1
|
Li Y, Zhang R, Fu C, Jiang Q, Zhang P, Zhang Y, Chen J, Tao K, Chen WH, Zeng X. Intratumoral microbiome promotes liver metastasis and dampens adjuvant imatinib treatment in gastrointestinal stromal tumor. Cancer Lett 2024; 601:217149. [PMID: 39117066 DOI: 10.1016/j.canlet.2024.217149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Understanding the determinants of long-term liver metastasis (LM) outcomes in gastrointestinal stromal tumor (GIST) patients is crucial. We established the feature selection model of intratumoral microbiome at the surgery, achieving robust predictive accuracies of 0.953 and 0.897 AUCs in discovery (n = 74) and validation (n = 34) cohorts, respectively. Notably, despite the significant reduction in LM occurrence with adjuvant imatinib (AI) treatment, intratumoral microbiome exerted independently stronger effects on post-operative LM. Employing both 16S and full-length rRNA sequencing, we pinpoint intracellular Shewanella algae as a foremost LM risk factor in both AI- and non-AI-treated patients. Experimental validation confirmed S. algae's intratumoral presence in GIST, along with migration/invasion-promoting effects on GIST cells. Furthermore, S. algae promoted LM and impeded AI treatment in metastatic mouse models. Our findings advocate for incorporating intratumoral microbiome evaluation at surgery, and propose S. algae as a therapeutic target for LM suppression in GIST.
Collapse
Affiliation(s)
- Yanze Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Computer Science, School of Science, Aalto University, Helsinki, Finland
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbo Fu
- Department of Computer Science, School of Science, Aalto University, Helsinki, Finland
| | - Qi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Chen R, Ren Z, Bai L, Hu X, Chen Y, Ye Q, Hu Y, Shi J. Novel antibody-drug conjugates based on DXd-ADC technology. Bioorg Chem 2024; 151:107697. [PMID: 39121594 DOI: 10.1016/j.bioorg.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibody-drug conjugate (ADC) technology, which uses monoclonal antibodies (mAbs) to specifically deliver effective cytotoxic payloads to tumor cells, has become a promising method of tumor targeted therapy. ADCs are a powerful class of biopharmaceuticals that link antibodies targeting specific antigens and small molecule drugs with potent cytotoxicity via a linker, thus enabling selective destruction of cancer cells while minimizing systemic toxicity. DXd is a topoisomerase I inhibitor that induces DNA damage leading to cell cycle arrest, making it an option for ADC payloads. The DXd-ADC technology, developed by Daiichi Sankyo, is a cutting-edge platform that produces a new generation of ADCs with improved therapeutic metrics and has shown significant therapeutic potential in various types of cancer. This review provides a comprehensive assessment of drugs developed with DXd-ADC technology, with a focus on mechanisms of action, pharmacokinetics studies, preclinical data, and clinical outcomes for DS-8201a, U3-1402, DS-1062a, DS-7300a, DS-6157a, and DS-6000a. By integrating existing data, we aim to provide valuable insights into the current therapeutic status and future prospects of these novel agents.
Collapse
Affiliation(s)
- Rong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhiwen Ren
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefang Hu
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture, Academy of Agricultural Planning and Engineering Mara, Beijing 100121, China
| | - Yuchen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuan Hu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Bian F, Goda C, Wang G, Lan YW, Deng Z, Gao W, Acharya A, Reza AA, Gomez-Arroyo J, Merjaneh N, Ren X, Goveia J, Carmeliet P, Kalinichenko VV, Kalin TV. FOXF1 promotes tumor vessel normalization and prevents lung cancer progression through FZD4. EMBO Mol Med 2024; 16:1063-1090. [PMID: 38589650 PMCID: PMC11099127 DOI: 10.1038/s44321-024-00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/β-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/β-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/β-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Chinmayee Goda
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Guolun Wang
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Wen Gao
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Abid A Reza
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Xiaomeng Ren
- Division of Asthma Research of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, 3000, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E Thomas Rd., Phoenix, AZ, 85016, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care, University of Arizona College of Medicine-Phoenix, 475 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
6
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
7
|
Arora S, Yang J, Akiyama T, James DQ, Morrissey A, Blanda TR, Badjatia N, Lai WK, Ko MS, Pugh BF, Mahony S. Joint sequence & chromatin neural networks characterize the differential abilities of Forkhead transcription factors to engage inaccessible chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561228. [PMID: 37873361 PMCID: PMC10592618 DOI: 10.1101/2023.10.06.561228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.
Collapse
Affiliation(s)
- Sonny Arora
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Jianyu Yang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
- Current address: School of Medicine, Yokohama City University, Japan
| | - Daniela Q. James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Thomas R. Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - William K.M. Lai
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Minoru S.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| |
Collapse
|
8
|
George S, Heinrich MC, Somaiah N, Oppelt P, McLeod R, Nishioka S, Kundu MG, Qian X, Kumar P, Laadem A, Lau Y, Tran BP, Fallon M, Dosunmu O, Shi J, Naito Y. A Phase I, Multicenter, Open-Label, First-in-Human Study of DS-6157a in Patients with Advanced Gastrointestinal Stromal Tumor. Clin Cancer Res 2023; 29:3659-3667. [PMID: 37363962 PMCID: PMC10502450 DOI: 10.1158/1078-0432.ccr-23-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE To evaluate DS-6157a, an antibody-drug conjugate targeting G protein-coupled receptor 20 (GPR20), in gastrointestinal stromal tumors (GIST). PATIENTS AND METHODS In this phase I multicenter, open-label, multiple-dose study, patients with previously treated advanced GIST received intravenous DS-6157a on Day 1 of 21-day cycles, with a starting dose of 1.6 mg/kg. The primary objective evaluated the safety and tolerability of DS-6157a, while determining dose-limiting toxicity (DLT) and the MTD. Secondary objectives included plasma pharmacokinetics parameters, plasma antidrug antibodies (ADA), and efficacy. RESULTS A total of 34 patients enrolled. DS-6157a was well tolerated, with DLTs in 4 patients (11.8%) at doses of 6.4 mg/kg, 9.6 mg/kg, and 12.8 mg/kg; the MTD was determined to be 6.4 mg/kg. Treatment-emergent adverse events (TEAE) grade ≥3 occurred in 17 patients (50.0%), including decreased platelet count (23.5%), anemia (20.6%), decreased neutrophil count (14.7%), and decreased white blood cell count (11.8%). Four patients (11.8%) experienced serious adverse events related to DS-6157a. Six patients died with 5 due to disease progression and 1 due to DS-6157a-related TEAE. Tumor shrinkage was observed in 7 patients (20.6%), and 1 patient (2.9%) achieved a partial response. Plasma concentrations and exposure of intact DS-6157a, DXd, and total anti-GPR20 antibody all demonstrated a dose-dependent profile. No treatment-emergent ADAs were observed. CONCLUSIONS Targeting GPR20 with DS-6157a was tolerated in patients with advanced GIST with tumor shrinkage demonstrated in KIT/PDGFRA wild-type GIST. However, the study did not proceed further due to lower efficacy outcomes than anticipated.
Collapse
Affiliation(s)
- Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael C. Heinrich
- Division of Hematology and Medical Oncology, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Oppelt
- Department of Medicine, Oncology Division, Section of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | - Yvonne Lau
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | | | | | - Ololade Dosunmu
- Medical & Clinical Science, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Julia Shi
- Sarah Cannon Development Innovations, Nashville, Tennessee
| | - Yoichi Naito
- Department of General Internal Medicine/Developmental Therapeutics/Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
9
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Du X, Wang H, Xu J, Zhang Y, Chen T, Li G. Profiling and integrated analysis of transcriptional addiction gene expression and prognostic value in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204676. [PMID: 37171044 PMCID: PMC10188332 DOI: 10.18632/aging.204676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
Transcriptional dysregulation caused by genomic and epigenetic alterations in cancer is called "transcriptional addiction". Transcriptional addiction is an important pathogenic factor of tumor malignancy. Hepatocellular carcinoma (HCC) genomes are highly heterogeneous, with many dysregulated genes. Our study analyzed the possibility that transcriptional addiction-related genes play a significant role in HCC. All data sources for conducting this study were public cancer databases and tissue microarrays. We identified 38 transcriptional addiction genes, and most were differentially expressed genes. Among patients of different groups, there were significant differences in overall survival rates. Both nomogram and risk score were independent predictors of HCC outcomes. Transcriptional addiction gene expression characteristics determine the sensitivity of patients to immunotherapy, cisplatin, and sorafenib. Besides, HDAC2 was identified as an oncogene, and its expression was correlated with patient survival time. Our study conclusively demonstrated that transcriptional addiction is crucial in HCC. We provided biomarkers for predicting the prognosis of HCC patients, which can more precisely guide the patient's treatment.
Collapse
Affiliation(s)
- Xiaowei Du
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Wang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Zhang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingsong Chen
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Li
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Murakami S, White SM, McIntosh AT, Nguyen CDK, Yi C. Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas. Nat Commun 2023; 14:1443. [PMID: 36922511 PMCID: PMC10017707 DOI: 10.1038/s41467-023-37147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Lineage plasticity has been proposed as a major source of intratumoral heterogeneity and therapeutic resistance. Here, by employing an inducible genetic engineered mouse model, we illustrate that lineage plasticity enables advanced Pancreatic Ductal Adenocarcinoma (PDAC) tumors to develop spontaneous relapse following elimination of the central oncogenic driver - Yap. Transcriptomic and immunohistochemistry analysis of a large panel of PDAC tumors reveals that within high-grade tumors, small niches of PDAC cells gradually evolve to re-activate pluripotent transcription factors (PTFs), which lessen their dependency on Yap. Comprehensive Cut&Tag analysis demonstrate that although acquisition of PTF expression is coupled with the process of epithelial-to-mesenchymal transition (EMT), PTFs form a core transcriptional regulatory circuitry (CRC) with Jun to overcome Yap dependency, which is distinct from the classic TGFb-induced EMT-TF network. A chemical-genetic screen and follow-up functional studies establish Brd4 as an epigenetic gatekeeper for the PTF-Jun CRC, and strong synergy between BET and Yap inhibitors in blocking PDAC growth.
Collapse
Affiliation(s)
- Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Alec T McIntosh
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
12
|
The microphthalmia-associated transcription factor is involved in gastrointestinal stromal tumor growth. Cancer Gene Ther 2023; 30:245-255. [PMID: 36241703 DOI: 10.1038/s41417-022-00539-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common neoplasms of mesenchymal origin, and most of them emerge due to the oncogenic activation of KIT or PDGFRA receptors. Despite their relevance in GIST oncogenesis, critical intermediates mediating the KIT/PDGFRA transforming program remain mostly unknown. Previously, we found that the adaptor molecule SH3BP2 was involved in GIST cell survival, likely due to the co-regulation of the expression of KIT and Microphthalmia-associated transcription factor (MITF). Remarkably, MITF reconstitution restored KIT expression levels in SH3BP2 silenced cells and restored cell viability. This study aimed to analyze MITF as a novel driver of KIT transforming program in GIST. Firstly, MITF isoforms were characterized in GIST cell lines and GIST patients' samples. MITF silencing decreases cell viability and increases apoptosis in GIST cell lines irrespective of the type of KIT primary or secondary mutation. Additionally, MITF silencing leads to cell cycle arrest and impaired tumor growth in vivo. Interestingly, MITF silencing also affects ETV1 expression, a linage survival factor in GIST that promotes tumorigenesis and is directly regulated by KIT signaling. Altogether, these results point to MITF as a key target of KIT/PDGFRA oncogenic signaling for GIST survival and tumor growth.
Collapse
|
13
|
Li Y, Zhang Y, Fu Y, Yang W, Wang X, Duan L, Niu L, Chen J, Zhou W, Liu J, Wang J, Fan D, Hong L. Development and validation of a prognostic model to predict the prognosis of patients with colorectal gastrointestinal stromal tumor: A large international population-based cohort study. Front Oncol 2022; 12:1004662. [PMID: 36408151 PMCID: PMC9666406 DOI: 10.3389/fonc.2022.1004662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Background Colorectal gastrointestinal stromal tumors (GISTs), mesenchymal malignancy, only accounts for about 6% of GISTs, but prognosis is generally poor. Given the rarity of colorectal GISTs, the prognostic values of clinicopathological features in the patients remain unclear. Nomograms can provide a visual interface to help calculate the predicted probability of a patient meeting a specific clinical endpoint and communicate it to the patient. Methods We included a total of 448 patients with colorectal GISTs diagnosed between 2000 and 2019 from the Surveillance, Epidemiology, and End Results (SEER) database. For nomogram construction and validation, patients in the SEER database were divided randomly into the training cohort and internal validation cohort at a ratio of 7:3, while 44 patients with colorectal GISTs from our hospital patient data set between 2010 to 2016 served as the external validation cohort. The OS curves were drawn using the Kaplan–Meier method and assessed using the log-rank test. And, Fine and Gray’s competing-risks regression models were conducted to assess CSS. We performed univariate and multivariate analyses to select prognostic factors for survival time and constructed a predictive nomogram based on the results of the multivariate analysis. Results Through univariate and multivariate analyses, it is found that age, primary site, SEER stage, surgery, and tumor size constitute significant risk factors for OS, and age, primary site, histological grade, SEER stage, American Joint Committee for Cancer (AJCC) stage, surgery, and tumor size constitute risk factors for CSS. We found that the nomogram provided a good assessment of OS and CSS at 1-, 3- and 5- year in patients with colorectal GISTs. The calibration plots for the training, internal validation and external validation cohorts at 1-, 3- and 5- year OS and CSS indicated that the predicted survival rates closely correspond to the actual survival rates. Conclusion We constructed and validated an unprecedented nomogram to predict OS and CSS in patients with colorectal GISTs. The nomogram had the potential as a clinically predictive tool for colorectal GISTs prognosis, and can be used as a potential, objective and additional tool for clinicians in predicting the prognosis of colorectal GISTs patients worldwide. Clinicians could wield the nomogram to accurately evaluate patients’ OS and CSS, identify high-risk patients, and provide a baseline to optimize treatment plans.
Collapse
Affiliation(s)
- Yiding Li
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Yang Fu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Wanli Yang
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Lili Duan
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Liaoran Niu
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Junfeng Chen
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Wei Zhou
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Jing Wang
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Liu Hong
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- *Correspondence: Liu Hong,
| |
Collapse
|
14
|
Lugones Y, Loren P, Salazar LA. Cisplatin Resistance: Genetic and Epigenetic Factors Involved. Biomolecules 2022; 12:biom12101365. [PMID: 36291573 PMCID: PMC9599500 DOI: 10.3390/biom12101365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CDDP) is the drug of choice against different types of cancer. However, tumor cells can acquire resistance to the damage caused by cisplatin, generating genetic and epigenetic changes that lead to the generation of resistance and the activation of intrinsic resistance mechanisms in cancer cells. Among them, we can find mutations, alternative splicing, epigenetic-driven expression changes, and even post-translational modifications of proteins. However, the molecular mechanisms by which CDDP resistance develops are not clear but are believed to be multi-factorial. This article highlights a description of cisplatin, which includes action mechanism, resistance, and epigenetic factors involved in cisplatin resistance.
Collapse
Affiliation(s)
- Yuliannis Lugones
- Doctoral Programme in Sciences with Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
15
|
Zhang X, Lou HE, Gopalan V, Liu Z, Jafarah HM, Lei H, Jones P, Sayers CM, Yohe ME, Chittiboina P, Widemann BC, Thiele CJ, Kelly MC, Hannenhalli S, Shern JF. Single-cell sequencing reveals activation of core transcription factors in PRC2-deficient malignant peripheral nerve sheath tumor. Cell Rep 2022; 40:111363. [PMID: 36130486 PMCID: PMC9585487 DOI: 10.1016/j.celrep.2022.111363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah E Lou
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hilda M Jafarah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paige Jones
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Zhang T, Wang Y, Xie M, Ji X, Luo X, Chen X, Zhang B, Liu D, Feng Y, Sun M, Huang W, Xia L. HGF-mediated elevation of ETV1 facilitates hepatocellular carcinoma metastasis through upregulating PTK2 and c-MET. J Exp Clin Cancer Res 2022; 41:275. [PMID: 36109787 PMCID: PMC9479266 DOI: 10.1186/s13046-022-02475-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Metastasis is a major determinant of death in patients with hepatocellular carcinoma (HCC). Dissecting key molecular mediators that promote this malignant feature may help yield novel therapeutic insights. Here, we investigated the role of E-twenty-six transformation-specific variant 1 (ETV1), a member of the E-twenty-six transformation-specific (ETS) family, in HCC metastasis. Methods The clinical significance of ETV1 and its target genes in two independent cohorts of HCC patients who underwent curative resection were assessed by Kaplan–Meier analysis and Multivariate Cox proportional hazards model. Luciferase reporter assay and chromatin immunoprecipitation assay were used to detect the transcriptional regulation of target gene promoters by ETV1. The effect of ETV1 on invasiveness and metastasis of HCC were detected by transwell assays and the orthotopically metastatic model. Results ETV1 expression was frequently elevated in human HCC specimens. Increased ETV1 expression was associated with the malignant biological characteristics and poor prognosis of HCC patients. ETV1 facilitated invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, ETV1 promoted HCC metastasis via upregulating metastasis-related genes, including protein tyrosine kinase 2 (PTK2) and MET. Down-regulated the expression of PTK2 or tyrosine protein kinase Met (c-MET) decreased ETV1-mediated HCC metastasis. Hepatocyte growth factor (HGF) upregulated ETV1 expression through activating c-MET-ERK1/2-ELK1 pathway. Notably, in two independent cohorts, patients with positive coexpression of ETV1/PTK2 or ETV1/c-MET had worse prognosis. Furthermore, the combination of PTK2 inhibitor defactinib and c-MET inhibitor capmatinib significantly suppressed HCC metastasis induced by ETV1. Conclusion This study uncovers functional and prognostic roles for ETV1 in HCC and exposes a positive feedback loop of HGF-ERK1/2-ETV1-c-MET. Targeting this pathway may provide a potential therapeutic intervention for ETV1-overexpressing HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02475-2.
Collapse
|
17
|
Sun J, Zhang Q, Sun X, Xue A, Gao X, Shen K. THZ1 targeting CDK7 suppresses c-KIT transcriptional activity in gastrointestinal stromal tumours. Cell Commun Signal 2022; 20:138. [PMID: 36076237 PMCID: PMC9454178 DOI: 10.1186/s12964-022-00928-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours of the gastrointestinal tract and are characterized by activating mutations of c-KIT or PDGFRa receptor tyrosine kinases (RTKs). Despite the clinical success of tyrosine kinase inhibitors (TKIs), more than half of GIST patients develop resistance due to a second mutation. Cyclin-dependent kinase 7 (CDK7) is the catalytic subunit of CDK-activating kinase (CAK), and it plays an important role in the regulation of cell cycle transitions and gene transcription. THZ1, a CDK7 inhibitor, exhibits a dose-dependent inhibitory effect in various cancers. Methods Data from the public GEO database and tissue microarray were used to analyse the gene expression levels of CDKs in GISTs. The impact of CDK7 knockdown and the CDK7 inhibitor THZ1 on GIST progression was investigated in vitro using CCK-8, colony formation, and flow cytometry assays and in vivo using a xenograft mouse model. RNA sequencing was performed to investigate the mechanism of GIST cell viability impairment mediated by THZ1 treatment. Results Our study demonstrated that CDK7 is relatively overexpressed in high-risk GISTs and predicts a poor outcome. A low concentration of THZ1 exhibited a pronounced antineoplastic effect in GIST cells in vivo and in vitro. Moreover, THZ1 exerted synergistic anticancer effects with imatinib. THZ1 treatment resulted in transcriptional modulation by inhibiting the phosphorylation of Ser2, Ser5, and Ser7 within RNA polymerase II (RNAPII). c-KIT, an oncogene driver of GIST, was transcriptionally repressed by THZ1 treatment or CDK7 knockdown. Transcriptome sequencing analysis showed that OSR1 acts as a downstream target of CDK7 and regulates c-KIT expression. Taken together, our results highlight elevated CDK7 expression as a predictor of poor outcome in GIST and present the combination of CDK7 and RTK inhibitors as a potent therapeutic strategy to improve the efficacy of GIST treatment. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00928-x.
Collapse
Affiliation(s)
- Jianyi Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Qiang Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Xiangfei Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China.
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Patel AJ, Warda S, Maag JL, Misra R, Miranda-Román MA, Pachai MR, Lee CJ, Li D, Wang N, Bayshtok G, Fishinevich E, Meng Y, Wong EW, Yan J, Giff E, Pappalardi MB, McCabe MT, Fletcher JA, Rudin CM, Chandarlapaty S, Scandura JM, Koche RP, Glass JL, Antonescu CR, Zheng D, Chen Y, Chi P. PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discov 2022; 12:2120-2139. [PMID: 35789380 PMCID: PMC9437570 DOI: 10.1158/2159-8290.cd-21-1671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesper L.V. Maag
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohan Misra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve Fishinevich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yinuo Meng
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Giff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa B. Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Michael T. McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Joseph M. Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, New York
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, New York
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob L. Glass
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, Grosveld GC, Hatley M, Xu B, Fan Y, Wu G, Chen EY, Chen T, Lewis PW, Rankovic Z, Li Y, Murphy AJ, Easton J, Peng J, Chen X, Wang R, White SW, Davidoff AM, Yang J. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci Transl Med 2022; 14:eabq2096. [PMID: 35857643 PMCID: PMC9548378 DOI: 10.1126/scitranslmed.abq2096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Waise Quarni
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alireza Abdolvahabi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Protein Technologies Center, Molecular Interaction Analysis, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Bowling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria Honnell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave., Suite 500, Memphis, TN 38163, USA
| |
Collapse
|
20
|
Hemming ML, Benson MR, Loycano MA, Anderson JA, Andersen JL, Taddei ML, Krivtsov AV, Aubrey BJ, Cutler JA, Hatton C, Sicinska E, Armstrong SA. MOZ and Menin-MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discov 2022; 12:1804-1823. [PMID: 35499757 PMCID: PMC9453853 DOI: 10.1158/2159-8290.cd-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly characterized by activating mutations in the receptor tyrosine kinase KIT. Tyrosine kinase inhibitors are the only approved therapy for GIST, and complementary treatment strategies are urgently needed. As GIST lacks oncogene amplification and relies upon an established network of transcription factors, we hypothesized that unique chromatin-modifying enzymes are essential in orchestrating the GIST epigenome. We identified through genome-scale CRISPR screening that MOZ and Menin-MLL chromatin regulatory complexes are cooperative and unique dependencies in GIST. These complexes were enriched at GIST-relevant genes and regulated their transcription. Inhibition of MOZ and Menin-MLL complexes decreased GIST cell proliferation by disrupting interactions with transcriptional/chromatin regulators, such as DOT1L. MOZ and Menin inhibition caused significant reductions in tumor burden in vivo, with superior effects observed with combined Menin and KIT inhibition. These results define unique chromatin regulatory dependencies in GIST and identify potential therapeutic strategies for clinical application. SIGNIFICANCE Although many malignancies rely on oncogene amplification, GIST instead depends upon epigenetic regulation of KIT and other essential genes. Utilizing genome-scale CRISPR dependency screens, we identified complementary chromatin-modifying complexes essential to GIST and characterize the consequences of their disruption, elucidating a novel therapeutic approach to this disease. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Matthew L. Hemming
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan R. Benson
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A. Loycano
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Anderson
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L. Andersen
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon J. Aubrey
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jevon A. Cutler
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charlie Hatton
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 2022; 13:2080. [PMID: 35440116 PMCID: PMC9019054 DOI: 10.1038/s41467-022-29746-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.
Collapse
Affiliation(s)
- Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Chi P, Qin LX, Nguyen B, Kelly CM, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Yoon S, Ulaner G, Yeh R, Martindale M, Phelan HT, Biniakewitz MD, Warda S, Lee CJ, Berger MF, Schultz ND, Singer S, Hwang S, Chen Y, Antonescu CR, Tap WD. Phase II Trial of Imatinib Plus Binimetinib in Patients With Treatment-Naive Advanced Gastrointestinal Stromal Tumor. J Clin Oncol 2022; 40:997-1008. [PMID: 35041493 PMCID: PMC8937014 DOI: 10.1200/jco.21.02029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS In this trial (NCT01991379), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in > 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.
Collapse
Affiliation(s)
- Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Li-Xuan Qin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sam Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Gary Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Randy Yeh
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Moriah Martindale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Haley T. Phelan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus D. Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
23
|
Xu K, Zhang Q, Chen M, Li B, Wang N, Li C, Gao Z, Zhang D, Yang L, Xu Z, Li X, Xu H. N 6-methyladenosine modification regulates imatinib resistance of gastrointestinal stromal tumor by enhancing the expression of multidrug transporter MRP1. Cancer Lett 2022; 530:85-99. [PMID: 35032557 DOI: 10.1016/j.canlet.2022.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) is a frequently occurring mRNA modification, which regulates mRNA stability, splicing, and translation. However, its role in drug resistance of gastrointestinal stromal tumor (GIST) is not known. Here, we report that m6A modification levels are elevated in imatinib-resistant GIST cells and tissues, and that methyltransferase METTL3 is one of the main protein responsible for this aberrant modification. Increased METTL3 levels contributed to imatinib resistance and worse progression-free survival of GIST patients. Mechanistic studies revealed that METTL3-mediated m6A modification of the 5'UTR of the multidrug transporter MRP1 mRNA promoted drug resistance of GIST by stimulating MRP1 mRNA translation, via binding with YTHDF1 and eEF-1. Further, METTL3 transcription in Imatinib resistant GIST cells was activated by ETV1, leading to the increased m6A methylation of MRP1 mRNA. This is the first report showing a novel regulatory mechanism whereby ETV1, METTL3, and the YTHDF1/eEF-1 complex mediate the translation of MRP1 mRNA in an m6A-dependent manner to regulate the intracellular concentration of imatinib and drug resistance of GIST. These findings highlight MRP1 as a new potential therapeutic target for imatinib resistance of GIST.
Collapse
Affiliation(s)
- Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, 222002, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Chao Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China.
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
24
|
García-Valverde A, Rosell J, Sayols S, Gómez-Peregrina D, Pilco-Janeta DF, Olivares-Rivas I, de Álava E, Maurel J, Rubió-Casadevall J, Esteve A, Gut M, Valverde C, Barretina J, Carles J, Demetri GD, Fletcher JA, Arribas J, Serrano C. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene 2021; 40:6614-6626. [PMID: 34621020 DOI: 10.1038/s41388-021-02049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023]
Abstract
KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients' samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)-the main effector of muscular atrophy in cachexia-resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.
Collapse
Affiliation(s)
- Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Daniel F Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, Sevilla, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Sevilla, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Anna Esteve
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claudia Valverde
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jordi Barretina
- Institut Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Institut Català d'Oncologia, Badalona, Spain
| | - Joan Carles
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - George D Demetri
- Sarcoma and Bone Cancer Treatment Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joaquín Arribas
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Growth Factors Laboratory, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
25
|
Wei L, Chen J, Song C, Zhang Y, Zhang Y, Xu M, Feng C, Gao Y, Qian F, Wang Q, Shang D, Zhou X, Zhu J, Wang X, Jia Y, Liu J, Zhu Y, Li C. Cancer CRC: A Comprehensive Cancer Core Transcriptional Regulatory Circuit Resource and Analysis Platform. Front Oncol 2021; 11:761700. [PMID: 34712617 PMCID: PMC8546348 DOI: 10.3389/fonc.2021.761700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A core transcriptional regulatory circuit (CRC) is a group of interconnected auto-regulating transcription factors (TFs) that form loops and can be identified by super-enhancers (SEs). Studies have indicated that CRCs play an important role in defining cellular identity and determining cellular fate. Additionally, core TFs in CRCs are regulators of cell-type-specific transcriptional regulation. However, a global view of CRC properties across various cancer types has not been generated. Thus, we integrated paired cancer ATAC-seq and H3K27ac ChIP-seq data for specific cell lines to develop the Cancer CRC (http://bio.liclab.net/Cancer_crc/index.html). This platform documented 94,108 cancer CRCs, including 325 core TFs. The cancer CRC also provided the “SE active core TFs analysis” and “TF enrichment analysis” tools to identify potentially key TFs in cancer. In addition, we performed a comprehensive analysis of core TFs in various cancer types to reveal conserved and cancer-specific TFs.
Collapse
Affiliation(s)
- Ling Wei
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiaxin Chen
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chao Song
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuexin Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yimeng Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Mingcong Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yu Gao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiuyu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.,School of Computer, University of South China, Hengyang, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China
| | - Desi Shang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.,School of Computer, University of South China, Hengyang, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China
| | - Xinyuan Zhou
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xiaopeng Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yijie Jia
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jiaqi Liu
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.,School of Computer, University of South China, Hengyang, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Chunquan Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China.,Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.,School of Computer, University of South China, Hengyang, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, China.,General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
26
|
Nema R, Patel P, Kumar A. Prognostic Role of Receptor Tyrosine Kinase-Like Orphan Receptors in Intestinal-Type Gastric Cancer. Asian Pac J Cancer Prev 2021; 22:2125-2134. [PMID: 34319035 PMCID: PMC8607102 DOI: 10.31557/apjcp.2021.22.7.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is diagnosed at advanced stages and has high mortality rates. Surgical resection and adjuvant chemotherapy are the main therapeutic approaches for GC. Despite curative resection, recurrence and metastasis contribute to a high mortality rate in patients with GC. The receptor-tyrosine-kinase-like orphan receptors 1/2 (ROR1/2) are transmembrane proteins belonging to the receptor tyrosine kinase (RTK) family. ROR1 and ROR2 are known to overexpress in the tumor tissues from several types of cancer patients. However, the role of RORs in the prognosis has not been understood. METHODS This study aimed to determine the association of mRNA expression of ROR1, ROR2, and their signaling components WNT5A, NKX2-1, and FOXF1, with the survival outcome of GC patients. We performed Kaplan-Meir survival analysis on publicly available 'The Cancer Genome Atlas (TCGA)' data sets using 'Kaplan-Meir Plotter.' RESULTS High mRNA expression of ROR1, ROR2, NKX2-1, and FOXF1 was significantly correlated with worse overall survival (OS) of GC patients. Interestingly ROR1 and ROR showed a prognostic role in the intestinal subtype, but not in the diffuse subtype of GC. Furthermore, ROR1 was positively correlated with regulatory T cells and M2-type macrophages and negatively correlated with Th17 and natural killer T cells in the tumor stroma of patients with GC. CONCLUSION We conclude that the expression of ROR1, ROR2, and their associated genes correlate with worst prognosis of GC patients, particularly in the intestinal type. .
Collapse
Affiliation(s)
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, India.
| |
Collapse
|
27
|
De A, Zhou J, Liu P, Huang M, Gunewardena S, Mathur SC, Christenson LK, Sharma M, Zhang Q, Bansal A. Forkhead box F1 induces columnar phenotype and epithelial-to-mesenchymal transition in esophageal squamous cells to initiate Barrett's like metaplasia. J Transl Med 2021; 101:745-759. [PMID: 33495575 PMCID: PMC9296259 DOI: 10.1038/s41374-021-00534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have linked Forkhead Box F1 (FOXF1) to Barrett's esophagus (BE). Understanding whether FOXF1 is involved in initiation of Barrett's metaplasia could allow FOXF1 to be used for risk stratification and for therapy. Two-dimensional cell cultures and three-dimensional organoid cultures and well-annotated human biopsies were used to determine the role of FOXF1 in BE pathogenesis. Multiple established esophageal squamous and BE cell lines were tested in gain- and loss-of-function studies. Initiation of a BE-like metaplastic change was evaluated by measuring characteristic cytokeratins and global gene expression profiling and by culturing organoids. Epithelial-mesenchymal transition (EMT) was evaluated by immunostaining for E-cadherin, vimentin and Snail, and by cell motility assay. Columnar esophageal epithelium of BE patients exhibited higher expression of FOXF1 compared to normal squamous esophageal epithelium of GERD patients (P < 0.001). Acidic bile salts induced nuclear FOXF1 in esophageal squamous cells. FOXF1 overexpression in normal esophageal squamous cells: (a) increased columnar cytokeratins and decreased squamous cytokeratins, (b) converted squamous organoids to glandular organoids, and (c) switched global gene profiles to resemble that of human BE epithelium (P = 2.1685e - 06 for upregulated genes and P = 8.3378e - 09 for downregulated genes). FOXF1 inhibition in BE cell lines led to loss of BE differentiation markers, CK7, and mucin 2. Also, FOXF1 induced EMT and promoted cell motility in normal esophageal squamous epithelial cells. FOXF1-induced genes mapped to pathways such as Cancer, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair. In conclusion, FOXF1 promotes a BE-like columnar phenotype and cell motility in esophageal squamous epithelial cells, which may have a critical role in BE development. FOXF1 should be studied further as a biomarker for BE and as a target for BE treatment.
Collapse
Affiliation(s)
- Alok De
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Pi Liu
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | - Manling Huang
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, 75246, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Sharad C Mathur
- Department of Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Kansas City, MO, USA
- The University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Qiuyang Zhang
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, 75246, USA.
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology, The University of Kansas Medical Center, Kansas City, KS, USA.
- Division of Gastroenterology and Hepatology, Veterans Affairs Medical Center, Kansas City, MO, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
28
|
Jiang Y, Jiang YY, Lin DC. Super-enhancer-mediated core regulatory circuitry in human cancer. Comput Struct Biotechnol J 2021; 19:2790-2795. [PMID: 34093993 PMCID: PMC8138668 DOI: 10.1016/j.csbj.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Super-enhancers (SEs) are congregated enhancer clusters with high level of loading of transcription factors (TFs), cofactors and epigenetic modifications. Through direct co-occupancy at their own SEs as well as each other's, a small set of so called "master" TFs form interconnected core regulatory circuitry (CRCs) to orchestrate transcriptional programs in both normal and malignant cells. These master TFs can be predicted mathematically using epigenomic methods. In this Review, we summarize the identification of SEs and CRCs in cancer cells, the mechanisms by which master TFs and SEs cooperatively regulate cancer-type-specific expression programs, and the cancer-type- and subtype-specificity of CRC and the significance in cancer biology.
Collapse
Affiliation(s)
- Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| |
Collapse
|
29
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
30
|
Iida K, Abdelhamid Ahmed AH, Nagatsuma AK, Shibutani T, Yasuda S, Kitamura M, Hattori C, Abe M, Hasegawa J, Iguchi T, Karibe T, Nakada T, Inaki K, Kamei R, Abe Y, Nomura T, Andersen JL, Santagata S, Hemming ML, George S, Doi T, Ochiai A, Demetri GD, Agatsuma T. Identification and Therapeutic Targeting of GPR20, Selectively Expressed in Gastrointestinal Stromal Tumors, with DS-6157a, a First-in-Class Antibody-Drug Conjugate. Cancer Discov 2021; 11:1508-1523. [PMID: 33579785 DOI: 10.1158/2159-8290.cd-20-1434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Currently, the only approved treatments for gastrointestinal stromal tumor (GIST) are tyrosine kinase inhibitors (TKI), which eventually lead to the development of secondary resistance mutations in KIT or PDGFRA and disease progression. Herein, we identified G protein-coupled receptor 20 (GPR20) as a novel non-tyrosine kinase target in GIST, developed new GPR20 IHC, and assessed GPR20 expression in cell lines, patient-derived xenografts, and clinical samples from two institutes (United States and Japan). We studied GPR20 expression stratified by treatment line, KIT expression, GIST molecular subtype, and primary tumor location. We produced DS-6157a, an anti-GPR20 antibody-drug conjugate with a novel tetrapeptide-based linker and DNA topoisomerase I inhibitor exatecan derivative (DXd). DS-6157a exhibited GPR20 expression-dependent antitumor activity in GIST xenograft models including a GIST model resistant to imatinib, sunitinib, and regorafenib. Preclinical pharmacokinetics and safety profile of DS-6157a support its clinical development as a potential novel GIST therapy in patients who are refractory or have resistance or intolerance to approved TKIs. SIGNIFICANCE: GPR20 is selectively expressed in GIST across all treatment lines, regardless of KIT/PDGFRA genotypes. We generated DS-6157a, a DXd-based antibody-drug conjugate that exhibited antitumor activity in GIST models by a different mode of action than currently approved TKIs, showing favorable pharmacokinetics and safety profiles.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Kenji Iida
- Daiichi Sankyo, Co., Ltd., Tokyo, Japan.
| | - Amr H Abdelhamid Ahmed
- Sarcoma and Bone Oncology Division, Medical Oncology Department, Dana-Farber Cancer Institute, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Akiko Kawano Nagatsuma
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Yuki Abe
- Daiichi Sankyo, Co., Ltd., Tokyo, Japan
| | - Taisei Nomura
- National Institutes of Biomedical Innovations, Health and Nutrition, Osaka, Japan
| | - Jessica L Andersen
- Sarcoma and Bone Oncology Division, Medical Oncology Department, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sandro Santagata
- Ludwig Center at Harvard, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew L Hemming
- Sarcoma and Bone Oncology Division, Medical Oncology Department, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Sarcoma and Bone Oncology Division, Medical Oncology Department, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - George D Demetri
- Sarcoma and Bone Oncology Division, Medical Oncology Department, Dana-Farber Cancer Institute, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
31
|
Hemming ML, Coy S, Lin JR, Andersen JL, Przybyl J, Mazzola E, Abdelhamid Ahmed AH, van de Rijn M, Sorger PK, Armstrong SA, Demetri GD, Santagata S. HAND1 and BARX1 Act as Transcriptional and Anatomic Determinants of Malignancy in Gastrointestinal Stromal Tumor. Clin Cancer Res 2021; 27:1706-1719. [PMID: 33451979 DOI: 10.1158/1078-0432.ccr-20-3538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastrointestinal stromal tumor (GIST) arises from interstitial cells of Cajal (ICC) or their precursors, which are present throughout the gastrointestinal tract. Although gastric GIST is commonly indolent and small intestine GIST more aggressive, a molecular understanding of disease behavior would inform therapy decisions in GIST. Although a core transcription factor (TF) network is conserved across GIST, accessory TFs HAND1 and BARX1 are expressed in a disease state-specific pattern. Here, we characterize two divergent transcriptional programs maintained by HAND1 and BARX1, and evaluate their association with clinical outcomes. EXPERIMENTAL DESIGN We evaluated RNA sequencing and TF chromatin immunoprecipitation with sequencing in GIST samples and cultured cells for transcriptional programs associated with HAND1 and BARX1. Multiplexed tissue-based cyclic immunofluorescence and IHC evaluated tissue- and cell-level expression of TFs and their association with clinical factors. RESULTS We show that HAND1 is expressed in aggressive GIST, modulating KIT and core TF expression and supporting proliferative cellular programs. In contrast, BARX1 is expressed in indolent and micro-GISTs. HAND1 and BARX1 expression were superior predictors of relapse-free survival, as compared with standard risk stratification, and they predict progression-free survival on imatinib. Reflecting the developmental origins of accessory TF programs, HAND1 was expressed solely in small intestine ICCs, whereas BARX1 expression was restricted to gastric ICCs. CONCLUSIONS Our results define anatomic and transcriptional determinants of GIST and molecular origins of clinical phenotypes. Assessment of HAND1 and BARX1 expression in GIST may provide prognostic information and improve clinical decisions on the administration of adjuvant therapy.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. .,Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Shannon Coy
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jia-Ren Lin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jessica L Andersen
- Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Amr H Abdelhamid Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Sarcoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Boston, Massachusetts
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Boston, Massachusetts
| |
Collapse
|
32
|
Aberrant super-enhancer landscape reveals core transcriptional regulatory circuitry in lung adenocarcinoma. Oncogenesis 2020; 9:92. [PMID: 33070167 PMCID: PMC7568720 DOI: 10.1038/s41389-020-00277-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lung adenocarcinoma (LUAD) relies on dysregulated gene expression to sustain its infinite growth and progression. Emerging evidence indicates that aberrant transcriptional program results from core transcriptional regulatory circuitry (CRC) which is driven by super-enhancers (SEs). In this study, by integrating profiles of H3K27Ac chromatin immunoprecipitation sequencing (ChIP-seq) from normal adult lung and LUAD cell lines, we revealed that widespread alterations of the super-enhancer were presence during lung carcinogenesis. With SE-based modeling of regulatory circuits and assessments of transcription factor (TF) dependencies, we reconstructed an interconnected transcriptional regulation network formed by three master TFs, including ELF3, EHF, and TGIF1, all of which promoted each other’s expression that confirmed by ChIP-qPCR and western blot. Loss-of function assay revealed that each of them is essential for LUAD cells survival, invasion and metastasis. Meanwhile, the rescue assay also illustrated the transacting transcriptional regulatory circuitry. In addition, the mRNA levels of ELF3, EHF, and TGIF1 were differentially expressed in LUAD tumors and peritumoral tissue. IHC of serial sections revealed that high expressions of CRC (ELF3/EHF/TGIF1-High) were closely associated with high proliferative activity in tumor tissue and poor prognosis on patients with LUAD. Finally, we used small molecular inhibitors to perturb the transcriptional circuitry, also exhibited a prominent anti-cancer effect in vitro. Our findings reveal the mechanism of the transcriptional dysregulation and addiction of LUAD.
Collapse
|
33
|
Chen Y, Xu L, Lin RYT, Müschen M, Koeffler HP. Core transcriptional regulatory circuitries in cancer. Oncogene 2020; 39:6633-6646. [PMID: 32943730 PMCID: PMC7581508 DOI: 10.1038/s41388-020-01459-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type-specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics.
Collapse
Affiliation(s)
- Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Markus Müschen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
34
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|
35
|
Tsuzuki S, Yasuda T, Kojima S, Kawazu M, Akahane K, Inukai T, Imaizumi M, Morishita T, Miyamura K, Ueno T, Karnan S, Ota A, Hyodo T, Konishi H, Sanada M, Nagai H, Horibe K, Tomita A, Suzuki K, Muramatsu H, Takahashi Y, Miyazaki Y, Matsumura I, Kiyoi H, Hosokawa Y, Mano H, Hayakawa F. Targeting MEF2D-fusion Oncogenic Transcriptional Circuitries in B-cell Precursor Acute Lymphoblastic Leukemia. Blood Cancer Discov 2020; 1:82-95. [PMID: 34661142 PMCID: PMC8447276 DOI: 10.1158/2643-3230.bcd-19-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
The cellular context that integrates gene expression, signaling, and metabolism dictates the oncogenic behavior and shapes the treatment responses in distinct cancer types. Although chimeric fusion proteins involving transcription factors (TF) are hallmarks of many types of acute lymphoblastic leukemia (ALL), therapeutically targeting the fusion proteins is a challenge. In this work, we characterize the core regulatory circuitry (CRC; interconnected autoregulatory loops of TFs) of B-ALL involving MEF2D-fusions and identify MEF2D-fusion and SREBF1 TFs as crucial CRC components. By gene silencing and pharmacologic perturbation, we reveal that the CRC integrates the pre-B-cell receptor (BCR) and lipid metabolism to maintain itself and govern malignant phenotypes. Small-molecule inhibitors of pre-BCR signaling and lipid biosynthesis disrupt the CRC and silence the MEF2D fusion in cell culture and show therapeutic efficacy in xenografted mice. Therefore, pharmacologic disruption of CRC presents a potential therapeutic strategy to target fusion protein-driven leukemia. SIGNIFICANCE Cancer type-specific gene expression is governed by transcription factors involved in a highly interconnected autoregulatory loop called CRC. Here, we characterized fusion protein-driven CRC and identified its pharmacologic vulnerabilities, opening therapeutic avenues to indirectly target fusion-driven leukemia by disrupting its CRC.See related commentary by Sadras and Müschen, p. 18. This article is highlighted in the In This Issue feature, p. 5.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Takanobu Morishita
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hirokazu Nagai
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Sayama, Osaka, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumihiko Hayakawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
36
|
Pan J, Silva TC, Gull N, Yang Q, Plummer JT, Chen S, Daigo K, Hamakubo T, Gery S, Ding LW, Jiang YY, Hu S, Xu LY, Li EM, Ding Y, Klempner SJ, Gayther SA, Berman BP, Koeffler HP, Lin DC. Lineage-Specific Epigenomic and Genomic Activation of Oncogene HNF4A Promotes Gastrointestinal Adenocarcinomas. Cancer Res 2020; 80:2722-2736. [PMID: 32332020 DOI: 10.1158/0008-5472.can-20-0390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Gastrointestinal adenocarcinomas (GIAC) of the tubular gastrointestinal (GI) tract including esophagus, stomach, colon, and rectum comprise most GI cancers and share a spectrum of genomic features. However, the unified epigenomic changes specific to GIAC are poorly characterized. Using 907 GIAC samples from The Cancer Genome Atlas, we applied mathematical algorithms to large-scale DNA methylome and transcriptome profiles to reconstruct transcription factor (TF) networks and identify a list of functionally hyperactive master regulator (MR) TF shared across different GIAC. The top candidate HNF4A exhibited prominent genomic and epigenomic activation in a GIAC-specific manner. A complex interplay between the HNF4A promoter and three distal enhancer elements was coordinated by GIAC-specific MRTF including ELF3, GATA4, GATA6, and KLF5. HNF4A also self-regulated its own promoter and enhancers. Functionally, HNF4A promoted cancer proliferation and survival by transcriptional activation of many downstream targets, including HNF1A and factors of interleukin signaling, in a lineage-specific manner. Overall, our study provides new insights into the GIAC-specific gene regulatory networks and identifies potential therapeutic strategies against these common cancers. SIGNIFICANCE: These findings show that GIAC-specific master regulatory transcription factors control HNF4A via three distal enhancers to promote GIAC cell proliferation and survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2722/F1.large.jpg.
Collapse
Affiliation(s)
- Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole Gull
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenji Daigo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Takao Hamakubo
- Department of Protein-protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Samuel J Klempner
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, California. .,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,National University Cancer Institute, National University Hospital Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
37
|
Zhao J, Xue X, Fu W, Dai L, Jiang Z, Zhong S, Deng B, Yin J. Epigenetic activation of FOXF1 confers cancer stem cell properties to cisplatin‑resistant non‑small cell lung cancer. Int J Oncol 2020; 56:1083-1092. [PMID: 32319573 PMCID: PMC7115358 DOI: 10.3892/ijo.2020.5003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The underlying molecular mechanisms of cisplatin resistance in non‑small cell lung cancer (NSCLC) are unclear. In this study, a novel differential methylation region located in the upstream regulatory region of the forkhead box F1 (FOXF1) gene was identified. The abnormal hypomethylation of FOXF1 increased the expression of FOXF1, and the high expression of FOXF1 promoted cell proliferation and inhibited cell apoptosis induced by cisplatin, which resulted in cisplatin resistance in NSCLC cells. In addition, FOXF1 promoted the expression of stem cell markers and self‑renewal capability, indicating that FOXF1 regulated cisplatin resistance by promoting cancer stem cell properties in NSCLC cells. Moreover, a strong association was observed between FOXF1 upregulation and the presence of platinum‑based chemotherapy resistance in patients with NSCLC. On the whole, the findings of this study indicate the regulatory mechanisms of cisplatin resistance by FOXF1 in NSCLC, and suggest that FOXF1 may be used as a prognostic biomarker of platinum‑based chemotherapy resistance in NSCLC.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xingyang Xue
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Shengpeng Zhong
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Boyun Deng
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
38
|
Gu Y, Hu C. Bioinformatic analysis of the prognostic value and potential regulatory network of FOXF1 in papillary thyroid cancer. Biofactors 2019; 45:902-911. [PMID: 31498939 DOI: 10.1002/biof.1561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/13/2019] [Indexed: 11/08/2022]
Abstract
FOXF1 belongs to the forkhead family of transcription factors. In this study, we aimed to explore the expression profile of FOXF1 in papillary thyroid cancer (PTC) and corresponding adjacent normal tissues, by using data from The Cancer Genome Atlas-Thyroid Cancer (TCGA-THCA) and The Genotype-Tissue Expression (GTEx) project. Also, we studied its prognostic significance in PTC and its potential regulatory network. Results showed that FOXF1 expression was significantly lower in PTC tissues compared with adjacent normal tissues. Subgroup analysis only confirmed the downregulation in classical histological variant, but not in tall-cell and follicular variants. FOXF1 downregulation was associated with advanced T stages, positive nodal invasion, and advanced pathological stages of the classical variants. FOXF1 expression might be a fair prognostic marker in terms of recurrence, which independently predicted favorable RFS (HR:0.114, 95%CI: 0.045-0.289, p < .001). We examined FOXF1 somatic mutations, gene-level copy number alterations (CNAs) and the methylation status of 57 CpG sites in more than 350 classical PTC cases. However, no expression-related genetic and epigenetic alterations were identified. Based on 20,048 genes with RNA-seq data, we identified 16 genes that showed strongly positive co-expression (Pearson's r ≥ 0.6) with FOXF1. Available evidence showed that some of the genes have well-characterized tumor suppressive effects. We hypothesized that some of these genes might be the upstream regulators or downstream effectors of FOXF1 in classical PTC. In conclusion, FOXF1 mRNA was typically downregulated in classical PTC. Its expression might be a specific and independent prognostic biomarker in terms of RFS in classical PTC patients.
Collapse
Affiliation(s)
- Yi Gu
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Hu
- Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 Mutation Inhibits STAT3 Signaling and Causes Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2019; 200:1045-1056. [PMID: 31199666 PMCID: PMC6794119 DOI: 10.1164/rccm.201810-1897oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.
Collapse
Affiliation(s)
- Arun Pradhan
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Andrew Dunn
- Department of Pediatrics
- Center for Lung Regenerative Medicine
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | | | - Craig Bolte
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | | | - Yufang Zhang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Alexey Porollo
- Department of Pediatrics
- Center for Autoimmune Genomics and Etiology, and
| | - Yueh-Chiang Hu
- Department of Pediatrics
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Rui Xiao
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Pawel Stankiewicz
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
40
|
Rosenbaum E, Kelly C, D'Angelo SP, Dickson MA, Gounder M, Keohan ML, Movva S, Condy M, Adamson T, Mcfadyen CR, Antonescu CR, Hwang S, Singer S, Qin LX, Tap WD, Chi P. A Phase I Study of Binimetinib (MEK162) Combined with Pexidartinib (PLX3397) in Patients with Advanced Gastrointestinal Stromal Tumor. Oncologist 2019; 24:1309-e983. [PMID: 31213500 PMCID: PMC6795162 DOI: 10.1634/theoncologist.2019-0418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned. The combination of pexidartinib and binimetinib was safe and tolerable and demonstrated encouraging signs of efficacy in two patients with advanced gastrointestinal stromal tumor (GIST) refractory to tyrosine kinase inhibitors (TKIs). Molecular profiling of GISTs at diagnosis and upon progression may provide insight into the mechanisms of response or resistance to targeted therapies. Additional trials are needed to further explore combined KIT and MEK inhibition in treatment‐naïve and TKI‐refractory patients with advanced GIST.
Background. Nearly all patients with advanced gastrointestinal stromal tumor (GIST) develop resistance to imatinib, and subsequent treatments have limited efficacy. Dual inhibition of KIT and MAPK pathways has synergistic antitumor activity in preclinical GIST models. Methods. This was an investigator‐initiated, phase I, dose escalation study of the MEK inhibitor binimetinib combined with pexidartinib, a potent inhibitor of CSF1R, KIT, and FLT3, in patients with advanced or metastatic GIST who progressed on imatinib. The primary endpoint was phase II dose determination; secondary endpoints included safety, tolerability, and efficacy. An expansion cohort to further evaluate safety and efficacy was planned. Results. Two patients were treated at dose level one (binimetinib 30 mg b.i.d. and pexidartinib 400 mg every morning and 200 mg every evening), after which the study was terminated by the manufacturer. No dose‐limiting toxicities (DLTs) were reported, and treatment was well tolerated. The only grade ≥3 treatment‐emergent adverse event (TEAE) was asymptomatic elevated creatine phosphokinase (CPK). Both patients had a best response of stable disease (SD) by RECIST. Progression‐free survival (PFS) and overall survival (OS) were 6.1 and 14.6 months, respectively, in one patient with five prior lines of therapy. The second patient with NF1‐mutant GIST had a 27% decrease in tumor burden by RECIST and remains on study after 19 months of treatment. Conclusion. Pexidartinib combined with binimetinib was tolerable, and meaningful clinical activity was observed in two imatinib‐refractory patients.
Collapse
Affiliation(s)
- Evan Rosenbaum
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | - Ciara Kelly
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Mark A Dickson
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Mrinal Gounder
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Mary L Keohan
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Sujana Movva
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | - Mercedes Condy
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | - Travis Adamson
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | | | | | - Sinchun Hwang
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | - Sam Singer
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Li-Xuan Qin
- Memorial Sloan Kettering Cancer Center, New York New York, USA
| | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| | - Ping Chi
- Memorial Sloan Kettering Cancer Center, New York New York, USA
- Weill Cornell Medical College, New York New York, USA
| |
Collapse
|
41
|
Ramkissoon A, Chaney KE, Milewski D, Williams KB, Williams RL, Choi K, Miller A, Kalin TV, Pressey JG, Szabo S, Azam M, Largaespada DA, Ratner N. Targeted Inhibition of the Dual Specificity Phosphatases DUSP1 and DUSP6 Suppress MPNST Growth via JNK. Clin Cancer Res 2019; 25:4117-4127. [PMID: 30936125 DOI: 10.1158/1078-0432.ccr-18-3224] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE In neurofibromatosis type 1 (NF1) and in highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), constitutively active RAS-GTP and increased MAPK signaling are important in tumorigenesis. Dual specificity phosphatases (DUSPs) are negative regulators of MAPK signaling that dephosphorylate p38, JNK, and ERK in different settings. Although often acting as tumor suppressors, DUSPs may also act as oncogenes, helping tumor cells adapt to high levels of MAPK signaling. We hypothesized that inhibiting DUSPs might be selectively toxic to cells from NF1-driven tumors. EXPERIMENTAL DESIGN We examined DUSP gene and protein expression in neurofibroma and MPNSTs. We used small hairpin RNA (shRNA) to knock down DUSP1 and DUSP6 to evaluate cell growth, downstream MAPK signaling, and mechanisms of action. We evaluated the DUSP inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), in MPNST cell lines and in cell-line and patient-derived MPNST xenografts. RESULTS DUSP1 and DUSP6 are expressed in NF1-deleted tumors. Knockdown of DUSP1 and DUSP6, alone or in combination, reduced MPNST cell growth and led to ERK and JNK hyperactivation increasing downstream TP53 and p-ATM. The DUSP inhibitor, BCI, diminished the survival of NF1-deleted Schwann cells and MPNST cell lines through activation of JNK. In vivo, treatment of an established cell-line xenograft or a novel patient-derived xenograft (PDX) of MPNSTs with BCI increased ERK and JNK activation, caused tumor necrosis and fibrosis, and reduced tumor volume in one model. CONCLUSIONS Targeting DUSP1 and DUSP6 genetically or with BCI effectively inhibits MPNST cell growth and promotes cell death, in vitro and in xenograft models. The data support further investigation of DUSP inhibition in MPNSTs.
Collapse
Affiliation(s)
| | | | - David Milewski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle B Williams
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Rory L Williams
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Kwangmin Choi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adam Miller
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tanya V Kalin
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Sara Szabo
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mohammad Azam
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
42
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019; 79:994-1009. [PMID: 30630822 PMCID: PMC6397693 DOI: 10.1158/0008-5472.can-18-1888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
43
|
Herring BP, Hoggatt AM, Gupta A, Wo JM. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil 2019; 31:e13528. [PMID: 30565344 PMCID: PMC6821388 DOI: 10.1111/nmo.13528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The transcription factors FOXF1 and FOXF2 have been implicated in the development of the gastrointestinal tract but their role in adults or in gastrointestinal diseases is poorly understood. We have recently shown that expression of serum response factor (SRF), a transcription factor whose activity is modulated by FOXF proteins, is decreased in the stomach muscularis of patients with gastroparesis. The aim of the current study was to determine whether FOXF expression is decreased in gastroparesis patients and whether loss of FOXF1 and/or FOXF2 from adult smooth muscle is sufficient to impair gastric emptying in mice. METHODS Full-thickness stomach biopsy samples were collected from control subjects and from patients with gastroparesis. mRNA was isolated from the muscularis externa, and FOXF mRNA expression levels were determined by quantitative reverse transcriptase (RT)-PCR. Foxf1 and Foxf2 were knocked out together and separately from smooth muscle cells in adult mice, and the subsequent effect on liquid gastric emptying and contractile protein expression was determined. KEY RESULTS Expression of FOXF1 and FOXF2 is decreased in smooth muscle tissue from gastroparesis patients. Knockout of Foxf1 and Foxf2 together, but not alone, from mouse smooth muscle resulted in delayed liquid gastric emptying. Foxf1/2 double knockout mice had decreased expression of smooth muscle contractile proteins, SRF, and myocardin in stomach muscularis. CONCLUSIONS AND INFERENCES Our findings suggest that decreased expression of FOXF1 and FOXF2 may be contributing to the impaired gastric emptying seen in gastroparesis patients.
Collapse
Affiliation(s)
- B. Paul Herring
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202.,Correspondence: Paul Herring, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis IN, 46202, Phone: (317) 278-1785, FAX: (317) 274-3318,
| | - April M. Hoggatt
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Anita Gupta
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John M. Wo
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
44
|
Lee DM, Duensing A. What's the FOX Got to Do with the KITten? Regulating the Lineage-Specific Transcriptional Landscape in GIST. Cancer Discov 2019; 8:146-149. [PMID: 29431674 DOI: 10.1158/2159-8290.cd-17-1370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
<b/> Transcriptional regulation of the KIT receptor tyrosine kinase, a master regulator in gastrointestinal stromal tumors (GIST) and their precursors, the interstitial cells of Cajal (ICC), is part of a positive feedback loop involving the transcription factor ETV1. A new study now shows that the forkhead box (FOX) family transcription factor FOXF1 not only is an upstream regulator of ETV1 and hence ICC/GIST lineage-specific gene transcription, but also functions as lineage-specific pioneer factor with an active role in chromatin rearrangement to facilitate ETV1 binding and transcriptional activity. Cancer Discov; 8(2); 146-9. ©2018 AACRSee related article by Ran et al., p. 234.
Collapse
Affiliation(s)
- Donna M Lee
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Anette Duensing
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Citation(s) in RCA: 718] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, Bi J, Qiu J, Zhang D, Yan J, Zhang L, Huang C, Li T, Liang L, Liao W, Ye Y, Ding Y. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett 2018; 439:78-90. [PMID: 30253191 DOI: 10.1016/j.canlet.2018.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Forkhead box F1 (FOXF1) has been recently implicated in the progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms by which FOXF1 regulates the progression of colorectal cancer (CRC) are largely unknown. As shown in our previous study, FOXF1 is upregulated in 182 CRC tissues, and elevated FOXF1 expression is significantly associated with microvessel density and advanced TNM (T = primary tumour; N = regional lymph nodes; M = distant metastasis) stages. In this study, 43 CRC tissues collected from patients who underwent treatment with first-line standard chemotherapeutic regimens in combination with bevacizumab were used to explore the correlation between FOXF1 expression and resistance to bevacizumab. In addition, FOXF1 regulated angiogenesis by inducing the transcription of vascular endothelial growth factor A1 (VEGFA) in vitro and in vivo. Furthermore, upregulation of FOXF1 enhanced bevacizumab resistance in CRC, and inhibition of VEGFA attenuated angiogenesis and bevacizumab resistance in FOXF1-overexpressing CRC cells. These results suggest that FOXF1 plays critical roles in CRC angiogenesis and bevacizumab resistance by inducing VEGFA transcription and that FOXF1 represents a potentially new therapeutic strategy and biomarker for anti-angiogenic therapy against CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zexuan Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shaowei Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jiaxin Bi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junyu Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
47
|
Wang S, Yan S, Zhu S, Zhao Y, Yan J, Xiao Z, Bi J, Qiu J, Zhang D, Hong Z, Zhang L, Huang C, Li T, Liang L, Liao W, Jiao H, Ding Y, Ye Y. FOXF1 Induces Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis by Transcriptionally Activating SNAI1. Neoplasia 2018; 20:996-1007. [PMID: 30189360 PMCID: PMC6134153 DOI: 10.1016/j.neo.2018.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Forkhead Box F1 (FOXF1) has been recently implicated in cancer progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms of FOXF1 in the regulation of the progression of colorectal cancer (CRC) are largely unknown. We showed that FOXF1 was up-regulated in 93 paraffin-embedded archived human CRC tissue, and both high expression and nuclear location of FOXF1 were significantly associated with the aggressive characteristics and poorer survival of CRC patients. The GSEA analysis showed that the higher level of FOXF1 was positively associated with an enrichment of EMT gene signatures, and exogenous overexpression of FOXF1 induced EMT by transcriptionally activating SNAI1. Exogenous overexpression FOXF1 functionally promoted invasion and metastasis features of CRC cells, and inhibition of SNAI1 attenuates the invasive phenotype and metastatic potential of FOXF1-overexpressing CRC cells. Furthermore, the results of the tissue chip showed that the expression of FOXF1 was positively correlated with SNAI1 in CRC tissues chip. These results suggested that FOXF1 plays a critical role in CRC metastasis by inducing EMT via transcriptional activation of SNAI1, highlighting a potential new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shanshan Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shaowei Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junyu Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jiaxin Bi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zexuan Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
48
|
Sandoval GJ, Pulice JL, Pakula H, Schenone M, Takeda DY, Pop M, Boulay G, Williamson KE, McBride MJ, Pan J, St Pierre R, Hartman E, Garraway LA, Carr SA, Rivera MN, Li Z, Ronco L, Hahn WC, Kadoch C. Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis. Mol Cell 2018; 71:554-566.e7. [PMID: 30078722 PMCID: PMC6140332 DOI: 10.1016/j.molcel.2018.06.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.
Collapse
Affiliation(s)
- Gabriel J Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - John L Pulice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hubert Pakula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - David Y Takeda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marius Pop
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gaylor Boulay
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pathology and MGH Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kaylyn E Williamson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Joshua Pan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Roodolph St Pierre
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Emily Hartman
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Miguel N Rivera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pathology and MGH Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
49
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
50
|
Xie Y, Cao Z, Wong EW, Guan Y, Ma W, Zhang JQ, Walczak EG, Murphy D, Ran L, Sirota I, Wang S, Shukla S, Gao D, Knott SR, Chang K, Leu J, Wongvipat J, Antonescu CR, Hannon G, Chi P, Chen Y. COP1/DET1/ETS axis regulates ERK transcriptome and sensitivity to MAPK inhibitors. J Clin Invest 2018; 128:1442-1457. [PMID: 29360641 PMCID: PMC5873878 DOI: 10.1172/jci94840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Aberrant activation of MAPK signaling leads to the activation of oncogenic transcriptomes. How MAPK signaling is coupled with the transcriptional response in cancer is not fully understood. In 2 MAPK-activated tumor types, gastrointestinal stromal tumor and melanoma, we found that ETV1 and other Pea3-ETS transcription factors are critical nuclear effectors of MAPK signaling that are regulated through protein stability. Expression of stabilized Pea3-ETS factors can partially rescue the MAPK transcriptome and cell viability after MAPK inhibition. To identify the players involved in this process, we performed a pooled genome-wide RNAi screen using a fluorescence-based ETV1 protein stability sensor and identified COP1, DET1, DDB1, UBE3C, PSMD4, and COP9 signalosome members. COP1 or DET1 loss led to decoupling between MAPK signaling and the downstream transcriptional response, where MAPK inhibition failed to destabilize Pea3 factors and fully inhibit the MAPK transcriptome, thus resulting in decreased sensitivity to MAPK pathway inhibitors. We identified multiple COP1 and DET1 mutations in human tumors that were defective in the degradation of Pea3-ETS factors. Two melanoma patients had de novo DET1 mutations arising after vemurafenib treatment. These observations indicate that MAPK signaling-dependent regulation of Pea3-ETS protein stability is a key signaling node in oncogenesis and therapeutic resistance to MAPK pathway inhibition.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Wenfu Ma
- Structural Biology Program, MSKCC, New York, New York, USA
| | - Jenny Q. Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Edward G. Walczak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Devan Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Inna Sirota
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shipra Shukla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Simon R.V. Knott
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth Chang
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Justin Leu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Gregory Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Department of Medicine, MSKCC, New York, New York, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Department of Medicine, MSKCC, New York, New York, USA
| |
Collapse
|