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - George V Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denise Playdle
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Paul Lloyd
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric Lu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Duanchen Sun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xiangnan Guan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew Rettig
- University of California Los Angeles, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | | | | - Jack Youngren
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Primo Lara
- University of California Davis, Davis, CA, USA
| | - Vishal Kothari
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Zheng Xia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kim N Chi
- University of British Columbia, Vancouver, Canada
| | | | | | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Departments of Radiation Oncology and Urology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
40
|
E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair. Nat Commun 2019; 10:4951. [PMID: 31666529 PMCID: PMC6821830 DOI: 10.1038/s41467-019-12861-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
E2F1 and retinoblastoma (RB) tumor-suppressor protein not only regulate the periodic expression of genes important for cell proliferation, but also localize to DNA double-strand breaks (DSBs) to promote repair. E2F1 is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here we demonstrate that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases and that this interaction is required for the recruitment of p300 and CBP to DSBs and the induction of histone acetylation at sites of damage. A knock-in mutation that blocks E2F1 acetylation abolishes the recruitment of p300 and CBP to DSBs and also the accumulation of other chromatin modifying activities and repair factors, including Tip60, BRG1 and NBS1, and renders mice hypersensitive to ionizing radiation (IR). These findings reveal an important role for E2F1 acetylation in orchestrating the remodeling of chromatin structure at DSBs to facilitate repair. E2F1, which localises to DNA double-strand breaks (DSBs) to promote repair, is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here the authors show that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases, which is required for recruitment of p300 and CBP to DSBs, to facilate repair.
Collapse
|
41
|
RB1 Deletion in Retinoblastoma Protein Pathway-Disrupted Cells Results in DNA Damage and Cancer Progression. Mol Cell Biol 2019; 39:MCB.00105-19. [PMID: 31138663 DOI: 10.1128/mcb.00105-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Proliferative control in cancer cells is frequently disrupted by mutations in the retinoblastoma protein (RB) pathway. Intriguingly, RB1 mutations can arise late in tumorigenesis in cancer cells whose RB pathway is already compromised by another mutation. In this study, we present evidence for increased DNA damage and instability in cancer cells with RB pathway defects when RB1 mutations are induced. We generated isogenic RB1 mutant genotypes with CRISPR/Cas9 in a number of cell lines. Cells with even one mutant copy of RB1 have increased basal levels of DNA damage and increased mitotic errors. Elevated levels of reactive oxygen species as well as impaired homologous recombination repair underlie this DNA damage. When xenografted into immunocompromised mice, RB1 mutant cells exhibit an elevated propensity to seed new tumors in recipient lungs. This study offers evidence that late-arising RB1 mutations can facilitate genome instability and cancer progression that are beyond the preexisting proliferative control deficit.
Collapse
|
42
|
da Costa AABA, do Canto LM, Larsen SJ, Ribeiro ARG, Stecca CE, Petersen AH, Aagaard MM, de Brot L, Baumbach J, Baiocchi G, Achatz MI, Rogatto SR. Genomic profiling in ovarian cancer retreated with platinum based chemotherapy presented homologous recombination deficiency and copy number imbalances of CCNE1 and RB1 genes. BMC Cancer 2019; 19:422. [PMID: 31060523 PMCID: PMC6503431 DOI: 10.1186/s12885-019-5622-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/18/2019] [Indexed: 02/01/2023] Open
Abstract
Background Ovarian carcinomas presenting homologous recombination deficiency (HRD), which is observed in about 50% of cases, are more sensitive to platinum and PARP inhibitor therapies. Although platinum resistant disease has a low chance to be responsive to platinum-based chemotherapy, a set of patients is retreated with platinum and some of them are responsive. In this study, we evaluated copy number alterations, HR gene mutations and HR deficiency scores in ovarian cancer patients with prolonged platinum sensitivity. Methods In this retrospective study (2005 to 2014), we selected 31 patients with platinum resistant ovarian cancer retreated with platinum therapy. Copy number alterations and HR scores were evaluated using the OncoScan® FFPE platform in 15 cases. The mutational profile of 24 genes was investigated by targeted-NGS. Results The median values of the four HRD scores were higher in responders (LOH = 15, LST = 28, tAI = 33, CS = 84) compared with non-responders (LOH = 7.5, LST = 17.5, tAI = 23, CS = 47). Patients with high LOH, LST, tAI and CS scores had better response rates, although these differences were not statistically significant. Response rate to platinum retreatment was 22% in patients with CCNE1 gains and 83.5% in patients with no CCNE1 gains (p = 0.041). Furthermore, response rate was 54.5% in patients with RB1 loss and 25% in patients without RB1 loss (p = 0.569). Patients with CCNE1 gains showed a worse progression free survival (PFS = 11.1 months vs 3.7 months; p = 0.008) and a shorter overall survival (OS = 39.3 months vs 7.1 months; p = 0.007) in comparison with patients with no CCNE1 gains. Patients with RB1 loss had better PFS (9.0 months vs 2.6 months; p = 0.093) and OS (27.4 months vs 3.6 months; p = 0.025) compared with cases with no RB1 loss. Four tumor samples were BRCA mutated and tumor mutations were not associated with response to treatment. Conclusions HR deficiency was found in 60% of our cases and HRD medium values were higher in responders than in non-responders. Despite the small number of patients tested, CCNE1 gain and RB1 loss discriminate patients with tumors extremely sensitive to platinum retreatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5622-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandre A B A da Costa
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil.
| | - Luisa M do Canto
- CIPE - AC Camargo Cancer Center, São Paulo, Brazil.,Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| | - Simon Jonas Larsen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | | | - Carlos Eduardo Stecca
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil
| | - Annabeth Høgh Petersen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Mads M Aagaard
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Louise de Brot
- Dept of Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan Technical University of Munich, Munich, Germany
| | - Glauco Baiocchi
- Dept of Gynecologic Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Silvia Regina Rogatto
- Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| |
Collapse
|
43
|
da Costa AABA, do Canto LM, Larsen SJ, Ribeiro ARG, Stecca CE, Petersen AH, Aagaard MM, de Brot L, Baumbach J, Baiocchi G, Achatz MI, Rogatto SR. Genomic profiling in ovarian cancer retreated with platinum based chemotherapy presented homologous recombination deficiency and copy number imbalances of CCNE1 and RB1 genes. BMC Cancer 2019. [PMID: 31060523 DOI: 10.1186/s12885-019-5622-4]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian carcinomas presenting homologous recombination deficiency (HRD), which is observed in about 50% of cases, are more sensitive to platinum and PARP inhibitor therapies. Although platinum resistant disease has a low chance to be responsive to platinum-based chemotherapy, a set of patients is retreated with platinum and some of them are responsive. In this study, we evaluated copy number alterations, HR gene mutations and HR deficiency scores in ovarian cancer patients with prolonged platinum sensitivity. METHODS In this retrospective study (2005 to 2014), we selected 31 patients with platinum resistant ovarian cancer retreated with platinum therapy. Copy number alterations and HR scores were evaluated using the OncoScan® FFPE platform in 15 cases. The mutational profile of 24 genes was investigated by targeted-NGS. RESULTS The median values of the four HRD scores were higher in responders (LOH = 15, LST = 28, tAI = 33, CS = 84) compared with non-responders (LOH = 7.5, LST = 17.5, tAI = 23, CS = 47). Patients with high LOH, LST, tAI and CS scores had better response rates, although these differences were not statistically significant. Response rate to platinum retreatment was 22% in patients with CCNE1 gains and 83.5% in patients with no CCNE1 gains (p = 0.041). Furthermore, response rate was 54.5% in patients with RB1 loss and 25% in patients without RB1 loss (p = 0.569). Patients with CCNE1 gains showed a worse progression free survival (PFS = 11.1 months vs 3.7 months; p = 0.008) and a shorter overall survival (OS = 39.3 months vs 7.1 months; p = 0.007) in comparison with patients with no CCNE1 gains. Patients with RB1 loss had better PFS (9.0 months vs 2.6 months; p = 0.093) and OS (27.4 months vs 3.6 months; p = 0.025) compared with cases with no RB1 loss. Four tumor samples were BRCA mutated and tumor mutations were not associated with response to treatment. CONCLUSIONS HR deficiency was found in 60% of our cases and HRD medium values were higher in responders than in non-responders. Despite the small number of patients tested, CCNE1 gain and RB1 loss discriminate patients with tumors extremely sensitive to platinum retreatment.
Collapse
Affiliation(s)
- Alexandre A B A da Costa
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil.
| | - Luisa M do Canto
- CIPE - AC Camargo Cancer Center, São Paulo, Brazil.,Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| | - Simon Jonas Larsen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | | | - Carlos Eduardo Stecca
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil
| | - Annabeth Høgh Petersen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Mads M Aagaard
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Louise de Brot
- Dept of Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan Technical University of Munich, Munich, Germany
| | - Glauco Baiocchi
- Dept of Gynecologic Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Silvia Regina Rogatto
- Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| |
Collapse
|
44
|
da Costa AABA, do Canto LM, Larsen SJ, Ribeiro ARG, Stecca CE, Petersen AH, Aagaard MM, de Brot L, Baumbach J, Baiocchi G, Achatz MI, Rogatto SR. Genomic profiling in ovarian cancer retreated with platinum based chemotherapy presented homologous recombination deficiency and copy number imbalances of CCNE1 and RB1 genes. BMC Cancer 2019. [PMID: 31060523 DOI: 10.1186/s12885-019-5622-4] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian carcinomas presenting homologous recombination deficiency (HRD), which is observed in about 50% of cases, are more sensitive to platinum and PARP inhibitor therapies. Although platinum resistant disease has a low chance to be responsive to platinum-based chemotherapy, a set of patients is retreated with platinum and some of them are responsive. In this study, we evaluated copy number alterations, HR gene mutations and HR deficiency scores in ovarian cancer patients with prolonged platinum sensitivity. METHODS In this retrospective study (2005 to 2014), we selected 31 patients with platinum resistant ovarian cancer retreated with platinum therapy. Copy number alterations and HR scores were evaluated using the OncoScan® FFPE platform in 15 cases. The mutational profile of 24 genes was investigated by targeted-NGS. RESULTS The median values of the four HRD scores were higher in responders (LOH = 15, LST = 28, tAI = 33, CS = 84) compared with non-responders (LOH = 7.5, LST = 17.5, tAI = 23, CS = 47). Patients with high LOH, LST, tAI and CS scores had better response rates, although these differences were not statistically significant. Response rate to platinum retreatment was 22% in patients with CCNE1 gains and 83.5% in patients with no CCNE1 gains (p = 0.041). Furthermore, response rate was 54.5% in patients with RB1 loss and 25% in patients without RB1 loss (p = 0.569). Patients with CCNE1 gains showed a worse progression free survival (PFS = 11.1 months vs 3.7 months; p = 0.008) and a shorter overall survival (OS = 39.3 months vs 7.1 months; p = 0.007) in comparison with patients with no CCNE1 gains. Patients with RB1 loss had better PFS (9.0 months vs 2.6 months; p = 0.093) and OS (27.4 months vs 3.6 months; p = 0.025) compared with cases with no RB1 loss. Four tumor samples were BRCA mutated and tumor mutations were not associated with response to treatment. CONCLUSIONS HR deficiency was found in 60% of our cases and HRD medium values were higher in responders than in non-responders. Despite the small number of patients tested, CCNE1 gain and RB1 loss discriminate patients with tumors extremely sensitive to platinum retreatment.
Collapse
Affiliation(s)
- Alexandre A B A da Costa
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil.
| | - Luisa M do Canto
- CIPE - AC Camargo Cancer Center, São Paulo, Brazil.,Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| | - Simon Jonas Larsen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | | | - Carlos Eduardo Stecca
- Department of Medical Oncology, AC Camargo Cancer Center, Rua Professor Antonio Prudente 211, São Paulo, CEP: 01509-010, Brazil
| | - Annabeth Høgh Petersen
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Mads M Aagaard
- Dept of Mathematics and Computer Science, University of Southern Denmark, Odense, DK, Denmark
| | - Louise de Brot
- Dept of Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan Technical University of Munich, Munich, Germany
| | - Glauco Baiocchi
- Dept of Gynecologic Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Silvia Regina Rogatto
- Dept of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, DK, Denmark
| |
Collapse
|
45
|
Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, Younger ST, McBrayer SK, Cowley GS, Bonal DM, Nguyen QD, Brulle-Soumare L, Taylor P, Cairo S, Ryan CJ, Pease EJ, Maratea K, Travers J, Root DE, Signoretti S, Pellman D, Ashton S, Lord CJ, Barry ST, Kaelin WG. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov 2019; 9:230-247. [PMID: 30373918 PMCID: PMC6368871 DOI: 10.1158/2159-8290.cd-18-0389] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15% of lung cancers and is almost always linked to inactivating RB1 and TP53 mutations. SCLC frequently responds, albeit briefly, to chemotherapy. The canonical function of the RB1 gene product RB1 is to repress the E2F transcription factor family. RB1 also plays both E2F-dependent and E2F-independent mitotic roles. We performed a synthetic lethal CRISPR/Cas9 screen in an RB1 -/- SCLC cell line that conditionally expresses RB1 to identify dependencies that are caused by RB1 loss and discovered that RB1 -/- SCLC cell lines are hyperdependent on multiple proteins linked to chromosomal segregation, including Aurora B kinase. Moreover, we show that an Aurora B kinase inhibitor is efficacious in multiple preclinical SCLC models at concentrations that are well tolerated in mice. These results suggest that RB1 loss is a predictive biomarker for sensitivity to Aurora B kinase inhibitors in SCLC and perhaps other RB1 -/- cancers. SIGNIFICANCE: SCLC is rarely associated with actionable protooncogene mutations. We did a CRISPR/Cas9-based screen that showed that RB1 -/- SCLC are hyperdependent on AURKB, likely because both genes control mitotic fidelity, and confirmed that Aurora B kinase inhibitors are efficacious against RB1 -/- SCLC tumors in mice at nontoxic doses.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel Fonseca
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alexander Spektor
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abdallah Flaifel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse S Novak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditi Gulati
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth Buss
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Paula Taylor
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Republic of Ireland
| | | | - Kim Maratea
- IMED Drug Safety and Metabolism, AstraZeneca, Boston, Massachusetts
| | - Jon Travers
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Susan Ashton
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Simon T Barry
- IMED Oncology, AstraZeneca, Cambridge, United Kingdom
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
46
|
Thwaites MJ, Cecchini MJ, Passos DT, Zakirova K, Dick FA. Context dependent roles for RB-E2F transcriptional regulation in tumor suppression. PLoS One 2019; 14:e0203577. [PMID: 30703085 PMCID: PMC6354955 DOI: 10.1371/journal.pone.0203577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022] Open
Abstract
RB-E2F transcriptional control plays a key role in regulating the timing of cell cycle progression from G1 to S-phase in response to growth factor stimulation. Despite this role, it is genetically dispensable for cell cycle exit in primary fibroblasts in response to growth arrest signals. Mice engineered to be defective for RB-E2F transcriptional control at cell cycle genes were also found to live a full lifespan with no susceptibility to cancer. Based on this background we sought to probe the vulnerabilities of RB-E2F transcriptional control defects found in Rb1R461E,K542E mutant mice (Rb1G) through genetic crosses with other mouse strains. We generated Rb1G/G mice in combination with Trp53 and Cdkn1a deficiencies, as well as in combination with KrasG12D. The Rb1G mutation enhanced Trp53 cancer susceptibility, but had no effect in combination with Cdkn1a deficiency or KrasG12D. Collectively, this study indicates that compromised RB-E2F transcriptional control is not uniformly cancer enabling, but rather has potent oncogenic effects when combined with specific vulnerabilities.
Collapse
Affiliation(s)
- Michael J. Thwaites
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| | | | - Daniel T. Passos
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Komila Zakirova
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
| | - Frederick A. Dick
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
Nava-Rodríguez MP, Domínguez-Cruz MD, Aguilar-López LB, Borjas-Gutiérrez C, Magaña-Torres MT, González-García JR. Genomic instability in a chronic lymphocytic leukemia patient with mono-allelic deletion of the DLEU and RB1 genes. Mol Cytogenet 2019; 12:2. [PMID: 30733830 PMCID: PMC6357463 DOI: 10.1186/s13039-019-0417-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/22/2019] [Indexed: 01/10/2023] Open
Abstract
Background The most frequent cytogenetic abnormality detected in chronic lymphocytic leukemia (CLL) patients is the presence of a deletion within the chromosome band 13q14. Deletions can be heterogeneous in size, generally encompassing the DLEU1 and DLEU2 genes (minimal deleted region), but at times also including the RB1 gene. The latter, larger type of deletions are associated with worse prognosis. Genomic instability is a characteristic of most cancers and it has been observed in CLL patients mainly associated with telomere shortening. Case presentation Cytogenetic and fluorescence in situ hybridization studies of a CLL patient showed a chromosomal translocation t(12;13)(q15;q14), a mono-allelic 13q14 deletion encompassing both the DLEU and RB1 genes, and genomic instability manifested as chromosomal breaks, telomeric associations, binucleated cells, nucleoplasmic bridges, and micronucleated cells. In conclusion, our CLL patient showed genomic instability in conjunction with a 13q14 deletion of approximately 2.6 megabase pair involving the DLEU and RB1 genes, as well as other genes with potential for producing genomic instability due to haploinsufficiency.
Collapse
Affiliation(s)
- María Paulina Nava-Rodríguez
- 1Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco Mexico.,2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | | | | | - César Borjas-Gutiérrez
- 4UMAE H. Especialidades-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco México
| | - María Teresa Magaña-Torres
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | - Juan Ramón González-García
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| |
Collapse
|
48
|
Analysis of the CDK4/6 Cell Cycle Pathway in Leiomyosarcomas as a Potential Target for Inhibition by Palbociclib. Sarcoma 2019; 2019:3914232. [PMID: 30804704 PMCID: PMC6360577 DOI: 10.1155/2019/3914232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Leiomyosarcoma (LMS) is characterized by high genomic complexity, and to date, no specific targeted therapy is available. In a genome-wide approach, we profiled genomic aberrations in a small cohort of eight primary tumours, two relapses, and eight metastases across nine different patients. We identified CDK4 amplification as a recurrent alteration in 5 out of 18 samples (27.8%). It has been previously shown that the LMS cell line SK-LMS-1 has a defect in the p16 pathway and that this cell line can be inhibited by the CDK4 and CDK6 inhibitor palbociclib. For SK-LMS-1 we confirm and for SK-UT-1 we show that both LMS cell lines express CDK4 and that, in addition, strong CDK6 expression is seen in SK-LMS-1, whereas Rb was expressed in SK-LMS-1 but not in SK-UT-1. We confirm that inhibition of SK-LMS-1 with palbociclib led to a strong decrease in protein levels of Phospho-Rb (Ser780), a decreased cell proliferation, and G0/G1-phase arrest with decreased S/G2 fractions. SK-UT-1 did not respond to palbociclib inhibition. To compare these in vitro findings with patient tissue samples, a p16, CDK4, CDK6, and p-Rb immunohistochemical staining assay of a large LMS cohort (n=99 patients with 159 samples) was performed assigning a potential responder phenotype to each patient, which we identified in 29 out of 99 (29.3%) patients. Taken together, these data show that CDK4/6 inhibitors may offer a new option for targeted therapy in a subset of LMS patients.
Collapse
|
49
|
Affiliation(s)
- Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC, Canada
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Gerardo Ferbeyre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
50
|
Ishak CA, Classon M, De Carvalho DD. Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends Cancer 2018; 4:583-597. [DOI: 10.1016/j.trecan.2018.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
|