1
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
2
|
Scales TQ, Smith B, Blanchard LM, Wixom N, Tuttle ET, Altman BJ, Peppone LJ, Munger J, Campbell TM, Campbell EK, Harris IS. A whole food, plant-based diet reduces amino acid levels in patients with metastatic breast cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315165. [PMID: 39417128 PMCID: PMC11483017 DOI: 10.1101/2024.10.09.24315165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Amino acids are critical to tumor survival. Tumors can acquire amino acids from the surrounding microenvironment, including the serum. Limiting dietary amino acids is suggested to influence their serum levels. Further, a plant-based diet is reported to contain fewer amino acids than an animal-based diet. The extent to which a plant-based diet lowers the serum levels of amino acids in patients with cancer is unclear. Methods Patients with metastatic breast cancer (n=17) were enrolled in a clinical trial with an ad libitum whole food, plant-based diet for 8 weeks without calorie or portion restriction. Dietary changes by participants were monitored using a three-day food record. Serum was collected from participants at baseline and 8 weeks. Food records and serum were analyzed for metabolic changes. Results We found that a whole food, plant-based diet resulted in a lower intake of calories, fat, and amino acids and higher levels of fiber. Additionally, body weight, serum insulin, and IGF were reduced in participants. The diet contained lower levels of essential and non-essential amino acids, except for arginine (glutamine and asparagine were not measured). Importantly, the lowered dietary intake of amino acids translated to reduced serum levels of amino acids in participants (5/9 essential amino acids; 4/11 non-essential amino acids). Conclusions These findings provide a tractable approach to limiting amino acid levels in persons with cancer. This data lays a foundation for studying the relationship between amino acids in patients and tumor progression. Further, a whole-food, plant-based diet has the potential to synergize with cancer therapies that exploit metabolic vulnerabilities. Trial Registration The clinical trial was registered with ClinicalTrials.gov identifier NCT03045289 on 2017-02-07.
Collapse
Affiliation(s)
- TashJaé Q. Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Lisa M. Blanchard
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA 14642
| | - Nellie Wixom
- Clinical Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Luke J. Peppone
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Thomas M. Campbell
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA 14642
| | - Erin K. Campbell
- Department of Public Health Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA,14642
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| |
Collapse
|
3
|
Khan A, Rehman AU, Siddiqui S, Khan J, Massey S, Singh P, Saluja D, Husain SA, Iqbal MA. Withaferin A decreases glycolytic reprogramming in breast cancer. Sci Rep 2024; 14:23147. [PMID: 39366987 PMCID: PMC11452501 DOI: 10.1038/s41598-024-72221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
Reprogrammed glucose metabolism is considered as the hallmark of cancer with therapeutic implications. Phytocompounds have potential to inhibit cancer metabolism. Here, we tested the ability of Withaferin A (WA), a withanolide derived from Withania somnifera, in modulating cancer metabolism. The assessed effect of WA on aerobic glycolysis in breast cancer cell lines showed that WA decreases the glucose uptake, lactate production and ATP generation by inhibiting the expression of key glycolytic enzymes i.e., GLUT1, HK2 and PKM2. We also identified that WA induced inhibition of cancer glycolysis by targeting c-myc as validated by silencing experiments followed by metabolic readouts. Decreased glycolysis resulted in reduced cell viability, biomass and colony forming ability of breast cancer cells. To further validate our in vitro findings in breast cancer patients, we analyzed 90 metabolic pathways in ~ 2000 breast tumors and observed that glycolysis is the most deregulated pathway in breast tumors. Deregulated glycolysis also predicted poor prognosis in breast cancer patients. In addition, patient data showed correlation between c-myc expression and glycolytic deregulation in breast cancer. Taken together, our results highlight the role of WA in inhibiting breast cancer metabolism via c-myc/glycolysis axis.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Asad Ur Rehman
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jiyauddin Khan
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Sheersh Massey
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Prithvi Singh
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
- Thumbay Research Institute for Precision Medicine (TRIPM), College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
5
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
6
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol 2024; 201:104438. [PMID: 38977145 DOI: 10.1016/j.critrevonc.2024.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, UK
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
7
|
Klingbeil KD, Wilde BR, Graham DS, Lofftus S, McCaw T, Matulionis N, Dry SM, Crompton JG, Eilber FC, Graeber TG, Shackelford DB, Christofk HR, Kadera BE. Targeting Asparagine Metabolism in Well-Differentiated/Dedifferentiated Liposarcoma. Cancers (Basel) 2024; 16:3031. [PMID: 39272889 PMCID: PMC11394161 DOI: 10.3390/cancers16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND mTORC1 activity is dependent on the presence of micronutrients, including Asparagine (Asn), to promote anabolic cell signaling in many cancers. We hypothesized that targeting Asn metabolism would inhibit tumor growth by reducing mTORC1 activity in well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS). METHODS Human tumor metabolomic analysis was utilized to compare abundance of Asn in WD vs. DD LPS. Gene set enrichment analysis (GSEA) compared relative expression among metabolic pathways upregulated in DD vs. WD LPS. Proliferation assays were performed for LPS cell lines and organoid models by using the combination treatment of electron transport chain (ETC) inhibitors with Asn-free media. 13C-Glucose-labeling metabolomics evaluated the effects of combination treatment on nucleotide synthesis. Murine xenograft models were used to assess the effects of ETC inhibition combined with PEGylated L-Asparaginase (PEG-Asnase) on tumor growth and mTORC1 signaling. RESULTS Asn was enriched in DD LPS compared to WD LPS. GSEA indicated that mTORC1 signaling was upregulated in DD LPS. Within available LPS cell lines and organoid models, the combination of ETC inhibition with Asn-free media resulted in reduced cell proliferation. Combination treatment inhibited nucleotide synthesis and promoted cell cycle arrest. In vivo, the combination of ETC inhibition with PEG-Asnase restricted tumor growth. CONCLUSIONS Asn enrichment and mTORC1 upregulation are important factors contributing to WD/DD LPS tumor progression. Effective targeting strategies require limiting access to extracellular Asn and inhibition of de novo synthesis mechanisms. The combination of PEG-Asnase with ETC inhibition is an effective therapy to restrict tumor growth in WD/DD LPS.
Collapse
Affiliation(s)
- Kyle D Klingbeil
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Blake R Wilde
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle S Graham
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Serena Lofftus
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler McCaw
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph G Crompton
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fritz C Eilber
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David B Shackelford
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Pulmonology and Critical Care, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian E Kadera
- Division of Surgical Oncology, Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, 54-117, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
9
|
Li N, Wang G, Guo M, Zhu N, Yu W. The mechanism and clinical application of farnesyl diphosphate farnesyltransferase 1 in cancer metabolism. Biochem Biophys Res Commun 2024; 719:150046. [PMID: 38749088 DOI: 10.1016/j.bbrc.2024.150046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Cancer poses a significant risk to human well-being. Among the crucial characteristics of cancer is metabolic reprogramming. To meet the relentless metabolic needs, cancer cells enhance cholesterol metabolism within the adverse tumor microenvironment. Reprograming cholesterol metabolism includes a series of modifications in the synthesis, absorption, esterification, and metabolites associated with cholesterol. These adjustments have a strong correlation with the proliferation, invasion, metastasis, and other characteristics of malignant tumors. FDFT1, also known as farnesyl diphosphate farnesyltransferase 1, is an enzyme crucial in the process of cholesterol biosynthesis. Its significant involvement in tumor metabolism has garnered considerable interest. The significance of FDFT1 in cancer metabolism cannot be overstated, as it actively interacts with cancer cells. This paper aims to analyze and consolidate the mechanism of FDFT1 in cancer metabolism and explore its clinical application. The goal is to contribute new strategies and targets for the prevention and treatment of cancer metabolism.
Collapse
Affiliation(s)
- Nanxin Li
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Guojuan Wang
- Department of Oncology, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| | - Min Guo
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Naicheng Zhu
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Wenyan Yu
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
10
|
Ssedyabane F, Randall TC, Ngonzi J, Kajabwangu R, Namuli A, Muhumuza J, Najjuma JN, Tusubira D. Association between dyslipidemia and cervical intraepithelial neoplasia: A case-control study in south-western Uganda. Afr J Lab Med 2024; 13:2374. [PMID: 39114748 PMCID: PMC11304215 DOI: 10.4102/ajlm.v13i1.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/20/2024] [Indexed: 08/10/2024] Open
Abstract
Background Altered lipid levels may be associated with the development of a number of malignancies, including cancer of the cervix. However, there is limited understanding of this relationship in the rural Ugandan context. Objective We investigated the connection between dyslipidaemias and cervical intraepithelial neoplasia (CIN) among women attending the cervical cancer clinic at Mbarara Regional Referral Hospital in south-western Uganda. Methods This unmatched case-control study was conducted between December 2022 and February 2023 and included women with CIN (cases) and women without intraepithelial lesions (controls) in a 1:1 ratio. Participants were selected based on cytology and/or histology results, and after obtaining written informed consent. Demographic data were collected, and venous blood was drawn for lipid profile analysis. Dyslipidaemia was defined as: total cholesterol > 200 mg/dL, low-density lipoprotein > 160 mg/dL, triglycerides > 150 mg/dL, or high-density lipoprotein < 40 mg/dL. At diagnosis, cases were categorised as either CIN1 (low grade) or CIN2+ (high grade). Results Among the 93 cases, 81 had CIN1, while 12 had CIN2+. Controls had a 13.9% (13/93) prevalence of high triglycerides and cases had a prevalence of 3.2% (3/93; p = 0.016). Reduced high-density lipoprotein was the most prevalent dyslipidaemia among cases (40.9%; 38/93). Statistically significant associations were found between high serum triglycerides and CIN (odds ratio: 1.395, 95% confidence interval: 0.084-1.851, p = 0.007). Conclusion A notable association was observed between triglyceride dyslipidemia and CIN. Further studies into biochemical processes and interactions between lipids and cervical carcinogenesis are recommended through prospective cohort studies. What this study adds This research provides additional information on the potential role of lipids in cervical carcinogenesis among women in rural Uganda. It also presents the possible prevalence of multimorbidity involving cervical cancer and cardiovascular diseases, particularly in low-resource settings lacking preventive measures against the increasing prevalence of dyslipidaemia.
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Thomas C. Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Joseph Ngonzi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Rogers Kajabwangu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Alexcer Namuli
- Department of Obstetrics and Gynaecology, Mbarara Regional Referral Hospital, Mbarara, Uganda
| | - Joy Muhumuza
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Josephine N. Najjuma
- Department of Nursing, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
11
|
Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int J Mol Sci 2024; 25:5880. [PMID: 38892067 PMCID: PMC11172243 DOI: 10.3390/ijms25115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of the disease, and current anticancer drug advancements are still lacking. Therefore, it is crucial to find relevant biomarkers with the accurate prediction of prognoses and good predictive accuracy to select appropriate patients with GC. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have enabled the approach of GC biology at multiple levels of omics interaction networks. Systemic biological analyses, such as computational inference of "big data" and advanced bioinformatic approaches, are emerging to identify the key molecular biomarkers of GC, which would benefit targeted therapies. This review summarizes the current status of how bioinformatics analysis contributes to biomarker discovery for prognosis and prediction of therapeutic efficacy in GC based on a search of the medical literature. We highlight emerging individual multi-omics datasets, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, for validating putative markers. Finally, we discuss the current challenges and future perspectives to integrate multi-omics analysis for improving biomarker implementation. The practical integration of bioinformatics analysis and multi-omics datasets under complementary computational analysis is having a great impact on the search for predictive and prognostic biomarkers and may lead to an important revolution in treatment.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
12
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Dutta A, Thakur S, Dey DK, Kumar A. Cisplatin and Starvation Differently Sensitize Autophagy in Renal Carcinoma: A Potential Therapeutic Pathway to Target Variegated Drugs Resistant Cancerous Cells. Cells 2024; 13:471. [PMID: 38534315 DOI: 10.3390/cells13060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Cisplatin, a powerful chemotherapy medication, has long been a cornerstone in the fight against cancer due to chemotherapeutic failure. The mechanism of cisplatin resistance/failure is a multifaceted and complex issue that consists mainly of apoptosis inhibition through autophagy sensitization. Currently, researchers are exploring ways to regulate autophagy in order to tip the balance in favor of effective chemotherapy. Based on this notion, the current study primarily identifies the differentially expressed genes (DEGs) in cisplatin-treated autophagic ACHN cells through the Illumina Hi-seq platform. A protein-protein interaction network was constructed using the STRING database and KEGG. GO classifiers were implicated to identify genes and their participating biological pathways. ClueGO, David, and MCODE detected ontological enrichment and sub-networking. The network topology was further examined using 12 different algorithms to identify top-ranked hub genes through the Cytoscape plugin Cytohubba to identify potential targets, which established profound drug efficacy under an autophagic environment. Considerable upregulation of genes related to autophagy and apoptosis suggests that autophagy boosts cisplatin efficacy in malignant ACHN cells with minimal harm to normal HEK-293 growth. Furthermore, the determination of cellular viability and apoptosis by AnnexinV/FITC-PI assay corroborates with in silico data, indicating the reliability of the bioinformatics method followed by qRT-PCR. Altogether, our data provide a clear molecular insight into drug efficacy under starved conditions to improve chemotherapy and will likely prompt more clinical trials on this aspect.
Collapse
Affiliation(s)
- Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| |
Collapse
|
14
|
AMJAD ELHAM, PEZZANI RAFFAELE, SOKOUTI BABAK. A review of the literature on the use of CRISPR/Cas9 gene therapy to treat hepatocellular carcinoma. Oncol Res 2024; 32:439-461. [PMID: 38361756 PMCID: PMC10865741 DOI: 10.32604/or.2023.044473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024] Open
Abstract
Noncoding RNAs instruct the Cas9 nuclease to site-specifically cleave DNA in the CRISPR/Cas9 system. Despite the high incidence of hepatocellular carcinoma (HCC), the patient's outcome is poor. As a result of the emergence of therapeutic resistance in HCC patients, clinicians have faced difficulties in treating such tumor. In addition, CRISPR/Cas9 screens were used to identify genes that improve the clinical response of HCC patients. It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer, with a particular emphasis on HCC as part of the current state of knowledge. Thus, in order to locate recent developments in oncology research, we examined both the Scopus database and the PubMed database. The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs. Drug resistance can be overcome with the help of the CRISPR/Cas9 system. HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening, although this method is not without limitations. It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy. CRISPR and its applications to tumor research, particularly in HCC, are examined in this study through a review of the literature.
Collapse
Affiliation(s)
- ELHAM AMJAD
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - RAFFAELE PEZZANI
- Phytotherapy Lab, Endocrinology Unit, Dipartimento di Medicina (DIMED), University of Padova, Via Ospedale 105, Padova, 35128, Italy
- Associazione Italiana Per La Ricerca Oncologica Di Base, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, 35128, Italy
| | - BABAK SOKOUTI
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| |
Collapse
|
15
|
Gu D, Xue B, Zhu G, Xu Y, Yan L, Tang Q, Lu C. Serum Lipid Level in Evaluating Chinese Pancreatic Neuroendocrine Neoplasms: A Retrospective Study. Exp Clin Endocrinol Diabetes 2024; 132:98-106. [PMID: 38096919 PMCID: PMC10876382 DOI: 10.1055/a-2229-3489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Pancreatic neuroendocrine neoplasms (p-NENs) are relatively rare and highly heterogeneous. Dyslipidemia may be related to the risk of developing p-NENs, although dyslipidemia in patients with p-NENs is rarely reported. In this study, the clinical characteristics of p-NENs patients with different lipid levels and their prognostic value in p-NENs patients were evaluated. METHODS Patients (n=211) with p-NENs hospitalized at Jiangsu Neuroendocrine Tumor Centre of Jiangsu Province Hospital from December 2018 to December 2022 were enrolled. Clinical data related to p-NENs were collected. Based on the EGA database, the related lipoprotein, low-density lipoprotein receptor (LDLR) and high-density lipoprotein binding protein (HDLBP) mRNA in p-NENs and paratumoral tissues and the follow-up information of p-NENs were evaluated. RESULTS A total of 175 p-NENs patients ultimately met the inclusion criteria. The ki67 index was higher in p-NENs patients with elevated lipid with the proportion of≥5, and in those with AJCC stage III and stage IV than p-NENs patients with low-level lipid. In p-NENs patients, the expression of HDLBP mRNA was downregulated in p-NENs tissues compared to the paratumoral tissues. Survival analysis showed that serum lipids had no effect on the prognosis of p-NENs; however, high LDLR level p-NENs were at the risk of poor survival. CONCLUSION Serum lipid level in p-NENs can affect the grading and staging, but the correlation with the prognosis of p-NENs is not significant. However, dyslipidemia may be a potential predictor of p-NENs.
Collapse
Affiliation(s)
- Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Bingyan Xue
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Guoqin Zhu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Yanling Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center,
Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing,
China
| |
Collapse
|
16
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Amraiz D, Kiani AK, Awan UA, Amraiz T, Awan BA, Irfan M. Cancer Prevention and Treatment Based on Lifestyles. Cancer Treat Res 2024; 191:245-279. [PMID: 39133411 DOI: 10.1007/978-3-031-55622-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cancer morbidity and mortality incidence are rapidly increasing over the period of time. Cancer prevention, alongside innovative therapies and earlier detection, is considered a key strategy for reducing the overall cancer burden. Substantial evidence indicates a clear correlation between lifestyle factors and changes in nutrient metabolism. Approximately 5-10% of all cancer cases are attributed to genetic factors, whereas 90-95% are due to environmental and lifestyle factors, suggesting that lifestyle interventions have significant prospects for preventing various cancers. Healthy lifestyle changes, in particular healthy diets, physical activity, staying at a healthy weight, reduction or elimination of tobacco/alcohol consumption, and avoiding exposure to radiation and other carcinogens, are significant factors to be considered to tackle the challenges associated with cancer in modern society. This chapter aims to provide lifestyle intervention strategies to improve cancer prevention and risk reduction while promoting the health of cancer patients. The therapeutic role of some dietary regimens and supplements, as well as complementary and alternative health approaches, in cancer treatment is also discussed.
Collapse
Affiliation(s)
- Deeba Amraiz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Aysha Karim Kiani
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Tayyaba Amraiz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Muhammad Irfan
- Department of Zoology Wildlife and Fisheries, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
18
|
Zhang J, Chen F, Tian Y, Xu W, Zhu Q, Li Z, Qiu L, Lu X, Peng B, Liu X, Gan H, Liu B, Xu X, Zhu WG. PARylated PDHE1α generates acetyl-CoA for local chromatin acetylation and DNA damage repair. Nat Struct Mol Biol 2023; 30:1719-1734. [PMID: 37735618 DOI: 10.1038/s41594-023-01107-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Chromatin relaxation is a prerequisite for the DNA repair machinery to access double-strand breaks (DSBs). Local histones around the DSBs then undergo prompt changes in acetylation status, but how the large demands of acetyl-CoA are met is unclear. Here, we report that pyruvate dehydrogenase 1α (PDHE1α) catalyzes pyruvate metabolism to rapidly provide acetyl-CoA in response to DNA damage. We show that PDHE1α is quickly recruited to chromatin in a polyADP-ribosylation-dependent manner, which drives acetyl-CoA generation to support local chromatin acetylation around DSBs. This process increases the formation of relaxed chromatin to facilitate repair-factor loading, genome stability and cancer cell resistance to DNA-damaging treatments in vitro and in vivo. Indeed, we demonstrate that blocking polyADP-ribosylation-based PDHE1α chromatin recruitment attenuates chromatin relaxation and DSB repair efficiency, resulting in genome instability and restored radiosensitivity. These findings support a mechanism in which chromatin-associated PDHE1α locally generates acetyl-CoA to remodel the chromatin environment adjacent to DSBs and promote their repair.
Collapse
Affiliation(s)
- Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Zhenhai Li
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Lingyu Qiu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Bin Peng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, China
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baohua Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University Medical School, Shenzhen, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
19
|
Ligorio F, Provenzano L, Vernieri C. Fasting-mimicking diet: a metabolic approach for the treatment of breast cancer. Curr Opin Oncol 2023; 35:491-499. [PMID: 37621169 DOI: 10.1097/cco.0000000000000986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW Metabolic reprogramming is a new and potentially targetable hallmark of cancer. In recent years, fasting and fasting-mimicking diets (FMDs) have been tested as anticancer strategies both in preclinical experiments and in clinical trials. In this review, we aim at summarizing the available evidence about the antitumour activity of these approaches in preclinical breast cancer models, as well as results from clinical trials investigating fasting/FMD in breast cancer patients. RECENT FINDINGS Preclinical evidence demonstrated that nutrient deprivation boosts the antitumor activity of chemotherapy, immunotherapy or targeted therapies in triple-negative breast cancer (TNBC) and HR+/HER2 models through both cell-autonomous antitumour effects in cancer cells and favourable modifications in intratumor immune cells. Several clinical experiences demonstrated that fasting/FMD is feasible and well tolerated in combination with standard treatments in BC patients, and that it could reduce chemotherapy-related toxicities. Finally, despite the absence of randomized trials demonstrating the antitumor activity of fasting/FMD in breast cancer patients, preliminary clinical reports suggest that this experimental nutritional strategy may enhance chemotherapy activity. Randomized clinical trials are ongoing to validate these results at a larger scale. SUMMARY Fasting/FMD is a promising therapeutic approach in patients with breast cancer; ongoing and future trials will confirm their role in improving breast cancer care.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- Oncology and Hemato-Oncology Department, University of Milan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- Oncology and Hemato-Oncology Department, University of Milan
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
20
|
Wang Y, Lu L, Ling C, Zhang P, Han R. Potential of Dietary HDAC2i in Breast Cancer Patients Receiving PD-1/PD-L1 Inhibitors. Nutrients 2023; 15:3984. [PMID: 37764768 PMCID: PMC10537481 DOI: 10.3390/nu15183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is a lethal malignancy with high morbidity and mortality but lacks effective treatments thus far. Despite the introduction of immune checkpoint inhibitors (ICIs) (including PD-1/PD-L1 inhibitors), durable and optimal clinical benefits still remain elusive for a considerable number of BC patients. To break through such a dilemma, novel ICI-based combination therapy has been explored for enhancing the therapeutic effect. Recent evidence has just pointed out that the HDAC2 inhibitor (HDAC2i), which has been proven to exhibit an anti-cancer effect, can act as a sensitizer for ICIs therapy. Simultaneously, dietary intervention, as a crucial supportive therapy, has been reported to provide ingredients containing HDAC2 inhibitory activity. Thus, the novel integration of dietary intervention with ICIs therapy may offer promising possibilities for improving treatment outcomes. In this study, we first conducted the differential expression and prognostic analyses of HDAC2 and BC patients using the GENT2 and Kaplan-Meier plotter platform. Then, we summarized the potential diet candidates for such an integrated therapeutic strategy. This article not only provides a whole new therapeutic strategy for an HDAC2i-containing diet combined with PD-1/PD-L1 inhibitors for BC treatment, but also aims to ignite enthusiasm for exploring this field.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Xishuangbanna 666303, China
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
21
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
22
|
Varlı M, Kim SJ, Noh MG, Kim YG, Ha HH, Kim KK, Kim H. KITENIN promotes aerobic glycolysis through PKM2 induction by upregulating the c-Myc/hnRNPs axis in colorectal cancer. Cell Biosci 2023; 13:146. [PMID: 37553596 PMCID: PMC10410973 DOI: 10.1186/s13578-023-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE The oncoprotein KAI1 C-terminal interacting tetraspanin (KITENIN; vang-like 1) promotes cell metastasis, invasion, and angiogenesis, resulting in shorter survival times in cancer patients. Here, we aimed to determine the effects of KITENIN on the energy metabolism of human colorectal cancer cells. EXPERIMENTAL DESIGN The effects of KITENIN on energy metabolism were evaluated using in vitro assays. The GEPIA web tool was used to extrapolate the clinical relevance of KITENIN in cancer cell metabolism. The bioavailability and effect of the disintegrator of KITENIN complex compounds were evaluated by LC-MS, in vivo animal assay. RESULTS KITENIN markedly upregulated the glycolytic proton efflux rate and aerobic glycolysis by increasing the expression of GLUT1, HK2, PKM2, and LDHA. β-catenin, CD44, CyclinD1 and HIF-1A, including c-Myc, were upregulated by KITENIN expression. In addition, KITENIN promoted nuclear PKM2 and PKM2-induced transactivation, which in turn, increased the expression of downstream mediators. This was found to be mediated through an effect of c-Myc on the transcription of hnRNP isoforms and a switch to the M2 isoform of pyruvate kinase, which increased aerobic glycolysis. The disintegration of KITENIN complex by silencing the KITENIN or MYO1D downregulated aerobic glycolysis. The disintegrator of KITENIN complex compound DKC1125 and its optimized form, DKC-C14S, exhibited the inhibition activity of KITENIN-mediated aerobic glycolysis in vitro and in vivo. CONCLUSIONS The oncoprotein KITENIN induces PKM2-mediated aerobic glycolysis by upregulating the c-Myc/hnRNPs axis.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sung Jin Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwanju, 61469, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandaero, Dongnam-gu, 31116, Cheonan-si, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
23
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
24
|
Li Q, Zhang L, Yang Q, Li M, Pan X, Xu J, Zhong C, Yao F, Zhang R, Zhou S, Dai X, Shi X, Dai Y, Xu J, Cheng X, Xiao W, She Z, Wang K, Qian X, Pu L, Zhang P, Wang X. Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners. Cell Metab 2023:S1550-4131(23)00095-5. [PMID: 37071992 DOI: 10.1016/j.cmet.2023.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/17/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Metabolic reprogramming plays a crucial role in the development of hepatocellular carcinoma (HCC). However, the key drivers of metabolic reprogramming underlying HCC progression remain unclear. Using a large-scale transcriptomic database and survival correlation screening, we identify thymidine kinase 1 (TK1) as a key driver. The progression of HCC is robustly mitigated by TK1 knockdown and significantly aggravated by its overexpression. Furthermore, TK1 promotes the oncogenic phenotypes of HCC not only through its enzymatic activity and production of deoxythymidine monophosphate (dTMP) but also by promoting glycolysis via binding with protein arginine methyltransferase 1 (PRMT1). Mechanistically, TK1 directly binds PRMT1 and stabilizes it by interrupting its interactions with tripartite-motif-containing 48 (TRIM48), which inhibits its ubiquitination-mediated degradation. Subsequently, we validate the therapeutic capacity of hepatic TK1 knockdown in a chemically induced HCC mouse model. Therefore, targeting both the enzyme-dependent and -independent activity of TK1 may be therapeutically promising for HCC treatment.
Collapse
Affiliation(s)
- Qing Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Liren Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Qin Yang
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang Institute of Translational Medicine, Huanggang, China
| | - Mei Li
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Zhong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Feifan Yao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ruizhi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yongjiu Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Cheng
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenchang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang Institute of Translational Medicine, Huanggang, China
| | - Zhigang She
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
25
|
Muluh TA, Shu XS, Ying Y. Targeting cancer metabolic vulnerabilities for advanced therapeutic efficacy. Biomed Pharmacother 2023; 162:114658. [PMID: 37031495 DOI: 10.1016/j.biopha.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer metabolism is how cancer cells utilize nutrients and energy to support their growth and proliferation. Unlike normal cells, cancer cells have a unique metabolic profile that allows them to generate energy and the building blocks they need for rapid growth and division. This metabolic profile is marked by an increased reliance on glucose and glutamine as energy sources and changes in how cancer cells use and make key metabolic intermediates like ATP, NADH, and NADPH. This script analyzes a comprehensive overview of the latest advances in tumor metabolism, identifying the key unresolved issues, elaborates on how tumor cells differ from normal cells in their metabolism of nutrients, and explains how tumor cells conflate growth signals and nutrients to proliferate. The metabolic interaction of tumorigenesis and lipid metabolism within the tumor microenvironment and the role of ROS as an anti-tumor agent by mediating various signaling pathways for clinical cancer therapeutic targeting are outlined. Cancer metabolism is highly dynamic and heterogeneous; thus, advanced technologies to better investigate metabolism at the unicellular level without altering tumor tissue are necessary for better research and clinical transformation. The study of cancer metabolism is an area of active research, as scientists seek to understand the underlying metabolic changes that drive cancer growth and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
26
|
Zeng Z, Chen CX. Metabonomic analysis of tumor microenvironments: a mini-review. Front Oncol 2023; 13:1164266. [PMID: 37124524 PMCID: PMC10140396 DOI: 10.3389/fonc.2023.1164266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Metabolomic analysis is a vital part of studying cancer progression. Metabonomic crosstalk, such as nutrient availability, physicochemical transformation, and intercellular interactions can affect tumor metabolism. Many original studies have demonstrated that metabolomics is important in some aspects of tumor metabolism. In this mini-review, we summarize the definition of metabolomics and how it can help change a tumor microenvironment, especially in pathways of three metabonomic tumors. Just as non-invasive biofluids have been identified as early biomarkers of tumor development, metabolomics can also predict differences in tumor drug response, drug resistance, and efficacy. Therefore, metabolomics is important for tumor metabolism and how it can affect oncology drugs in cancer therapy.
Collapse
Affiliation(s)
- Zeng Zeng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Cong-Xian Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: Cong-Xian Chen,
| |
Collapse
|
27
|
Giugliano F, Boldrini L, Uliano J, Crimini E, Minchella I, Curigliano G. Fast Mimicking Diets and Other Innovative Nutritional Interventions to Treat Patients with Breast Cancer. Cancer Treat Res 2023; 188:199-218. [PMID: 38175347 DOI: 10.1007/978-3-031-33602-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The impact of nutritional patterns on the risk of breast cancer (BC) is well investigated in the oncology literature, including the type of diets and caloric intake. While obesity and elevated body mass index are well-reported critical risk factors of BC occurrence, there is an expanding area of oncology assessing the impact of caloric intake and nutritional patterns in patients with cancer. Caloric restriction and fast mimicking alimentary regimens have been consistently reported to improve survival outcomes based on preclinical models. Moreover, emerging clinical evidence has paved the way for new metabolic approaches for the treatment of BC, in addition to the established therapeutic arsenal or as alternative options. In this chapter, our aim is to discuss the principal strategies of metabolic manipulation through nutritional interventions for patients with BC as an innovative area of cancer therapy.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Ida Minchella
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
28
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
29
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
30
|
Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites 2022; 12:metabo12090778. [PMID: 36144183 PMCID: PMC9505390 DOI: 10.3390/metabo12090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Human saliva offers many advantages over other biofluids regarding its use and value as a bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly because its collection is largely non-invasive, is relatively cheap, and does not require any major clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such purposes, including the identification, validation and quantification of surrogate biomarkers, may easily self-collect such samples in their homes following the provision of full collection details to them by researchers. In this report, the authors have focused on the applications of metabolomics technologies to the diagnosis and progressive severity monitoring of human cancer conditions, firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic) cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length of storage and preparation for analysis. Moreover, recommended protocols for the optimisation of NMR pulse sequences for analysis, along with the application of methods and techniques for verifying and resonance assignments and validating the quantification of biomolecules responsible, are critically considered. In view of the authors’ specialisms and research interests, the majority of these investigations were conducted using NMR-based metabolomics techniques. The extension of these studies to determinations of metabolic pathways which have been pathologically disturbed in these diseases is also assessed here and reviewed. Where available, data for the monitoring of patients’ responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic potential of 1H NMR-detectable salivary ‘acute-phase’ glycoprotein carbohydrate side chains, and/or their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.
Collapse
|
31
|
Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal Plants for the Treatment of Gastrointestinal Cancers From the Metabolomics Perspective. Front Pharmacol 2022; 13:909755. [PMID: 35833022 PMCID: PMC9271783 DOI: 10.3389/fphar.2022.909755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancer (GIC), primarily including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, is one of the most common causes of cancer-related deaths with increasing prevalence and poor prognosis. Medicinal plants have been shown to be a great resource for the treatment of GIC. Due to their complex manifestations of multi-component and multi-target, the underlying mechanisms how they function against GIC remain to be completely deciphered. Cell metabolism is of primary importance in the initialization and development of GIC, which is reported to be a potential target. As an essential supplement to the newest “omics” sciences, metabolomics focuses on the systematic study of the small exogenous and endogenous metabolites involved in extensive biochemical metabolic pathways of living system. In good agreement with the systemic perspective of medicinal plants, metabolomics offers a new insight into the efficacy assessment and action mechanism investigation of medicinal plants as adjuvant therapeutics for GIC therapy. In this review, the metabolomics investigations on metabolism-targeting therapies for GIC in the recent 10 years were systematically reviewed from five aspects of carbohydrate, lipid, amino acid, and nucleotide metabolisms, as well as other altered metabolisms (microbial metabolism, inflammation, and oxidation), with particular attention to the potential of active compounds, extracts, and formulae from medicinal plants. Meanwhile, the current perspectives and future challenges of metabolism-targeting therapies of medicinal plants for GIC were also discussed. In conclusion, the understanding of the action mechanisms of medicinal plants in GIC from the metabolomics perspective will contribute to the clinical application of potential candidates from the resourceful medicinal plants as novel and efficient adjuvant therapeutics for GIC therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Min Hu, ; Yibin Feng,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Min Hu, ; Yibin Feng,
| |
Collapse
|
32
|
Li Y, Liu J, Sun L, Zhang B, Shi R. Research trends of cancer metabolism: analysis from a Chinese perspective. Cancer Commun (Lond) 2022; 42:367-373. [PMID: 35470986 PMCID: PMC9118042 DOI: 10.1002/cac2.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, P. R. China.,Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, P. R. China
| | - Jun Liu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, P. R. China.,Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Lichao Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Bin Zhang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, P. R. China.,Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Rong Shi
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, P. R. China
| |
Collapse
|
33
|
Shao WQ, Zhu WW, Luo MJ, Fan MH, Li Q, Wang SH, Lin ZF, Zhao J, Zheng Y, Dong QZ, Lu L, Jia HL, Zhang JB, Lu M, Chen JH, Qin LX. Cholesterol suppresses GOLM1-dependent selective autophagy of RTKs in hepatocellular carcinoma. Cell Rep 2022; 39:110712. [PMID: 35443161 DOI: 10.1016/j.celrep.2022.110712] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of receptor tyrosine kinases (RTKs) and the subsequent metabolic reprogramming play critical roles in cancer progression. Our previous study has shown that Golgi membrane protein 1 (GOLM1) promotes hepatocellular carcinoma (HCC) metastasis by enhancing the recycling of RTKs. However, how this RTK recycling process is regulated and coupled with RTK degradation remains poorly defined. Here, we demonstrate that cholesterol suppresses the autophagic degradation of RTKs in a GOLM1-dependent manner. Further mechanistic studies reveal that GOLM1 mediates the selective autophagy of RTKs by interacting with LC3 through an LC3-interacting region (LIR), which is regulated by a cholesterol-mTORC1 axis. Lowering cholesterol by statins improves the efficacy of multiple tyrosine kinase inhibitors (TKIs) in vivo. Our findings indicate that cholesterol serves as a signal to switch GOLM1-RTK degradation to GOLM1-RTK recycling and suggest that lowering cholesterol by statin may be a promising combination strategy to improve the TKI efficiency in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Wen-Wei Zhu
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Meng-Jun Luo
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming-Hao Fan
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Qin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng-Hao Wang
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zhi-Fei Lin
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Jing Zhao
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Zheng
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiong-Zhu Dong
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Hu-Liang Jia
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Ju-Bo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Hong Chen
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| | - Lun-Xiu Qin
- General Surgery Department of Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
35
|
Jiang Q, Wang L, Jin M, Shou Y, Zhu H, Li A. The Clinical Value of Lipid Abnormalities in Early Stage Cervical Cancer. Int J Gen Med 2022; 15:3903-3914. [PMID: 35431573 PMCID: PMC9012499 DOI: 10.2147/ijgm.s352934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022] Open
Abstract
Background To describe the characteristics of plasma lipid proliferation in cervical cancer and further evaluate the prognostic significance of lipid levels in cervical cancer. Methods We retrospectively reviewed 1713 patients with cervical cancer in our hospital. The preoperative plasma lipid profile, including cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL), of 1713 cervical cancer patients was compared with that of 10,397 healthy women. Then, we evaluated the impact of lipids on overall survival (OS) and recurrence-free survival (RFS) in cervical cancer using univariate and multivariate Cox models. Results While plasma TC, TG, and LDL were significantly higher, HDL was lower in patients with cervical cancer than in healthy women. TG was identified as an independent predictor for RFS and OS among patients with cervical cancer. Further stratified by age, patients with higher TGs showed a significantly worse RFS and OS than those with lower TGs among patients ≥50 years old but not among those <50 years old. Conclusion Cervical cancer was associated with a disordered lipid profile. Hypertriglyceridemia was an independent poor prognostic indicator for cervical cancer, especially for elderly patients. Strengthening lipid management may be beneficial for improving postoperative OS and RFS in patients with cervical cancer.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Luhui Wang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Mengya Jin
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Yueyao Shou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Haiyan Zhu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200126, People’s Republic of China
- Haiyan Zhu, Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke West Road, Shanghai, 200126, People’s Republic of China, Tel +86 57755069162, Email
| | - Anyang Li
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Correspondence: Anyang Li, Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Tel +86 19817583796, Email
| |
Collapse
|
36
|
Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23073867. [PMID: 35409231 PMCID: PMC8998886 DOI: 10.3390/ijms23073867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The Metabolome and Transcriptome are mutually communicating within cancer cells, and this interplay is translated into the existence of quantifiable correlation structures between gene expression and metabolite abundance levels. Studying these correlations could provide a novel venue of understanding cancer and the discovery of novel biomarkers and pharmacological strategies, as well as laying the foundation for the prediction of metabolite quantities by leveraging information from the more widespread transcriptomics data. In the current paper, we investigate the correlation between gene expression and metabolite levels in the Cancer Cell Line Encyclopedia dataset, building a direct correlation network between the two molecular ensembles. We show that a metabolite/transcript correlation network can be used to predict metabolite levels in different samples and datasets, such as the NCI-60 cancer cell line dataset, both on a sample-by-sample basis and in differential contrasts. We also show that metabolite levels can be predicted in principle on any sample and dataset for which transcriptomics data are available, such as the Cancer Genome Atlas (TCGA).
Collapse
|
37
|
Tu R, Ma J, Zhang P, Kang Y, Xiong X, Zhu J, Li M, Zhang C. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Cancer Cell Int 2022; 22:130. [PMID: 35307036 PMCID: PMC8935717 DOI: 10.1186/s12935-022-02524-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer cells must rewire cellular metabolism to satisfy the unbridled proliferation, and metabolic reprogramming provides not only the advantage for cancer cell proliferation but also new targets for cancer treatment. However, the plasticity of the metabolic pathways makes them very difficult to target. Deubiquitylating enzymes (DUBs) are proteases that cleave ubiquitin from the substrate proteins and process ubiquitin precursors. While the molecular mechanisms are not fully understood, many DUBs have been shown to be involved in tumorigenesis and progression via controlling the dysregulated cancer metabolism, and consequently recognized as potential drug targets for cancer treatment. In this article, we summarized the significant progress in understanding the key roles of DUBs in cancer cell metabolic rewiring and the opportunities for the application of DUBs inhibitors in cancer treatment, intending to provide potential implications for both research purpose and clinical applications.
Collapse
|
38
|
Tan K, Naylor MJ. The Influence of Modifiable Factors on Breast and Prostate Cancer Risk and Disease Progression. Front Physiol 2022; 13:840826. [PMID: 35330933 PMCID: PMC8940211 DOI: 10.3389/fphys.2022.840826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Breast and prostate cancers are among the most commonly diagnosed cancers worldwide, and together represented almost 20% of all new cancer diagnoses in 2020. For both cancers, the primary treatment options are surgical resection and sex hormone deprivation therapy, highlighting the initial dependence of these malignancies on the activity of both endogenous and exogenous hormones. Cancer cell phenotype and patient prognosis is not only determined by the collection of specific gene mutations, but through the interaction and influence of a wide range of different local and systemic components. While genetic risk factors that contribute to the development of these cancers are well understood, increasing epidemiological evidence link modifiable lifestyle factors such as physical exercise, diet and weight management, to drivers of disease progression such as inflammation, transcriptional activity, and altered biochemical signaling pathways. As a result of this significant impact, it is estimated that up to 50% of cancer cases in developed countries could be prevented with changes to lifestyle and environmental factors. While epidemiological studies of modifiable risk factors and research of the biological mechanisms exist mostly independently, this review will discuss how advances in our understanding of the metabolic, protein and transcriptional pathways altered by modifiable lifestyle factors impact cancer cell physiology to influence breast and prostate cancer risk and prognosis.
Collapse
Affiliation(s)
| | - Matthew J. Naylor
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Tong C, Wang W, He C. m1A methylation modification patterns and metabolic characteristics in hepatocellular carcinoma. BMC Gastroenterol 2022; 22:93. [PMID: 35240991 PMCID: PMC8896097 DOI: 10.1186/s12876-022-02160-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The dysregulation of RNA methylation has been demonstrated to contribute to tumorigenicity and progression in recent years. However, the alteration of N1-methyladenosine (m1A) methylation and its role in hepatocellular carcinoma (HCC) remain unclear. Methods We systematically investigated the modification patterns of 10 m1A regulators in HCC samples and evaluated the metabolic characteristics of each pattern. A scoring system named the m1Ascore was developed using principal component analysis. The clinical value of the m1Ascore in risk stratification and drug screening was further explored. Results Three m1A modification patterns with distinct metabolic characteristics were identified, corresponding to the metabolism-high, metabolism-intermediate and metabolism-excluded phenotypes. Patients were divided into high- or low-m1Ascore groups, and a significant survival difference was observed. External validation confirmed the prognostic value of the m1Ascore. A nomogram incorporating the m1Ascore and other clinicopathological factors was constructed and had good performance for predicting survival. Two agents, mitoxantrone and doxorubicin, were determined to be potential therapeutic drugs for the high-risk group. Conclusion This study provided novel insights into m1A modification and metabolic heterogeneity in cancer, promoted risk stratification in the clinic from the perspective of m1A modification, and further guided individual treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02160-w.
Collapse
Affiliation(s)
- Chengcheng Tong
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| |
Collapse
|
40
|
Xu Y, Fang H, Chen Y, Tang Y, Sun H, Kong Z, Yang F, Kirschner-Schwabe R, Zhu L, Toker A, Xiao N, Zhou BBS, Li H. The KRAS-G12D mutation induces metabolic vulnerability in B-cell acute lymphoblastic leukemia. iScience 2022; 25:103881. [PMID: 35243242 PMCID: PMC8861657 DOI: 10.1016/j.isci.2022.103881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
|
41
|
Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability. Acta Pharm Sin B 2022; 12:759-773. [PMID: 35256945 PMCID: PMC8897199 DOI: 10.1016/j.apsb.2021.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have unique metabolic programming that is biologically distinct from that of corresponding normal cells. Resetting tumor metabolic programming is a promising strategy to ameliorate drug resistance and improve the tumor microenvironment. Here, we show that carboxyamidotriazole (CAI), an anticancer drug, can function as a metabolic modulator that decreases glucose and lipid metabolism and increases the dependency of colon cancer cells on glutamine metabolism. CAI suppressed glucose and lipid metabolism utilization, causing inhibition of mitochondrial respiratory chain complex I, thus producing reactive oxygen species (ROS). In parallel, activation of the aryl hydrocarbon receptor (AhR) increased glutamine uptake via the transporter SLC1A5, which could activate the ROS-scavenging enzyme glutathione peroxidase. As a result, combined use of inhibitors of GLS/GDH1, CAI could effectively restrict colorectal cancer (CRC) energy metabolism. These data illuminate a new antitumor mechanism of CAI, suggesting a new strategy for CRC metabolic reprogramming treatment.
Collapse
Key Words
- 2-NBDG, glucalogue 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose
- ATP, adenosine triphosphate
- AhR
- AhR, aryl hydrocarbon receptor
- CAI
- CAI, carboxyamidotriazole
- CHIP, chromatin immunoprecipitation
- CRC, colorectal cancer
- Colorectal cancer metabolism
- DMF, 3′,4′-dimethoxyflavone
- DNA, deoxyribonucleic acid
- ECAR, extracellular acidification rate
- FACS, flow cytometry
- GDH1, glutamate dehydrogenase 1
- GLS, glutaminase
- GPx, glutathione peroxidase
- GSH, glutathione
- GSSG, oxidized glutathione
- Glutamine metabolism
- Glutaminolysis
- Kyn, kynurenine
- MT, mito-TEMPO
- Metabolic reprogramming
- Mito-Q, mitoquinone mesylate
- Mitochondrial oxidative stress
- OCR, oxygen consumption rate
- Redox homeostasis
- TCA, tricarboxylic acid
- α-KG, α-ketoglutarate
Collapse
|
42
|
Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-Muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. SCIENCE ADVANCES 2022; 8:eabh2635. [PMID: 35061544 PMCID: PMC8782451 DOI: 10.1126/sciadv.abh2635] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Schindlmaier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Natascha Berger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Nadja Kupper
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nössing
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria R. Depaoli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria
- Know-Center GmbH, 8010 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Alexander J. A. Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Blood Group Serology and Transfusion Medicine Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584CH Utrecht, Netherlands
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Roland Malli
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
43
|
Vernieri C, Fucà G, Ligorio F, Huber V, Vingiani A, Iannelli F, Raimondi A, Rinchai D, Frigè G, Belfiore A, Lalli L, Chiodoni C, Cancila V, Zanardi F, Ajazi A, Cortellino S, Vallacchi V, Squarcina P, Cova A, Pesce S, Frati P, Mall R, Corsetto PA, Rizzo AM, Ferraris C, Folli S, Garassino MC, Capri G, Bianchi G, Colombo MP, Minucci S, Foiani M, Longo VD, Apolone G, Torri V, Pruneri G, Bedognetti D, Rivoltini L, de Braud F. Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer. Cancer Discov 2022; 12:90-107. [PMID: 34789537 PMCID: PMC9762338 DOI: 10.1158/2159-8290.cd-21-0030] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/04/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments. Integrated transcriptomic and deep-phenotyping analyses revealed that FMD profoundly reshapes anticancer immunity by inducing the contraction of peripheral blood immunosuppressive myeloid and regulatory T-cell compartments, paralleled by enhanced intratumor Th1/cytotoxic responses and an enrichment of IFNγ and other immune signatures associated with better clinical outcomes in patients with cancer. Our findings lay the foundations for phase II/III clinical trials aimed at investigating FMD antitumor efficacy in combination with standard antineoplastic treatments. SIGNIFICANCE: Cyclic FMD is well tolerated and causes remarkable systemic metabolic changes in patients with different tumor types and treated with concomitant antitumor therapies. In addition, the FMD reshapes systemic and intratumor immunity, finally activating several antitumor immune programs. Phase II/III clinical trials are needed to investigate FMD antitumor activity/efficacy.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.,Corresponding Authors: Claudio Vernieri, IFOM, The FIRC Institute of Molecular Oncology and Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. Phone: 390223903066; E-mail: or ; and Licia Rivoltini,
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Oncology and Haemato-Oncology Department, University of Milan, Milan, Italy.,Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabio Iannelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Darawan Rinchai
- Immunology Department, Cancer Program, Sidra Medicine, Doha, Qatar
| | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Antonino Belfiore
- Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | | | - Arta Ajazi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Squarcina
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Samantha Pesce
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Frati
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | - Secondo Folli
- Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | | | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Marco Foiani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.,Oncology and Haemato-Oncology Department, University of Milan, Milan, Italy
| | - Valter Daniel Longo
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.,Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Giovanni Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan, Italy
| | - Valter Torri
- Laboratory of Methodology for Biomedical Research, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Haemato-Oncology Department, University of Milan, Milan, Italy.,Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Bedognetti
- Immunology Department, Cancer Program, Sidra Medicine, Doha, Qatar.,Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Authors: Claudio Vernieri, IFOM, The FIRC Institute of Molecular Oncology and Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. Phone: 390223903066; E-mail: or ; and Licia Rivoltini,
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Haemato-Oncology Department, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Zhao Y, Liu X, Si F, Huang L, Gao A, Lin W, Hoft DF, Shao Q, Peng G. Citrate Promotes Excessive Lipid Biosynthesis and Senescence in Tumor Cells for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101553. [PMID: 34747157 PMCID: PMC8728847 DOI: 10.1002/advs.202101553] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Metabolic disorder is one of the hallmarks of cancers, and reprogramming of metabolism is becoming a novel strategy for cancer treatment. Citrate is a key metabolite and critical metabolic regulator linking glycolysis and lipid metabolism in cellular energy homeostasis. Here it is reported that citrate treatment (both sodium citrate and citric acid) significantly suppresses tumor cell proliferation and growth in various tumor types. Mechanistically, citrate promotes excessive lipid biosynthesis and induces disruption of lipid metabolism in tumor cells, resulting in tumor cell senescence and growth inhibition. Furthermore, ATM-associated DNA damage response cooperates with MAPK and mTOR signaling pathways to control citrate-induced tumor cell growth arrest and senescence. In vivo studies further demonstrate that citrate administration dramatically inhibits tumor growth and progression in a colon cancer xenograft model. Importantly, citrate administration combined with the conventional chemotherapy drugs exhibits synergistic antitumor effects in vivo in the colon cancer models. These results clearly indicate that citrate can reprogram lipid metabolism and cell fate in cancer cells, and targeting citrate can be a promising therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Yangjing Zhao
- Department of ImmunologyKey Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceSchool of MedicineJiangsu UniversityZhenjiang212013P. R. China
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Xia Liu
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Fusheng Si
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Lan Huang
- Department of ImmunologyKey Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceSchool of MedicineJiangsu UniversityZhenjiang212013P. R. China
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Aiqin Gao
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Wenli Lin
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
| | - Daniel F. Hoft
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
- Department of Molecular Microbiology & ImmunologySaint Louis University School of MedicineSaint LouisMO63104USA
| | - Qixiang Shao
- Department of ImmunologyKey Laboratory of Medical Science and Laboratory Medicine of Jiangsu ProvinceSchool of MedicineJiangsu UniversityZhenjiang212013P. R. China
| | - Guangyong Peng
- Division of Infectious DiseasesAllergy & Immunology and Department of Internal MedicineSaint Louis University School of MedicineSaint LouisMO63104USA
- Department of Molecular Microbiology & ImmunologySaint Louis University School of MedicineSaint LouisMO63104USA
| |
Collapse
|
45
|
Guo Y, Shrestha A, Maskey N, Dong X, Zheng Z, Yang F, Wang R, Ma W, Liu J, Li C, Zhang W, Mao S, Zhang A, Liu S, Yao X. Recent Trends in the Incidence of Clear Cell Adenocarcinoma and Survival Outcomes: A SEER Analysis. Front Endocrinol (Lausanne) 2022; 13:762589. [PMID: 35282450 PMCID: PMC8907425 DOI: 10.3389/fendo.2022.762589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clear cell adenocarcinoma (CCA) is considered a relatively rare tumor with a glycogen-rich phenotype. The prognosis of CCA patients is unclear. In this study, recent trends in the epidemiological and prognostic factors of CCA were comprehensively investigated. METHODS Patients with CCA from years 2000 to 2016 were identified from the Surveillance, Epidemiological, and End Results (SEER) database. Relevant population data were used to analyze the rates age-adjusted incidence, age-standardized 3-year and 5-year relative survivals, and overall survival (OS). RESULTS The age-adjusted incidence of CCA increased 2.7-fold from the year 2000 (3.3/100,000) to 2016 (8.8/100,000). This increase occurred across all ages, races, stages, and grades. Of all these subgroups, the increase was largest in the grade IV group. The age-standardized 3-year and 5-year relative survivals increased during this study period, rising by 9.1% and 9.5% from 2000 to 2011, respectively. Among all the stages and grades, the relative survival increase was greatest in the grade IV group. According to multivariate analysis of all CCA patients, predictors of OS were: age, gender, year of diagnosis, marital status, race, grade, stage, and primary tumor site (P < 0.001). The OS of all CCA patients during the period 2008 to 2016 was significantly higher than that from 2000 to 2007 (P < 0.001). CONCLUSIONS The incidence of CCA and survival of these patients improved over time. In particular, the highest increases were reported for grade IV CCA, which may be due to an earlier diagnosis and improved treatment.
Collapse
Affiliation(s)
- Yadong Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Anil Shrestha
- Department of Urology, National Academy of Medical Sciences, Bir Hospital, Kathmandu, Nepal
| | - Niraj Maskey
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiaohui Dong
- Department of General Medical, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Zongtai Zheng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wenchao Ma
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Aihong Zhang
- Department of Medical Statistics, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Aihong Zhang, ; Shenghua Liu, ; Xudong Yao,
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Aihong Zhang, ; Shenghua Liu, ; Xudong Yao,
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Aihong Zhang, ; Shenghua Liu, ; Xudong Yao,
| |
Collapse
|
46
|
Natalicchio A, Faggiano A, Zatelli MC, Argentiero A, D'Oronzo S, Marrano N, Beretta GD, Acquati S, Adinolfi V, Di Bartolo P, Danesi R, Ferrari P, Gori S, Morviducci L, Russo A, Tuveri E, Montagnani M, Gallo M, Silvestris N, Giorgino F. Metabolic disorders and gastroenteropancreatic-neuroendocrine tumors (GEP-NETs): How do they influence each other? An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit Rev Oncol Hematol 2021; 169:103572. [PMID: 34954047 DOI: 10.1016/j.critrevonc.2021.103572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of malignancies derived from neuroendocrine cells that can occur anywhere along the gastrointestinal tract. GEP-NETs incidence has been steadily increasing over the past decades, in parallel with the increasing incidence of the metabolic syndrome (MetS). It is not yet fully known whether the MetS components (such as obesity, dyslipidemia and type 2 diabetes) could be involved in the etiology of GEP-NETs or could influence their outcomes. In this review, a panel of experts of the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provides a critical view of the experimental and clinical evidence about the association of GEP-NETs risk, outcomes, and therapies with the metabolic disorders typical of MetS. The potential therapeutic strategies for an optimal management of patients with both GEP-NETs and MetS are also discussed.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | - Maria Chiara Zatelli
- Section of Endocrinology & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | | | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | | | - Silvia Acquati
- Endocrinology Unit, Ospedale Pierantoni-Morgagni, Forlì, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - Paolo Di Bartolo
- Diabetology Clinic, Rete Clinica di Diabetologia Aziendale - Dipartimento, Internistico di Ravenna - AUSL Romagna, Ravenna, Italy.
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Pietro Ferrari
- Palliative Care Unit, Istituti Clinici Scientifici Maugeri SPA SB, IRCCS (PV), Italy.
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria di Negrar, Verona, Italy.
| | - Lelio Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialities, ASL Roma 1 - S. Spirito Hospital, Rome, Italy.
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ATS Sardegna - ASSL Carbonia-Iglesias, Italy.
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| | - Nicola Silvestris
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy; Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
47
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
48
|
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021; 21:141-162. [PMID: 34862480 PMCID: PMC8641543 DOI: 10.1038/s41573-021-00339-6] [Citation(s) in RCA: 498] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.
Collapse
Affiliation(s)
| | | | | | - Chi V Dang
- The Wistar Institute Philadelphia, Philadelphia, PA, USA. .,Ludwig Institute for Cancer Research New York, New York, NY, USA.
| |
Collapse
|
49
|
Queiroz Júnior JRAD, Costa Pereira JPD, Pires LL, Maia CS. The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review. Nutr Cancer 2021; 74:1942-1957. [PMID: 34854769 DOI: 10.1080/01635581.2021.2007962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The malignant neoplastic cell is characterized by its diverse metabolic changes. It occurs in order to maintain the high rate of proliferation. The possibility of new pharmacological targets has inserted tumor metabolism as a target for recent research, emphasizing the enzymatic activity of thiamin. This review aims to elucidate the behavior of thiamin against tumor development. This is a systematic review in which studies indexed in Pubmed, Scopus, SciELO and BVS were searched using the descriptors (Thiamin OR Vitamin B1) AND (Cancer OR Malignant neoplasia) AND (Tumor metabolism). Title and abstract were read. Duplicates, literary reviews, books, conference abstracts, editorials, and papers published prior to 2010 were eliminated. 23 records were included in this review. Low doses of thiamin have been shown to be enough to stimulate tumor growth. Another population studies has shown evidence of tumor regression after correction of vitamin B1 deficiency. There is an open path for the development of new research to better assess the influence of thiamin on cancer cells. Once the connections between thiamin and the metabolism of cancer cells are fully established, new opportunities for therapeutic intervention and dietary modification will appear to reduce the progression of the disease in patients with cancer.
Collapse
Affiliation(s)
| | | | - Leonardo Lucas Pires
- Department of Medical Sciences, Potiguar University, Natal, Rio Grande do Norte, Brazil
| | - Carina Scanoni Maia
- Department of Histology and Embryology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
50
|
Taş İ, Varlı M, Son Y, Han J, Kwak D, Yang Y, Zhou R, Gamage CDB, Pulat S, Park SY, Yu YH, Moon KS, Lee KH, Ha HH, Hur JS, Kim H. Physciosporin suppresses mitochondrial respiration, aerobic glycolysis, and tumorigenesis in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153674. [PMID: 34333327 DOI: 10.1016/j.phymed.2021.153674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Physciosporin (PHY) is one of the potent anticancer lichen compound. Recently, PHY was shown to suppress colorectal cancer cell proliferation, motility, and tumorigenesis through novel mechanisms of action. PURPOSE We investigated the effects of PHY on energy metabolism and tumorigenicity of the human breast cancer (BC) cells MCF-7 (estrogen and progesterone positive BC) and MDA-MB-231 (triple negative BC). METHODS The anticancer effect of PHY on cell viability, motility, cancer metabolism and tumorigenicity was evaluated by MTT assay, migration assay, clonogenic assay, anchorage-independent colony formation assay, glycolytic and mitochondrial metabolism analysis, qRT-PCR, flow cytometric analysis, Western blotting, immunohistochemistry in vitro; and by tumorigenicity study with orthotopic breast cancer xenograft model in vivo. RESULTS PHY markedly inhibited BC cell viability. Cell-cycle profiling and Annexin V-FITC/PI double staining showed that a toxic dosage of PHY triggered apoptosis in BC cell lines by regulating the B-cell lymphoma-2 (Bcl-2) family proteins and the activity of caspase pathway. At non-toxic concentrations, PHY potently decreased migration, proliferation, and tumorigenesis of BC cells in vitro. Metabolic studies revealed that PHY treatment significantly reduced the bioenergetic profile by decreasing respiration, ATP production, and glycolysis capacity. In addition, PHY significantly altered the levels of mitochondrial (PGC-1α) and glycolysis (GLUT1, HK2 and PKM2) markers, and downregulated transcriptional regulators involved in cancer cell metabolism, including β-catenin, c-Myc, HIF-1α, and NF-κB. An orthotopic implantation mouse model of BC confirmed that PHY treatment suppressed BC growth in vivo and target genes were consistently suppressed in tumor specimens. CONCLUSION The findings from our in vitro as well as in vivo studies exhibit that PHY suppresses energy metabolism as well as tumorigenesis in BC. Especially, PHY represents a promising therapeutic effect against hormone-insensitive BC (triple negative) by targeting energy metabolism.
Collapse
Affiliation(s)
- İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea; Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Yeseon Son
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Jin Han
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Dahye Kwak
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | | | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|