1
|
Sun F, Yan P, Xiao Y, Zhang H, Shapiro SD, Xiao G, Qu Z. Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2. eLife 2024; 12:RP89638. [PMID: 39718207 DOI: 10.7554/elife.89638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. In this study, human clinical samples and data were used to investigate PDLIM2 genetic and epigenetic changes in lung cancer. Using an endogenous mouse lung cancer model faithfully recapitulating refractory human lung cancer and a clinically feasible nano-delivery system, we investigated the therapeutic efficacy, action mechanism, and safety of systemically administrated PDLIM2 expression plasmids encapsulated in nanoparticles (nanoPDLIM2) and its combination with PD-1 antibody and chemotherapeutic drugs. Our analysis indicate that PDLIM2 repression in human lung cancer involves both genetic deletion and epigenetic alteration. NanoPDLIM2 showed low toxicity, high tumor specificity, antitumor activity, and greatly improved the efficacy of anti-PD-1 and chemotherapeutic drugs, with complete tumor remission in most mice and substantial tumor reduction in the remaining mice by their triple combination. Mechanistically, nanoPDLIM2 increased major histocompatibility complex class I (MHC-I) expression, suppressed multi-drug resistance 1 (MDR1) induction and survival genes and other tumor-related genes expression in tumor cells, and enhanced lymphocyte tumor infiltration, turning the cold tumors hot and sensitive to ICIs and rendering them vulnerable to chemotherapeutic drugs and activated tumor-infiltrating lymphocytes (TILs) including those unleashed by ICIs. These studies established a clinically applicable PDLIM2-based combination therapy with great efficacy for lung cancer and possibly other cold cancers.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Pengrong Yan
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Hongqiao Zhang
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Steven D Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Song X, Qu Z. NF-κB1 deficiency promotes macrophage-derived adrenal tumors but decreases neurofibromas in HTLV-I LTR-Tax transgenic mice. PLoS One 2024; 19:e0303138. [PMID: 38722890 PMCID: PMC11081228 DOI: 10.1371/journal.pone.0303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) is an oncogenic virus whose infection can cause diverse diseases, most notably adult T-cell leukemia/lymphoma (ATL or ATLL), an aggressive and fatal malignancy of CD4 T cells. The oncogenic ability of HTLV-I is mostly attributed to the viral transcriptional transactivator Tax. Tax alone is sufficient to induce specific tumors in mice depending on the promotor used to drive Tax expression, thereby being used to understand HTLV-I tumorigenesis and model the tumor types developed in Tax transgenic mice. Tax exerts its oncogenic role predominantly by activating the cellular transcription factor NF-κB. Here, we report that genetic deletion of NF-κB1, the prototypic member of the NF-κB family, promotes adrenal medullary tumors but suppresses neurofibromas in mice with transgenic Tax driven by the HTLV-I Long Terminal Repeat (LTR) promoter. The adrenal tumors are derived from macrophages. Neoplastic macrophages also infiltrate the spleen and lymph nodes, causing splenomegaly and lymphadenopathy in mice. Nevertheless, the findings could be human relevant, because macrophages are important target cells of HTLV-I infection and serve as a virus reservoir in vivo. Moreover, the spleen, lymph nodes and adrenal glands are the most common sites of tumor cell infiltration in HTLV-I-infected patients. These data provide new mechanistic insights into the complex interaction between Tax and NF-κB, therefore improving our understanding of HTLV-I oncogenic pathogenesis. They also expand our knowledge and establish a new animal model of macrophage neoplasms and adrenal tumors.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Microbiology and Immunology, Hastings Center for Pulmonary Research, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Fu X, Liu S, Cao D, Li C, Ji H, Wang G. Med23 deficiency reprograms the tumor microenvironment to promote lung tumorigenesis. Br J Cancer 2024; 130:716-727. [PMID: 38195889 PMCID: PMC10912217 DOI: 10.1038/s41416-023-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. We previously found that Mediator complex subunit 23 (MED23) is important for the tumourigenicity of lung cancer cells with hyperactive Ras activity in vitro, although the in vivo function of MED23 in lung tumourigenesis remains to be explored. METHODS In this study, we utilized well-characterized KrasG12D-driven non-small cell lung cancer mouse model to investigate the role of MED23 in lung cancer. The lung tumour progression was evaluated by H&E and IHC analysis. Western blotting and qRT-PCR assays were performed to detect changes in gene expression. Immune cells were analyzed by FACS technology. RNA-seq and reporter assays were conducted to explore the mechanism. RESULTS We observed that lung epithelial Med23 deletion by adeno-Cre resulted in a significant increase in KrasG12D tumour number and size, which was further verified with another mouse model with Med23 specifically deleted in alveolar type II cells. Mice with lung-specific Med23 deficiency also exhibited accelerated tumourigenesis, and a higher proliferation rate for tumour cells, along with increased ERK phosphorylation. Notably, the numbers of infiltrating CD4+ T cells and CD8+ T cells were significantly reduced in the lungs of Med23-deficient mice, while the numbers of myeloid-derived suppressor cells (MDSCs) and Treg cells were significantly increased, suggesting the enhanced immune escape capability of the Med23-deficient lung tumours. Transcriptomic analysis revealed that the downregulated genes in Med23-deficient lung tumour tissues were associated with the immune response. Specifically, Med23 deficiency may compromise the MHC-I complex formation, partially through down-regulating B2m expression. CONCLUSIONS Collectively, these findings revealed that MED23 may negatively regulate Kras-induced lung tumourigenesis in vivo, which would improve the precise classification of KRAS-mutant lung cancer patients and provide new insights for clinical interventions.
Collapse
Affiliation(s)
- Xiaobo Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Siming Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Cao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chonghui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
6
|
Sun F, Xiao Y, Shapiro SD, Qu Z, Xiao G. Critical and distinct roles of cell type-specific NF-κB2 in lung cancer. JCI Insight 2024; 9:e164188. [PMID: 38385745 DOI: 10.1172/jci.insight.164188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Different from the well-studied canonical NF-κB member RelA, the role of the noncanonical NF-κB member NF-κB2 in solid tumors, and lung cancer in particular, is poorly understood. Here we report that in contrast to the tumor-promoting role of RelA, NF-κB2 intrinsic to lung epithelial and tumor cells had no marked effect on lung tumorigenesis and progression. On the other hand, NF-κB2 limited dendritic cell number and activation in the lung but protected lung macrophages and drove them to promote lung cancer through controlling activation of noncanonical and canonical NF-κB, respectively. NF-κB2 was also required for B cell maintenance and T cell activation. The antitumor activity of lymphocyte NF-κB2 was dominated by the protumor function of myeloid NF-κB2; thus, NF-κB2 has an overall tumor-promoting activity. These studies reveal a cell type-dependent role for NF-κB2 in lung cancer and help understand the complexity of NF-κB action and lung cancer pathogenesis for better design of NF-κB-targeted therapy against this deadliest cancer.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Steven D Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
7
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Li L, Han L, Qu Z. NF-κB RelA is a cell-intrinsic metabolic checkpoint restricting glycolysis. Cell Biosci 2024; 14:11. [PMID: 38245770 PMCID: PMC10799406 DOI: 10.1186/s13578-024-01196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
An intrinsic link between metabolism and function in immune cells, and in particular macrophages, has been well established recently. However, the molecular mechanisms controlling the metabolic switch in these sentinel cells for their integral roles in host defense, inflammation, homeostasis, and pathogenesis remain largely unknown. Here, we identify the master transcription factor NF-κB RelA as a vital cell-intrinsic checkpoint restricting aerobic glycolysis to favor mitochondrial oxidative phosphorylation (OXPHOS) and "M2" activation (alternative anti-inflammatory and pro-tumorigenic activation, in contrast to classical pro-inflammatory and anti-tumor M1 activation) of macrophages under oncogenic stress. RelA specific knockdown or genetic deletion in macrophages causes metabolism to shift away from OXPHOS toward glycolysis, resulting in drastically decreased oxygen consumption but significantly increased lactate and ATP production. The metabolic change in RelA deficient cells is associated with the decrease in the expressions of the OXPHOS gene SCO2 as well as the M2 marker and function genes arginase-1 and VEGF. These data suggest that RelA induces SCO2 expression to enhance OXPHOS and restrict glycolysis in macrophages for their pro-tumorigenic activation.
Collapse
Affiliation(s)
- Liwen Li
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lei Han
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Molecular Microbiology and Immunology, Hastings Center for Pulmonary Research, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, NRT 4506, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Sun F, Yan P, Xiao Y, Zhang H, Shapiro SD, Xiao G, Qu Z. Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550248. [PMID: 37546791 PMCID: PMC10402062 DOI: 10.1101/2023.07.23.550248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. Methods Human clinical samples and data were used to investigate PDLIM2 genetic and epigenetic changes in lung cancer. Using an endogenous mouse lung cancer model faithfully recapitulating refractory human lung cancer and a clinically feasible nano-delivery system, we investigated the therapeutic efficacy, action mechanism, and safety of systemically administrated PDLIM2 expression plasmids encapsulated in nanoparticles (nanoPDLIM2) and its combination with PD-1 antibody and chemotherapeutic drugs. Results PDLIM2 repression in human lung cancer involves both genetic deletion and epigenetic alteration. NanoPDLIM2 showed low toxicity, high tumor specificity, antitumor activity, and greatly improved the efficacy of anti-PD-1 and chemotherapeutic drugs, with complete tumor remission in most mice and substantial tumor reduction in the remaining mice by their triple combination. Mechanistically, nanoPDLIM2 increased major histocompatibility complex class I (MHC-I) expression, suppressed multi-drug resistance 1 (MDR1) induction and survival genes and other tumor-related genes expression in tumor cells, and enhanced lymphocyte tumor infiltration, turning the cold tumors hot and sensitive to ICIs and rendering them vulnerable to chemotherapeutic drugs and activated tumor-infiltrating lymphocytes (TILs) including those unleashed by ICIs. Conclusions These studies established a clinically applicable PDLIM2-based combination therapy with great efficacy for lung cancer and possibly other cold cancers.
Collapse
|
10
|
Shibata Y, Kishida T, Kouro T, Wei F, Igarashi Y, Himuro H, Noguchi T, Koizumi M, Suzuki T, Osaka K, Saigusa Y, Sasada T. Immune mediators as predictive biomarkers for anti-PD-1 antibody therapy in urothelial carcinoma. Front Pharmacol 2023; 14:1269935. [PMID: 38026978 PMCID: PMC10679331 DOI: 10.3389/fphar.2023.1269935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: This study aimed to identify immune mediators, including cytokines, chemokines, and growth factors, in the plasma for predicting treatment efficacy and immune-related adverse events (irAEs) in advanced urothelial carcinoma (aUC) treated with immune checkpoint inhibitors (ICIs). Methods: We enrolled 57 patients with aUC who were treated with the anti-programmed cell death protein 1 (PD-1) antibody pembrolizumab after the failure of platinum-based chemotherapy between February 2018 and December 2020. Plasma levels of 73 soluble immune mediators were measured before and 6 weeks after initiating pembrolizumab therapy. The association of estimated soluble immune mediators with clinical outcomes, including overall survival (OS), progression-free survival (PFS), anti-tumor responses, and irAEs, were statistically evaluated. Results: In the multivariate analysis, levels of 18 factors at baseline and 12 factors during treatment were significantly associated with OS. Regarding PFS, baseline levels of 17 factors were significantly associated with PFS. Higher levels of interleukin (IL)-6, IL-8, soluble tumor necrosis factor receptor 1 (sTNF-R1), and IL-12 (p40), both at baseline and post-treatment, were significantly associated with worse OS. Conversely, low IL-6 and high TWEAK levels at baseline were associated with irAEs. Among identified factors, interferon (IFN) γ and IL-12 (p40) were repeatedly identified; high baseline levels of these factors were risk factors for worse OS and PFS, as well as progressive disease. Notably, using correlation and principal component analysis, factors significantly associated with clinical outcomes were broadly classified into three groups exhibiting similar expression patterns. Discussion: Measuring plasma levels of soluble immune mediators, such as IL-6, IL-8, sTNF-R1, IFNγ, and IL-12 (p40), could be recommended for predicting prognosis and irAEs in ICI-treated patients with aUC.
Collapse
Affiliation(s)
- Yosuke Shibata
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeaki Noguchi
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Mitsuyuki Koizumi
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takahisa Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kimito Osaka
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Rahmani AH, Babiker AY, Anwar S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023; 28:5152. [PMID: 37446814 DOI: 10.3390/molecules28135152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
12
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Combining STAT3-Targeting Agents with Immune Checkpoint Inhibitors in NSCLC. Cancers (Basel) 2023; 15:cancers15020386. [PMID: 36672335 PMCID: PMC9857288 DOI: 10.3390/cancers15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite recent therapeutic advances, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor (TF) with multiple tumor-promoting effects in NSCLC, including proliferation, anti-apoptosis, angiogenesis, invasion, metastasis, immunosuppression, and drug resistance. Recent studies suggest that STAT3 activation contributes to resistance to immune checkpoint inhibitors. Thus, STAT3 represents an attractive target whose pharmacological modulation in NSCLC may assist in enhancing the efficacy of or overcoming resistance to immune checkpoint inhibitors. In this review, we discuss the biological mechanisms through which STAT3 inhibition synergizes with or overcomes resistance to immune checkpoint inhibitors and highlight the therapeutic strategy of using drugs that target STAT3 as potential combination partners for immune checkpoint inhibitors in the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-210-746-2508
| |
Collapse
|
13
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
14
|
Shan Q, Zhang Y, Zhang X, Wang W, Liang Z. The Effect of Coumestrol on Hub Genes in Lung Squamous Cell Carcinoma Based on Bioinformatic Strategy. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221127960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose There is limited treatment for lung squamous cell carcinoma (LUSC), so there is an urgent need to find new antitumor drugs. Materials and Methods We downloaded datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas databases. We used GEO2R and the “limma” package to screen differentially expressed genes. We used the Cytoscape software to screen out hub genes. We screened herbs that act on hub genes on the Chinese medicine website. We then studied the effect of coumestrol (CM) on the hub genes in the H226 cell line. Results Seven hub genes were screened, namely CCNB2, CENPF, KIF11, MELK, nucleolar and spindle-associated protein 1 (NUSAP1), PBK, and RRM2. We observed that CM had a tumor-inhibiting effect on H226 cells by inhibiting the expression of CCNB2, KIF11, and NUSAP1. Conclusion CM, screened by bioinformatics and network pharmacology, can inhibit H226 cells by downregulating CCNB2, KIF11, and NUSAP1.
Collapse
Affiliation(s)
- Qingqing Shan
- West China Hospital of Sichuan University, Chengdu, China
| | - Yifan Zhang
- Chengdu First People’s Hospital, Chengdu, China
| | - Xu Zhang
- Chengdu First People’s Hospital, Chengdu, China
| | - Wei Wang
- Chengdu First People’s Hospital, Chengdu, China
| | - Zongan Liang
- West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Schenk EL, Boland JM, Withers SG, Bulur PA, Dietz AB. Tumor Microenvironment CD14 + Cells Correlate with Poor Overall Survival in Patients with Early-Stage Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184501. [PMID: 36139660 PMCID: PMC9496975 DOI: 10.3390/cancers14184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with early-stage lung adenocarcinoma have a high risk of recurrent or metastatic disease despite undergoing curative intent therapy. We hypothesized that increased CD14+ cells within the tumor microenvironment (TME) could stratify patient outcomes. Immunohistochemistry for CD14 was performed on 189 specimens from patients with lung adenocarcinoma who underwent curative intent surgery. Outcomes and associations with clinical and pathologic variables were determined. In vitro studies utilized a coculture system to model the lung cancer TME containing CD14+ cells. Patients with high levels of TME CD14+ cells experienced a median overall survival of 5.5 years compared with 8.3 and 10.7 years for those with moderate or low CD14 levels, respectively (p < 0.001). Increased CD14+ cell tumor infiltration was associated with a higher stage at diagnosis and more positive lymph nodes at the time of surgery. This prognostic capacity remained even for patients with early-stage disease. Using an in vitro model system, we found that CD14+ cells reduced chemotherapy-induced cancer cell death. These data suggest that CD14+ cells are a biomarker for poor prognosis in early-stage lung adenocarcinoma and may promote tumor survival. CD14+ cell integration into the lung cancer TME can occur early in the disease and may be a promising new therapeutic avenue.
Collapse
Affiliation(s)
- Erin L. Schenk
- Department of Medicine, Division of Medical Oncology, Univeristy of Colorado, Aurora, CO 80045, USA
| | - Jennifer M. Boland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G. Withers
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peggy A. Bulur
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Allan B. Dietz
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
16
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
17
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Wang Y, Zang X, Ma X, Huang G, Zhou X, Tao M, lv Z, Chen S, Qiu A, Zhuang S, Liu N. Inhibition of EZH2 suppresses peritoneal angiogenesis by targeting a VEGFR2/ERK1/2/HIF‐1α dependent signaling pathway. J Pathol 2022; 258:164-178. [PMID: 35792675 DOI: 10.1002/path.5987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Lunxian Tang
- Emergency department of critical care medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Xiujuan Zang
- Department of Nephrology Shanghai Songjiang District Central Hospital Shanghai PR China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Guansen Huang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Zexin lv
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine Tongji University Shanghai PR China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School Brown University Providence RI USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital Tongji University School of Medicine Shanghai PR China
| |
Collapse
|
18
|
Guo W, Liu X, Guo J, Gao R, Xiang X, An X, Bai L. Polysaccharides of Brassica rapa L. attenuate tumor growth via shifting macrophages to M1-like phenotype. Phytother Res 2022; 36:3957-3968. [PMID: 35766285 DOI: 10.1002/ptr.7545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Macrophages are the major tumor-infiltrating leukocytes, and tumor-associated macrophages (TAM) play a critical role in cancer-related inflammation since they show alternative polarization to M1 (tumor-inhibited macrophages) or M2 (tumor-promoted macrophages) phenotype. Brassica rapa L. (B. rapa) has been clinically proven to have anti-tumor and immunity-enhancing activity, and the polysaccharides of B. rapa (BRP) have been reported to have an immunoregulatory effect on macrophages. In this study, we focus on macrophage polarization to investigate the mechanism of anti-tumor response of BRP in vivo and in vitro. We found that BRP improved the expression of M1 markers, including iNOS, COX-2, HLA-DR, CD11b and M1-related cytokines. The expression of M2 markers Arg-1, CD206 and CD163 induced by IL-4 were inhibited by BRP treatment, resulting in the inhibition of tumor growth both in vivo and in co-culture experiments in vitro. The activation of STAT signaling pathway were significantly regulated by BRP, which are important signals in TAM polarization. Overall, the results indicated that BRP has anti-tumor effect through mediating macrophage polarization.
Collapse
Affiliation(s)
- Weiwei Guo
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junting Guo
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory for Uighur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Ruijuan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory for Uighur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | | | - Xiqiang An
- Key Laboratory for Uighur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Tumor-Associated Inflammation: The Tumor-Promoting Immunity in the Early Stages of Tumorigenesis. J Immunol Res 2022; 2022:3128933. [PMID: 35733919 PMCID: PMC9208911 DOI: 10.1155/2022/3128933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Tumorigenesis is a multistage progressive oncogenic process caused by alterations in the structure and expression level of multiple genes. Normal cells are continuously endowed with new capabilities in this evolution, leading to subsequent tumor formation. Immune cells are the most important components of inflammation, which is closely associated with tumorigenesis. There is a broad consensus in cancer research that inflammation and immune response facilitate tumor progression, infiltration, and metastasis via different mechanisms; however, their protumor effects are equally important in tumorigenesis at earlier stages. Previous studies have demonstrated that during the early stages of tumorigenesis, certain immune cells can promote the formation and proliferation of premalignant cells by inducing DNA damage and repair inhibition, releasing trophic/supporting signals, promoting immune escape, and activating inflammasomes, as well as enhance the characteristics of cancer stem cells. In this review, we focus on the potential mechanisms by which immune cells can promote tumor initiation and promotion in the early stages of tumorigenesis; furthermore, we discuss the interaction of the inflammatory environment and protumor immune cells with premalignant cells and cancer stem cells, as well as the possibility of early intervention in tumor formation by targeting these cellular mechanisms.
Collapse
|
20
|
Cancer Cachexia and Antitumor Immunity: Common Mediators and Potential Targets for New Therapies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060880. [PMID: 35743911 PMCID: PMC9225288 DOI: 10.3390/life12060880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Cancer cachexia syndrome (CCS) is a multifactorial metabolic syndrome affecting a significant proportion of patients. CCS is characterized by progressive weight loss, alterations of body composition and a systemic inflammatory status, which exerts a major impact on the host’s innate and adaptive immunity. Over the last few years, the development of immune checkpoint inhibitors (ICIs) transformed the treatment landscape for a wide spectrum of malignancies, creating an unprecedented opportunity for long term remissions in a significant subset of patients. Early clinical data indicate that CCS adversely impairs treatment outcomes of patients receiving ICIs. We herein reviewed existing evidence on the potential links between the mechanisms that promote the catabolic state in CCS and those that impair the antitumor immune response. We show that the biological mediators and processes leading to the development of CCS may also participate in the modulation and the sustainment of an immune suppressive tumor microenvironment and impaired anti-tumor immunity. Moreover, we demonstrate that the deregulation of the host’s metabolic homeostasis in cancer cachexia is associated with resistance to ICIs. Further research on the interrelation between cancer cachexia and anti-tumor immunity is required for the effective management of resistance to immunotherapy in this specific but large subgroup of ICI treated individuals.
Collapse
|
21
|
Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer. BMC Med 2022; 20:187. [PMID: 35550592 PMCID: PMC9102328 DOI: 10.1186/s12916-022-02356-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytokines have been reported to alter the response to immune checkpoint inhibitors (ICIs) in patients with the tumor in accordance with their plasma concentrations. Here, we aimed to identify the key cytokines which influenced the responses and stimulated resistance to ICIs and tried to improve immunological response and develop novel clinical treatments in non-small cell lung cancer (NSCLC). METHODS The promising predictive cytokines were analyzed via the multi-analyte flow assay. Next, we explored the correlation baseline level of plasma cytokines and clinical outcomes in 45 NSCLC patients treated with ICIs. The mechanism of the potential candidate cytokine in predicting response and inducing resistance to ICIs was then investigated. RESULTS We found NSCLC with a low baseline concentration of IL-6 in plasma specimens or tumor tissues could derive more benefit from ICIs based on the patient cohort. Further analyses revealed that a favorable relationship between PD-L1 and IL-6 expression was seen in NSCLC specimens. Results in vitro showed that PD-L1 expression in the tumor was enhanced by IL-6 via the JAK1/Stat3 pathway, which induced immune evasion. Notably, an adverse correlation was found between IL-6 levels and CD8+ T cells. And a positive association between IL-6 levels and myeloid-derived suppressor cells, M2 macrophages and regulator T cells was also seen in tumor samples, which may result in an inferior response to ICIs. Results of murine models of NSCLC suggested that the dual blockade of IL-6 and PD-L1 attenuated tumor growth. Further analyses detected that the inhibitor of IL-6 stimulated the infiltration of CD8+ T cells and yielded the inflammatory phenotype. CONCLUSIONS This study elucidated the role of baseline IL-6 levels in predicting the responses and promoting resistance to immunotherapy in patients with NSCLC. Our results indicated that the treatment targeting IL-6 may be beneficial for ICIs in NSCLC.
Collapse
|
22
|
Hegde M, Daimary UD, Kumar A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. STAT3/HIF1A and EMT specific transcription factors regulated genes: Novel predictors of breast cancer metastasis. Gene X 2022; 818:146245. [PMID: 35074419 DOI: 10.1016/j.gene.2022.146245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Metastasis, the fatal hallmark of breast cancer (BC), is a serious hurdle for therapy. Current prognostic approaches are not sufficient to predict the metastasis risk for BC patients. Therefore, in the present study, we analyzed gene expression data from GSE139038 and TCGA database to develop predictive markers for BC metastasis. Initially, the data from GSE139038 which contained 65 samples consisting of 41 breast tumor tissues, 18 paired morphologically normal tissues and 6 from non-malignant breast tissues were analyzed for differentially expressed genes (DEGs). DEGs were obtained from three different comparisons: paired morphologically normal (MN) versus tumor samples (C), apparently normal (AN) versus tumor samples (C), and paired morphologically normal (MN) versus apparently normal samples (AN). Multiple bioinformatic methods were employed to evaluate metastasis, EMT and triple negative breast cancer (TNBC) specific genes. Further, regulation of gene expression, clinicopathological factors and DNA methylation patterns of DEGs in BC were validated with TCGA datasets. Our bioinformatic analysis showed that 40 genes were upregulated and 294 were found to be downregulated between AN vs C; 124 were upregulated and 760 genes were downregulated between MN vs C; 4 were upregulated and 13 were downregulated between MN vs AN. Analysis using TCGA dataset revealed 18 genes were significantly altered in nodal positive BC patients compared to nodal negative BC patients. Our study showed novel candidate genes as predictive markers for BC metastasis which can also be used for therapeutic targets for BC treatment.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
23
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
24
|
Zhang X, Ye T, Li M, Yan H, Lin H, Lu H, Qi Z, Sheng H, He C. Association of Polymorphisms in Inflammation Genes With the Prognosis of Advanced Non-Small Cell Lung Cancer Patients Receiving Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Front Oncol 2022; 12:836117. [PMID: 35372081 PMCID: PMC8971721 DOI: 10.3389/fonc.2022.836117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundInflammation is not only involved in the development and progression of cancer but also affects the response to therapy. The aim of this study was to investigate the association of single nucleotide polymorphisms (SNPs) in inflammation genes with the prognosis of advanced non-small cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs).MethodsForty-seven SNPs were genotyped in 318 advanced NSCLC patients receiving EGFR-TKIs. Of 318 patients, 182 (57.2%) patients died during follow-up period. We assessed the association of SNPs with the progression-free survival (PFS) and overall survival (OS) as well as calculated the weighted genetic risk score (GRS). We also explored the expression levels and prognostic values of inflammation genes in lung adenocarcinoma (LUAD) in Gene Expression Profiling Interactive Analysis (GEPIA) and using UCSC Xena, respectively. The relationship between the expression levels of IL15, IL17RA, AGER, MIF, and TNFRSF1A and EGFR mutation status was analyzed using UCSC Xena.ResultsIn single variant analyses, 3 SNPs (rs10519613, rs4819554, and rs4149570) were significantly associated with worse PFS. Five SNPs (rs10519613, rs4819554, rs2070600, rs755622, and rs4149570) were significantly with worse OS. In addition, high and intermediate GRSs (based on rs10519613, rs4819554, and rs4149570) were associated with worse PFS than those with low GRS. For OS, patients with high GRSs (based on rs10519613, rs4819554, rs2070600, rs755622, and rs4149570) had shorter survival time than those with low GRS. Furthermore, IL15, IL17RA, AGER, MIF, and TNFRSF1A were dysregulated in LUAD. There was difference in the expression level of TNFRSF1A between EGFR wildtype and EGFR-mutant LUAD. Both low AGER expression and high TNFRSF1A expression were significantly associated with worse PFS in LUAD. In addition, low IL17RA and AGER expression, high MIF and TNFRSF1A expression were significantly associated with worse OS in LUAD.ConclusionSNPs in inflammation genes could serve as prognostic biomarkers for NSCLC patients treated with EGFR-TKIs.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Thoracic Surgery, The First People’s Hospital of Wenling, Taizhou, China
| | - Tengfei Ye
- Department of Pharmacy, The First People’s Hospital of Wenling, Taizhou, China
| | - Mingdong Li
- Department of Thoracic Surgery, The First People’s Hospital of Wenling, Taizhou, China
| | - Hongwang Yan
- Department of Thoracic Surgery, The First People’s Hospital of Wenling, Taizhou, China
| | - Hui Lin
- Department of Thoracic Surgery, The First People’s Hospital of Wenling, Taizhou, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital, Taizhou, China
| | - Zecheng Qi
- Department of Thoracic Surgery, Taizhou Central Hospital, Taizhou, China
| | - Haihui Sheng
- Outdo Clinic, Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at Shanghai, Shanghai, China
- *Correspondence: Haihui Sheng, ; Chunya He,
| | - Chunya He
- Department of Surgical Oncology, Taizhou Central Hospital, Taizhou, China
- *Correspondence: Haihui Sheng, ; Chunya He,
| |
Collapse
|
25
|
The role of exosomal miR-181b in the crosstalk between NSCLC cells and tumor-associated macrophages. Genes Genomics 2022; 44:1243-1258. [PMID: 35150402 DOI: 10.1007/s13258-022-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND It has been reported that tumor-associated macrophages (TAMs) participate in modulating the progression of cancer in the tumor microenvironment. However, the crosstalk between TAMs and non-small cell lung cancer (NSCLC) is still unclear. OBJECTIVE We investigated whether NSCLC-derived exosomes could affect TAMs, which feedback modulated progression of NSCLC. METHODS MiR-181b expression was measured by RT-PCR. Human THP-1 monocyte was differentiated into macrophages with phorbol myristate acetate, which were further identified by transmission electron microscopy and western blot. Macrophage M1 and M2 polarizations were detected by flow cytometry, RT-PCR and western blot. Proliferation, migration, and invasion of NSCLC cells treated with conditioned mediums were detected by EdU and Transwell assays. RESULTS We demonstrated that miR-181b was up-regulated in exosomes derived from NSCLC patients' serum and NSCLC cells. MiR-181b could be transferred to macrophages via exosomes in the co-culture system of macrophages and NSCLC cells, which promoted macrophage M2 polarization. Further examinations revealed that exosomes derived from NSCLC cells could enhanced macrophage M2 polarizations by regulating miR-181b/JAK2/STAT3 axis, and silencing miR-181b in NSCLC cells and JAK2 inhibitor used in macrophages could reverse the effects. Importantly, the conditioned medium of macrophages treated with NSCLC cell-derived exosomes could promote NSCLC cell proliferation, migration, and invasion. Silencing miR-181b in NSCLC cells and JAK2 inhibitor used in macrophages could block the effects. CONCLUSIONS All of these results indicated that exosomal miR-181b participated in the crosstalk between NSCLC cells and TAMs, providing potential therapeutic targets for NSCLC.
Collapse
|
26
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
27
|
Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N. The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 2021; 22:65-81. [PMID: 34821533 DOI: 10.1080/14737140.2022.2011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is the deadliest cancer in both sexes combined globally due to significant delays in diagnosis and poor survival. Despite advances in the treatment of lung cancer, the overall outcomes remain poor and traditional chemotherapy fails to provide long-term benefits for many patients. Therefore, new treatment strategies are needed to increase overall survival. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells taking part in lung cancer, as has been described in other types of tumors. MDSCs immunosuppressive activity is mediated by arginases (ARG-1 and ARG-2), nitric oxide (NO), reactive oxygen species (ROS), peroxynitrite, PD-1/PD-L1 axis, and different cytokines. MDSCs can be a target for lung cancer immunotherapy by inducing their differentiation into mature myeloid cells, elimination, attenuation of their function, and inhibition of their accumulation. AREAS COVERED In this review, the immunosuppressive function of MDSCs, their role in lung cancer, and strategies to target them, which could result in increased efficacy of immunotherapy in patients with lung cancer, are discussed. EXPERT OPINION Identification of important mechanisms and upstream pathways involved in MDSCs functions paves the way for further preclinical and clinical lung cancer research, which could lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fateme Sheida
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
28
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
29
|
Jesser EA, Brady NJ, Huggins DN, Witschen PM, O'Connor CH, Schwertfeger KL. STAT5 is activated in macrophages by breast cancer cell-derived factors and regulates macrophage function in the tumor microenvironment. Breast Cancer Res 2021; 23:104. [PMID: 34743736 PMCID: PMC8573892 DOI: 10.1186/s13058-021-01481-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In breast cancer, complex interactions between tumor cells and cells within the surrounding stroma, such as macrophages, are critical for tumor growth, progression, and therapeutic response. Recent studies have highlighted the complex nature and heterogeneous populations of macrophages associated with both tumor-promoting and tumor-inhibiting phenotypes. Defining the pathways that drive macrophage function is important for understanding their complex phenotypes within the tumor microenvironment. Signal transducer and activator of transcription (STAT) transcription factors, such as STAT5, are key regulators of immune cell function. The studies described here investigate the functional contributions of STAT5 to tumor-associated macrophage function in breast cancer. METHODS Initial studies were performed using a panel of human breast cancer and mouse mammary tumor cell lines to determine the ability of tumor cell-derived factors to induce STAT5 activation in macrophages. Further studies used these models to identify soluble factors that activate STAT5 in macrophages. To delineate STAT5-specific contributions to macrophage function, a conditional model of myeloid STAT5 deletion was used for in vitro, RNA-sequencing, and in vivo studies. The effects of STAT5 deletion in macrophages on tumor cell migration and metastasis were evaluated using in vitro co-culture migration assays and an in vivo tumor cell-macrophage co-injection model. RESULTS We demonstrate here that STAT5 is robustly activated in macrophages by tumor cell-derived factors and that GM-CSF is a key cytokine stimulating this pathway. The analysis of RNA-seq studies reveals that STAT5 promotes expression of immune stimulatory genes in macrophages and that loss of STAT5 in macrophages results in increased expression of tissue remodeling factors. Finally, we demonstrate that loss of STAT5 in macrophages promotes tumor cell migration in vitro and mammary tumor metastasis in vivo. CONCLUSIONS Breast cancer cells produce soluble factors, such as GM-CSF, that activate the STAT5 pathway in macrophages and drive expression of inflammatory factors. STAT5 deletion in myeloid cells enhances metastasis, suggesting that STAT5 activation in tumor-associated macrophages protects against tumor progression. Understanding mechanisms that drive macrophage function in the tumor microenvironment will ultimately lead to new approaches that suppress tumor-promoting functions while enhancing their anti-tumor functions.
Collapse
Affiliation(s)
- Emily A Jesser
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Brady
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Danielle N Huggins
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA
| | - Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, USA
| | - Christine H O'Connor
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
30
|
Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021; 231:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.
Collapse
Affiliation(s)
- Ali N Chamseddine
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Biostatistics and Epidemiology, CESP INSERM U1018, OncoStat, Gustave Roussy, F-94805, Villejuif, France.
| | - Tarek Assi
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Pharmacology, Gustave Roussy, F-94805, Villejuif, France; Department of Ambulatory Care, Gustave Roussy, F-94805, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
31
|
Pore N, Wu S, Standifer N, Jure-Kunkel M, de Los Reyes M, Shrestha Y, Halpin R, Rothstein R, Mulgrew K, Blackmore S, Martin P, Meekin J, Griffin M, Bisha I, Proia TA, Miragaia RJ, Herbst R, Gupta A, Abdullah SE, Raja R, Frigault MM, Barrett JC, Dennis PA, Ascierto ML, Oberst MD. Resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in non-small-cell lung cancer patients and is reversed by STAT3 knockdown. Cancer Discov 2021; 11:2828-2845. [PMID: 34230008 DOI: 10.1158/2159-8290.cd-20-1543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Mutations in the STK11 (LKB1) gene regulate resistance to PD-1/PD-L1 blockade. This study evaluated this association in patients with nonsquamous non-small-cell lung cancer enrolled in three Phase 1/2 trials. STK11 mutations were associated with resistance to the anti-PD-L1 antibody durvalumab (alone/with the anti-CTLA-4 antibody tremelimumab) independently of KRAS mutational status, highlighting STK11 as a potential driver of resistance to checkpoint blockade. Retrospective assessments of tumor tissue, whole blood and serum revealed a unique immune phenotype in patients with STK11 mutations, with increased expression of markers associated with neutrophils (i.e. CXCL2, IL6), Th17 contexture (i.e. IL17A) and immune checkpoints. Associated changes were observed in the periphery. Reduction of STAT3 in the tumor microenvironment using an antisense oligonucleotide reversed immunotherapy resistance in preclinical STK11 knockout models. These results suggest that STK11 mutations may hinder response to checkpoint blockade through mechanisms including suppressive myeloid cell biology, which could be reversed by STAT3-targeted therapy.
Collapse
Affiliation(s)
| | - Song Wu
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun F, Li L, Xiao Y, Gregory AD, Shapiro SD, Xiao G, Qu Z. Alveolar Macrophages Inherently Express Programmed Death-1 Ligand 1 for Optimal Protective Immunity and Tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:110-114. [PMID: 34135059 PMCID: PMC8674373 DOI: 10.4049/jimmunol.2100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023]
Abstract
Macrophages play a central role in lung physiology and pathology. In this study, we show in mice that alveolar macrophages (AMs), unlike other macrophage types (interstitial, peritoneal, and splenic macrophages), constitutively express programmed death-1 ligand 1 (PD-L1), thereby possessing a superior phagocytic ability and the capacity to repress CTLs by cis- and trans-interacting with CD80 and programmed death-1 (PD-1), respectively. This extraordinary ability of AMs assures optimal protective immunity and tolerance within the lung. These findings uncover a unique characteristic of AMs and an innate immune function of PD-L1 and CD80 and therefore help in the understanding of lung physiology, diseases, and PD-L1/PD-1-based immunotherapy.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Liwen Li
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Yadong Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Steven D Shapiro
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA;
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| |
Collapse
|
33
|
Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G, Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer 2021; 8:jitc-2019-000294. [PMID: 32461344 PMCID: PMC7254155 DOI: 10.1136/jitc-2019-000294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy fails in the majority of patients with cancer. Oncolytic viruses represent a new class of therapeutic agents, yet the therapeutic efficacy is still disappointing. Moreover, intratumoral injection of viruses is the main approach and preclinical studies mainly employ syngeneic or xenograft models. Methods Use an endogenous mouse lung cancer model that faithfully recapitulates human lung cancer, and various in vivo, ex vivo and in vitro assays, to investigate the efficacy, mechanism of action and resistance of systemically administered oncolytic vaccinia virus (oVV), immunotherapy and their combination, to find an effective therapy for refractory lung cancer. Results Resembling human lung cancers, the majority of which are largely resistant to PD-1/PD-L1 blockade and with decreased PD-L1 expression and T-cell activation by our analysis, urethane-induced endogenous lung tumors in mice show reduced PD-L1 expression, low tumor-infiltrating lymphocytes and innate resistance to PD-1/PD-L1 blockade. Intravenous administration of oVV has efficacy and synergizes with simultaneous but not single blockade of PD-1 and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) in this cancer model. Besides direct tumor cell killing, oVV induces T-cell lung recruitment, tumor infiltration, along with expression of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumor cells and tumor-associated immune cells. Blockade of PD-1 or TIM-3 also causes their mutual induction on T cells. Conclusions While systemic administration of oVV shows efficacy in lung cancer by killing tumor cells directly and recruiting and activating T cells for indirect tumor killing, its induction of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumors and tumor-associated immune cells as well as mutual induction of PD-1 or TIM-3 on T cells by their blockade restricts the efficacy of oVV or its combination with single PD-1 or TIM-3 blockade. The triple combination therapy is more effective for refractory lung cancer, and possibly other cold cancers as well.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
35
|
Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.
Collapse
|
36
|
Li L, Sun F, Han L, Liu X, Xiao Y, Gregory AD, Shapiro SD, Xiao G, Qu Z. PDLIM2 repression by ROS in alveolar macrophages promotes lung tumorigenesis. JCI Insight 2021; 6:144394. [PMID: 33539325 PMCID: PMC8021114 DOI: 10.1172/jci.insight.144394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
One of the most fundamental and challenging questions in the field of cancer is how immunity is transformed from tumor immunosurveillance to tumor-promoting inflammation. Here, we identified the tumor suppressor PDZ-LIM domain–containing protein 2 (PDLIM2) as a checkpoint of alveolar macrophages (AMs) important for lung tumor suppression. During lung tumorigenesis, PDLIM2 expression in AMs is downregulated by ROS-activated transcription repressor BTB and CNC homology 1 (BACH1). PDLIM2 downregulation leads to constitutive activation of the transcription factor STAT3, driving AM protumorigenic polarization/activation and differentiation from monocytes attracted from the circulation to suppress cytotoxic T lymphocytes and promote lung cancer. PDLIM2 downregulation also decreases AM phagocytosis. These findings establish ROS/BACH1/PDLIM2/STAT3 as a signaling pathway driving AMs for lung tumor promotion.
Collapse
Affiliation(s)
- Liwen Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fan Sun
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lei Han
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xujie Liu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Xiao WH, Yao LP, Li M, Wang M, Wu L, Jiang MF, Ma HF, Li JQ, Chen GR. The Tumor-Associated Macrophage-M2-Cancer Cell Complex and the Observation of Heterogeneous Modification of the Morphological Structure of Lung Adenocarcinoma. Onco Targets Ther 2020; 13:11139-11149. [PMID: 33154653 PMCID: PMC7608484 DOI: 10.2147/ott.s267157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Objective The aim of this study was to investigate the effect of the tumor-associated macrophage-m2-cancer cell complex (TAM-M2-CC) on the heterostructural modification of lung adenocarcinoma. Methods The expression of CD163+/CD68+ in macrophages in the microenvironment of 161 cases of lung adenocarcinoma was identified by dual immunohistochemistry, and the association between a TAM-M2-CC and its growth, as well as the histological changes in lung adenocarcinoma cells, was assessed. Results The morphological change of lung adenocarcinoma was related to the number of m2 phenotypes of the macrophages in the microenvironment of lung adenocarcinoma. TAM-M2-CCs were involved in the process of cancer cell recognition, association, and reconstruction. Conclusion The microenvironment of lung adenocarcinoma can affect the phenotypic distinction of macrophages, and the polarization recruitment, zombification, and formation of a TAM-M2-CC, which can also affect the local differentiation of lung adenocarcinoma to a certain extent. The applicable pathogenesis needs to be verified and studied further.
Collapse
Affiliation(s)
- Wei-Hua Xiao
- Department of Pathology, Ningbo Beilun People's Hospital, Ningbo 315800, People's Republic of China
| | - Li-Ping Yao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Min Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Min Wang
- Department of Pathology, Ningbo Beilun People's Hospital, Ningbo 315800, People's Republic of China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Mao-Fen Jiang
- Department of Pathology, Ningbo Beilun People's Hospital, Ningbo 315800, People's Republic of China
| | - Hai-Fen Ma
- Department of Pathology, Ningbo Beilun People's Hospital, Ningbo 315800, People's Republic of China
| | - Jun-Qiang Li
- Department of Pathology, Ningbo Beilun People's Hospital, Ningbo 315800, People's Republic of China
| | - Guo-Rong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
38
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 2020; 10:200111. [PMID: 32931721 PMCID: PMC7536076 DOI: 10.1098/rsob.200111] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation and inflammation are unwanted consequences of many pathological conditions, since they could lead to tissue damage and immune exhaustion, both of which can worsen the pathological condition status. In fact, the immune system is naturally equipped with immunoregulatory cells that can limit immune activation and inflammation. However, chronic activation of downregulatory immune responses is also associated with unwanted consequences that, in turn, could lead to disease progression as seen in the case of cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are now considered to play a pivotal role in the pathogenesis of different inflammatory pathological conditions, including different types of cancer and chronic infections. As a potent immunosuppressor cell population, MDSCs can inhibit specific and non-specific immune responses via different mechanisms that, in turn, lead to disease persistence. One such mechanism by which MDSCs can activate their immunosuppressive effects is accomplished by secreting copious amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In this article, we will focus on the pathological role of MDSC expansion in chronic inflammatory conditions including cancer, sepsis/infection, autoimmunity, asthma and ageing, as well as some of the mechanisms by which MDSCs/IL-10 contribute to the disease progression in such conditions.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
39
|
Njatcha C, Farooqui M, Almotlak AA, Siegfried JM. Prevention of Tobacco Carcinogen-Induced Lung Tumor Development by a Novel STAT3 Decoy Inhibitor. Cancer Prev Res (Phila) 2020; 13:735-746. [PMID: 32655003 PMCID: PMC7485626 DOI: 10.1158/1940-6207.capr-20-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
The STAT3 pathway is frequently overactive in non-small cell lung cancer (NSCLC), an often fatal disease with known risk factors including tobacco and chemical exposures. Whether STAT3 can be downmodulated to delay or prevent development of lung cancer resulting from an environmental exposure has not been previously tested. A circular oligonucleotide STAT3 decoy (CS3D) was used to treat mice previously exposed to the tobacco carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. CS3D contains a double-stranded STAT3 DNA response element sequence and interrupts STAT3 signaling by binding to STAT3 dimers, rendering them unable to initiate transcription at native STAT3 DNA binding sites. An intermittent course of CS3D decreased the development of airway preneoplasias by 42% at 1 week posttreatment, reduced the progression of preneoplasia to adenomas by 54% at 8 weeks posttreatment, and reduced the size and number of resulting lung tumors by 49.7% and 29.5%, respectively, at 20 weeks posttreatment. No toxicity was detected. A mutant cyclic oligonucleotide with no STAT3 binding ability was used as a control. Chemopreventive effects were independent of the KRAS mutational status of the tumors. In lungs harvested during and after the treatment course with CS3D, airway preneoplasias had reduced STAT3 signaling. Chemopreventive effects were accompanied by decreased VEGFA expression, ablated IL6, COX-2, and p-NF-κB, and decreased pulmonary M2 macrophages and myeloid-derived suppressor cells. Thus, downmodulation of STAT3 activity using a decoy molecule both reduced oncogenic signaling in the airway epithelium and favored a lung microenvironment with reduced immunosuppression.
Collapse
Affiliation(s)
- Christian Njatcha
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mariya Farooqui
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Abdulaziz A Almotlak
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Jill M Siegfried
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Abstract
Myeloproliferative diseases, including myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), are driven by genetic abnormalities and increased inflammatory signaling and are at high risk to transform into acute myeloid leukemia (AML). Myeloid-derived suppressor cells were reported to enhance leukemia immune escape by suppressing an effective anti-tumor immune response. MPNs are a potentially immunogenic disease as shown by their response to interferon-α treatment and allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Novel immunotherapeutic approaches such as immune checkpoint inhibition, tumor vaccination, or cellular therapies using target-specific lymphocytes have so far not shown strong therapeutic efficacy. Potential reasons could be the pro-inflammatory and immunosuppressive microenvironment in the bone marrow of patients with MPN, driving tumor immune escape. In this review, we discuss the biology of MPNs with respect to the pro-inflammatory milieu in the bone marrow (BM) and potential immunotherapeutic approaches.
Collapse
|
41
|
Zhang SQ, Xu HB, Zhang SJ, Li XY. Identification of the Active Compounds and Significant Pathways of Artemisia Annua in the Treatment of Non-Small Cell Lung Carcinoma based on Network Pharmacology. Med Sci Monit 2020; 26:e923624. [PMID: 32474568 PMCID: PMC7285955 DOI: 10.12659/msm.923624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Artemisia annua exerts powerful effects in non-small cell lung carcinoma (NSCLC). Some studies have shown that Artemisia annua possesses the characteristics of new therapeutic drugs for NSCLC patients. However, the underlying molecular mechanism of Artemisia annua anti-NSCLC is not yet fully elucidated because Artemisia annua contains hundreds of ingredients. This study aimed to conduct network pharmacological analysis on the mechanism of action of Artemisia annua against NSCLC. Material/Methods The active ingredients and corresponding potential targets of Artemisia annua were searched and screened in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then through The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) databases to establish NSCLC related targets. Based on the matching results of Artemisia annua potential targets and NSCLC targets, a protein–protein interaction (PPI) network was constructed to analyze the interactions between these targets and topologically screen the central targets. Furthermore, Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment were carried out. Results There were 19 main active ingredients of Artemisia annua screened for target prediction; 40 NSCLC-related common targets were identified via multiple NSCLC databases. The node area and corresponding degree value of AKT1, MYC, CCND1, VEGFA, JUN, MAPK1, EGFR, and ESR1 were large and could be easily found in the PPI network. The aforementioned results were further verified by the analysis of GO biological function and KEGG enrichment analysis. Conclusions The network pharmacology analysis reveals the molecular biological mechanism of Artemisia annua anti-NSCLC via multiple active components, multi-channels, and multi-targets. This suggests that Artemisia annua might be developed as a promising anti-NSCLC drug.
Collapse
Affiliation(s)
- Shu Qiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Hai Bo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| | - Shi Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xin Yu Li
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
42
|
STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12051107. [PMID: 32365499 PMCID: PMC7281271 DOI: 10.3390/cancers12051107] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
Collapse
|
43
|
Deng S, Clowers MJ, Velasco WV, Ramos-Castaneda M, Moghaddam SJ. Understanding the Complexity of the Tumor Microenvironment in K-ras Mutant Lung Cancer: Finding an Alternative Path to Prevention and Treatment. Front Oncol 2020; 9:1556. [PMID: 32039025 PMCID: PMC6987304 DOI: 10.3389/fonc.2019.01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene (K-ras) is a well-documented, frequently mutated gene in lung cancer. Since K-ras regulates numerous signaling pathways related to cell survival and proliferation, mutations in this gene are powerful drivers of tumorigenesis and confer prodigious survival advantages to developing tumors. These malignant cells dramatically alter their local tissue environment and in the process recruit a powerful ally: inflammation. Inflammation in the context of the tumor microenvironment can be described as either antitumor or protumor (i.e., aiding or restricting tumor progression, respectively). Many current treatments, like immune checkpoint blockade, seek to augment antitumor inflammation by alleviating inhibitory signaling in cytotoxic T cells; however, a burgeoning area of research is now focusing on ways to modulate and mitigate protumor inflammation. Here, we summarize the interplay of tumor-promoting inflammation and K-ras mutant lung cancer pathogenesis by exploring the cytokines, signaling pathways, and immune cells that mediate this process.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Michael J Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
44
|
Georgieva PB, Mathivet T, Alt S, Giese W, Riva M, Balcer M, Gerhardt H. Long-lived tumor-associated macrophages in glioma. Neurooncol Adv 2020; 2:vdaa127. [PMID: 33205045 PMCID: PMC7649962 DOI: 10.1093/noajnl/vdaa127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The tumor microenvironment plays a major tumor-supportive role in glioma. In particular, tumor-associated macrophages (TAMs), which can make up to one-third of the tumor mass, actively support tumor growth, invasion, and angiogenesis. Predominantly alternatively activated (M2-polarized) TAMs are found in late-stage glioma in both human and mouse tumors, as well as in relapse samples from patients. However, whether tumor-educated M2 TAMs can actively contribute to the emergence and growth of relapse is currently debated. METHODS To investigate whether tumor-educated stromal cells remaining in the brain after surgical removal of the primary tumor can be long-lived and retain their tumor-supporting function, we developed a transplantation mouse model and performed lineage-tracing. RESULTS We discovered that macrophages can survive transplantation and stay present in the tumor much longer than previously suggested, while sustaining an M2-polarized protumorigenic phenotype. Transplanted tumors showed a more aggressive growth and faster polarization of the TAMs toward an M2 phenotype compared with primary tumors, a process dependent on the presence of few cotransplanted macrophages. CONCLUSIONS Overall, we propose a new way for tumor-educated TAMs to contribute to glioma aggressiveness by long survival and stable protumorigenic features. These properties could have a relapse-supporting effect.
Collapse
Affiliation(s)
- Petya B Georgieva
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Silvanus Alt
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolfgang Giese
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marly Balcer
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Department: Cardiovascular and metabolic diseases, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, VIB Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Department of Vascular Biomedicine, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
45
|
Owen KL, Brockwell NK, Parker BS. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers (Basel) 2019; 11:E2002. [PMID: 31842362 PMCID: PMC6966445 DOI: 10.3390/cancers11122002] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling mediates almost all immune regulatory processes, including those that are involved in tumor cell recognition and tumor-driven immune escape. Antitumor immune responses are largely driven by STAT1 and STAT2 induction of type I and II interferons (IFNs) and the downstream programs IFNs potentiate. Conversely, STAT3 has been widely linked to cancer cell survival, immunosuppression, and sustained inflammation in the tumor microenvironment. The discovery of JAK-STAT cross-regulatory mechanisms, post-translational control, and non-canonical signal transduction has added a new level of complexity to JAK-STAT governance over tumor initiation and progression. Endeavors to better understand the vast effects of JAK-STAT signaling on antitumor immunity have unearthed a wide range of targets, including oncogenes, miRNAs, and other co-regulatory factors, which direct specific phenotypical outcomes subsequent to JAK-STAT stimulation. Yet, the rapidly expanding field of therapeutic developments aimed to resolve JAK-STAT aberrations commonly reported in a multitude of cancers has been marred by off-target effects. Here, we discuss JAK-STAT biology in the context of immunity and cancer, the consequences of pathway perturbations and current therapeutic interventions, to provide insight and consideration for future targeting innovations.
Collapse
Affiliation(s)
- Katie L. Owen
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| | - Natasha K. Brockwell
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| | - Belinda S. Parker
- Cancer Immunology and Therapeutics Programs, Peter MacCallum Cancer Centre, VIC, Melbourne 3000, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Parkville 3052, Australia
| |
Collapse
|
46
|
Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat Commun 2019; 10:5324. [PMID: 31757943 PMCID: PMC6876573 DOI: 10.1038/s41467-019-13331-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Most cancers are resistant to anti-PD-1/PD-L1 and chemotherapy. Herein we identify PDLIM2 as a tumor suppressor particularly important for lung cancer therapeutic responses. While PDLIM2 is epigenetically repressed in human lung cancer, associating with therapeutic resistance and poor prognosis, its global or lung epithelial-specific deletion in mice causes increased lung cancer development, chemoresistance, and complete resistance to anti-PD-1 and epigenetic drugs. PDLIM2 epigenetic restoration or ectopic expression shows antitumor activity, and synergizes with anti-PD-1, notably, with chemotherapy for complete remission of most lung cancers. Mechanistically, through repressing NF-κB/RelA and STAT3, PDLIM2 increases expression of genes involved in antigen presentation and T-cell activation while repressing multidrug resistance genes and cancer-related genes, thereby rendering cancer cells vulnerable to immune attacks and therapies. We identify PDLIM2-independent PD-L1 induction by chemotherapeutic and epigenetic drugs as another mechanism for their synergy with anti-PD-1. These findings establish a rationale to use combination therapies for cancer treatment. PDLIM2 is repressed epigenetically in lung cancers, which are frequently resistant to anti-PD-1/PD-L1 and chemotherapy. Here, the authors describe the mechanism through which epigenetic restoration of PDLIM2 synergises with anti-PD-1 and chemotherapy in lung cancers.
Collapse
|
47
|
Li Y, Gan C, Zhang Y, Yu Y, Fan C, Deng Y, Zhang Q, Yu X, Zhang Y, Wang L, He F, Xie Y, Ye T, Yin W. Inhibition of Stat3 Signaling Pathway by Natural Product Pectolinarigenin Attenuates Breast Cancer Metastasis. Front Pharmacol 2019; 10:1195. [PMID: 31649548 PMCID: PMC6796319 DOI: 10.3389/fphar.2019.01195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Breast cancer is the most common female cancer with considerable metastatic potential, which urges the need for developing novel potential drug candidate to inhibit tumor metastasis. Signal transducer and activator of transcription 3 (Stat3) have critical roles in cancer growth and metastasis and have been confirmed as a promising anticancer target. Here, we report our finding with pectolinarigenin, a flavonoid compound isolated from the aerial parts of Cirsium chanroenicum. Methods: The role of Pec. in cell proliferation, cell apoptosis, and cell migration and invasion in three breast cancer cells (4T1, MDA-MB-231, MCF-7) was investigated. Cell proliferation was determined by MTT assay, cell apoptosis was determined by flow cytometry, and protein expression was detected by western blotting. Tumor xenograft mice model and breast tumor metastasis model in vivo were built to further assess the effects of Pec. on 4T1 cells. Results: Intraperitoneal administrations of pectolinarigenin significantly inhibited breast cancer metastasis to lungs without affecting the tumor growth of incubated 4T1 breast cancer cells. Pectolinarigenin could also recruit CD8+ T cells to mediate tumor immune response. Furthermore, pectolinarigenin markedly impaired cancer cell migration and invasion by down-regulating phosphorylated-Stat3, and expression of matrix metalloproteinase (MMP)-2, MMP-9, while up-regulating the expression of TIMP2. We also found that pectolinarigenin inhibited breast cancer cell proliferation and induced apoptosis via mitochondrial-related apoptosis pathway, reduced mitochondrial membrane potential and the expression of Bcl-2, increased expression of Bax, and cleaved caspase-3 as well as disturbed the ROS generation. Conclusions: Pectolinarigenin might potentially be a candidate for metastasis of breast cancer by mediating Stat3 pathway.
Collapse
Affiliation(s)
- Yali Li
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.,Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Cailing Gan
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yange Zhang
- Cosmetic Plastic and Burn Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yan Yu
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Fan
- School of Pharmacy, Southwest University for Nationalities, Chengdu, China
| | - Yuanle Deng
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Qianyu Zhang
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xi Yu
- Carey Business School, Johns Hopkins University, Baltimore, MD, United States
| | - Yiwen Zhang
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yongmei Xie
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Lecot P, Sarabi M, Pereira Abrantes M, Mussard J, Koenderman L, Caux C, Bendriss-Vermare N, Michallet MC. Neutrophil Heterogeneity in Cancer: From Biology to Therapies. Front Immunol 2019; 10:2155. [PMID: 31616408 PMCID: PMC6764113 DOI: 10.3389/fimmu.2019.02155] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Neutrophils have been extensively described in the pathophysiology of autoimmune and infectious diseases. Accumulating evidence also suggests the important role of neutrophils in cancer progression through their interaction with cancer and immune cells in blood and in the tumor microenvironment (TME). Most studies have described neutrophils as key drivers of cancer progression, due to their involvement in various tumor promoting functions including proliferation, aggressiveness, and dissemination, as well as in immune suppression. However, such studies were focusing on late-stages of tumorigenesis, in which chronic inflammation had already developed. The role of tumor-associated neutrophils (TANs) at early stages of tumor development remains poorly described, though recent findings indicate that early-stage TANs may display anti-tumor properties. Beyond their role at tumor site, evidence supported by NLR retrospective studies and functional analyses suggest that blood neutrophils could also actively contribute to tumorigenesis. Hence, it appears that the phenotype and functions of neutrophils vary greatly during tumor progression, highlighting their heterogeneity. The origin of pro- or anti-tumor neutrophils is generally believed to arise following a change in cell state, from resting to activated. Moreover, the fate of neutrophils may also involve distinct differentiation programs yielding various subsets of pro or anti-tumor neutrophils. In this review, we will discuss the current knowledge on neutrophils heterogeneity across different tissues and their impact on tumorigenesis, as well as neutrophil-based therapeutic strategies that have shown promising results in pre-clinical studies, paving the way for the design of neutrophil-based next generation immunotherapy.
Collapse
Affiliation(s)
- Pacôme Lecot
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Matthieu Sarabi
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Manuela Pereira Abrantes
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Julie Mussard
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Leo Koenderman
- Department of Respiratory Medicine and Center of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christophe Caux
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Nathalie Bendriss-Vermare
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Marie-Cécile Michallet
- Department of Immunity, Virus, and Inflammation (IVI), Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| |
Collapse
|
49
|
Lin A, Wei T, Meng H, Luo P, Zhang J. Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer 2019; 18:139. [PMID: 31526368 PMCID: PMC6745797 DOI: 10.1186/s12943-019-1062-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been incorporated into the first- and second-line treatment strategies for non-small cell lung cancer (NSCLC), profoundly ushering in a new treatment landscape. However, both adaptive signaling and oncogenic (epidermal growth factor receptor (EGFR)-driven) signaling may induce PD-L1 upregulation in NSCLC. Nevertheless, the superiority of immune checkpoint inhibitors (ICIs) in advanced EGFR-mutant NSCLC is only moderate. ICIs appear to be well tolerated, but clinical activity for some advanced EGFR-mutant NSCLC patients has only been observed in a small proportion of trials. Hence, there are still several open questions about PD-L1 axis inhibitors in patients with NSCLC whose tumors harbor EGFR mutations, such as the effect of EGFR tyrosine kinase inhibitors (TKIs) or EGFR mutations in the tumor microenvironment (TME). Finding the answers to these questions requires ongoing trials and preclinical studies to identify the mechanisms explaining this possible increased susceptibility and to identify prognostic molecular and clinical markers that may predict benefits with PD-1 axis inhibition in this specific NSCLC subpopulation. The presence of multiple mechanisms, including dynamic immune TME profiles, changes in PD-L1 expression and low tumor mutational burdens, may explain the conflicting data regarding the correlation between PD-L1 axis inhibitors and EGFR mutation status. We conducted a review of this currently controversial topic in an attempt to aid in the decision-making process.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Hui Meng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
50
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|