1
|
Cui X, Gu X, Li D, Wu P, Sun N, Zhang C, He J. Tertiary lymphoid structures as a biomarker in immunotherapy and beyond: Advancing towards clinical application. Cancer Lett 2025; 613:217491. [PMID: 39862919 DOI: 10.1016/j.canlet.2025.217491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation. Their role in enhancing immune responses, particularly in the context of cancer, makes them a focal point in immunotherapy. This review discusses recent advances in TLS assessment that involves complex gene expression signatures, histological analysis, artificial intelligence, and spatial omics. The presence and maturity of TLS are associated with better outcomes in various cancers, acting as a biomarker for immunotherapy effectiveness. This review explores the structure, formation, and role of TLS in disease prognosis, including their roles in immunotherapy and non-immunotherapy treatments, highlighting a need to develop novel techniques for precise characterization of TLS as well as their significance as predictive biomarkers beyond traditional biomarkers.
Collapse
Affiliation(s)
- Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Wang Y, Zhang D, Huang X, Wu G, Wang C, Li J, Wang S, Xian X, Fu B, Li K. From heterogeneity to prognosis: understanding the complexity of tertiary lymphoid structures in tumors. Mol Biol Rep 2025; 52:197. [PMID: 39903372 DOI: 10.1007/s11033-025-10319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Tertiary lymphoid structures (TLSs) are aberrant lymphoid tissues found in persistent inflammatory settings, including malignancies, autoimmune disorders, and transplanted organs. The organization and architecture of TLS closely resemble that of secondary lymphoid organs (SLOs). The formation of TLS is an ongoing process, with varying structural features observed at different stages of maturation. The tumor microenvironment (TME) is a multifaceted milieu comprising cells, molecules, and extracellular matrix components in close proximity to the neoplasm. TLS within the TME have the capacity to actively elicit anti-tumor immune responses. TLSs exhibit tumor-specific and individual-specific characteristics, leading to varying immune responses towards tumor immunity based on their distinct cellular components, maturity levels, and spatial distribution. Cell interaction is the foundational elements of tumor immunity. Despite differences in the cellular composition of TLS, B cells and T cells are the main components of tumor-associated TLS。Recent research has highlighted the significance of diverse subtypes of B cells and T cells within TLSs in influencing the therapeutic outcomes and prognostic indicators of individual tumors. This review elucidates the diversity of TLS in terms of cellular composition, developmental stage, anatomical location, and the influence of cytokines on their initiation and progression. Furthermore, the article examines the involvement of B and T cells within TLS and the significance of TLS in relation to tumor prognosis.
Collapse
Affiliation(s)
- Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Jun Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Song Wang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xinmiao Xian
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, Shandong, 252000, PR China.
| |
Collapse
|
3
|
Huang Y, Du Z, Lai Z, Wen D, Huang L, He M, Wu Z, Li H, OuYang H, Wu W, Kan A, Shi M. Single-Nucleus and Spatial Transcriptome Profiling Delineates the Multicellular Ecosystem in Hepatocellular Carcinoma After Hepatic Arterial Infusion Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405749. [PMID: 39686623 PMCID: PMC11791974 DOI: 10.1002/advs.202405749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/08/2024] [Indexed: 12/18/2024]
Abstract
Hepatic arterial infusion chemotherapy (HAIC) has emerged as a promising treatment strategy for hepatocellular carcinoma (HCC), but a detailed understanding of the multicellular ecosystem after HAIC treatment is lacking. Here, we collected tumor samples from treatment-naïve primary and post-HAIC HCC, and integrated single-nucleus RNA sequencing with spatial transcriptomics to characterize the tumor ecosystem in the post-HAIC HCC. Increased fractions and enhanced cellular communication of CD4+ T, CD20+ B, and dendritic cell subtypes were identified in post-HAIC tumors. Moreover, it is substantiated that HAIC promoted tertiary lymphoid structures (TLS) formation, and addressed the roles of TLSs as spatial niches of cellular communication. Specifically, intermediate exhausted CD8+ T cells expressing Granzyme-K and PD-1 (PD-1+CD8+ Tex-int) expanded following HAIC and exhibited a functionally antitumor phenotype. PD-1+CD8+ Tex-int accumulated in the TLS vicinity and disseminated throughout the tumor microenvironment, demonstrating potential as an effective biomarker for HAIC-based treatment in HCC. This study provides valuable resources and biological insights in the cellular underpinnings of HAIC treatment.
Collapse
Affiliation(s)
- YeXing Huang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZeFeng Du
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZhiCheng Lai
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - DongSheng Wen
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - LiChang Huang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - MinKe He
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - ZiChao Wu
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - HuiFang Li
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - HanYue OuYang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - WenChao Wu
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - Anna Kan
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| | - Ming Shi
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerState Key Laboratory of Oncology in South ChinaGuangzhou510060P. R. China
| |
Collapse
|
4
|
Fang Q, Chen S, Chen X, Zou W, Chen D, Huang Y, Wu C. Mature tertiary lymphoid structure associated CD103+ CD8+ Trm cells determined improved anti-tumor immune in breast cancer. Front Oncol 2025; 15:1480461. [PMID: 39926286 PMCID: PMC11802804 DOI: 10.3389/fonc.2025.1480461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Although tertiary lymphoid structures (TLS) play crucial roles in the anti-tumor immune response and are associated with favorable prognoses in many solid tumors, the precise mechanisms by which TLSs enhance anti-tumor immunity remain poorly understood. The current study aimed to explore the relationship between the maturity of tertiary lymphoid structures and their key immune cells in combating breast cancer. Patients and methods In this study, we utilized immunofluorescence and H&E staining to detect tumor-resident memory T cells (Trm) and assess the maturity of TLS, analyzing their distribution and proportion in an annotated cohort of 95 breast cancer patients. Results The presence of tumor-associated TLSs was correlated with an improved prognosis in patients with breast cancer. The proportion of CD8+CD103+ resident memory T cells and natural killer (NK) cells within the TLSs was significantly higher than that in areas outside of these structures. Additionally, the proportions of CD103+ CD8+ Trm cells and NK cells were significantly increased with the gradual maturation of TLS. Furthermore, the secretion function of effector molecules by CD8+ CD103+ Trm cells and NK cells within TLSs was significantly enhanced, indicating a strong correlation between the effector function of CD103+ CD8+ Trm and NK cells and the maturity of TLSs. Conclusion Our study identifies potential additional prognostic information for the clinical prognosis of breast cancer patients, underscoring the prognostic significance of immune cells within TLS, with a particular focus on CD103+ CD8+ Trm cells and NK cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chucheng Wu
- Huizhou Central People’s Hospital, Huizhou,
China
| |
Collapse
|
5
|
Wang H, Li J, Wang Y, Chen Y, Zhang W, Pan X, Su C, Li Z, Wang L, Gu J. IgG4-mediated M2 macrophage polarization in tertiary lymphoid structures of esophageal cancer: implications for immunosuppression. Front Immunol 2025; 15:1497783. [PMID: 39896813 PMCID: PMC11782137 DOI: 10.3389/fimmu.2024.1497783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Background Our previous research highlighted the potential role of immunoglobulin G4 (IgG4) in mediating immunosuppression within the tumor microenvironment (TME). Tertiary lymphoid structures (TLS) in the TME have important immune-related functions. This study aims to analyze the distribution characteristics of IgG4-expressing cells, regulatory T cells (Tregs), and M2-type macrophages as well as to elucidate the relationship between IgG4 and the polarization of M2 macrophages within TLS in esophageal cancer. Object To elucidate the distribution of IgG4, Treg cells, and M2 macrophages in TLS and to assess the impact of IgG4 on macrophage polarization. Methods Esophageal cancer tissue were analyzed with multiplex immunofluorescence to determine the spatial distribution and density of B cells, T cells, and their subtypes. The relationship between IgG4 and CD8+ T cells in TLS, along with interleukin-10 (IL-10) expression and Treg presence, was studied. Serum IgG4 and IL-10 levels were compared between patients and healthy controls. In vitro, the impact of IgG4 on monocyte differentiation into M2 macrophages was observed. Results IgG4 density was inversely related with CD8+ T cells in mature TLS indicating a potential immunosuppressive role (P<0.05,*). Serum analysis revealed that both IgG4 (P<0.01, **) and IL-10 (P<0.0001, ****) were significantly elevated and positively correlated in tumor patients compared to controls (P<0.01, **). In vitro experiments confirmed that IgG4 monocyte differentiation into M2 macrophages, potentially enhancing the immunosuppressive phenotype in TLS. Conclusion IgG4 and IL-10 may contribute to immunosuppression in esophageal cancer by promoting the polarization of M2 macrophages within TLS, which could be a therapeutic target.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yinghai Wang
- Department of Gynecology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Chen
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xinyan Pan
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chanjuan Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ziteng Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Li Wang
- Department of Pathology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
6
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
7
|
Huang QF, Wang GF, Zhang YM, Zhang C, Ran YQ, He JZ, Wang G, Xu XE, Wang SH, Wu JY, Li EM, Xu LY. Lympho-myeloid aggregate-infiltrating CD20 + B cells display a double-negative phenotype and correlate with poor prognosis in esophageal squamous cell carcinoma. Transl Res 2025; 275:48-61. [PMID: 39536938 DOI: 10.1016/j.trsl.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
According to morphological features, tumor-infiltrating B cells (TIL-Bs) can be classified as lympho-myeloid aggregates (LMAs) and tertiary lymphoid structures (TLSs). As a disease with high incidence and mortality, research on esophageal squamous cell carcinoma (ESCC) TIL-Bs is still unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TIL-Bs in ESCC. Based on CD20 immunohistochemical staining of 147 ESCC samples, the TIL-Bs at different anatomic subregions (intra-tumor (T), invasive margin (IM) and peri-tumor (P)) were quantified and correlated with survival by Kaplan-Meier analyses. We found that LMAs were widely distributed throughout the whole section and were associated with poor prognosis, especially those located in the T subregion, which was contrary to the positive clinical significance of TLSs. Based on the number of LMAs and TLSs, a four-level immune type was constructed as an independent predictor for survival. Using multiplexed immunofluorescence (mIF) staining, we found that the main phenotype of infiltrating B cells in LMAs was CD20+IgD-CD27- double-negative (DN) B cells. DN B cells were abundant in ESCC tumor tissue, and their high expression was related to shortened overall survival time. Subsequently, we demonstrate a close relationship between DN B cells and regulatory T cells (Tregs) using single cell RNA-seq data, bulk RNA-seq data and flow cytometry, and verified the spatial proximity of DN B cells and Tregs by mIF staining. Trajectory analysis and flow cytometry revealed that DN B cells highly expressed genes involved in the antigen processing and presentation pathway, such as HLA-DR. The abundance of DN B cells and LMAs in ESCC provides novel potential targets for optimal immunotherapy against ESCC.
Collapse
Affiliation(s)
- Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ge-Fei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yi-Meng Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Cong Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ying-Qi Ran
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Zhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, PR China
| | - Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Shantou Academy Medical Sciences, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
8
|
Yoffe L, Bhinder B, Kang SW, Zhang H, Singh A, Ravichandran H, Markowitz G, Martin M, Kim J, Zhang C, Elemento O, Tansey W, Bates S, McGraw TE, Borczuk A, Lee HS, Altorki NK, Mittal V. Acquisition of discrete immune suppressive barriers contributes to the initiation and progression of preinvasive to invasive human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630523. [PMID: 39803458 PMCID: PMC11722343 DOI: 10.1101/2024.12.31.630523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules. We found that early disease initiation and subsequent progression are associated with the evolution of immune-suppressive cellular phenotypes characterized by decreased cytotoxic CD8 T and NK cells, increased T cell exhaustion and accumulation of immunosuppressive regulatory T cells (Tregs) and M2-like macrophages expressing TREM2. Within Tregs, we identified a unique population of 4-1BB+ Treg subset enriched for the IL2-STAT5 suppressive pathway with transcription profiles supporting discrete metabolic alterations. Spatial analysis showed increased density of suppressive immune cells around tumor cells, increased exhaustion phenotype of both CD4 and CD8 T cells expressing chemokine CXCL13, and spatial microcomplex of endothelial and lymphocyte interactions within tertiary lymphoid structures. The single-cell architecture identifies determinants of early disease emergence and progression, which may be developed not only as diagnostic/prognostic biomarkers but also as targets for disease interception. Additionally, our dataset constitutes a valuable resource for the preinvasive lung cancer research community.
Collapse
Affiliation(s)
- Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Sung Wook Kang
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoran Zhang
- Department of Computer Science, University of Texas at Austin, TX 78712, USA
| | - Arshdeep Singh
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Geoffrey Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Mitchell Martin
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Chen Zhang
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Wesley Tansey
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, 50-100 Holmers Farm Way, High Wycombe, UK, HP12 4DP
| | - Timothy E. McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hyun-Sung Lee
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| |
Collapse
|
9
|
Matsumoto S, Tsujikawa T, Tokita S, Mohamed Bedeir M, Matsuo K, Hata F, Hirohashi Y, Kanaseki T, Torigoe T. HLA class II neoantigen presentation for CD4 + T cell surveillance in HLA class II-negative colorectal cancer. Oncoimmunology 2024; 13:2404665. [PMID: 39508845 PMCID: PMC11542397 DOI: 10.1080/2162402x.2024.2404665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024] Open
Abstract
Neoantigen-reactive CD4+ T cells play a key role in the anti-tumor immune response. However, the majority of epithelial tumors are negative for HLA class II (HLA-II) surface expression, and less is known about the processing of HLA-II antigens. Here, we directly identified naturally presented HLA-II neoantigens in HLA-II negative colorectal cancer (CRC) tissue using a proteogenomic approach. The neoantigens were immunogenic and induced patient CD4+ T cells with a Th1-like memory phenotype that produced IFN-γ, IL2 and TNF-α. Multiplex immunohistochemistry (IHC) demonstrated an interaction between Th cells and HLA-II-positive antigen-presenting cells (APCs) at the invasive margin and within the tertiary lymphoid structures (TLS). In our CRC cohort, the density of stromal APCs was associated with HLA-II antigen presentation in the tumor microenvironment (TME), and the number of TLS was positively correlated with the number of somatic mutations in the tumors. These results demonstrate the presence of neoantigen-specific CD4+ surveillance in HLA-II-negative CRC and suggest a potential role for macrophages and dendritic cells (DCs) at the invasive margin and in TLS for antigen presentation. Stromal APCs in the TME can potentially be used as a source for HLA-II neoantigen identification.
Collapse
Affiliation(s)
- Satoru Matsumoto
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Surgery, IMS Sapporo Digestive Disease Center General Hospital, Sapporo, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Joint Research Center for Immunoproteogenomics, Sapporo Medical University, Sapporo, Japan
| | - Mai Mohamed Bedeir
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Fumitake Hata
- Department of Surgery, Sapporo Dohto Hospital, Sapporo, Japan
| | | | | | | |
Collapse
|
10
|
Wu ZX, Da TT, Huang C, Wang XQ, Li L, Zhao ZB, Yin TT, Ma HQ, Lian ZX, Long J, Wang F, Cao J. CD69 +CD103 +CD8 + tissue-resident memory T cells possess stronger anti-tumor activity and predict better prognosis in colorectal cancer. Cell Commun Signal 2024; 22:608. [PMID: 39696312 DOI: 10.1186/s12964-024-01990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite advancements in therapeutic methodologies, it still causes a high rate of patient mortality. CD8+ tissue-resident memory T (TRM) cells are strategically positioned to mediate effective anti-tumor responses. However, the characteristic surface molecules and functions of CD8+ TRM cells exhibit significant heterogeneity. METHODS The roles and anti-tumor biological functions of different CD8+ TRM subsets in CRC were determined by clinical CRC samples, bioinformatics analysis, and in vitro experiments including co-culture experiments and transwell migration assays. The signaling pathways that synergistically regulate the differentiation of CD8+ TRM cells were identified by in vitro CD8+ T cell activation and inhibition assays, and the functioning transcription factors were predicted using the UCSC and JASPAR databases. RESULTS We found that different CD8+ TRM subsets existed in CRC tumor tissues, which were identified as CD69-CD103-CD8+ TRM, CD69+CD103-CD8+ TRM (SP CD8+ TRM), and CD69+CD103+CD8+ TRM (DP CD8+ TRM) subsets. Compared with SP CD8+ TRM cells, increased infiltration of DP CD8+ TRM cells predicted better prognosis and played a protective role mainly in tumor invasion and lymph node metastasis of CRC. DP CD8+ TRM cells expressed higher levels of effector molecules and exerted stronger anti-tumor effects in a FAS/FASL pathway-dependent manner. Additionally, DP CD8+ TRM cells secreted higher levels of CXCL13 and recruited B cells into tumor tissues through the CXCL13/CXCR5 signaling axis to form tertiary lymphoid structures, participating in anti-tumor immune responses. Notch and TGF-β signaling pathways synergistically regulate the differentiation of DP CD8+ TRM cells. CONCLUSIONS We clarified the roles and mechanisms of different CD8+ TRM subsets in CRC and identified that DP CD8+ TRM cells exert stronger anti-tumor effects and predict better prognosis, which provides ideas for developing new clinically available therapeutic targets.
Collapse
Affiliation(s)
- Zi-Xin Wu
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Tian-Tian Da
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Chuan Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Qing Wang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Ting-Ting Yin
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Hai-Qing Ma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhe-Xiong Lian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jie Long
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Fei Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
11
|
Li R, Strobl J, Poyner EFM, Balbaa A, Torabi F, Mazin PV, Chipampe NJ, Stephenson E, Ramírez-Suástegi C, Shanmugiah VBM, Gardner L, Olabi B, Coulthard R, Botting RA, Zila N, Prigmore E, Gopee NH, Chroscik MA, Kritikaki E, Engelbert J, Goh I, Chan HM, Johnson HF, Ellis J, Rowe V, Tun W, Reynolds G, Yang D, Foster AR, Gambardella L, Winheim E, Admane C, Rumney B, Steele L, Jardine L, Nenonen J, Pickard K, Lumley J, Hampton P, Hu S, Liu F, Liu X, Horsfall D, Basurto-Lozada D, Grimble L, Bacon CM, Weatherhead SC, Brauner H, Wang Y, Bai F, Reynolds NJ, Allen JE, Jonak C, Brunner PM, Teichmann SA, Haniffa M. Cutaneous T cell lymphoma atlas reveals malignant T H2 cells supported by a B cell-rich tumor microenvironment. Nat Immunol 2024; 25:2320-2330. [PMID: 39558094 PMCID: PMC11588665 DOI: 10.1038/s41590-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin. We revealed the co-optation of T helper 2 (TH2) cell-immune gene programs by malignant CTCL cells and modeling of the tumor microenvironment to support their survival. We identified MHC-II+ fibroblasts and dendritic cells that can maintain TH2 cell-like tumor cells. CTCL tumor cells are spatially associated with B cells, forming tertiary lymphoid structure-like aggregates. Finally, we validated the enrichment of B cells in CTCL and its association with disease progression across three independent patient cohorts. Our findings provide diagnostic aids, potential biomarkers for disease staging and therapeutic strategies for CTCL.
Collapse
Affiliation(s)
- Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Johanna Strobl
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aya Balbaa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Pavel V Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Cellular Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nusayhah H Gopee
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta A Chroscik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Efpraxia Kritikaki
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Hon Man Chan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jasmine Ellis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victoria Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Win Tun
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle, UK
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dexin Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | | | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Benjamin Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Julia Nenonen
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jennifer Lumley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hampton
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simeng Hu
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Louise Grimble
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chris M Bacon
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sophie C Weatherhead
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanna Brauner
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Shin SJ, Park I, Go H, Ko J, Lee Y, Kim JH, Ahn SG, Jeong J, Bae SJ, Cha YJ. Immune environment of high-TIL breast cancer: triple negative and hormone receptor positive HER2 negative. NPJ Breast Cancer 2024; 10:102. [PMID: 39592648 PMCID: PMC11599379 DOI: 10.1038/s41523-024-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores differences in immune cell (IC) composition and spatial distribution between triple-negative breast cancer (TNBC) and hormone receptor-positive, HER2-negative breast cancer (HR + HER2-BC) in high-TIL (≥60%) cases, focusing on PD-L1 status. Using multiplex immunofluorescence on resected tumor tissues from 18 TNBC and 14 HR + HER2-BC cases, we analyzed IC types (CD20, CD8, CD4, FOXP3) and their spatial interactions. TNBC showed a unique IC composition characterized by a higher proportion of CD8 + IC (stroma: 27% vs 17%, p < 0.001; tumor: 54% vs 31%, p < 0.001) and CD4 + FOXP3 + IC (stroma: 3.9% vs 3.0%, p = 0.036), compared to HR + HER2-BC. Notably, PD-L1 positive TNBC cases demonstrated denser infiltration CD4 + FOXP3 + IC in the stromal region compared to HR + HER2-BC (146.4 ± 67.1/mm2 vs 114.3 ± 146.9/mm2, p = 0.036), along with pronounced IC clustering near TC. Both tumor subtypes displayed varied IC compositions based on PD-L1 status. In conclusion, IC composition and spatial distribution in high-TIL TNBC and HR + HER2-BC significantly differ, influenced by PD-L1 status.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inho Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jiwon Ko
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Ohno M, Kuramitsu S, Yamashita K, Nagasaka T, Haimoto S, Fujita M. Tumor-Infiltrating B Cells and Tissue-Resident Memory T Cells as Prognostic Indicators in Brain Metastases Derived from Gastrointestinal Cancers. Cancers (Basel) 2024; 16:3765. [PMID: 39594720 PMCID: PMC11591993 DOI: 10.3390/cancers16223765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Tumor-infiltrating B cells (TIBs) and tissue-resident memory T cells (TRMs) play significant roles in antitumor immunity. However, their prognostic relevance in brain metastases (BMs) derived from gastrointestinal (GI) cancers remains unclear. This study aimed to investigate the prognostic significance of TIBs and TRMs in GI cancer-derived BMs (GIBMs). METHODS Retrospective histopathological analyses were performed on surgically resected GIBM tissues from 13 patients. The densities of tumor-infiltrating lymphocytes (TIL) subsets (TIBs, CD4+ T cells, CD8+CD103+ TRMs, and CD8+CD103- non-TRMs) were quantified and correlated with clinical parameters and overall survival (OS) including the Graded Prognostic Assessment (GPA). RESULTS TIBs and CD4+ T cells were predominantly accumulated in the tumor stroma, particularly around blood vessels, where they formed lymphocyte clusters without characteristics of tertiary lymphoid structures (TLSs). In contrast, TRMs more deeply infiltrated into the tumor epithelium than their counterpart non-TRMs. Positive correlations were found between TIB density and both the prognostic prediction of GPA and overall survival (OS) after BM diagnosis or surgery. Furthermore, increased densities of TIBs and TRMs were associated with enhanced survival after BM diagnosis. CONCLUSIONS TIB and TRM densities in BM tissues could serve as reliable prognostic indicators for survival in patients with GIBMs. This study provides crucial insights for the development of novel immunotherapeutic strategies against this lethal disease.
Collapse
Affiliation(s)
- Masasuke Ohno
- Department of Neurosurgery, Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Toru Nagasaka
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Association of Medical Artificial Intelligence Curation, Nagoya 460-0008, Japan
| | - Shoichi Haimoto
- Department of Neurosurgery, Aichi Cancer Center, Nagoya 464-8681, Japan
| | - Mitsugu Fujita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
14
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Fabian KP, Santiago-Sanchez G, Padget MR, Lassoued W, Allen CT, Battula S, Kaufman H, Hodge JW. Alum-anchored IL-12 combined with cytotoxic chemotherapy and immune checkpoint blockade enhanced antitumor immune responses in head and neck cancer models. J Immunother Cancer 2024; 12:e009712. [PMID: 39448201 PMCID: PMC11499830 DOI: 10.1136/jitc-2024-009712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND First-line treatment with pembrolizumab plus chemotherapy in recurrent and metastatic head and neck squamous cell carcinomas (HNSCC) has improved survival. However, the overall response rate with this standard of care regimen (SOC) remains limited. Interleukin (IL)-12 is a potent cytokine that facilitates the crosstalk between innate and adaptive immunity, making it crucial in the antitumor response. Alum-anchored murine IL-12 (mANK-101) has been demonstrated to elicit robust antitumor responses in diverse syngeneic models, which were correlated with increased immune effector functions and prolonged local retention of IL-12. This study investigates the therapeutic benefit of combining mANK-101 with SOC in the MOC1 and MOC2 murine HNSCC tumor models. METHODS MOC1 and MOC2 tumor-bearing C57BL/6 mice were administered with a single intratumoral injection of mANK-101 and weekly intraperitoneal injections of cisplatin and α-programmed death 1 (PD-1) for 3 weeks. For MOC1, flow cytometry and cytokine array were performed to assess the immune effector functions associated with the combinational treatment. Multiplex immunofluorescence was employed to characterize the influence of the treatment on the immune architecture in the tumors. RNA analysis was implemented for in-depth examination of the macrophage and effector populations. RESULTS In the MOC1 and MOC2 models, combination therapy with mANK-101, cisplatin, and α-PD-1 resulted in superior tumor growth inhibition and resulted in the highest rate of tumor-free survival when compared with treatment cohorts that received mANK-101 monotherapy or SOC treatment with α-PD-1 plus cisplatin. Furthermore, the combination therapy protected against tumor re-growth on rechallenge and controlled the growth of distal tumors. The improved therapeutic effect was associated with increased CD8+ T-cell recruitment, increased CD8+ and CD4+ activity, and repolarization of the macrophage population from M2 to M1 at the tumor site. Elevated and prolonged interferon-γ expression is central to the antitumor activity mediated by the combination therapy. In addition, the combination therapy with mANK-101+cisplatin+α-PD-1 induced the formation of tertiary lymphoid structure-like immune aggregates in the peritumoral space. CONCLUSION The current findings provide a rationale for the combination of alum-tethered IL-12 with cisplatin and α-PD-1 for HNSCC.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ginette Santiago-Sanchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle R Padget
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint Tanner Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, Xu J, Guo W, Wang S, Peng Y, Liang Q, Xue L, Gao S. Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun 2024; 15:9097. [PMID: 39438438 PMCID: PMC11496748 DOI: 10.1038/s41467-024-52977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Neoadjuvant immunochemotherapy (nICT) has dramatically changed the treatment landscape of operable esophageal squamous cell carcinoma (ESCC), but factors influencing tumor response to nICT are not well understood. Here, using single-cell RNA sequencing paired with T cell receptor sequencing, we profile tissues from ESCC patients accepting nICT treatment and characterize the tumor microenvironment context. CXCL13+CD8+ Tex cells, a subset of exhausted CD8+ T cells, are revealed to highly infiltrate in pre-treatment tumors and show prominent progenitor exhaustion phenotype in post-treatment samples from responders. We validate CXCL13+CD8+ Tex cells as a predictor of improved response to nICT and reveal CXCL13 to potentiate anti-PD-1 efficacy in vivo. Post-treatment tumors from non-responders are enriched for CXCL13+CD8+ Tex cells with notably remarkable exhaustion phenotype and TNFRSF4+CD4+ Tregs with activated immunosuppressive function and a significant clone expansion. Several critical markers for therapeutic resistance are also identified, including LRRC15+ fibroblasts and SPP1+ macrophages, which may recruit Tregs to form an immunosuppressive landscape. Overall, our findings unravel immune features of distinct therapeutic response to nICT treatment, providing a rationale for optimizing individualized neoadjuvant strategy in ESCC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyuan Cai
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangdong, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Anastasiadou DP, Couturier N, Goel S, Argyris DG, Vodopyanov S, Rivera-Sanchez L, Gonzalez E, Kreger J, Griffen A, Kazakov A, Burt J, Recoder N, Duran CL, Harney AS, Quesnel A, Filippou PS, Lenis VP, Shukla S, Entenberg D, Zintiridou A, Chen X, Eddy RJ, Oktay MH, Condeelis JS, Karagiannis NS, Briceno A, Guzik H, Alon R, DesMarais V, Ioannou G, Gnjatic S, Raynolds DM, Macedo R, Reshef R, Gil-Henn H, MacLean AL, Torres ER, LaFave LM, Lauvau G, Karagiannis GS. Intratumoral CXCL12 Gradients Contextualize Tumor Cell Invasion, Migration and Immune Suppression in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618571. [PMID: 39464015 PMCID: PMC11507869 DOI: 10.1101/2024.10.15.618571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.
Collapse
|
18
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Yang J, Chen Y, Zhang X, Tong Z, Weng S, Zhu N, Yuan Y. Immunotherapy may be more appropriate for ERBB2 low-expressing extramammary paget's disease patients: a prognosis analysis and exploration of targeted therapy and immunotherapy of extramammary paget's disease patients. Cancer Immunol Immunother 2024; 73:252. [PMID: 39358617 PMCID: PMC11447174 DOI: 10.1007/s00262-024-03846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy characterized by its uncertain etiology and metastatic potential. Surgery remains the first-line clinical treatment for EMPD, but the efficacy of radiotherapy and chemotherapy remains to be fully evaluated, and new therapies for EMPD are urgently needed. In this study, we initially screened 815 EMPD patients in the Surveillance, Epidemiology, and End Results (SEER) database and analyzed their clinical features and prognostic factors. Using the dataset from the Genome Sequence Archive (GSA) database, we subsequently conducted weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analyses, grouping the samples based on EMPD disease status and the levels of ERBB2 expression. The prognostic analysis based on the SEER database identified increased age at diagnosis, distant metastasis, and receipt of radiotherapy as independent risk factors for EMPD. Moreover, our results indicated that patients who received chemotherapy had worse prognoses than those who did not, highlighting the urgent need for novel treatment approaches for EMPD. Functional analysis of the GSA-derived dataset revealed that EMPD tissues were significantly enriched in immune-related pathways compared with normal skin tissues. Compared with those with high ERBB2 expression, tissues with low ERBB2 expression displayed greater immunogenicity and enrichment of immune pathways, particularly those related to B cells. These findings suggest that patients with low ERBB2 expression are likely to benefit from immunotherapy, especially B-cell-related immunotherapy.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yurong Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang province, Shaoxing, Zhejiang Province, China
| | - Xiuyuan Zhang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyan Tong
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Weng
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China.
- Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Liang Y, Bu Q, You W, Zhang R, Xu Z, Gan X, Zhou J, Qiao L, Huang T, Lu L. Single-cell analysis reveals hypoxia-induced immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167276. [PMID: 38844114 DOI: 10.1016/j.bbadis.2024.167276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The role of hypoxia in the tumor microenvironment of intrahepatic cholangiocarcinoma (iCCA) remains unclear. Here, we generated a comprehensive atlas of the entire tumor microenvironment and delineated the multifaceted cell-cell interactions to decipher hypoxia-induced pro-tumor immune suppression. We discovered hypoxia is significantly associated with iCCA progression via the activation of HIF1A expression. Moreover, hypoxia-dependent PPARγ-mediated fatty acid oxidation in APOE+ TAMs promoted M2 macrophage polarization by activating the HIF1A-PPARG-CD36 axis. These polarized APOE+ TAMs recruited Treg cell infiltration via the CCL3-CCR5 pair to form an immunosuppressive microenvironment. APOE+ TAMs tended to co-localize spatially with Treg cells in the malignant tissue based on spatial transcriptome data and immunofluorescence analysis results. We identified tumor-reactive CXCL13+ CD8-PreTex with specific high expression of ENTPD1 and ITGAE, which acted as precursors of CD8-Tex and had higher cytotoxicity, lower exhaustion, and more vigorous proliferation. Consequently, CXCL13+ CD8-PreTex functioned as a positive regulator of antitumor immunity by expressing the pro-inflammatory cytokines IFNG and TNF, associated with a better survival outcome. Our study reveals the mechanisms involved in hypoxia-induced immunosuppression and suggests that targeting precursor-exhausted CXCL13+CD8+ T cells might provide a pratical immunotherapeutic approach.
Collapse
Affiliation(s)
- Yuan Liang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojie Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
21
|
Ceylan A, Artac M, Kocak MZ, Artac H. Epidermal growth factor receptor and programmed cell death-1 expression levels in peripheral T cell subsets of patients with non-small cell lung cancer. Scand J Immunol 2024; 100:e13398. [PMID: 39072784 DOI: 10.1111/sji.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths, in part due to its late diagnosis. Increased epidermal growth factor receptor (EGFR) expression in cancer cells is associated with a poor prognosis, and EGFR tyrosine kinase inhibitors are widely used in cancer treatment. This study aimed to clarify the relationship between EGFR expression on T cells and cancer prognosis in patients with non-small cell lung cancer (NSCLC). Forty patients with NSCLC and 40 healthy volunteers were included in this study. Peripheral CD4+T helper (Th1, Th2, Th9, Th17, Th1Th17, follicular and peripheral Th) and cytotoxic T lymphocyte (CD8+follicular and peripheral T) subsets were identified with flow cytometry according to their chemokine receptors. EGFR expression on T lymphocytes in relation to overall survival (OS) was investigated in patients with NSCLC. The patients [mean age (min-max) = 64.03 (45-83); 20 stage I-III and 20 stage IV] had increased EGFR expression on CD3+T, CD4+Th, Th1, Th2, and Th17 cells compared to the controls (p < 0.05). High EGFR expression on CD3+T, CD4+Th, Th1, and Th2 cells was associated with poor OS. Also, PD-1 expression on lymphocytes, CD3+T, and Th cells was increased in patients with NSCLC compared to controls. The high expression of EGFR and PD-1 on Th cells and the reduced percentage of lymphocytes and Th cells, especially in stage IV patients with NSCLC, revealed that increased EGFR activity may trigger apoptosis of Th cells and promote the development of metastases, while high EGFR expression on CD3+T, CD4+Th, Th1, and Th2 cells may be an independent poor prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Ayca Ceylan
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Mehmet Artac
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Zahid Kocak
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hasibe Artac
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
22
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
23
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
24
|
Tran MA, Youssef D, Shroff S, Chowhan D, Beaumont KG, Sebra R, Mehrazin R, Wiklund P, Lin JJ, Horowitz A, Farkas AM, Galsky MD, Sfakianos JP, Bhardwaj N. Urine scRNAseq reveals new insights into the bladder tumor immune microenvironment. J Exp Med 2024; 221:e20240045. [PMID: 38847806 PMCID: PMC11157455 DOI: 10.1084/jem.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.
Collapse
Affiliation(s)
- Michelle A. Tran
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dina Youssef
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjana Shroff
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Disha Chowhan
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G. Beaumont
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny J. Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M. Farkas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
25
|
Chen Y, Wang D, Li Y, Qi L, Si W, Bo Y, Chen X, Ye Z, Fan H, Liu B, Liu C, Zhang L, Zhang X, Li Z, Zhu L, Wu A, Zhang Z. Spatiotemporal single-cell analysis decodes cellular dynamics underlying different responses to immunotherapy in colorectal cancer. Cancer Cell 2024; 42:1268-1285.e7. [PMID: 38981439 DOI: 10.1016/j.ccell.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Expanding the efficacy of immune checkpoint blockade (ICB) in colorectal cancer (CRC) presses for a comprehensive understanding of treatment responsiveness. Here, we analyze multiple sequential single-cell samples from 22 patients undergoing PD-1 blockade to map the evolution of local and systemic immunity of CRC patients. In tumors, we identify coordinated cellular programs exhibiting distinct response associations. Specifically, exhausted T (Tex) or tumor-reactive-like CD8+ T (Ttr-like) cells are closely related to treatment efficacy, and Tex cells show correlated proportion changes with multiple other tumor-enriched cell types following PD-1 blockade. In addition, we reveal the less-exhausted phenotype of blood-associated Ttr-like cells in tumors and find that their higher abundance suggests better treatment outcomes. Finally, a higher major histocompatibility complex (MHC) II-related signature in circulating CD8+ T cells at baseline is linked to superior responses. Our study provides insights into the spatiotemporal cellular dynamics following neoadjuvant PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yuqing Chen
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Yingjie Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lu Qi
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Wen Si
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaochen Ye
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongtao Fan
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Baolin Liu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyan Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Radiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongwu Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Linna Zhu
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovative Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
27
|
Bao X, Lin X, Xie M, Yao J, Song J, Ma X, Zhang X, Zhang Y, Liu Y, Han W, Liang Y, Hu H, Xu L, Xue X. Mature tertiary lymphoid structures: important contributors to anti-tumor immune efficacy. Front Immunol 2024; 15:1413067. [PMID: 39026670 PMCID: PMC11254644 DOI: 10.3389/fimmu.2024.1413067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Tertiary lymphoid structures (TLS) represent the ectopic aggregations of immune cells arising during chronic inflammation or tumor progression. In cancer, TLS are often associated with beneficial clinical outcomes in patients undergoing immunotherapy, underscoring their prognostic and predictive significance. Mature TLS, characterized by germinal centers and areas of T-cell and B-cell aggregation, are considered primary locations for activating and maintaining both humoral and cellular anti-tumor immune effects. Despite their recognized importance, the mechanisms driving the formation of mature TLS in cancer and their influence on the immune response within tumors remain insufficiently understood. Therefore, this review aims to comprehensively explore the structural composition, development mechanisms, maturity impact factors, immunological function, and innovative therapeutic strategies of mature TLS within the tumor microenvironment. The research summarized herein offers novel insights and considerations for therapeutic approaches to promote TLS generation and maturation in patients with cancer, representing a promising avenue for future cancer therapies.
Collapse
Affiliation(s)
- Xinyu Bao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jialin Song
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiming Liu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wenya Han
- Department of Respiratory and Critical Care, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongling Hu
- Department of Respiratory Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Respiratory Endoscopy, The Public Health Clinical Center Affiliated of Shandong University, Jinan, China
| | - Xinying Xue
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
29
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Hu H, Xu Y, Zhang Q, Ai X, Wang T, Li H, Jin C, Ouyang C, Wu Z. Exploring prognostic and immunological characteristics of pancreatic ductal adenocarcinoma through comprehensive genomic analysis of tertiary lymphoid structures and CD8 + T-cells. J Cancer Res Clin Oncol 2024; 150:300. [PMID: 38850373 PMCID: PMC11162401 DOI: 10.1007/s00432-024-05824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Tertiary lymphoid structures (TLSs) and CD8 + T-cells are potential prognostic indicators for pancreatic ductal adenocarcinoma (PDAC). We established a novel scoring system for evaluating the risk for PDAC based on TLS- and CD8 + T-cell-related genes. METHODS We analyzed single-cell sequence data from PDAC patients in the Genome Sequence Archive. Bioinformatics and machine algorithms established and validated a scoring method (T-C score) based on PDAC survival-related genes highly expressed in TLSs and CD8 + T-cells. Patients were stratified into the low- and high-T-C score groups. Differences in survival, pathway enrichment, mutation status, immune cell infiltration, expression of immune checkpoint-associated genes, tumor stemness, and response to antitumor therapy were compared through computer simulation methods. RESULTS Overall survival differed significantly between the training and validation cohorts' low- and high-T-C score groups. The low-T-C score group correlated with lower tumor mutation burden and lower levels of tumor stemness compared with the high-T-C score group. Patients with lower T-C scores exhibited advantages in immunotherapeutic responses and might be more sensitive to the chemotherapeutic regimen and multi-kinase inhibitors. CONCLUSION The T-C score could serve as an effective model for predicting the survival and therapeutic responses of patients with PDAC.
Collapse
Affiliation(s)
- Hao Hu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yang Xu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Qiang Zhang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Xiangnan Ai
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Tengfei Wang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Huixing Li
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Changguo Jin
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Caiguo Ouyang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhenyu Wu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
31
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Li Y, Huang H, Wang Q, Zheng X, Zhou Y, Kong X, Huang T, Zhang J, Zhou Y. Identification of prognostic risk model based on plasma cell markers in hepatocellular carcinoma through single-cell sequencing analysis. Front Genet 2024; 15:1363197. [PMID: 38859937 PMCID: PMC11163121 DOI: 10.3389/fgene.2024.1363197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a substantial global health burden. Tumorinfiltrating B lymphocytes (TIL-Bs) contribute to tumor progression and significantly impact the efficacy of tumor therapy. However, the characteristics of TIL-Bs in HCC and their effect on HCC therapy remain elusive. Single-cell RNA sequencing (scRNAseq) was applied to investigate the heterogeneity, cellular differentiation and cell-cell communication of TIL-Bs in HCC. Further, the Cancer Genome Atlas-liver hepatocellular carcinoma (TCGA-LIHC) and liver cancer institutes (LCI) cohorts were applied to construct and validate the plasma cell marker-based prognostic risk model. The relationship between the prognostic risk model and the responsiveness of immunotherapy and chemotherapy in patients with HCC were estimated by OncoPredict and tumor immune dysfunction and exclusion (TIDE) algorithm. Finally, we established nomogram and calibration curves to evaluate the precision of the risk score in predicating survival probability. Our data identified five subtypes of TIL-Bs in HCC, each exhibiting varying levels of infiltration in tumor tissues. The interactions between TIL-Bs and other cell types contributed to shaping distinct tumor microenvironments (TME). Moreover, we found that TIL-Bs subtypes had disparate prognostic values in HCC patients. The prognostic risk model demonstrated exceptional predictive accuracy for overall survival and exhibited varying sensitivities to immunotherapy and chemotherapy among patients with HCC. Our data demonstrated that the risk score stood as an independent prognostic predictor and the nomogram results further affirmed its strong prognostic capability. This study reveals the heterogeneity of TIL-Bs and provides a prognostic risk model based on plasma cell markers in HCC, which could prove valuable in predicting prognosis and guiding the choice of suitable therapies for patients with HCC.
Collapse
Affiliation(s)
- Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Hao Huang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Yi Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| |
Collapse
|
33
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
35
|
Dong Y, Chen Z, Yang F, Wei J, Huang J, Long X. Prediction of immunotherapy responsiveness in melanoma through single-cell sequencing-based characterization of the tumor immune microenvironment. Transl Oncol 2024; 43:101910. [PMID: 38417293 PMCID: PMC10907870 DOI: 10.1016/j.tranon.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICB) therapy have emerged as effective treatments for melanomas. However, the response of melanoma patients to ICB has been highly heterogenous. Here, by analyzing integrated scRNA-seq datasets from melanoma patients, we revealed significant differences in the TiME composition between ICB-resistant and responsive tissues, with resistant or responsive tissues characterized by an abundance of myeloid cells and CD8+ T cells or CD4+ T cell predominance, respectively. Among CD4+ T cells, CD4+ CXCL13+ Tfh-like cells were associated with an immunosuppressive phenotype linked to immune escape-related genes and negative regulation of T cell activation. We also develop an immunotherapy response prediction model based on the composition of the immune compartment. Our predictive model was validated using CIBERSORTx on bulk RNA-seq datasets from melanoma patients pre- and post-ICB treatment and showed a better performance than other existing models. Our study presents an effective immunotherapy response prediction model with potential for further translation, as well as underscores the critical role of the TiME in influencing the response of melanomas to immunotherapy.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhizhuo Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xiao Long
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
36
|
Rodríguez-Zhurbenko N, Hernández AM. The role of B-1 cells in cancer progression and anti-tumor immunity. Front Immunol 2024; 15:1363176. [PMID: 38629061 PMCID: PMC11019000 DOI: 10.3389/fimmu.2024.1363176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, in addition to the well-established role of T cells in controlling or promoting tumor growth, a new wave of research has demonstrated the active involvement of B cells in tumor immunity. B-cell subsets with distinct phenotypes and functions play various roles in tumor progression. Plasma cells and activated B cells have been linked to improved clinical outcomes in several types of cancer, whereas regulatory B cells have been associated with disease progression. However, we are only beginning to understand the role of a particular innate subset of B cells, referred to as B-1 cells, in cancer. Here, we summarize the characteristics of B-1 cells and review their ability to infiltrate tumors. We also describe the potential mechanisms through which B-1 cells suppress anti-tumor immune responses and promote tumor progression. Additionally, we highlight recent studies on the protective anti-tumor function of B-1 cells in both mouse models and humans. Understanding the functions of B-1 cells in tumor immunity could pave the way for designing more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Nely Rodríguez-Zhurbenko
- Immunobiology Department, Immunology and Immunotherapy Division, Center of Molecular Immunology, Habana, Cuba
| | - Ana M. Hernández
- Applied Genetics Group, Department of Biochemistry, Faculty of Biology, University of Habana, Habana, Cuba
| |
Collapse
|
37
|
Di Modugno F, Di Carlo A, Spada S, Palermo B, D'Ambrosio L, D'Andrea D, Morello G, Belmonte B, Sperduti I, Balzano V, Gallo E, Melchionna R, Panetta M, Campo G, De Nicola F, Goeman F, Antoniani B, Carpano S, Frigè G, Warren S, Gallina F, Lambrechts D, Xiong J, Vincent BG, Wheeler N, Bortone DS, Cappuzzo F, Facciolo F, Tripodo C, Visca P, Nisticò P. Tumoral and stromal hMENA isoforms impact tertiary lymphoid structure localization in lung cancer and predict immune checkpoint blockade response in patients with cancer. EBioMedicine 2024; 101:105003. [PMID: 38340557 PMCID: PMC10869748 DOI: 10.1016/j.ebiom.2024.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTβR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTβR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTβR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, New Hall Block - Room 171, Clifton Campus - NG11 8NS, Nottingham, United Kingdom
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Vittoria Balzano
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Giulia Campo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Francesca De Nicola
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Frauke Goeman
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Barbara Antoniani
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, Milan, Italy
| | - Sarah Warren
- NanoString Technologies Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Filippo Gallina
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Diether Lambrechts
- Center for Cancer Biology, Herestraat 49 box 912, VIB, 3000, Leuven, Belgium
| | - Jieyi Xiong
- Center for Cancer Biology, Herestraat 49 box 912, VIB, 3000, Leuven, Belgium
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Nathan Wheeler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Dante S Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 5206 Marsico Hall, Chapel Hill, NC, 27599, USA
| | - Federico Cappuzzo
- Second Division of Medical Oncology, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Francesco Facciolo
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
38
|
Wang B, Song B, Li Y, Zhao Q, Tan B. Mapping spatial heterogeneity in gastric cancer microenvironment. Biomed Pharmacother 2024; 172:116317. [PMID: 38382329 DOI: 10.1016/j.biopha.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Gastric cancer (GC) is difficult to characterize due to its heterogeneity, and the complicated heterogeneity leads to the difficulty of precisely targeted therapy. The spatially heterogeneous composition plays a crucial role in GC onset, progression, treatment efficacy, and drug resistance. In recent years, the technological advancements in spatial omics has shifted our understanding of the tumor microenvironment (TME) from cancer-centered model to a dynamic and variant whole. In this review, we concentrated on the spatial heterogeneity within the primary lesions and between the primary and metastatic lesions of GC through the TME heterogeneity including the tertiary lymphoid structures (TLSs), the uniquely spatial organization. Meanwhile, the immune phenotype based on spatial distribution was also outlined. Furthermore, we recapitulated the clinical treatment in mediating spatial heterogeneity in GC, hoping to provide a systematic view of how spatial information could be integrated into anti-cancer immunity.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China.
| |
Collapse
|
39
|
Zhou W, Kawashima S, Ishino T, Kawase K, Ueda Y, Yamashita K, Watanabe T, Kawazu M, Dansako H, Suzuki Y, Nishikawa H, Inozume T, Nagasaki J, Togashi Y. Stem-like progenitor and terminally differentiated T FH-like CD4 + T cell exhaustion in the tumor microenvironment. Cell Rep 2024; 43:113797. [PMID: 38363680 DOI: 10.1016/j.celrep.2024.113797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Urology Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shusuke Kawashima
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan; Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Katsushige Kawase
- Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan; Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | - Tomofumi Watanabe
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0932, Japan
| | - Masahito Kawazu
- Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Kashiwa 277-8568, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), Tokyo 104-0045, Kashiwa 277-8577, Japan
| | - Takashi Inozume
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan.
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Chiba Cancer Center, Research Institute, Division of Cell Therapy, Chiba 260-8717, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), Tokyo 104-0045, Kashiwa 277-8577, Japan.
| |
Collapse
|
40
|
Wang H, Wang W, Wang Z, Li X. Transcriptomic correlates of cell cycle checkpoints with distinct prognosis, molecular characteristics, immunological regulation, and therapeutic response in colorectal adenocarcinoma. Front Immunol 2023; 14:1291859. [PMID: 38143740 PMCID: PMC10749195 DOI: 10.3389/fimmu.2023.1291859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Backgrounds Colorectal adenocarcinoma (COAD), accounting for the most common subtype of colorectal cancer (CRC), is a kind of malignant digestive tumor. Some cell cycle checkpoints (CCCs) have been found to contribute to CRC progression, whereas the functional roles of a lot of CCCs, especially the integrated role of checkpoint mechanism in the cell cycle, remain unclear. Materials and methods The Genomic Data Commons (GDC) The Cancer Genome Atlas (TCGA) COAD cohort was retrieved as the training dataset, and GSE24551 and GSE29623 were downloaded from Gene Expression Omnibus (GEO) as the validation datasets. A total of 209 CCC-related genes were derived from the Gene Ontology Consortium and were subsequently enrolled in the univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, finally defining a CCC signature. Cell proliferation and Transwell assay analyses were utilized to evaluate the functional roles of signature-related CCCs. The underlying CCC signature, molecular characteristics, immune-related features, and therapeutic response were finally estimated. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic responses. Results The aberrant gene expression of CCCs greatly contributed to COAD development and progression. Univariate Cox regression analysis identified 27 CCC-related genes significantly affecting the overall survival (OS) of COAD patients; subsequently, LASSO analysis determined a novel CCC signature. Noticeably, CDK5RAP2, MAD1L1, NBN, RGCC, and ZNF207 were first identified to be correlated with the prognosis of COAD, and it was proven that all of them were significantly correlated with the proliferation and invasion of HCT116 and SW480 cells. In TCGA COAD cohort, CCC signature robustly stratified COAD patients into high and low CCC score groups (median OS: 57.24 months vs. unreached, p< 0.0001), simultaneously, with the good AUC values for OS prediction at 1, 2, and 3 years were 0.74, 0.78, and 0.77. Furthermore, the prognostic capacity of the CCC signature was verified in the GSE24551 and GSE29623 datasets, and the CCC signature was independent of clinical features. Moreover, a higher CCC score always indicated worse OS, regardless of clinical features, histological subtypes, or molecular subgroups. Intriguingly, functional enrichment analysis confirmed the CCC score was markedly associated with extracellular, matrix and immune (chemokine)-related signaling, cell cycle-related signaling, and metabolisms. Impressively, a higher CCC score was positively correlated with a majority of chemokines, receptors, immunostimulators, and anticancer immunity, indicating a relatively immune-promoting microenvironment. In addition, GSE173839, GSE25066, GSE41998, and GSE194040 dataset analyses of the underlying CCC signature suggested that durvalumab with olaparib and paclitaxel, taxane-anthracycline chemotherapy, neoadjuvant cyclophosphamide/doxorubicin with ixabepilone or paclitaxel, and immunotherapeutic strategies might be suitable for COAD patients with higher CCC score. Eventually, the GDSC database analysis showed that lower CCC scores were likely to be more sensitive to 5-fluorouracil, bosutinib, gemcitabine, gefitinib, methotrexate, mitomycin C, and temozolomide, while patients with higher CCC score seemed to have a higher level of sensitivity to bortezomib and elesclomol. Conclusion The novel CCC signature exhibited a good ability for prognosis prediction for COAD patients, and the CCC score was found to be highly correlated with molecular features, immune-related characteristics, and therapeutic responses, which would greatly promote clinical management and precision medicine for COAD.
Collapse
Affiliation(s)
- Heng Wang
- Department of Colorectal Surgery, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
You X, Koop K, Weigert A. Heterogeneity of tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1286850. [PMID: 38111571 PMCID: PMC10725932 DOI: 10.3389/fimmu.2023.1286850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.
Collapse
Affiliation(s)
- Xin You
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
| | - Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
42
|
Yang Y, Louie R, Puc J, Vedvyas Y, Alcaina Y, Min IM, Britz M, Luciani F, Jin MM. Chimeric Antigen Receptor T Cell Therapy Targeting Epithelial Cell Adhesion Molecule in Gastric Cancer: Mechanisms of Tumor Resistance. Cancers (Basel) 2023; 15:5552. [PMID: 38067255 PMCID: PMC10705754 DOI: 10.3390/cancers15235552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Raymond Louie
- School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Janusz Puc
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Yogindra Vedvyas
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Yago Alcaina
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Irene M. Min
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matt Britz
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Moonsoo M. Jin
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
43
|
Meng Z, Rodriguez Ehrenfried A, Tan CL, Steffens LK, Kehm H, Zens S, Lauenstein C, Paul A, Schwab M, Förster JD, Salek M, Riemer AB, Wu H, Eckert C, Leonhardt CS, Strobel O, Volkmar M, Poschke I, Offringa R. Transcriptome-based identification of tumor-reactive and bystander CD8 + T cell receptor clonotypes in human pancreatic cancer. Sci Transl Med 2023; 15:eadh9562. [PMID: 37967201 DOI: 10.1126/scitranslmed.adh9562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally refractory to immune checkpoint blockade, although patients with genetically unstable tumors can show modest therapeutic benefit. We previously demonstrated the presence of tumor-reactive CD8+ T cells in PDAC samples. Here, we charted the tumor-infiltrating T cell repertoire in PDAC by combining single-cell transcriptomics with functional testing of T cell receptors (TCRs) for reactivity against autologous tumor cells. On the basis of a comprehensive dataset including 93 tumor-reactive and 65 bystander TCR clonotypes, we delineated a gene signature that effectively distinguishes between these T cell subsets in PDAC, as well as in other tumor indications. This revealed a high frequency of tumor-reactive TCR clonotypes in three genetically unstable samples. In contrast, the T cell repertoire in six genetically stable PDAC tumors was largely dominated by bystander T cells. Nevertheless, multiple tumor-reactive TCRs were successfully identified in each of these samples, thereby providing a perspective for personalized immunotherapy in this treatment-resistant indication.
Collapse
Affiliation(s)
- Zibo Meng
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Aaron Rodriguez Ehrenfried
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Chin Leng Tan
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Laura K Steffens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hannes Kehm
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Zens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alina Paul
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marius Schwab
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jonas D Förster
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Mogjiborahman Salek
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Angelika B Riemer
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Heshui Wu
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Christoph Eckert
- Pathology Institute, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Stephan Leonhardt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Volkmar
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
| | - Isabel Poschke
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
44
|
Zhang K, Xie X, Zheng SL, Deng YR, Liao D, Yan HC, Kang X, Jiang HP, Guo SQ. Tertiary lymphoid structures in gynecological cancers: prognostic role, methods for evaluating, antitumor immunity, and induction for therapy. Front Oncol 2023; 13:1276907. [PMID: 38023214 PMCID: PMC10667730 DOI: 10.3389/fonc.2023.1276907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Tertiary lymphoid structures (TLSs), referred to as tertiary lymphoid organs and lymphoid tissue neogenesis, are aggregates of immune cells that occur in nonlymphoid tissues. In recent years, it has been found that TLSs within the tumor microenvironment have been associated with local adaptive immune immunity against cancer and favorable prognosis in several human solid tumors, including gynecological cancers. The issue of the prognosis of gynecological cancers, including endometrial, cervical, and ovarian cancer, is an enormous challenge that many clinical doctors and researchers are now facing. Concerning the predictive prognostic role of TLSs, effective evaluation, and quantification of TLSs in human tissues may be used to assist gynecologists in assessing the clinical outcome of gynecological cancer patients. This review summarizes the current knowledge of TLSs in gynecological cancers, mainly focusing on the potential mechanism of TLS neogenesis, methods for evaluating TLSs, their prognostic value, and their role in antitumor immune immunity. This review also discusses the new therapeutic methods currently being explored in gynecological cancers to induce the formation of TLSs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Gynecology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xiao Xie
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Shuang-Lin Zheng
- Department of Gynecology, The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Chen Yan
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xi Kang
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Ding P, Liu P, Meng L, Zhao Q. Mechanisms and biomarkers of immune-related adverse events in gastric cancer. Eur J Med Res 2023; 28:492. [PMID: 37936161 PMCID: PMC10631148 DOI: 10.1186/s40001-023-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs), different from traditional cancer treatment models, have shown unprecedented anti-tumor effects in the past decade, greatly improving the prognosis of many malignant tumors in clinical practice. At present, the most widely used ICIs in clinical immunotherapy for a variety of solid tumors are monoclonal antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and their ligand PD-L1. However, tumor patients may induce immune-related adverse events (irAEs) while performing immunotherapy, and irAE is an obstacle to the prospect of ICI treatment. IrAE is a non-specific disease caused by immune system imbalance, which can occur in many tissues and organs. For example, skin, gastrointestinal tract, endocrine system and lung. Although the exact mechanism is not completely clear, related studies have shown that irAE may develop through many ways. Such as excessive activation of autoreactive T cells, excessive release of inflammatory cytokines, elevated levels of autoantibodies, and common antigens between tumors and normal tissues. Considering that the occurrence of severe IrAE not only causes irreversible damage to the patient's body, but also terminates immunotherapy due to immune intolerance. Therefore, accurate identification and screening of sensitive markers of irAE are the main beneficiaries of ICI treatment. Additionally, irAEs usually require specific management, the most common of which are steroids and immunomodulatory therapies. This review aims to summarize the current biomarkers for predicting irAE in gastric cancer and their possible mechanisms.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Pengpeng Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
46
|
Xu W, Zhu C, Ji D, Qian H, Shi L, Mao X, Zhou H, Wang L. CT-based radiomics prediction of CXCL13 expression in ovarian cancer. Med Phys 2023; 50:6801-6814. [PMID: 37690459 DOI: 10.1002/mp.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Ovarian cancer, the most common malignancy in the female reproductive system, and patients tend to be at middle and advanced clinical stages when diagnosed. Therefore, early detection and early diagnosis have important clinical significance for the treatment of ovarian cancer patients. CXCL13, a chemokine with the ligands CXCR3 and CXCR5, is involved in the tumor metastasis process. PURPOSE This study aimed to predict mRNA expression of CXCL13 in ovarian cancer tissues noninvasively. METHODS Medical imaging data and transcriptomic sequencing data of the 343 ovarian cancer patients were downloaded from the TCIA and TCGA databases, respectively. Seventy-six radiomics features were extracted from the CT data. Seven features were selected for model construction by using logistic regression. Accuracy, specificity, sensitivity, positive predictive value, and negative predictive value were used to evaluate the radiomics model. RESULTS High CXCL13 expression was found to be a significant protective factor for OS [HR (95% CI) = 0.755 (0.622-0.916), p = 0.004]. There was a significant positive correlation between CXCL13 and the degree of eosinophil infiltration. A calibration curve and the Hosmer-Lemeshow goodness-of-fit test showed that the prediction probability of the radiomics prediction model for high expression of CXCL13 was consistent with the true value. The AUC value of the nomogram model's ability to predict OS (12 months) was 0.758. The calibration plot and DCA both showed high clinical applicability for the nomogram model. CONCLUSION CXCL13 is a candidate predictive biomarker for OC and correlates with the degree of plasma cell and eosinophil infiltration.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chengyi Zhu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dan Ji
- X-ray Department, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lingli Shi
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Xuping Mao
- X-ray Department, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Huifang Zhou
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
47
|
Palermo B, Franzese O, Frisullo G, D'Ambrosio L, Panetta M, Campo G, D'Andrea D, Sperduti I, De Nicola F, Goeman F, Gallina F, Visca P, Facciolo F, Nisticò P. CD28/PD1 co-expression: dual impact on CD8 + T cells in peripheral blood and tumor tissue, and its significance in NSCLC patients' survival and ICB response. J Exp Clin Cancer Res 2023; 42:287. [PMID: 37898752 PMCID: PMC10612243 DOI: 10.1186/s13046-023-02846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has significantly prolonged survival of non-small cell lung cancer (NSCLC) patients, although most patients develop mechanisms of resistance. Recently single-cell RNA-sequencing (scRNA-Seq) revealed a huge T-cell phenotypic and (dys)functional state variability. Accordingly, T-cell exhaustion is recognized as a functional adaptation, with a dynamic progression from a long-lived "pre-exhausted stem-like progenitor" to a "terminally exhausted" state. In this scenario it is crucial to understand the complex interplay between co-stimulatory and inhibitory molecules in CD8+ T-cell functionality. METHODS To gain a baseline landscape of the composition, functional states, and transcriptomic signatures predictive of prognosis, we analyzed CD8+ T-cell subsets characterized by the presence/absence of PD1 and CD28 from periphery, adjacent non-tumor tissue and tumor site of a cohort of treatment-naïve NSCLC patients, by integrated multiparametric flow cytometry, targeted multi-omic scRNA-seq analyses, and computational pipelines. RESULTS Despite the increased PD1 levels, an improved PD1+CD28+ T-cell polyfunctionality was observed with the transition from periphery to tumor site, associated with lack of TIGIT, TIM-3 and LAG-3, but not with Ag-experienced-marker CD11a. Differently from CD28+ T cells, the increased PD1 levels in the tumor were associated with reduced functionality in PD1+CD28- T cells. CD11ahigh, although expressed only in a small fraction of this subset, still sustained its functionality. Absence of TIGIT, TIM-3 and CTLA-4, alone or combined, was beneficial to CD28- T cells. Notably, we observed distinct TRM phenotypes in the different districts, with CD28+ T cells more capable of producing TGFβ in the periphery, potentially contributing to elevated CD103 levels. In contrast CD28- TRM mainly produced CXCL13 within the tumor. ScRNA-seq revealed 5 different clusters for each of the two subsets, with distinctive transcriptional profiles in the three districts. By interrogating the TCGA dataset of patients with lung adenocarcinoma (LUAD) and metastatic NSCLC treated with atezolizumab, we found signatures of heterogeneous TRM and "pre-exhausted" long-lived effector memory CD8+ T cells associated with improved response to ICB only in the presence of CD28. CONCLUSIONS Our findings identify signatures able to stratify survival of LUAD patients and predict ICB response in advanced NSCLC. CD28 is advocated as a key determinant in the signatures identified, in both periphery and tumor site, thus likely providing feasible biomarkers of ICB response.
Collapse
Affiliation(s)
- Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Frisullo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Campo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Frauke Goeman
- SAFU Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Filippo Gallina
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic-Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
48
|
Hu C, You W, Kong D, Huang Y, Lu J, Zhao M, Jin Y, Peng R, Hua D, Kuang DM, Chen Y. Tertiary lymphoid structure-associated B cells enhance CXCL13 +CD103 +CD8 +Trm cell response to PD-1 blockade in gastric cancer. Gastroenterology 2023; 166:S0016-5085(23)05198-3. [PMID: 39491204 DOI: 10.1053/j.gastro.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances anti-tumor immunity is not well understood. The present study aimed to investigate the underlying cross-talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS Immunostaining and hematoxylin and eosin staining of TLS and CXCL13+CD103+CD8+Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+Trm cells was determined both in vitro and in vivo. The effect of CXCL13+CD103+CD8+Trm cells in suppressing tumor growth was evaluated through anti-PD-1 therapy. RESULTS The presence of TLS and CXCL13+CD103+CD8+Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in GC patients. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+Trm cells through the Lymphotoxin Alpha (LTα)/Tumor necrosis factor receptor 2 (TNFR2) axis, and the mTOR signaling pathway played a critical role in CD103+CD8+Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2 dependent manner. CONCLUSIONS This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+Trm cells in anti-tumor immunity, providing valuable insights into the potential utilization of the LTα/TNFR2 axis within CXCL13+CD103+CD8+Trm cells for advancing immunotherapy strategies in GC.
Collapse
Affiliation(s)
- Chupeng Hu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Wenhua You
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Deyuan Kong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Yedi Huang
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - JinYing Lu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Mengya Zhao
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Yu Jin
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Dong Hua
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China.
| |
Collapse
|
49
|
Natsuki S, Tanaka H, Nishiyama M, Deguchi S, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Maeda K. Significance of CD103 + tissue-resident memory T cells for predicting the effectiveness of immune checkpoint inhibitors in esophageal cancer. BMC Cancer 2023; 23:1011. [PMID: 37864146 PMCID: PMC10588150 DOI: 10.1186/s12885-023-11438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), including nivolumab, have been approved to treat esophageal cancer. However, these remedies are not fit for all patients with esophageal cancer; therefore, a predictive surrogate marker is needed to assess their effectiveness. CD103+CD8+ tumor-infiltrating lymphocytes, defined as tissue-resident memory T cells (TRM), are promising indicators of response to ICIs, but it remains to be elucidated. This study investigated the association between the efficacy of ICIs and TRM. METHODS The relationships between TRM infiltrating esophageal cancer, clinicopathological features, and prognosis after nivolumab initiation were examined using immunostaining. Tissue samples were obtained from surgically resected specimens of 37 patients with esophageal cancer who received nivolumab as a secondary or subsequent therapy. In addition, TRM infiltration was compared with programmed death-ligand 1 (PD-L1) expression and blood count parameters as predictors of nivolumab effectiveness. RESULTS TRM-rich patients had a significant survival benefit after nivolumab initiation (12-months overall survival 70.8% vs 37.2%, p = 0.0485; 12-months progression-free survival 31.2% vs 0%, p = 0.0153) and experienced immune-related adverse events more frequently than TRM-poor patients (6 vs 2 patients). TRM infiltration was weakly correlated with PD-L1 positivity (r = 0.374, p = 0.022), but TRM may indicate more sensitive response to ICIs than PD-L1 expression in this study. Some blood test parameters also weakly correlated with TRM but did not impact prognosis. CONCLUSIONS TRM-rich patients have a favorable prognosis after nivolumab initiation. Our results suggest that TRM are vital for antitumor immunity and are a promising predictor of ICIs effectiveness.
Collapse
Affiliation(s)
- Seiji Natsuki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Fuchu Hospital, Osaka, Japan.
| | - Masaki Nishiyama
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| |
Collapse
|
50
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|