1
|
Prokai-Tatrai K, Prokai L. The impact of 17β-estradiol on the estrogen-deficient female brain: from mechanisms to therapy with hot flushes as target symptoms. Front Endocrinol (Lausanne) 2024; 14:1310432. [PMID: 38260155 PMCID: PMC10800853 DOI: 10.3389/fendo.2023.1310432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sex steroids are essential for whole body development and functions. Among these steroids, 17β-estradiol (E2) has been known as the principal "female" hormone. However, E2's actions are not restricted to reproduction, as it plays a myriad of important roles throughout the body including the brain. In fact, this hormone also has profound effects on the female brain throughout the life span. The brain receives this gonadal hormone from the circulation, and local formation of E2 from testosterone via aromatase has been shown. Therefore, the brain appears to be not only a target but also a producer of this steroid. The beneficial broad actions of the hormone in the brain are the end result of well-orchestrated delayed genomic and rapid non-genomic responses. A drastic and steady decline in circulating E2 in a female occurs naturally over an extended period of time starting with the perimenopausal transition, as ovarian functions are gradually declining until the complete cessation of the menstrual cycle. The waning of endogenous E2 in the blood leads to an estrogen-deficient brain. This adversely impacts neural and behavioral functions and may lead to a constellation of maladies such as vasomotor symptoms with varying severity among women and, also, over time within an individual. Vasomotor symptoms triggered apparently by estrogen deficiency are related to abnormal changes in the hypothalamus particularly involving its preoptic and anterior areas. However, conventional hormone therapies to "re-estrogenize" the brain carry risks due to multiple confounding factors including unwanted hormonal exposure of the periphery. In this review, we focus on hot flushes as the archetypic manifestation of estrogen deprivation in the brain. Beyond our current mechanistic understanding of the symptoms, we highlight the arduous process and various obstacles of developing effective and safe therapies for hot flushes using E2. We discuss our preclinical efforts to constrain E2's beneficial actions to the brain by the DHED prodrug our laboratory developed to treat maladies associated with the hypoestrogenic brain.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | |
Collapse
|
2
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
3
|
Priyanka HP, Nair RS. Neuroimmunomodulation by estrogen in health and disease. AIMS Neurosci 2020; 7:401-417. [PMID: 33263078 PMCID: PMC7701372 DOI: 10.3934/neuroscience.2020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic homeostasis is maintained by the robust bidirectional regulation of the neuroendocrine-immune network by the active involvement of neural, endocrine and immune mediators. Throughout female reproductive life, gonadal hormones undergo cyclic variations and mediate concomitant modulations of the neuroendocrine-immune network. Dysregulation of the neuroendocrine-immune network occurs during aging as a cumulative effect of declining neural, endocrine and immune functions and loss of compensatory mechanisms including antioxidant enzymes, growth factors and co-factors. This leads to disruption of homeostasis and sets the stage for the development of female-specific age-associated diseases such as autoimmunity, osteoporosis, cardiovascular diseases and hormone-dependent cancers. Ovarian hormones especially estrogen, play a key role in the maintenance of health and homeostasis by modulating the nervous, endocrine and immune functions and thereby altering neuroendocrine-immune homeostasis. Immunologically estrogen's role in the modulation of Th1/Th2 immune functions and contributing to pro-inflammatory conditions and autoimmunity has been widely studied. Centrally, hypothalamic and pituitary hormones influence gonadal hormone secretion in murine models during onset of estrous cycles and are implicated in reproductive aging-associated acyclicity. Loss of estrogen affects neuronal plasticity and the ensuing decline in cognitive functions during reproductive aging in females implicates estrogen in the incidence and progression of neurodegenerative diseases. Peripherally, sympathetic noradrenergic (NA) innervations of lymphoid organs and the presence of both adrenergic (AR) and estrogen receptors (ER) on lymphocytes poise estrogen as a potent neuroimmunomodulator during health and disease. Cyclic variations in estrogen levels throughout reproductive life, perimenopausal surge in estrogen levels followed by its precipitous decline, concomitant with decline in central hypothalamic catecholaminergic activity, peripheral sympathetic NA innervation and associated immunosuppression present an interesting study to explore female-specific age-associated diseases in a new light.
Collapse
Affiliation(s)
- Hannah P Priyanka
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai-600002, India
| | | |
Collapse
|
4
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
5
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
6
|
Bauzá-Thorbrügge M, Rodríguez-Cuenca S, Vidal-Puig A, Galmés-Pascual BM, Sbert-Roig M, Gianotti M, Lladó I, Proenza AM. GPER and ERα mediate estradiol enhancement of mitochondrial function in inflamed adipocytes through a PKA dependent mechanism. J Steroid Biochem Mol Biol 2019; 185:256-267. [PMID: 30253224 DOI: 10.1016/j.jsbmb.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023]
Abstract
Obesity is associated with inflammation, dysregulated adipokine secretion, and disrupted adipose tissue mitochondrial function. Estradiol (E2) has been previously reported to increase mitochondrial function and biogenesis in several cell lines, but neither the type of oestrogen receptor (ERα, ERβ and GPER) involved nor the mechanism whereby such effects are exerted have been fully described. Considering the anti-inflammatory activity of E2 as well as its effects in enhancing mitochondrial biogenesis, the aim of this study was to investigate the contribution of ERα, ERβ, and GPER signaling to the E2-mediated enhancement of adipocyte mitochondrial function in a pro-inflammatory situation. 3T3-L1 cells were treated for 24 h with ER agonists (PPT, DPN, and G1) and antagonists (MPP, PHTPP, and G15) in the presence or absence of interleukin 6 (IL6), as a pro-inflammatory stimulus. Inflammation, mitochondrial function and biogenesis markers were analyzed. To confirm the involvement of the PKA pathway, cells were treated with a GPER agonist, a PKA inhibitor, and IL6. Mitochondrial function markers were analyzed. Our results showed that activation of ERα and GPER, but not ERβ, was able to counteract the proinflammatory effects of IL6 treatment, as well as mitochondrial biogenesis and function indicators. Inhibition of PKA prevented the E2- and G1-associated increase in mitochondrial function markers. In conclusion E2 prevents IL6 induced inflammation in adipocytes and promotes mitochondrial function through the combined activation of both GPER and ERα. These findings expand our understanding of ER interactions under inflammatory conditions in female rodent white adipose tissue.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Sergio Rodríguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
7
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Pratap UP, Patil A, Sharma HR, Hima L, Chockalingam R, Hariharan MM, Shitoot S, Priyanka HP, ThyagaRajan S. Estrogen-induced neuroprotective and anti-inflammatory effects are dependent on the brain areas of middle-aged female rats. Brain Res Bull 2016; 124:238-53. [PMID: 27242078 DOI: 10.1016/j.brainresbull.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Reproductive aging in females is characterized by fluctuations and precipitous decline in estrogen levels, which may lead to reduction in cognitive function and age-associated neurodegenerative disorders. The nature of estrogen-mediated neuronal plasticity is unknown during reproductive aging. We hypothesize that estrogen treatment of early middle-aged ovariectomized rats may exert specific effects in the brain by modulating signaling pathways regulating metabolic enzymes, inflammatory markers, antioxidant status, cholinergic function and survival signals. PURPOSE To investigate the mechanisms of estrogen-induced effects on neuroprotection and neuroinflammation through the involvement of intracellular signaling pathways in brain areas of ovariectomized (OVX) middle-aged (MA) female rats. METHODS Ovariectomized early MA female Sprague-Dawley rats (n=8/group) were implanted with 17β-estradiol (E2) 30-day release pellets (0.6μg and 300μg). At the end of the treatment period, frontal cortex (FC), striatum (STR), medial basal hypothalamus (MBH), and hippocampus (HP) were isolated and examined for the expression of tyrosine hydroxylase (p-TH), nerve growth factor (NGF), p-NF-κB (p50 and p65)and p-ERK, p-CREB, p-Akt, and activities of cholinesterases and antioxidant enzymes, key regulatory enzymes of metabolic pathways, and nitric oxide production. RESULTS E2 enhanced p-TH expression in FC and HP, reduced NGF expression in HP, and suppressed p-NF-κB expression in FC and STR. It also increased the expression of molecular markers (p-ERK, p-CREB and p-Akt), and nitric oxide production in various brain areas, while differentially regulating the activities of metabolic enzymes and cholinesterases. CONCLUSION Estrogen modulates the neural and inflammatory factors, and intracellular markers depending on the brain areas that may influence differential remodeling of neuronal circuitry which can be used to develop therapeutic strategies in cognitive impairment and neurodegenerative disorders in aging.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Anushree Patil
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Himanshu R Sharma
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Ramanathan Chockalingam
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Murali M Hariharan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Sushrut Shitoot
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Kwakowsky A, Potapov K, Kim S, Peppercorn K, Tate WP, Ábrahám IM. Treatment of beta amyloid 1-42 (Aβ(1-42))-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo. Sci Rep 2016; 6:21101. [PMID: 26879842 PMCID: PMC4754683 DOI: 10.1038/srep21101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
In Alzheimer's disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ(1-42)) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ(1-42) injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ(1-42)-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response-element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kyoko Potapov
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - SooHyun Kim
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Warren P. Tate
- Department of Biochemistry, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - István M. Ábrahám
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
- MTA-NAP-B-Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Wang C, Jie C, Dai X. Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Rev Neurosci 2014; 25:255-68. [PMID: 24566361 DOI: 10.1515/revneuro-2013-0055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 01/08/2023]
Abstract
17β-Estradiol (E2), one of female sex hormones, has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the central cerebral ischemia, including stroke and neurodegenerative diseases. The cellular mechanisms that underlie these protective effects of E2 are uncertain because a number of different cell types express estrogen receptors in the central nervous system. Astrocytes are the most abundant cells in the central nervous system and provide structural and nutritive support of neurons. They interact with neurons by cross-talk, both physiologically and pathologically. Proper astrocyte function is particularly important for neuronal survival under ischemic conditions. Dysfunction of astrocytes resulting from ischemia significantly influences the responses of other brain cells to injury. Recent studies demonstrate that estrogen receptors are expressed in astrocytes, indicating that E2 may exert multiple regulatory actions on astrocytes. Cerebral ischemia induced changes in the expression of estrogen receptors in astrocytes. In the present review, we summarize the data in support of possible roles for astrocytes in the mediation of neuroprotection by E2 against cerebral ischemia.
Collapse
|
11
|
Petrone AB, Gatson JW, Simpkins JW, Reed MN. Non-feminizing estrogens: a novel neuroprotective therapy. Mol Cell Endocrinol 2014; 389:40-7. [PMID: 24424441 PMCID: PMC4040321 DOI: 10.1016/j.mce.2013.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022]
Abstract
While the conflict between basic science evidence for estrogen neuroprotection and the lack of effectiveness in clinical trials is only now being resolved, it is clear that strategies for estrogen neuroprotection that avoid activation of ERs have the potential for clinical application. Herein we review the evidence from both in vitro and in vivo studies that describe high potency neuroprotection with non-feminizing estrogens. We have characterized many of the essential chemical features of non-feminizing estrogens that eliminate or reduce ER binding while maintaining or enhancing neuroprotection. Additionally, we provide evidence that these non-feminizing estrogens have efficacy in protecting the brain from AD neuropathology and traumatic brain injury. In conclusion, it appears that the non-feminizing estrogen strategy for neuroprotection is a viable option to achieve the beneficial neuroprotective effects of estrogens while eliminating the toxic off-target effects of chronic estrogen administration.
Collapse
Affiliation(s)
- Ashley B Petrone
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Joshua W Gatson
- Department of Emergency Medicine, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States; Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Miranda N Reed
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States; Department of Psychology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
12
|
Kampa M, Pelekanou V, Notas G, Stathopoulos EN, Castanas E. The estrogen receptor: two or more molecules, multiple variants, diverse localizations, signaling and functions. Are we undergoing a paradigm-shift as regards their significance in breast cancer? Hormones (Athens) 2013; 12:69-85. [PMID: 23624133 DOI: 10.1007/bf03401288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marilena Kampa
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
13
|
Cheong RY, Kwakowsky A, Barad Z, Porteous R, Herbison AE, Ábrahám IM. Estradiol acts directly and indirectly on multiple signaling pathways to phosphorylate cAMP-response element binding protein in GnRH neurons. Endocrinology 2012; 153:3792-803. [PMID: 22719057 DOI: 10.1210/en.2012-1232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid, nonclassical 17β-estradiol (E2) actions are thought to play an important role in the modulation of neuronal function. The present study addresses the intracellular signaling cascades involved in the rapid E2-induced phosphorylation of cAMP response element binding protein (CREB) in GnRH neurons. Administration of E2 to adult female mice resulted in the activation of ERK1/2 in GnRH neurons within 15 min. In vitro studies using pharmacological antagonists showed that ERK1/2 was essential for E2-induced CREB phosphorylation in GnRH neurons. Upstream to this, protein kinase A and calcium/calmodulin-dependent protein kinase type II, but not protein kinase C, were found to be necessary for E2-induced phosphorylation of ERK1/2. This rapid E2 signaling cascade in GnRH neurons was found to require both direct and indirect E2 actions. E2 failed to phosphorylate ERK1/2 and CREB in GnRH neuron-specific estrogen receptor β knockout mice in vivo. Equally, however, a cocktail of tetrodotoxin and γ-aminobutyric acid(A)/glutamate receptor antagonists also blocked E2-induced ERK1/2 phosphorylation in GnRH neurons in wild-type mice in vitro. Together, these observations indicate that E2 acts through calcium/calmodulin-dependent protein kinase type II and protein kinase A to rapidly phosphorylate ERK1/2, which then acts to phosphorylate CREB in adult female GnRH neurons. Intriguingly, these effects of E2 are dependent upon both direct ERβ mechanisms as well as indirect actions mediated by afferent inputs to GnRH neurons.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Lindo Ferguson Building, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Winsauer PJ, Filipeanu CM, Bailey EM, Hulst JL, Sutton JL. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ⁹-THC) in adult female rats. Pharmacol Biochem Behav 2012; 102:442-9. [PMID: 22705493 DOI: 10.1016/j.pbb.2012.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/12/2012] [Accepted: 06/09/2012] [Indexed: 02/04/2023]
Abstract
Marijuana abuse during adolescence may alter its abuse liability during adulthood by modifying the interoceptive (discriminative) stimuli produced, especially in females due to an interaction with ovarian hormones. To examine this possibility, either gonadally intact or ovariectomized (OVX) female rats received 40 intraperitoneal injections of saline or 5.6 mg/kg of Δ⁹-THC daily during adolescence, yielding 4 experimental groups (intact/saline, intact/Δ⁹-THC, OVX/saline, and OVX/Δ⁹-THC). These groups were then trained to discriminate Δ⁹-THC (0.32-3.2 mg/kg) from saline under a fixed-ratio (FR) 20 schedule of food presentation. After a training dose was established for the subjects in each group, varying doses of Δ⁹-THC were substituted for the training dose to obtain dose-effect (generalization) curves for drug-lever responding and response rate. The results showed that: 1) the OVX/saline group had a substantially higher mean response rate under control conditions than the other three groups, 2) both OVX groups had higher percentages of THC-lever responding than the intact groups at doses of Δ⁹-THC lower than the training dose, and 3) the OVX/Δ⁹-THC group was significantly less sensitive to the rate-decreasing effects of Δ⁹-THC compared to other groups. Furthermore, at sacrifice, western blot analyses indicated that chronic Δ⁹-THC in OVX and intact females decreased cannabinoid type-1 receptor (CB1R) levels in the striatum, and decreased phosphorylation of cyclic adenosine monophosphate response element binding protein (p-CREB) in the hippocampus. In contrast to the hippocampus, chronic Δ⁹-THC selectively increased p-CREB in the OVX/saline group in the striatum. Extracellular signal-regulated kinase (ERK) was not significantly affected by either hormone status or chronic Δ⁹-THC. In summary, these data in female rats suggest that cannabinoid abuse by adolescent human females could alter their subsequent responsiveness to cannabinoids as adults and have serious consequences for brain development.
Collapse
Affiliation(s)
- Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
15
|
Royer C, Lucas TFG, Lazari MFM, Porto CS. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells. Biol Reprod 2012; 86:108. [PMID: 22219213 DOI: 10.1095/biolreprod.111.096891] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.
Collapse
Affiliation(s)
- Carine Royer
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, INFAR, Vila Clementino, São Paulo, Brazil
| | | | | | | |
Collapse
|
16
|
Al Sweidi S, Sánchez MG, Bourque M, Morissette M, Dluzen D, Di Paolo T. Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in Parkinson's disease. J Neuroendocrinol 2012; 24:48-61. [PMID: 21790809 DOI: 10.1111/j.1365-2826.2011.02193.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder with a higher incidence in the male population. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, 17β-oestradiol but not androgens were shown to protect dopamine (DA) neurones. We report that oestrogen receptors (ER)α and β distinctly contribute to neuroprotection against MPTP toxicity, as revealed by examining the membrane DA transporter (DAT), the vesicular monoamine transporter 2 (VMAT2) and tyrosine hyroxylase in ER wild-type (WT) and knockout (ERKO) C57Bl/6 male mice. Intact ERKOβ mice had lower levels of striatal DAT and VMAT2, whereas ERKOα mice were the most sensitive to MPTP toxicity compared to WT and ERKOβ mice and had the highest levels of plasma androgens. In both ERKO mice groups, treatment with 17β-oestradiol did not provide neuroprotection against MPTP, despite elevated plasma 17β-oestradiol levels. Next, the recently described membrane G protein-coupled oestrogen receptor (GPER1) was examined in female Macaca fascicularis monkeys and mice. GPER1 levels were increased in the caudate nucleus and the putamen of MPTP-monkeys and in the male mouse striatum lesioned with methamphetamine or MPTP. Moreover, neuroprotective mechanisms in response to oestrogens transmit via Akt/glycogen synthase kinase-3 (GSK3) signalling. The intact and lesioned striata of 17β-oestradiol treated monkeys, similar to that of mice, had increased levels of pAkt (Ser 473)/βIII-tubulin, pGSK3 (Ser 9)/βIII-tubulin and Akt/βIII-tubulin. Hence, ERα, ERβ and GPER1 activation by oestrogens is imperative in the modulation of ER signalling and serves as a basis for evaluating nigrostriatal neuroprotection.
Collapse
Affiliation(s)
- S Al Sweidi
- Molecular Endocrinology and Genomic Research Center, CHUQ (CHUL), Quebec City, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Koszegi Z, Szego ÉM, Cheong RY, Tolod-Kemp E, Ábrahám IM. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo. Endocrinology 2011; 152:3471-82. [PMID: 21791565 DOI: 10.1210/en.2011-1017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
18
|
Desrivières S, Pronko SP, Lourdusamy A, Ducci F, Hoffman PL, Wodarz N, Ridinger M, Rietschel M, Zelenika D, Lathrop M, Schumann G, Tabakoff B. Sex-specific role for adenylyl cyclase type 7 in alcohol dependence. Biol Psychiatry 2011; 69:1100-8. [PMID: 21481845 PMCID: PMC3094753 DOI: 10.1016/j.biopsych.2011.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/28/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alcohol has been shown to critically modulate cyclic adenosine-3',5' monophosphate (cAMP) signaling. A number of downstream effectors that respond to the cAMP signals (e.g., protein kinase A, cAMP response element binding protein) have, in turn, been examined in relation to alcohol consumption. These studies did not, however, delineate the point at which the actions of alcohol on the cAMP cascade might translate into differences in drinking behavior. To further understand the role of cAMP synthesis in alcohol drinking and dependence, we investigated a specific adenylyl cyclase isoform, adenylyl cyclase (AC) Type 7, whose activity is selectively enhanced by ethanol. METHODS We measured alcohol consumption and preference in mice in which one copy of the Adcy7 gene was disrupted (Adcy7(+/-)). To demonstrate relevance of this gene for alcohol dependence in humans, we tested the association of polymorphisms in the ADCY7 gene with alcohol dependence in a sample of 1703 alcohol-dependent individuals and 1347 control subjects. RESULTS We show that Adcy7(+/-) female mice have higher preference for alcohol than wild-type mice, whereas there is little difference in alcohol consumption or preference between Adcy7(+/-) male mice and wild-type control subjects. In the human sample, we found that single nucleotide polymorphisms in ADCY7 associate with alcohol dependence in women, and these markers are also associated with ADCY7 expression (messenger RNA) levels. CONCLUSIONS These findings implicate adenylyl cyclase Type 7 as a critical component of the molecular pathways contributing to alcohol drinking and the development of alcohol dependence.
Collapse
Affiliation(s)
- Sylvane Desrivières
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom.
| | - Sergey P. Pronko
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anbarasu Lourdusamy
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom
| | - Francesca Ducci
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom,Institute of Psychiatry, St. George's University of London, United Kingdom
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Norbert Wodarz
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Monika Ridinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | | | - Gunter Schumann
- Medical Research Council Social, Genetic and Developmental Psychiatry, King's College London, United Kingdom
| | - Boris Tabakoff
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
19
|
Bakkum BW, Fan L, Pandey SC, Cohen RS. Hetereogeneity of dose and time effects of estrogen on neuron-specific neuronal protein and phosphorylated cyclic AMP response element-binding protein in the hippocampus of ovariectomized rats. J Neurosci Res 2011; 89:883-97. [PMID: 21337376 DOI: 10.1002/jnr.22601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
Previous studies have shown changes in the cyclic AMP response element-binding protein (CREB) signaling pathway in CA1 and CA3 regions of the rostral hippocampus with 10 μg estrogen treatment for 14 days. It appears that estrogen's action on CREB phosphorylation in brain structures depends on other estrogen doses and lengths of treatment. We therefore examined the effects of moderate regimens [2.5 μg estradiol benzoate (EB) for 4 or 14 days] on mean numbers of neuron-specific neuronal protein (NeuN)-positive cells and phosphorylated CREB (pCREB)-positive cells and subregion volume defined by NeuN and pCREB immunolabeling and compared those results with results from the high regimen (10 μg EB for 14 days) in CA1, CA2, and CA3 regions and dorsal (DDG) and ventral (VDG) dentate gyrus and hilus of the hippocampus of ovariectomized rats by stereology. For whole hippocampus, all regimens increased mean neuronal (NeuN) numbers and pCREB-positive cell and volume compared with sesame oil (SO) in CA1, CA2, and CA3 regions, DDG and VDG, and hilus. In rostral hippocampus, however, some hippocampal subregions were not responsive to the high regimen, and the moderate regimens appear to be more effective for increasing mean number of NeuN-positive neurons and pCREB-positive cells and subregion volume. Heterogeneity in responsiveness to estrogen was mainly seen within rostral, but not whole, hippocampal subregions. Our results indicate that responsiveness of cells expressing NeuN and pCREB to different EB regimens may vary depending on the specific region of the hippocampus.
Collapse
Affiliation(s)
- Barclay W Bakkum
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Illinois College of Optometry, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
20
|
Pierce SL, England SK. SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am J Physiol Endocrinol Metab 2010; 299:E640-6. [PMID: 20682843 PMCID: PMC2957868 DOI: 10.1152/ajpendo.00063.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of the small-conductance calcium-activated K(+) channel 3 (SK3) in transgenic mice compromises parturition, suggesting that the SK3 channel plays a role in pregnancy. In wild-type mouse myometrium, expression of SK3 transcript and protein is significantly reduced during pregnancy, but the mechanism(s) responsible for this attenuation of channel expression is unknown. The promoter region of the SK3-encoding mouse KCNN3 gene contains two binding sites for specificity protein (Sp) transcription factors, two of which are expressed in the uterus: Sp1, which enhances gene transcription in response to estrogen; and Sp3, which competes for the same binding motif as Sp1 and can repress gene expression. We investigated the hypothesis that Sp1 and Sp3 regulate SK3 channel expression during pregnancy. In mouse myometrium, Sp1 expression was reduced during late gestation, whereas Sp3 expression levels were constant throughout pregnancy. Using a reporter system, we found that Sp1 overexpression resulted in a significant increase in SK3 promoter activation and that Sp3 cotransfection reduced promoter activation to basal levels. These findings indicate that Sp3 outcompetes Sp1 to decrease SK3 transcription. To determine whether high levels of estrogen in vivo can affect the regulation of SK3 protein levels by Sp factors, ovariectomized mice were implanted with a 17β-estradiol or placebo pellet for 3 wk; estrogen-treated mice had reduced uterine SK3 protein expression compared with placebo-treated counterparts. In human myometrial cells overexpressing Sp1, estrogen treatment stimulated expression of the SK3 transcript. Overall, our findings indicate that Sp1 and Sp3 compete to regulate SK3 channel expression during pregnancy in response to stimulation by estrogen.
Collapse
Affiliation(s)
- Stephanie L Pierce
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
21
|
Duenes SL, Thompson R, Chang Z, Okamoto K, Bereiter DA. Psychophysical stress increases the expression of phospho-CREB, Fos protein and neurokinin-1 receptors in superficial laminae of trigeminal subnucleus caudalis in female rats. Neurosci Lett 2010; 486:207-10. [PMID: 20884322 DOI: 10.1016/j.neulet.2010.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 01/20/2023]
Abstract
Psychological stress and estrogen status are risk factors to develop painful temporomandibular joint disorders (TMJD); however, the neural basis for this relationship is not known. This study tested the hypothesis that repeated forced swim stress and estradiol treatment alter the phosphorylation of cAMP responsive element-binding protein (pCREB) in trigeminal subnucleus caudalis (Vc), the initial site of sensory input from the TMJ. Ovariectomized female rats were given low or high dose estradiol and subjected to repeated forced swim stress for 3 days and on day 4 an intra-TMJ injection of mustard oil or vehicle was given. Forced swim alone increased the number of pCREB-positive neurons, independent of estradiol treatment or TMJ stimulation, in superficial and deep laminae of Vc. Forced swim also increased the number of Fos-positive neurons in superficial laminae and neurokinin-1 receptor mRNA in whole dorsal Vc, independent of estradiol treatment. These results indicated that persistent psychophysical stress alone was sufficient to increase the expression of pCREB and downstream regulated genes associated with enhanced excitability in the caudal medullary dorsal horn, a brainstem region thought to be critical for TMJD pain.
Collapse
Affiliation(s)
- Sara L Duenes
- Dept. Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18-214 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, United States
| | | | | | | | | |
Collapse
|
22
|
Micevych P, Bondar G, Kuo J. Estrogen actions on neuroendocrine glia. Neuroendocrinology 2010; 91:211-22. [PMID: 20332598 PMCID: PMC2889254 DOI: 10.1159/000289568] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/18/2010] [Indexed: 12/25/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system (CNS). It appears that astrocytes are as diverse as neurons, having different phenotypes in various regions throughout the brain and participating in intercellular communication that involves signaling to neurons. It is not surprising then that astrocytes in the hypothalamus have an active role in the CNS regulation of reproduction. In addition to the traditional mechanism involving ensheathment of neurons and processes, astrocytes may have a critical role in regulating estrogen-positive feedback. Work in our laboratory has focused on the relationship between circulating estradiol and progesterone synthesized de novo in the brain. We have demonstrated that circulating estradiol stimulates the synthesis of progesterone in adult hypothalamic astrocytes, and this neuroprogesterone is critical for initiating the LH surge. Estradiol cell signaling is initiated at the cell membrane and involves the transactivation of metabotropic glutamate receptor type 1a (mGluR1a) leading to the release of intracellular stores of calcium. We used surface biotinylation to demonstrate that estrogen receptor-alpha (ERalpha) is present in the cell membrane and has an extracellular portion. Like other membrane receptors, ERalpha is inserted into the membrane and removed via internalization after agonist stimulation. This trafficking is directly regulated by estradiol, which rapidly and transiently increases the levels of membrane ERalpha, and upon activation, increases internalization that finally leads to ERalpha degradation. This autoregulation temporally limits membrane-initiated estradiol cell signaling. Thus, neuroprogesterone, the necessary signal for the LH surge, is released when circulating levels of estradiol peak on proestrus and activate progesterone receptors whose expression has been induced by the gradual rise of estradiol during follicular development.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, Calif., USA
- *Paul Micevych, Department of Neurobiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, 73-078 CHS, Los Angeles, CA 90095-1763 (USA), Tel. +1 310 206 8265, Fax +1 310 825 2224, E-Mail
| | - Galyna Bondar
- Department of Neurobiology, Laboratory of Neuroendocrinology, UCLA Brain Research Institute, Los Angeles, Calif., USA
| | - John Kuo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, Calif., USA
| |
Collapse
|
23
|
Action of estrogen on survival of basal forebrain cholinergic neurons: promoting amelioration. Psychoneuroendocrinology 2009; 34 Suppl 1:S104-12. [PMID: 19560872 DOI: 10.1016/j.psyneuen.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
Extensive studies during the past two decades provide compelling evidence that the gonadal steroid, estrogen, has the potential to affect the viability of basal forebrain cholinergic neurons. These observations reflect a unique ameliorative feature of estrogen as it restores and protects the cholinergic neurons against noxious stimuli or neurodegenerative processes. Hence, we first address the ameliorative function of estrogen on basal forebrain cholinergic neurons such as the actions of estrogen on neuronal plasticity of cholinergic neurons, estrogen-induced memory enhancement and the ameliorative role of estrogen on cholinergic neuron related neurodegenerative processes such as Alzheimer's disease. Second, we survey recent data as to possible mechanisms underlying the ameliorative actions of estrogen; influencing the amyloid precursor protein processing, enhancement in neurotrophin receptor signaling and estrogen-induced non-classical actions on second messenger systems. In addition, clinical relevance, pitfalls and future aspects of estrogen therapy on basal forebrain cholinergic neurons will be discussed.
Collapse
|
24
|
Role of protein phosphatases and mitochondria in the neuroprotective effects of estrogens. Front Neuroendocrinol 2009; 30:93-105. [PMID: 19410596 PMCID: PMC2835549 DOI: 10.1016/j.yfrne.2009.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 12/15/2022]
Abstract
In the present treatise, we provide evidence that the neuroprotective and mito-protective effects of estrogens are inexorably linked and involve the ability of estrogens to maintain mitochondrial function during neurotoxic stress. This is achieved by the induction of nuclear and mitochondrial gene expression, the maintenance of protein phosphatases levels in a manner that likely involves modulation of the phosphorylation state of signaling kinases and mitochondrial pro- and anti-apoptotic proteins, and the potent redox/antioxidant activity of estrogens. These estrogen actions are mediated through a combination of estrogens receptor (ER)-mediated effects on nuclear and mitochondrial transcription of protein vital to mitochondrial function, ER-mediated, non-genomic signaling and non-ER-mediated effects of estrogens on signaling and oxidative stress. Collectively, these multifaceted, coordinated action of estrogens leads to their potency in protecting neurons from a wide variety of acute insults as well as chronic neurodegenerative processes.
Collapse
|
25
|
Fan L, Pandey SC, Cohen RS. Estrogen affects levels of Bcl-2 protein and mRNA in medial amygdala of ovariectomized rats. J Neurosci Res 2009; 86:3655-64. [PMID: 18655204 DOI: 10.1002/jnr.21801] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The survival factor Bcl-2 is a cyclic AMP response element-binding protein (CREB) gene product implicated in mediating some of estrogen's effects on neuroprotection. Previously, we showed an effect of estradiol benzoate (E) on numbers of neuron-specific protein (NeuN)- and phosphorylated CREB (pCREB)-positive cells in medial (MeA), but not central (CeA), amygdala of ovariectomized rats. To determine whether these effects are accompanied by an E-induced increase in Bcl-2, we examined the effects of E on levels of Bcl-2 protein and mRNA in MeA and CeA of ovariectomized rats treated with E regimens resulting in moderate (2.5 microg E for 4 or 14 days) or high (10 microg E for 14 days) plasma estradiol levels. As a physiological control, we showed that all E treatments increased uterine wet weight relative to vehicle; 10 microg E for 14 days also increased uterine weight compared with that seen with lower E levels. Western blot analysis revealed that all E groups displayed an increase in uterine Bcl-2 protein levels compared with vehicle. We found that 2.5 microg and 10 microg E for 14 days increased levels of Bcl-2 gold immunolabeling compared with vehicle and 2.5 microg E for 4 days in MeA, but not CeA. We measured Bcl-2 mRNA levels in vehicle and 2.5 microg E-treated 14-day groups. There was a significant increase in Bcl-2 mRNA levels in MeA, but not CeA, of E-treated ovariectomized rats compared with vehicle controls. The E-induced increase in protein and mRNA levels of Bcl-2 in MeA may be important for neuroprotection in this region.
Collapse
Affiliation(s)
- Lu Fan
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
26
|
Lewis MC, Orr PT, Frick KM. Differential effects of acute progesterone administration on spatial and object memory in middle-aged and aged female C57BL/6 mice. Horm Behav 2008; 54:455-62. [PMID: 18585714 PMCID: PMC2586174 DOI: 10.1016/j.yhbeh.2008.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 02/02/2023]
Abstract
The present study examined the effects of acute progesterone administration on hippocampal-dependent memory consolidation in ovariectomized middle-aged (16 months old) and aged (22 months old) female mice. Spatial memory was tested in a 2-day Morris water-maze task and object memory was tested using an object recognition task with 24- and 48-h delays. Immediately after water-maze training, mice received i.p. injections of vehicle, or 5.0, 10.0, or 20.0 mg/kg of water-soluble progesterone. Twenty-four hours later, retention of the platform location was tested. No overnight forgetting of the platform location was observed in middle-aged vehicle-treated mice. Acute progesterone administration had no effect on spatial memory in middle-aged mice. However, aged vehicle-treated mice demonstrated impaired memory for the platform location on Day 2 relative to Day 1. Twenty mg/kg, but not 5 or 10 mg/kg, progesterone reversed these deficits, suggesting that 20 mg/kg progesterone can improve spatial memory in aged females. In the object recognition task, mice explored two identical objects and then immediately received vehicle or progesterone injections. In middle-aged mice, 10 and 20 mg/kg progesterone enhanced object memory consolidation, relative to chance, after 24-h, but all doses were ineffective after 48-h. In aged mice, 10 mg/kg progesterone enhanced object memory consolidation, relative to chance, after 24 h, whereas both 5 and 10 mg/kg progesterone enhanced memory after 48 h. Together, these results indicate that acute progesterone differentially enhances hippocampal-dependent memory in middle-aged and aged females.
Collapse
Affiliation(s)
| | - Patrick T. Orr
- Department of Psychology, Yale University, New Haven, CT 06520
| | - Karyn M. Frick
- Department of Psychology, Yale University, New Haven, CT 06520
- Interdisciplinary Neuroscience Program, Yale University, New Haven, CT 06520
- Corresponding Author: Karyn M Frick Ph.D., Department of Psychology, Yale University, 2 Hillhouse Ave. Rm. 106, New Haven, CT 06511, Phone: 203-432-4673, E-mail:
| |
Collapse
|
27
|
Gorosito SV, Cambiasso MJ. Axogenic effect of estrogen in male rat hypothalamic neurons involves Ca(2+), protein kinase C, and extracellular signal-regulated kinase signaling. J Neurosci Res 2008; 86:145-57. [PMID: 17722067 DOI: 10.1002/jnr.21466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
17-beta-Estradiol (E2) stimulates the growth of axons in male-derived hypothalamic neurons in vitro. This effect is not exerted through the classical intracellular estrogen receptor (ER) but depends on a membrane mechanism involving TrkB. In the present study, we investigate the intracellular signaling cascade that mediates the axogenic effect of E2. Treatment with an intracellular Ca(2+) chelator, a Ca(2+)-dependent protein kinase C (PKC) inhibitor, or two specific inhibitors of extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) completely inhibited the E2-induced axogenesis. E2 and the membrane-impermeant construct E2BSA rapidly induced phosphorylation of ERK, which was blocked by the specific inhibitor of the ERK pathway UO126 but not by the ER antagonist ICI 182,780. Decrease of intracellular free Ca(2+) or disruption of PKC activation by Ro 32-0432 attenuated ERK activation, indicating the confluence of signals in the MAPK pathway. Subcellular analysis of ERK demonstrated that the phospho-ERK signal is augmented in the nucleus after 15 min of E2 stimulation. We have also shown that E2 increased phosphorylation of CREB via ERK signaling. In summary, this study demonstrates that E2, probably via a membrane-associated receptor, induces axonal growth by activating CREB phosphorylation through ERK signaling by a mechanism involving Ca(2+) and PKC activation.
Collapse
Affiliation(s)
- S V Gorosito
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | |
Collapse
|
28
|
Aizawa S, Yamamuro Y. Estradiol regulates alternative splicing of estrogen receptor-alpha mRNA in differentiated NG108-15 neuronal cells. Life Sci 2008; 82:692-8. [PMID: 18258268 DOI: 10.1016/j.lfs.2008.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/10/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
The biological actions of estrogen are mostly conveyed through interaction with two different types of estrogen receptor (ER), ER-alpha and ER-beta. With regard to ER-alpha, an alternatively spliced form and its translated product, truncated estrogen receptor product-1 (TERP-1), have been identified in the rat pituitary. TERP-1 has the ability to inhibit the ER binding to DNA response element by forming hetero-dimers with the wild-type ER. Furthermore, TERP-1 expression increased concurrently with serum estrogen levels. Although estrogen also plays important roles in the central nervous system, the existence and regulatory mechanism of alternatively spliced ER-alpha mRNA expression has remained unclear. The present study evaluated the expression of the alternatively spliced form of the ER-alpha gene, and examined the influence of a representative ER ligand, 17beta-estradiol (E2), on the expression in differentiated NG108-15 neuronal cells. A real-time RT-PCR analysis using primer sets designed to amplify from exons 3 to 4, exons 4 to 5, exons 5 to 6, exons 6 to 7, and exons 7 to 8 of the mouse ER-alpha gene revealed the existence of alternatively spliced ER-alpha mRNA and its putative transcription initiation site, located between exon 4 and exon 5. Although E2 had no apparent effect on the overall expression of ER-alpha mRNA, it reduced the incidence of the alternatively spliced form of ER-alpha. The down-regulation by E2 predominantly arose via binding to nuclear ERs. The present study demonstrated that alternatively spliced ER-alpha mRNA is expressed in differentiated NG108-15 neuronal cells, and provides evidence for the functional up-regulation of ER-alpha via the ligand-binding activation of ERs.
Collapse
Affiliation(s)
- Shu Aizawa
- Department of Animal Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | | |
Collapse
|
29
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Prokai L, Simpkins JW. Structure-nongenomic neuroprotection relationship of estrogens and estrogen-derived compounds. Pharmacol Ther 2007; 114:1-12. [PMID: 17336390 PMCID: PMC1905848 DOI: 10.1016/j.pharmthera.2007.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 11/25/2022]
Abstract
Nongenomic estrogen signaling pathways involve extranuclear estrogen receptors or function independently from estrogen receptors. These pathways participate in neuroprotection elicited by the hormone. Additional nongenomic neuroprotective effects are attributable to antioxidant and antiinflammatory actions of estrogens. Numerous chemical modifications to afford neuroprotective compounds from estrogens while eliminating estrogenicity and maintaining or enhancing nongenomic neuroprotection have been described. This review highlights recent structure-activity studies that revealed the importance of antioxidant effects for neuroprotective estrogen analogues and derivatives.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | |
Collapse
|
31
|
|
32
|
Sharma K, Mehra RD, Dhar P, Vij U. Chronic exposure to estrogen and tamoxifen regulates synaptophysin and phosphorylated cAMP response element-binding (CREB) protein expression in CA1 of ovariectomized rat hippocampus. Brain Res 2006; 1132:10-9. [PMID: 17161830 DOI: 10.1016/j.brainres.2006.11.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 10/27/2006] [Accepted: 11/12/2006] [Indexed: 11/19/2022]
Abstract
We report here the in vivo effects of estrogen (E2) on modulation of synaptic plasticity and the agonistic (estrogen-like) role of selective estrogen receptor modulator (SERM), tamoxifen (TAM) in the CA1 of the rat hippocampus. Effects on synaptophysin (SYP), a presynaptic vesicular protein, and phosphorylated cyclic AMP responsive element-binding (p-CREB) protein, a signal transduction pathway molecule, were studied using the ovariectomized (OVX) experimental rat model. Bilateral ovariectomy was performed on 40 rats and these were divided into 4 groups based on the treatment they received (at 2 weeks post-ovariectomy, a subcutaneous injection daily for 4 weeks) viz., OVX+E2 (0.1 mg/kg body weight), OVX+TAM (0.05 mg/kg body weight), OVX+vehicle and one group served as OVX control. An additional 10 animals served as the ovary intact control group. At the end of the treatment schedule, five animals/group were used for immunohistochemical staining of SYP and p-CREB using specific antibodies with peroxidase anti-peroxidase technique on paraformaldehyde-fixed cryostat sections. Protein estimation and Western blot analysis coupled with densitometric analysis (using gel-documentation system and image analysis software) were performed on unfixed hippocampus collected from rest of the five animals/group. Serum estradiol levels were estimated with radioimmunoassay prior to sacrifice. The results revealed that ovariectomy reduced SYP and p-CREB expression whereas E2 or TAM administration resulted in their upregulation. Serum estradiol levels of E2 administered animals were comparable with the ovary intact group whereas those of TAM administered group persisted in the range of OVX controls. To conclude, long-term estrogen therapy modulates the synaptic plasticity of hippocampal neurons and presumably, the agonist biocharacter of TAM as observed in the present investigations, may in the long run have a potential in the treatment and prevention of various estrogen-related disorders.
Collapse
Affiliation(s)
- K Sharma
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | | | | | |
Collapse
|
33
|
Canesi L, Ciacci C, Lorusso LC, Betti M, Guarnieri T, Tavolari S, Gallo G. Immunomodulation by 17β-estradiol in bivalve hemocytes. Am J Physiol Regul Integr Comp Physiol 2006; 291:R664-73. [PMID: 16601263 DOI: 10.1152/ajpregu.00139.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, estrogens have dose- and cell-type-specific effects on immune cells and may act as pro- and anti-inflammatory stimuli, depending on the setting. In the bivalve mollusc Mytilus, the natural estrogen 17β-estradiol (E2) has been shown to affect neuroimmune functions. We have investigated the immunomodulatory role of E2 in Mytilus hemocytes, the cells responsible for the innate immune response. E2 at 5–25 nM rapidly stimulated phagocytosis and oxyradical production in vitro; higher concentrations of E2 inhibited phagocytosis. E2-induced oxidative burst was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-l-arginine and superoxide dismutase, indicating involvement of NO and O2−; NO production was confirmed by nitrite accumulation. The effects of E2 were prevented by the antiestrogen tamoxifen and by specific kinase inhibitors, indicating a receptor-mediated mechanism and involvement of p38 MAPK and PKC. E2 induced rapid and transient increases in the phosphorylation state of PKC, as well as of a aCREB-like (cAMP responsive element binding protein) transcription factor, as indicated by Western blot analysis with specific anti-phospho-antibodies. Localization of estrogen receptor-α- and -β-like proteins in hemocytes was investigated by immunofluorescence confocal microscopy. The effects of E2 on immune function were also investigated in vivo at 6 and 24 h in hemocytes of E2-injected mussels. E2 significantly affected hemocyte lysosomal membrane stability, phagocytosis, and extracellular release of hydrolytic enzymes: lower concentrations of E2 resulted in immunostimulation, and higher concentrations were inhibitory. Our data indicate that the physiological role of E2 in immunomodulation is conserved from invertebrates to mammals.
Collapse
Affiliation(s)
- Laura Canesi
- Istituto di Scienze Fisiologiche, Università Carlo Bo di Urbino, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Singh M, Dykens JA, Simpkins JW. Novel mechanisms for estrogen-induced neuroprotection. Exp Biol Med (Maywood) 2006; 231:514-21. [PMID: 16636299 DOI: 10.1177/153537020623100505] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogens are gonadal steroid hormones that are present in the circulation of both males and females and that can no longer be considered within the strict confines of reproductive function. In fact, the bone, the cardiovascular system, and extrahypothalamic regions of the brain are now well-established targets of estrogens. Among the numerous aspects of brain function regulated by estrogens are their effects on mood, cognitive function, and neuronal viability. Here, we review the supporting evidence for estrogens as neuroprotective agents and summarize the various mechanisms that may be involved in this effect, focusing particularly on the mitochondria as an important target. On the basis of this evidence, we discuss the clinical applicability of estrogens in treating various age-related disorders, including Alzheimer disease and stroke, and identify the caveats that must be considered.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
35
|
Szegő ÉM, Barabás K, Balog J, Szilágyi N, Korach KS, Juhász G, Ábrahám IM. Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 2006; 26:4104-10. [PMID: 16611827 PMCID: PMC6673875 DOI: 10.1523/jneurosci.0222-06.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In addition to classical genomic mechanisms, estrogen also exerts nonclassical effects via a signal transduction system on neurons. To study whether estrogen has a nonclassical effect on basal forebrain cholinergic system, we measured the intensity of cAMP response element-binding protein (CREB) phosphorylation (pCREB) in cholinergic neurons after administration of 17beta-estradiol to ovariectomized (OVX) mice. A significant time-dependent increase in the number of pCREB-positive cholinergic cells was detected after estrogen administration in the medial septum-diagonal band (MS-DB) and the substantia innominata (SI). The increase was first observed 15 min after estrogen administration. The role of classical estrogen receptors (ERs) was evaluated using ER knock-out mice in vivo. The estrogen-induced CREB phosphorylation in cholinergic neurons was present in ERbeta knock-out mice but completely absent in ERalpha knock-out mice in MS-DB and SI. A series of in vitro studies demonstrated that estrogen acted directly on cholinergic neurons. Selective blockade of the mitogen activated protein kinase (MAPK) pathway in vivo completely prevented estrogen-induced CREB phosphorylation in cholinergic neurons in MS-DB and SI. In contrast, blockade of protein kinase A (PKA) was effective only in SI. Finally, studies in intact female mice revealed levels of CREB phosphorylation within cholinergic neurons that were similar to those of estrogen-treated OVX mice. These observations demonstrate an ERalpha-mediated nonclassical effect of estrogen on the cholinergic neurons and that these actions are present under physiological conditions. They also reveal the role of MAPK and PKA-MAPK pathway activation in nonclassical estrogen signaling in the basal forebrain cholinergic neurons in vivo.
Collapse
|
36
|
Franklin SO, Jimenez R. Increases in preproenkephalin mRNA levels in the Syrian hamster: The influence of glucocorticoids is dependent on age and tissue. Brain Res 2006; 1086:65-75. [PMID: 16597437 DOI: 10.1016/j.brainres.2006.02.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 02/19/2006] [Accepted: 02/21/2006] [Indexed: 12/22/2022]
Abstract
In adult hamsters, basal proenkephalin (Penk) gene expression in adrenals is independent of glucocorticoids and glucocorticoid receptor blockade, by RU 486, increases striatal preproenkephalin (PPenk) mRNA levels. However, glucocorticoids maintain both basal and induced Penk gene expression in rat adrenal (medulla) and striatum. This suggests species and tissue-specific differences in Penk gene regulation. Since studies show temporal coordination in Penk gene expression in developing hamster adrenal and striatum, we tested the hypothesis that increasing PPenk mRNA levels are dependent, while basal levels are independent of glucocorticoids in developing hamsters. To facilitate this study, we examined the influence of glucocorticoids on the temporal increases in developing hamster PPenk mRNA observed in adrenals between postnatal days 0 and 4 and in striatum between postnatal days 12 and 48. PPenk mRNA levels were determined in hamster pups after treatment with increasing doses of metyrapone (an 11beta hydroxylase inhibitor) or with the glucocorticoid receptor antagonist RU 486 +/- metyrapone between postnatal days 2 and 4. Levels were also determined 36 days after hypophysectomy at age 16-17 days. Although plasma glucocorticoid levels and/or the influence from glucocorticoids were reduced, only developmental increases in PPenk mRNA are influenced by glucocorticoids in hamster adrenals, while basal adrenal mRNA levels are unchanged. However, pituitary influence on striatal PPenk mRNA levels appears complex and may involve steroid and/or non-steroid factors. These results suggest that glucocorticoids regulate hamster Penk gene expression via a mechanism that varies with age and tissue and functions during the induction of the Penk gene and not to maintain basal gene expression. Possible mechanisms and species variation are discussed.
Collapse
Affiliation(s)
- Steven O Franklin
- Program in the Neuroscience of Drug Abuse, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, 27707, USA.
| | | |
Collapse
|
37
|
Choi SB, Jang JS, Park S. Estrogen and exercise may enhance beta-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 2005; 146:4786-94. [PMID: 16037383 DOI: 10.1210/en.2004-1653] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prevalence and progression of type 2 diabetes have increased remarkably in postmenopausal women. Although estrogen replacement and exercise have been studied for their effect in modulating insulin sensitivity in the case of insufficient estrogen states, their effects on beta-cell function and mass have not been studied. Ovariectomized (OVX) female rats with 90% pancreatectomy were given a 30% fat diet for 8 wk with a corresponding administration of 17beta-estradiol (30 microg/kg body weight) and/or regular exercise. Amelioration of insulin resistance by estrogen replacement or exercise was closely related to body weight reduction. Insulin secretion in first and second phases was lower in OVX during hyperglycemic clamp, which was improved by estrogen replacement and exercise but not by weight reduction induced by restricted diets. Both estrogen replacement and exercise overcame reduced pancreatic beta-cell mass in OVX rats via increased proliferation and decreased apoptosis of beta-cells, but they did not exhibit an additive effect. However, restricted diets did not stimulate beta-cell proliferation. Increased beta-cell proliferation was associated with the induction of insulin receptor substrate-2 and pancreatic homeodomain protein-1 via the activation of the cAMP response element binding protein. Estrogen replacement and exercise shared a common pathway, which led to the improvement of beta-cell function and mass, via cAMP response element binding protein activation, explaining the lack of an additive effect with combined treatments. In conclusion, decreased beta-cell mass leading to impaired insulin secretion triggers glucose dysregulation in estrogen insufficiency, regardless of body fat. Regular moderate exercise eliminates the risk factors of contracting diabetes in the postmenopausal state.
Collapse
Affiliation(s)
- Soo Bong Choi
- Department of Internal Medicine, College of Medicine, KonKuk University, Chung Ju, Korea
| | | | | |
Collapse
|
38
|
Abstract
We examined the effects of estradiol benzoate (E2) on the protein expression of calcineurin in amygdaloid and hippocampal structures of ovariectomized (OVX) rats. Significant decreases in levels of calcineurin immunolabeling were seen in the medial and basomedial, but not central or basolateral, amygdala. Estrogen also reduced calcineurin immunoreactivity in the CA1 region of the hippocampus, but not in the CA3 region, hilus or ventral or dorsal dentate gyrus structures of hippocampus. These results indicate that E2 acts on calcineurin in a neuroanatomically specific manner and may be involved in estrogen-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Jin Zhou
- Departments of Anatomy, University of Illinois at Chicago, 808 South Wood Street (M/C 512), Chicago, IL 60612, USA
| | | | | |
Collapse
|
39
|
Clarke IJ, Tobin VA, Pompolo S, Pereira A. Effects of changing gonadotropin-releasing hormone pulse frequency and estrogen treatment on levels of estradiol receptor-alpha and induction of Fos and phosphorylated cyclic adenosine monophosphate response element binding protein in pituitary gonadotropes: studies in hypothalamo-pituitary disconnected ewes. Endocrinology 2005; 146:1128-37. [PMID: 15564326 DOI: 10.1210/en.2004-0980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-alpha (ER alpha) levels in gonadotropes are increased during the follicular phase of the ovine estrous cycle, a time of increased frequency of pulsatile secretion of GnRH and elevated plasma estrogen levels. In the present study, our first aim was to determine which of these factors causes the rise in the number of gonadotropes with ER alpha. Ovariectomized hypothalamo-pituitary disconnected ewes (n = 4-6) received the following treatments: 1) no treatment, 2) injection (im) of 50 microg estradiol benzoate (EB), 3) pulses (300 ng iv) of GnRH every 3 h, 4) GnRH treatment as in group 3 and EB treatment as in group 2, 5) increased frequency of GnRH pulses commencing 20 h before termination, and 6) GnRH treatment as in group 5 with EB treatment. These treatments had predictable effects on plasma LH levels. The number of gonadotropes in which ER alpha was present (by immunohistochemistry) was increased by either GnRH treatment or EB injection, but combined treatment had the greatest effect. Immunohistochemistry was also performed to detect phosphorylated cAMP response element binding protein (pCREB) and Fos protein in gonadotropes. The number of gonadotropes with Fos and with pCREB was increased only in group 6. We conclude that either estrogen or GnRH can up-regulate ER alpha in pituitary gonadotropes. On the other hand, during the period of positive feedback action of estrogen, the appearance of pCREB and Fos in gonadotropes requires the combined action of estrogen and increased frequency of GnRH input. This suggests convergence of signaling for GnRH and estrogen.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
40
|
Canesi L, Betti M, Lorusso LC, Ciacci C, Gallo G. 'In vivo' effects of Bisphenol A in Mytilus hemocytes: modulation of kinase-mediated signalling pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 71:73-84. [PMID: 15642633 DOI: 10.1016/j.aquatox.2004.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 05/24/2023]
Abstract
Endocrine disrupting chemicals (EDCs) include a variety of natural and synthetic estrogens, as well as estrogen-mimicking chemicals. We have previously shown that in the hemocytes of the mussel Mytilus galloprovincialis Lam. both natural and environmental estrogens in vitro can rapidly affect the phosphorylation state of components of tyrosine kinase-mediated cell signalling, in particular of mitogen activated protein kinases (MAPKs) and signal transducers and activators of transcription (STAT), that are involved in mediating the hemocyte immune response. These effects were consistent with the hypothesis that 'alternative' modes of estrogen action involving kinase-mediated pathways similar to those described in mammalian systems are also present in invertebrate cells. This possibility was investigated in vivo with Bisphenol A (BPA): mussels were injected with BPA and hemocytes sampled at 6, 12, and 24 h post-injection. The results show that BPA (25 nM nominal concentration in the hemolymph) lead to a significant lysosomal membrane destabilisation at all times post-injection, indicating BPA-induced stress conditions in the hemocytes, whereas lower concentrations were ineffective. BPA induced significant changes in the phosphorylation state of MAPK and STAT members, as evaluated by SDS-PAGE and WB of hemocyte protein extracts with specific antibodies, although to a different degree at different exposure times. In particular, BPA induced a dramatic decrease in phosphorylation of the stress-activated p38 MAPK, whose activation is crucial in mediating the bactericidal activity. Moreover, BPA decreased the phosphorylation of a CREB-like transcription factor (cAMP-responsive element binding protein). The results demonstrate that BPA can affect kinase-mediated cell signalling in mussel hemocytes also in vivo, and suggest that EDCs may affect gene expression in mussel cells through modulation of the activity of transcription factors secondary to cytosolic kinase cascades. Overall, these data address the importance of investigating full range responses to EDCs in ecologically relevant marine invertebrate species.
Collapse
Affiliation(s)
- Laura Canesi
- Istituto di Scienze Fisiologiche, Università di Urbino Carlo Bo, Loc. Crocicchia, 61029 Urbino PU, Italy.
| | | | | | | | | |
Collapse
|
41
|
Zhou J, Zhang H, Cohen RS, Pandey SC. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures. Neuroendocrinology 2005; 81:294-310. [PMID: 16179807 PMCID: PMC1343485 DOI: 10.1159/000088448] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 06/02/2005] [Indexed: 11/19/2022]
Abstract
Clinical studies indicate an effect of estrogen (E2) on affect and cognition, which may be mediated by the cAMP response element-binding protein (CREB) pathway and CREB-related gene target brain-derived neurotrophic factor (BDNF). We investigated the effect of E2 on CREB expression and phosphorylation and BDNF expression in the amygdala and hippocampus, areas involved in emotional processing. Ovariectomized rats were given 10 microg 17beta-estradiol or vehicle for 14 days and expression of components of the CREB signaling pathway, i.e., CREB, phosphorylated CREB (pCREB), and BDNF in amygdala and hippocampus were investigated using immunogold labeling. Levels of BDNF mRNA were determined by in situ reverse-transcriptase polymerase chain reaction. We also examined the effect of E2 on calcium/calmodulin kinase (CaMK IV) immunolabeling in the hippocampus. E2 increased immunolabeling and mRNA levels of BDNF in the medial and basomedial amygdala and CA1 and CA3 regions of the hippocampus, but not in any other amygdaloid or hippocampal regions examined. E2 increased immunolabeling of CREB and pCREB in the medial and basomedial, but not central or basolateral amygdala. E2 also increased CaMK IV and pCREB immunolabeling in the CA1 and CA3 regions, but not CA2 region or dentate gyrus, of the hippocampus. There was no change in immunolabeling of CREB in any hippocampal region. These data identify a signaling pathway through which E2 increases BDNF expression that may underlie some actions of E2 on affective behavior and indicate neuroanatomical heterogeneity in the E2 effect within the amygdala and hippocampus.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Anatomy and Cell Biology and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Huaibo Zhang
- Department of Psychiatry, University of Illinois at Chicago, and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Rochelle S. Cohen
- Department of Anatomy and Cell Biology and
- Name and mailing address of individual to whom correspondence should be addressed: Rochelle S. Cohen, Ph. D., Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. (M/C 512), Chicago, IL 60612 Phone: (312) 996-5166, Fax: (312) 413-0354, e-mail:
| | - Subhash C. Pandey
- Department of Anatomy and Cell Biology and
- Department of Psychiatry, University of Illinois at Chicago, and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Silasi G, Diaz-Heijtz R, Besplug J, Rodriguez-Juarez R, Titov V, Kolb B, Kovalchuk O. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females. Biochem Biophys Res Commun 2004; 325:1223-35. [PMID: 15555557 DOI: 10.1016/j.bbrc.2004.10.166] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Radiation exposure is known to have profound effects on the brain, leading to precursor cell dysfunction and debilitating cognitive declines [Nat. Med. 8 (2002) 955]. Although a plethora of data exist on the effects of high radiation doses, the effects of low-dose irradiation, such as ones received during repetitive diagnostic and therapeutic exposures, are still under-investigated [Am. J. Otolaryngol. 23 (2002) 215; Proc. Natl. Acad. Sci. USA 97 (2000) 889; Curr. Opin. Neurol. 16 (2003) 129]. Furthermore, most studies of the biological effects of ionizing radiation have been performed using a single acute dose, while clinically and environmentally relevant exposures occur predominantly under chronic/repetitive conditions. Here, we have used a mouse model to compare the effects of chronic/repetitive and acute low-dose radiation (LDR) exposure (0.5Gy) to ionizing radiation on the brain in vivo. We examined the LDR effects on p42/44 MAPK (ERK1/ERK2), CaMKII, and AKT signaling-the interconnected pathways that have been previously shown to be crucial for neuronal survival upon irradiation. We report perturbations in ERK1/2, AKT, and CREB upon acute and chronic/repetitive low-dose exposure in the hippocampus and frontal cortex of mice. These studies were paralleled by the analysis of radiation effects on neurogenesis and cellular proliferation. Repetitive exposure had a much more pronounced effect on cellular signaling and neurogenesis than acute exposure. These results suggest that studies of single acute exposures might be limited in terms of their predictive value. We also present the first evidence of sex differences in radiation-induced signaling in the hippocampus and frontal cortex. We show the role of estrogens in brain radiation responses and discuss the implications of the observed changes.
Collapse
Affiliation(s)
- Greg Silasi
- Department of Psychology and Neuroscience, University of Lethbridge, Lethbridge, Alta., Canada T1K 3M4
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhao L, Wu TW, Brinton RD. Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 2004; 1010:22-34. [PMID: 15126114 DOI: 10.1016/j.brainres.2004.02.066] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/21/2022]
Abstract
Estrogen receptor (ER) mediated neuroprotection has been demonstrated in both in vitro and in vivo model systems. However, the relative contribution by either ER subtype, ERalpha or ERbeta, to estrogen-induced neuroprotection remains unresolved. To address this question, we investigated the impact of selective ER agonists for either ERalpha, PPT, or ERbeta, DPN, to prevent neurodegeneration in cultured hippocampal neurons exposed to excitotoxic glutamate. Using three indicators of neuronal viability and survival, we demonstrated that both the ERalpha selective agonist PPT and the ERbeta selective agonist DPN protected hippocampal neurons against glutamate-induced cell death in a dose-dependent manner, with the maximal response occurring at 100 pM. Further analyses showed that both PPT and DPN enhanced Bcl-2 expression in hippocampal neurons, with an efficacy comparable to their neuroprotective capacity. Collectively, the present data indicate that activation of either ERalpha or ERbeta can promote neuroprotection in hippocampal neurons, suggesting that both receptor subtypes could be involved in estrogen neuroprotection. As ERbeta is highly expressed in the brain and has little or no expression in the breast or uterus, discovery and design of ERbeta selective molecules could provide a strategy for activating the beneficial effects of estrogen in the brain without activating untoward effects of estrogen in reproductive organs.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | | | | |
Collapse
|
44
|
Abrahám IM, Todman MG, Korach KS, Herbison AE. Critical in vivo roles for classical estrogen receptors in rapid estrogen actions on intracellular signaling in mouse brain. Endocrinology 2004; 145:3055-61. [PMID: 14976146 DOI: 10.1210/en.2003-1676] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Estrogen exerts classical genomic as well as rapid nongenomic actions on neurons. The mechanisms involved in rapid estrogen signaling are poorly defined, and the roles of the classical estrogen receptors (ERs alpha and beta) are unclear. We examined here the in vivo role of classical ERs in rapid estrogen actions by evaluating the estrogen-induced effects on two major signaling pathways within the brains of alphaER-, betaER-, and double alphabetaER-knockout (ERKO) ovariectomized female mice. Estrogen significantly (P < 0.05) increased the numbers of phospho-cAMP response element binding protein (phospho-CREB)-immunoreactive cells in specific brain regions of wild-type mice in a time-dependent manner beginning within 15 min. In brain areas that express predominantly ERbeta, this response was absent in betaERKO mice, whereas brain regions that express mostly ERalpha displayed no change in alphaERKO mice. In the medial preoptic nucleus (MPN), an area that expresses both ERs, the estrogen-induced phosphorylation of CREB was normal in both alphaERKO and betaERKO mice. However, estrogen had no effect on CREB phosphorylation in the MPN, or any other brain region, in double alphabetaERKO animals. Estrogen was also found to increase MAPK phosphorylation levels in a rapid (<15 min) manner within the MPN. In contrast to CREB signaling, this effect was lost in either alphaERKO or betaERKO mice. These data show that ERalpha and ERbeta play region- and pathway-specific roles in rapid estrogen actions throughout the brain. They further indicate an indispensable role for classical ERs in rapid estrogen actions in vivo and highlight the importance of ERs in coordinating both classical and rapid actions of estrogen.
Collapse
Affiliation(s)
- István M Abrahám
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
45
|
Purves-Tyson TD, Keast JR. Rapid actions of estradiol on cyclic amp response-element binding protein phosphorylation in dorsal root ganglion neurons. Neuroscience 2004; 129:629-37. [PMID: 15541884 DOI: 10.1016/j.neuroscience.2004.08.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2004] [Indexed: 12/20/2022]
Abstract
Actions of gonadal steroids have not been widely investigated in the peripheral nervous system, although many dorsal root ganglion (DRG) and autonomic pelvic ganglion (PG) neurons express estrogen receptors (ERs). We have studied the effects of 17beta-estradiol exposure on cultured DRG and PG neurons from adult rats. Western blotting analysis of DRG extracts detected phosphorylation of ERK1 and ERK2 (extracellular signal-regulated kinases) that peaked 10 min after exposure to 17beta-estradiol. These extracts contain both neurons and glia; therefore, to determine if this response occurred in DRG neurons, we developed an immunocytochemical method to specifically measure activation in individual neurons. These measurements showed that estradiol increased phosphorylation of CREB (cyclic AMP response-element binding protein), which was consistently blocked by the ERK pathway inhibitor PD98059 but not by the inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. 17beta-Estradiol activation of CREB in DRG neurons was reduced by the ER antagonist, ICI182780. In contrast, in PG neurons estradiol did not affect CREB phosphorylation, highlighting a difference in E2 responses in different populations of peripheral neurons. This study has shown that estrogens can rapidly activate signaling pathways associated with CREB-mediated transcriptional regulation in sensory neurons. As these pathways also mediate many effects of neurotrophic factors, changes in estrogen levels (e.g. during puberty, pregnancy or menopause) could have broad-ranging genomic and non-genomic actions on urogenital pain sensation and reflex pathways.
Collapse
Affiliation(s)
- T D Purves-Tyson
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
46
|
Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 2003. [PMID: 12843281 DOI: 10.1523/jneurosci.23-13-05771.2003] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gonadal steroid estrogen exerts an important modulatory influence on the activity of multiple neuronal networks. In addition to classical genomic mechanisms of action, estrogen also exerts poorly understood rapid, nongenomic effects on neurons. To examine whether estrogen may exert rapid actions on intracellular signaling within gonadotropin-releasing hormone (GnRH) neurons in vivo,we examined the phosphorylation status of cAMP response element-binding protein (CREB) in these cells after the administration of 17-beta-estradiol to ovariectomized (OVX) mice. The percentage of GnRH neurons expressing phosphorylated CREB was increased more than sixfold (p < 0.05) in a time- and dose-dependent manner by estrogen, with the increase first observed 15 min after estrogen administration. A series of in vitro studies demonstrated that estrogen acted directly on native GnRH neurons to phosphorylate CREB, but that estrogen conjugated to bovine serum albumin was without effect. The role of classical estrogen receptors (ERs) was evaluated using ER knock-out mice in vivo. The effect of estrogen on CREB phosphorylation in GnRH neurons was normal in ERalpha knock-out mice but completely absent in ERbeta knock-out mice. Finally, studies in intact female mice revealed levels of CREB phosphorylation within GnRH neurons that were equivalent to those of estrogen-treated OVX mice. These observations demonstrate that ERbeta mediates the rapid, direct effects of estrogen on the GnRH neuronal phenotype, and that these actions persist under physiological conditions. They also provide the first evidence for a role of ERbeta in nongenomic estrogen signaling within the brain in vivo.
Collapse
|
47
|
Wade CB, Dorsa DM. Estrogen activation of cyclic adenosine 5'-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway. Endocrinology 2003; 144:832-8. [PMID: 12586759 DOI: 10.1210/en.2002-220899] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of estrogen to rapidly initiate a variety of signal transduction cascades is increasingly recognized as playing an important role in a number of tissue-specific transcriptional actions of the hormone. In vivo, estrogen rapidly elicits phosphorylation of cAMP response element-binding protein (CREB). We have previously shown that both ER alpha and ER beta are capable of activating the MAPK pathway in response to a low dose of 17beta-estradiol. In the present study, the ability of estrogen to act through both ER alpha and ER beta to increase CREB phosphorylation was evaluated in an immortalized hippocampal cell line stably expressing either receptor. Estrogen treatment promoted rapid CREB phosphorylation, reaching a maximum by 15 min. This activation is completely blocked by the antiestrogen ICI 182,780, suggesting an estrogen receptor-dependent mechanism. The addition of the mitogen/ERK kinase-1 inhibitor, PD98059, also blocked the ability of estrogen to signal to CREB phosphorylation. Estrogen also caused an increase in p90Rsk activity, a critical mediator of MAPK effects. Surprisingly, blockade of the protein kinase A pathway in cells treated with estrogen did not affect estrogen-mediated CREB phosphorylation. Thus, MAPK and p90Rsk appear to be the primary mediators of estrogen-induced gene transcription through ER alpha and ER beta.
Collapse
Affiliation(s)
- Christian B Wade
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
48
|
Driggers PH, Segars JH. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 2002; 13:422-7. [PMID: 12431838 PMCID: PMC4152897 DOI: 10.1016/s1043-2760(02)00634-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, distinct signaling pathways involving specific complexes of cytoplasmic proteins have been shown to orchestrate estrogen action. These pathways might supplement or augment genomic effects of estrogen that are attributable to transcriptional activation by liganded receptor. Signals might be transduced through phosphorylation of the estrogen receptors (ERs), or indirectly through effects upon transcriptional coactivators or cell receptors. Estrogen signaling is coupled to growth factor signaling with feedback mechanisms directly impacting function of growth factor receptors. These signaling pathways regulate important physiological processes, such as cell growth and apoptosis. Here, we focus on cytoplasmic signaling pathways leading to activation of ERs.
Collapse
Affiliation(s)
- Paul H Driggers
- Dept of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, USA.
| | | |
Collapse
|
49
|
Auger AP, Perrot-Sinal TS, Auger CJ, Ekas LA, Tetel MJ, McCarthy MM. Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 2002; 143:3009-16. [PMID: 12130567 PMCID: PMC2683357 DOI: 10.1210/endo.143.8.8975] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies indicate that the transcriptional activity of steroid receptors is governed by proteins called nuclear receptor coactivators. Using immunocytochemistry, we found that on the day of birth (postnatal d 0) males express higher levels of the nuclear receptor coactivator, cAMP response element binding protein-binding protein (CBP), within the ventromedial hypothalamus, medial preoptic area, and arcuate nucleus. Using Western immunoblots, we confirmed that males have higher levels of CBP on postnatal d 0, 1, and 5; however, there was no sex difference on postnatal d 11. To examine the functional role of CBP, we infused oligodeoxynucleotides that were antisense to CBP mRNA or a scrambled sequence as a control into the hypothalamus of female rats on postnatal d 0, 1, and 2. On postnatal d 1, all rats were injected with 100 microg testosterone propionate to both masculinize (increase male) and defeminize (decrease female) sexual behavior. Rats were ovariectomized in adulthood and tested for adult sexual behavior. Neonatal CBP antisense oligodeoxynucleotides treatment interfered with the defeminizing, but not the masculinizing, actions of testosterone. These results indicate that CBP expression in developing rat brain is sexually dimorphic and an important modulator for steroid hormone action.
Collapse
Affiliation(s)
- Anthony P Auger
- Department of Physiology, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
In addition to its role as a sex hormone, oestrogen affects the structure and function of the nervous system. Oestrogen receptors are expressed in brain regions that are involved in sex differentiation and maturation. But in addition to its well-known effects, oestrogen also has important neuroprotective actions that are both dependent and independent of a nuclear oestrogen-receptor activity. Furthermore, oestrogen can interact with neuroprotective intracellular signalling pathways and is itself a neuroprotective antioxidant. Understanding the mechanisms of oestrogen action will be crucial to determine its potential as a therapeutic agent, particularly in the elderly.
Collapse
Affiliation(s)
- Christian Behl
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|