1
|
Kadoglou NPE, Stasinopoulou M, Gkougkoudi E, Christodoulou E, Kostomitsopoulos N, Valsami G. The Complementary Effects of Dabigatran Etexilate and Exercise Training on the Development and Stability of the Atherosclerotic Lesions in Diabetic ApoE Knockout Mice. Pharmaceuticals (Basel) 2023; 16:1396. [PMID: 37895867 PMCID: PMC10609840 DOI: 10.3390/ph16101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Aim: To determine the complementary effects of dabigatran etexilate (DE), exercise training (ET), and combination (DE + ET) on the development and stability of the atherosclerotic lesions in diabetic apoE knockout (apoE-/-) mice. Methods: In 48 male apoE-/- diabetic mice, streptozotocin (STZ) was induced for 5 consecutive days. Mice received a high-fat diet (HFD) for 8 weeks and then were randomized into four groups (1. Control/CG, 2. DEG: HFD with DE, 3. ETG: ET on treadmill, 4. DE + ETG: combination DE and ET treatment). At the end of the eighth week, all mice were euthanatized and morphometry of the aortic lesions at the level of aortic valve was obtained. Collagen, elastin, MCP-1, TNF-a, matrix metalloproteinases (MMP-2,-3,-9), and TIMP-1 concentrations within plaques at the aortic valve were determined. Results: All active groups had significantly smaller aorta stenosis (DEG:7.9 ± 2.2%, ETG:17.3 ± 5.3%, DE + ETG:7.1 ± 2.7%) compared to CG (23.3 ± 5.5% p < 0.05), reduced the relative intra-plaque content of MCP-1, macrophages, MMP-3, and MMP-9, and considerably increased collagen, elastin, and TIMP-1 (p < 0.05). Group 4 showed the most pronounced results (p < 0.05). Both DEG and DE + ETG significantly reduced MMP-2 and TNF-a concentrations compared to ETG and CG (p < 0.010). Conclusion: DE and ET treatment of diabetic apoE-/- mice resulted in complementary amelioration of atherosclerotic lesions development and stability, mediated by the anti-inflammatory modulation of both DE and ET.
Collapse
Affiliation(s)
| | - Marianna Stasinopoulou
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Eirini Christodoulou
- Laboratory of Biopharmaceutics & Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece (G.V.)
| | - Nikolaos Kostomitsopoulos
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics & Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece (G.V.)
| |
Collapse
|
2
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
3
|
Exercise training inhibits atherosclerosis progression and reduces VE-cadherin levels within atherosclerotic plaques in hypercholesterolemic mice. Biochem Biophys Res Commun 2022; 623:39-43. [PMID: 35870260 DOI: 10.1016/j.bbrc.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Vascular endothelial-cadherin (VE-cadherin), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) have emerged as key-factors of atherogenesis. The aim of this study was to evaluate the effects of exercise training (ET) on those key-factors in relation to the progression of atherosclerotic lesions in hypercholesterolemic mice. Thirty male, apoE knockout (apoE-/-) mice were randomly assigned to the following equivalent groups: 1) CO-control: High-fat diet (HFD) administration for 12 weeks. 2) EX-exercise: HFD administration as in CO, and during the last 4 weeks (9th -12th week) ET on treadmill (5sessions/week, 60min/session). At the end of study, blood samples were obtained and all mice were sacrificed. Aortic roots were excised and analysed regarding the percentage of aortic stenosis, and the relative concentrations of collagen, elastin, VE-cadherin, MMP-8,-9 and TIMP-1,-2 within the atherosclerotic lesions. Aortic stenosis was significantly lower in the EX than the CO group (39.63 ± 7.22% vs 62.04 ± 8.55%; p < 0.001), along with considerable increase in fibrous cap thickness and of collagen and elastin contents within plaques (p < 0.05). Compared to controls, exercised-treated mice showed reduced intra-plaque relative concentrations of VE-cadherin (15.09 ± 1.89% vs 23.49 ± 3.01%, p < 0.001), MMP-8 (8.51 ± 2.24% vs 18.51 ± 4.08%, p < 0.001) and MMP-9 (12.1 ± 4.86% vs 18.88 ± 6.23%, p < 0.001). Inversely, the relative concentrations of TIMP-1 and TIMP-2 in the ET group were considerably higher by 62.5% and 31.2% than in the EX group (p < 0.05), respectively. Finally, body weight and lipids concentrations did not differ between groups at the end of the study (p > 0.05). ET treatment induced regression of established atherosclerotic lesions in apoE-/- mice and improved their stability. Those effects seemed to be mediated by favourable modification of VE-cadherin, MMPs and TIMPs.
Collapse
|
4
|
Stanton KM, Liu H, Kienzle V, Bursill C, Bao S, Celermajer DS. The Effects of Exercise on Plaque Volume and Composition in a Mouse Model of Early and Late Life Atherosclerosis. Front Cardiovasc Med 2022; 9:837371. [PMID: 35419434 PMCID: PMC8995971 DOI: 10.3389/fcvm.2022.837371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundExercise is associated with a less atherogenic lipid profile; however, there is limited research on the effect of exercise on atherosclerotic plaque composition and markers of plaque stability.MethodsA total of 110 apolipoprotein (apo)E−/− mice were placed on a chow diet and randomly assigned to control or exercise for a period of 10 weeks, commencing either at 12 weeks of age (the early-stage atherosclerosis, EA group) or at 40 weeks of age (the late-stage atherosclerosis, LA group). At the end of the exercise period, blood was assayed for lipids. Histologic analysis of the aortic sinus was undertaken to assess plaque size and composition that includes macrophage content, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase-2 (MMP-2), and tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and 2).ResultsA total of 103 mice (38 EA, 65 LA) completed the protocol. In the EA group, exercise reduced plasma total cholesterol (TC) (−16%), free cholesterol (−13%), triglyceride (TG) (−35%), and phospholipid (−27%) levels, when compared to sedentary control mice (p < 0.01). In the EA group, exercise also significantly reduced plaque stenosis (−25%, p < 0.01), and there were higher levels of elastin (3-fold increase, p < 0.0001) and collagen (11-fold increase, p < 0.0001) in plaques, compared to control mice. There was an increase in plaque MMP-2 content in the exercise group (13% increase, p < 0.05) but no significant difference in macrophage or MCP-1 content. In the LA group, exercise reduced plaque stenosis (−18%, p < 0.05), but there was no significant difference in plaque composition. There was no difference in macrophage, MCP-1, or MMP-2 content in the LA groups. TIMP-1 was lower with exercise in both the EA and LA groups (−59%, p < 0.01 and −51%, p < 0.01 respectively); however, there was no difference in TIMP-2 levels.ConclusionA 10-week exercise period reduces atherosclerotic plaque stenosis when commenced at both early- and late-stage atherosclerosis. Intervening earlier with exercise had a greater beneficial effect on lipids and plaque composition than when starting exercise at a later disease stage.
Collapse
Affiliation(s)
- Kelly M. Stanton
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Kelly M. Stanton
| | - Hongjuan Liu
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - Vivian Kienzle
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
| | - Christina Bursill
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Shisan Bao
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - David S. Celermajer
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Dede E, Liapis D, Davos C, Katsimpoulas M, Varela A, Mpotis I, Kostomitsopoulos N, Kadoglou NPE. The effects of exercise training on cardiac matrix metalloproteinases activity and cardiac function in mice with diabetic cardiomyopathy. Biochem Biophys Res Commun 2022; 586:8-13. [PMID: 34818584 DOI: 10.1016/j.bbrc.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
AIM To evaluate the effects of exercise training (ET) on cardiac extracellular matrix (ECM) proteins homeostasis and cardiac dysfunction in mice with diabetic cardiomyopathy. METHODS Thirty-six male C57BL/6 mice were randomized into 3 groups for 8 weeks (12mice/group): Diabetic control-DC: Diabetes was induced by single streptozotocin injection (200 mg/kg i.p.); Diabetic exercise-DE: Diabetic mice underwent ET program on motorized-treadmill (6-times/week, 60min/session); Non-diabetic control-NDC: Vehicle-treated, sedentary, non-diabetic mice served as controls. Before euthanasia, all groups underwent transthoracic echocardiography (TTE). Post-mortem, left-ventricle (LV) samples were histologically analysed for ECM proteins (collagen, elastin), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). RESULTS DC group showed significantly higher cardiac contents of collagen and MMP-9 and lower elastic concentration than NDC (p < 0.001). The implementation of ET completely outweighed those diabetes-induced changes (DE vs NDC, p > 0.05). TIMP-1 levels significantly increased across all groups (DC: 18.98 ± 3.47%, DE: 24.24 ± 2.36%, NDC: 46.36 ± 5.91%; p < 0.05), while MMP-9/TIMP-1 ratio followed a reverse pattern. ET tended to increase MMP-2 concentrations versus DC (p = 0.055), but did not achieve non-diabetic levels (p < 0.05). TIMP-2 cardiac concentrations remained unaltered throughout the study (p > 0.05). Importantly, ET ameliorated both LV end-systolic internal diameter (LVESD) (p < 0.001) and the percentage of LV fractional shortening (FS%) (p = 0.006) compared to DC. Despite that favorable effect, the cardiac function level of DE group remained worse than NDC group (%FS: p = 0.002; LVESD: p < 0.001). CONCLUSION Systemic ET may favorably change ECM proteins, MMP-9 and TIMP-1 cardiac concentrations in mice with diabetic cardiomyopathy. Those results were associated with partial improvement of echocardiography-assessed cardiac function, indicating a therapeutic effect of ET in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Eleni Dede
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Dimitrios Liapis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Constantinos Davos
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Aimilia Varela
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | - Ioannis Mpotis
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | |
Collapse
|
6
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
7
|
Rentz T, Wanschel ACBA, de Carvalho Moi L, Lorza-Gil E, de Souza JC, Dos Santos RR, Oliveira HCF. The Anti-atherogenic Role of Exercise Is Associated With the Attenuation of Bone Marrow-Derived Macrophage Activation and Migration in Hypercholesterolemic Mice. Front Physiol 2020; 11:599379. [PMID: 33329050 PMCID: PMC7719785 DOI: 10.3389/fphys.2020.599379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1β); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.
Collapse
Affiliation(s)
- Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Amarylis C B A Wanschel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Leonardo de Carvalho Moi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jane C de Souza
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Renata R Dos Santos
- Division of Radiotherapy, Faculty of Medical Sciences, Medical School Hospital, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
8
|
In het Panhuis W, Kooijman S, Brouwers B, Verhoeven A, Pronk AC, Streefland TC, Giera M, Schrauwen P, Rensen PC, Schönke M. Mild Exercise Does Not Prevent Atherosclerosis in APOE*3-Leiden.CETP Mice or Improve Lipoprotein Profile of Men with Obesity. Obesity (Silver Spring) 2020; 28 Suppl 1:S93-S103. [PMID: 32645256 PMCID: PMC7496605 DOI: 10.1002/oby.22799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Exercise has been shown to improve cardiometabolic health, yet neither the molecular connection nor the effects of exercise timing have been elucidated. The aim of this study was to investigate whether ad libitum or time-restricted mild exercise reduces atherosclerosis development in atherosclerosis-prone dyslipidemic APOE*3-Leiden.CETP mice and whether mild exercise training in men with obesity affects lipoprotein levels. METHODS Mice were group-housed and subjected to ad libitum or time-restricted (first or last 6 hours of the active phase) voluntary wheel running for 16 weeks while on a cholesterol-rich diet, after which atherosclerosis development was assessed in the aortic root. Furthermore, nine men with obesity followed a 12-week mild exercise training program. Lipoprotein levels were measured by nuclear magnetic resonance spectroscopy in plasma collected pre and post exercise training. RESULTS Wheel running did not affect plasma lipid levels, uptake of triglyceride-derived fatty acids by tissues, and aortic atherosclerotic lesion size or severity. Markers of training status were unaltered. Exercise training in men with obesity did not alter lipoprotein levels. CONCLUSIONS Mild exercise training does not reduce dyslipidemia or atherosclerosis development in APOE*3-Leiden.CETP mice or affect lipoprotein levels in humans. Future research on the effects of (time-restricted) exercise on atherosclerosis or lipid metabolism should consider more vigorous exercise protocols.
Collapse
Affiliation(s)
- Wietse In het Panhuis
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sander Kooijman
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Bram Brouwers
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Nutrition and Movement SciencesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Amanda C.M. Pronk
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Trea C.M. Streefland
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Martin Giera
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Nutrition and Movement SciencesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick C.N. Rensen
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Milena Schönke
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
9
|
Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med 2019; 48:2725-2741. [PMID: 30302720 DOI: 10.1007/s40279-018-0996-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a complex cardiovascular disease, is a leading cause of mortality and morbidity worldwide. Oxidative stress and inflammation are both involved in the development of atherosclerotic plaque as they increase the biological processes associated with this pathology, such as endothelial dysfunction and macrophage recruitment and adhesion. Atherosclerotic plaque rupture leading to major ischemic events is the result of vulnerable plaque progression, which is a result of the detrimental effect of oxidative stress and inflammation on risk factors for atherosclerotic plaque rupture, such as intraplaque hemorrhage, neovascularization, and fibrous cap thickness. Thus, both are key targets for primary and secondary interventions. It is well recognized that chronic physical activity attenuates oxidative stress in healthy subjects via the improvement of antioxidant enzyme capacities and inflammation via the enhancement of anti-inflammatory molecules. Moreover, it was recently shown that chronic physical activity could decrease oxidative stress and inflammation in atherosclerotic patients. The aim of this review is to summarize the role of oxidative stress and inflammation in atherosclerosis and the results of therapeutic interventions targeting them in both preclinical and clinical studies. The effects of chronic physical activity on these two key processes are then reviewed in vulnerable atherosclerotic plaques in both coronary and carotid arteries.
Collapse
Affiliation(s)
- Pauline Mury
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Erica N Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Mathilde Mura
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Antoine Millon
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France.,Department of Vascular Surgery, Edouard Herriot Hospital, Lyon, France
| | - Emmanuelle Canet-Soulas
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France
| | - Vincent Pialoux
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
10
|
Alebrante M, Dias M, Neves C, Rosa D, Siqueira N, Natali A, Peluzio M. Effects of exercise training and nebivolol treatment on atherosclerotic plaque development, iNOS expression and antioxidant capacity in apoE −/− mice. Sci Sports 2018. [DOI: 10.1016/j.scispo.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Kapelouzou A, Giaglis S, Peroulis M, Katsimpoulas M, Moustardas P, Aravanis CV, Kostakis A, Karayannakos PE, Cokkinos DV. Overexpression of Toll-Like Receptors 2, 3, 4, and 8 Is Correlated to the Vascular Atherosclerotic Process in the Hyperlipidemic Rabbit Model: The Effect of Statin Treatment. J Vasc Res 2017; 54:156-169. [PMID: 28478461 DOI: 10.1159/000457797] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Atherosclerosis is the major cause of cardiovascular disease; hypercholesterolemia is a major risk factor. We hypothesized that specific TLR members (TLR2, TLR3, TLR4, TLR8) may play a role in atherosclerosis progression and its accompanying inflammatory response. We determined the association of atherosclerotic lesions and TLR mRNA expression in different aortic sites. We also assessed the effects of fluvastatin (Flu) treatment on TLR expression and plaque characteristics. METHODS Male rabbits, fed with an atherogenic diet for a duration of 3 months, were screened for advanced atherosclerotic lesions in the aorta. Additional animals received normal diet or normal diet plus Flu for 1 additional month. TLR mRNA expression in various thoracic and abdominal aortic segments was assessed, together with atherosclerotic changes. RESULTS After high lipid diet, the atherosclerotic burden increased more in the abdominal than in the thoracic aorta; TLR2, 3, 4, and 8 also increased significantly. Flu decreased atherosclerotic plaque, calcium deposition, lipid cores, intraplaque hemorrhage, erythrocyte membranes, endothelial cells, and macrophage infiltration, while increasing smooth muscle cells in plaques of both aortic segments; it also lowered TLR2, 3, 4, and 8 expression in all aortic segments to a stronger degree than resumption of normal diet. There was a strong association between blood and tissue parameters during experimental period and finally a strong correlation found between these parameters with mRNA of TLR2, 3, 4, and 8 in various stages. CONCLUSION For the first time TLR2, 3, 4, and 8 mRNA expression is prospectively explored after hypercholesterolemic diet in the rabbit model. TLR2, 3, 4, and 8 mRNA expression is strongly upregulated and correlates with the progression of atherosclerosis in the aorta. Flu significantly inhibited this progress and reduced inflammation via TLR downregulation which was strongly associated with regression of plaque morphology and atherosclerosis promoting factors.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Toutouzas K, Karanasos A, Tousoulis D. Exercise versus targeting of endocannabinoid system for atheromatic plaque stabilization. Opposing or complementary roles? Hellenic J Cardiol 2017; 57:426-427. [PMID: 28434840 DOI: 10.1016/j.hjc.2017.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Konstantinos Toutouzas
- 1st Department of Cardiology, Athens Medical School, Hippokration Hospital, Athens, Greece.
| | - Antonios Karanasos
- 1st Department of Cardiology, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Athens Medical School, Hippokration Hospital, Athens, Greece
| |
Collapse
|
13
|
Katsimpoulas M, Kadoglou NE, Moustardas P, Kapelouzou A, Dede E, Kostomitsopoulos N, Karayannacos PE, Kostakis A, Liapis CD. The role of exercise training and the endocannabinoid system in atherosclerotic plaque burden and composition in Apo-E-deficient mice. Hellenic J Cardiol 2017; 57:417-425. [PMID: 28254386 DOI: 10.1016/j.hjc.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION We investigated the effect of combining exercise training and treatment with an endocannabinoid receptor 1 inhibitor (Rimonabant) on atherosclerosis burden and composition. METHODS Forty-eight apolipoprotein E-deficient (ApoE-/-) mice were kept on a 16-week high-fat diet. Mice were then placed on a normal diet and were randomized to the following groups with n=12 mice for 6 more weeks: 1) Control (Co) - no intervention; 2) Exercise (Ex) - exercise training on treadmill; 3) Rimonabant (Ri) - oral administration of rimonabant (10 mg/kg/day); or 4) Rimonabant+Exercise (RiEx) - combination of Ri and Ex groups treatment. At the end, all animals were sacrificed, and blood samples, as well as aortic root specimens, were obtained for histomorphometric analysis and quantification of the serum and plaque content of matrix metalloproteinases (MMPs). RESULTS The mean plaque area was significantly smaller (RiEx: 43.18±1.72%, Ri: 44.66±3.1%, Ex: 49±4.10%, Co: 70.43±2.83%) in all active treatment groups relative to the Co group (p<0.01). Conversely, the relative concentrations of collagen and elastin were increased significantly across all treatment groups compared to Co (p<0.05). Immunohistochemical analysis revealed significantly reduced macrophage content within plaques after all interventions, with the most pronounced effect observed after combined treatment (RiEx: 9.4±3.92%, Ri: 15±2.45%, Ex: 19.78±2.79%, Co: 34.25±4.99%; p<0.05). Within plaques, the TIMP-1 concentration was significantly upregulated in exercise-treated groups. MMP-3 and MMP-9 concentrations were equivalently decreased in all three active treatment groups compared to controls (p<0.001). DISCUSSION Both exercise and rimonabant treatments induced plaque regression and promoted plaque stability. The combined treatment failed to show additive or synergistic benefits relative to either intervention alone.
Collapse
Affiliation(s)
- Michalis Katsimpoulas
- Department of Vascular Surgery, Medical School, University of Athens, Greece; Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece.
| | - Nikolaos E Kadoglou
- Department of Vascular Surgery, Medical School, University of Athens, Greece; Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Petros Moustardas
- Department of Vascular Surgery, Medical School, University of Athens, Greece; Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Alkistis Kapelouzou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Eleni Dede
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Panayotis E Karayannacos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Alkiviadis Kostakis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Christos D Liapis
- Department of Vascular Surgery, Medical School, University of Athens, Greece
| |
Collapse
|
14
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
15
|
Chirico EN, Di Cataldo V, Chauveau F, Geloën A, Patsouris D, Thézé B, Martin C, Vidal H, Rieusset J, Pialoux V, Canet‐Soulas E. Magnetic resonance imaging biomarkers of exercise-induced improvement of oxidative stress and inflammation in the brain of old high-fat-fed ApoE -/- mice. J Physiol 2016; 594:6969-6985. [PMID: 27641234 PMCID: PMC5134731 DOI: 10.1113/jp271903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE-/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE-/- mice. ABSTRACT Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 μmol mg-1 ; P < 0.01) and inflammation (interleukin-1β, 226.8 ± 27.1 vs. 182.5 ± 21.5 pg mg-1 ; P < 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise.
Collapse
Affiliation(s)
- Erica N. Chirico
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNJUSA
| | - Vanessa Di Cataldo
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Fabien Chauveau
- Lyon Neuroscience Research CentreUniversité de LyonUniversité Lyon 1CNRS UMR5292; Inserm U1028LyonFrance
| | - Alain Geloën
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - David Patsouris
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Benoît Thézé
- Laboratoire Réparation et VieillissementInstitut de Radiobiologie Cellulaire et MoléculaireCEAFontenay‐aux‐RosesFrance
| | - Cyril Martin
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
| | - Hubert Vidal
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Jennifer Rieusset
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Vincent Pialoux
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
| | - Emmanuelle Canet‐Soulas
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| |
Collapse
|
16
|
Pellegrin M, Szostak J, Bouzourène K, Aubert JF, Berthelot A, Nussberger J, Laurant P, Mazzolai L. Running Exercise and Angiotensin II Type I Receptor Blocker Telmisartan Are Equally Effective in Preventing Angiotensin II-Mediated Vulnerable Atherosclerotic Lesions. J Cardiovasc Pharmacol Ther 2016; 22:159-168. [PMID: 27246357 DOI: 10.1177/1074248416652235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The present study was conducted to directly compare the efficacy of running exercise and telmisartan treatment on angiotensin (Ang) II-mediated atherosclerosis and plaque vulnerability. MATERIALS AND METHODS Apolipoprotein E-deficient (ApoE-/-) mice with Ang II-mediated atherosclerosis (2-kidney, 1-clip [2K1C] renovascular hypertension model) were randomized into 3 groups: treadmill running exercise (RUN), telmisartan treatment (TEL), and sedentary untreated controls (SED) for 5 weeks. Atherosclerosis was assessed using histological and immunohistochemical analyses. Gene expression was determined by real-time reverse transcription polymerase chain reaction. RESULTS TEL but not RUN mice significantly decreased (50%) atherosclerotic lesion size compared to SED. RUN and TEL promoted plaque stabilization to a similar degree in ApoE-/- 2K1C mice. However, plaque composition and vascular inflammatory markers were differently affected: RUN decreased plaque macrophage infiltration (35%), whereas TEL reduced lipid core size (88%); RUN significantly increased aortic peroxisome proliferator-activated receptor (PPAR)-α, -δ, and -γ expression, whereas TEL significantly modulated T-helper 1/T-helper 2 (Th1/Th2) aortic response toward an anti-inflammatory state (decreased aortic interleukin [IL] 2 to IL-10 and IL-2 to IL-13 expression ratios). Plaque smooth muscle cell content was similarly increased (128% and 141%, respectively). Aortic AT1 and AT2 receptor expression as well as aortic CD11c/CD206 and IL-1β/IL-1ra expression ratios were not significantly modulated by either RUN or TEL. CONCLUSION Running exercise and telmisartan treatment are equally effective in preventing Ang II-mediated plaque vulnerability but through distinct cellular and molecular mechanisms. Our findings further support the use of exercise training and selective AT1 receptor blocker therapies for atherosclerotic cardiovascular disease prevention.
Collapse
Affiliation(s)
- Maxime Pellegrin
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Justyna Szostak
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland.,2 Sciences Séparatives Biologiques et Pharmaceutiques, UFR STAPS/SMP, Université de Franche-Comté, Besançon, France
| | - Karima Bouzourène
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Alain Berthelot
- 2 Sciences Séparatives Biologiques et Pharmaceutiques, UFR STAPS/SMP, Université de Franche-Comté, Besançon, France
| | - Jürg Nussberger
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pascal Laurant
- 3 Laboratoire Pharm-Ecologie Cardiovasculaire, UFRip Sciences Technologie et Santé, Université Avignon et des Pays de Vaucluse, Avignon, France
| | - Lucia Mazzolai
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Gilbert A, Wyczalkowska-Tomasik A, Zendzian-Piotrowska M, Czarkowska-Paczek B. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats. Biol Open 2016; 5:556-62. [PMID: 27069251 PMCID: PMC4874357 DOI: 10.1242/bio.017459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10) and trained (n=10; 6 weeks of endurance training with increasing load) groups. Gene expression was evaluated via qRT-PCR. Elastin content was measured via enzyme-linked immunosorbent assay and enzyme activity was measured fluorometrically. Elastin content was significantly higher in skeletal (P=0.0014) and heart muscle (P=0.000022) from trained rats versus untrained rats, but not in the aorta. Although mRNA levels in skeletal muscle did not differ between groups, the activities of elastase (P=0.0434), cathepsin K (P=0.0343) and plasmin (P=0.000046) were higher in trained rats. The levels of cathepsin K (P=0.0288) and plasminogen (P=0.0005) mRNA were higher in heart muscle from trained rats, but enzyme activity was not. Enzyme activity in the aorta did not differ between groups. Increased elastin content in muscles may result in better adaption to exercise, as may remodeling of the extracellular matrix in skeletal muscle. Summary: Endurance training increases elastin content in muscles but not in the aorta. The activities of enzymes responsible for ECM remodeling increase only in skeletal muscle. These changes seem to be adaptive.
Collapse
Affiliation(s)
- Anna Gilbert
- Department of Clinical Nursing, Medical University of Warsaw, E. Ciolka Street 27, 01-445 Warsaw, Poland
| | - Aleksandra Wyczalkowska-Tomasik
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland
| | | | - Bozena Czarkowska-Paczek
- Department of Clinical Nursing, Medical University of Warsaw, E. Ciolka Street 27, 01-445 Warsaw, Poland
| |
Collapse
|
18
|
Chernyavskiy I, Veeranki S, Sen U, Tyagi SC. Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci 2016; 1363:138-54. [PMID: 26849408 DOI: 10.1111/nyas.13009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Abstract
Despite great strides in understanding the atherogenesis process, the mechanisms are not entirely known. In addition to diet, cigarette smoking, genetic predisposition, and hypertension, hyperhomocysteinemia (HHcy), an accumulation of the noncoding sulfur-containing amino acid homocysteine (Hcy), is a significant contributor to atherogenesis. Although exercise decreases HHcy and increases longevity, the complete mechanism is unclear. In light of recent evidence, in this review, we focus on the effects of HHcy on macrophage function, differentiation, and polarization. Though there is need for further evidence, it is most likely that HHcy-mediated alterations in macrophage function are important contributors to atherogenesis, and HHcy-countering strategies, such as nutrition and exercise, should be included in the combinatorial regimens for effective prevention and regression of atherosclerotic plaques. Therefore, we also included a discussion on the effects of exercise on the HHcy-mediated atherogenic process.
Collapse
Affiliation(s)
- Ilya Chernyavskiy
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Sudhakar Veeranki
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
19
|
Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects. PLoS One 2015; 10:e0143536. [PMID: 26600018 PMCID: PMC4658070 DOI: 10.1371/journal.pone.0143536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Collapse
|
20
|
Shing CM, Fassett RG, Peake JM, Coombes JS. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice. PLoS One 2015; 10:e0120287. [PMID: 25799529 PMCID: PMC4370520 DOI: 10.1371/journal.pone.0120287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/02/2015] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p<0.05, d=1.2) lower in exercising nephrectomised mice compared to sedentary nephrectomised mice. There was a strong, negative correlation between average distance run each week and plaque area in nephrectomised and control mice (r=–0.76, p=0.048 and r=–0.73, p=0.062; respectively). In vitro aortic contraction and endothelial-independent and endothelial-dependent relaxation were not influenced by exercise (p>0.05). Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p<0.001 and p<0.05, respectively), while levels of IL-10, MCP-1 and MIP-1α were not significantly influenced by nephrectomy or voluntary exercise (p>0.05). Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.
Collapse
Affiliation(s)
- Cecilia M. Shing
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- * E-mail:
| | - Robert G. Fassett
- School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan M. Peake
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeff S. Coombes
- School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
|
22
|
Moustardas P, Kadoglou NPE, Katsimpoulas M, Kapelouzou A, Kostomitsopoulos N, Karayannacos PE, Kostakis A, Liapis CD. The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. PLoS One 2014; 9:e108240. [PMID: 25264981 PMCID: PMC4180453 DOI: 10.1371/journal.pone.0108240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/26/2014] [Indexed: 12/02/2022] Open
Abstract
Aim This study aimed to investigate the effects of combined atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in apolipoproteinE (apoE) knockout mice. Methods Forty male, apoE−/− mice were fed a high-fat diet for 16 weeks. Thereafter, while maintained on high-fat diet, they were randomized into four (n = 10) groups for 8 additional weeks: Group CO: Control. Group AT: Atorvastatin treatment (10 mg/Kg/day). Group EX: Exercise-training on treadmill. Group AT+EX: Atorvastatin and simultaneous exercise training. At the study’s end, plasma cholesterol levels, lipids and triglycerides were measured, along with the circulating concentrations of matrix-metalloproteinases (MMP-2,3,8,9) and their inhibitors (TIMP-1,2,3). Plaque area and the relative concentrations of collagen, elastin, macrophages, smooth muscle cells, MMP-2,3,8,9 and TIMP-1,2,3 within plaques were determined. Lastly, MMP activity was assessed in the aortic arch. Results All intervention groups showed a lower degree of lumen stenosis, with atheromatous plaques containing more collagen and elastin. AT+EX group had less stenosis and more elastin compared to single intervention groups. MMP-3,-8 -9 and macrophage intra-plaque levels were reduced in all intervention groups. EX group had increased TIMP-1 levels within the lesions, while TIMP-2 was decreased in all intervention groups. The blood levels of the above molecules increased during atherosclerosis development, but they did not change after the therapeutic interventions in accordance to their intra-plaque levels. Conclusion The two therapeutic strategies act with synergy regarding the extent of the lesions and lumen stenosis. They stabilize the plaque, increasing its content in elastin and collagen, by influencing the MMP/TIMP equilibrium, which is mainly associated with the macrophage amount. While the increased MMP-2,-3,-8 -9, as well as TIMP-1 and TIMP-2 circulating levels are markers of atherosclerosis, they are not correlated with their corresponding concentrations within the lesions after the therapeutic interventions, and cannot serve as markers for the disease development/amelioration.
Collapse
Affiliation(s)
- Petros Moustardas
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- * E-mail:
| | - Nikolaos P. E. Kadoglou
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Michalis Katsimpoulas
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Alkiviadis Kostakis
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Christos D. Liapis
- Department of Vascular Surgery, «Attikon» Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
23
|
Leckie RL, Manuck SB, Bhattacharjee N, Muldoon MF, Flory JM, Erickson KI. Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia 2014; 59:103-11. [PMID: 24813150 DOI: 10.1016/j.neuropsychologia.2014.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age=44.42 years, SD=6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health.
Collapse
Affiliation(s)
- Regina L Leckie
- University of Pittsburgh, Department of Psychology, 210S. Bouquet St, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| | - Stephen B Manuck
- University of Pittsburgh, Department of Psychology, 210S. Bouquet St, Pittsburgh, PA 15260, USA
| | - Neha Bhattacharjee
- University of Pittsburgh, Department of Psychology, 210S. Bouquet St, Pittsburgh, PA 15260, USA
| | - Matthew F Muldoon
- University of Pittsburgh, Department of Medicine, 120 Lytton Avenue, Suite 100B, Pittsburgh, PA 15213, USA
| | - Janine M Flory
- Department of Psychiatry, Mt. Sinai School of Medicine, 130 West Kingsbridge Road Bronx, NY 10468, USA
| | - Kirk I Erickson
- University of Pittsburgh, Department of Psychology, 210S. Bouquet St, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; University of Pittsburgh, Department of Medicine, 120 Lytton Avenue, Suite 100B, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Kadoglou NPE, Moustardas P, Kapelouzou A, Katsimpoulas M, Giagini A, Dede E, Kostomitsopoulos N, Karayannacos PE, Kostakis A, Liapis CD. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur J Histochem 2013; 57:e3. [PMID: 23549462 PMCID: PMC3683610 DOI: 10.4081/ejh.2013.e3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 10/12/2012] [Accepted: 07/27/2012] [Indexed: 01/30/2023] Open
Abstract
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatoryrelated pathways in apolipoprotein E knockout (apoE−/−) mice with diabetic atherosclerosis. Forty-five male apoE−/− mice were randomized into three equivalent (n=15) groups: control (CO), sedentary (SED), and exercise (EX). Diabetes was induced by streptozotocin administration. High-fat diet was administered to all groups for 12 weeks. Afterwards, CO mice were euthanatized, while the sedentary and exercise groups continued high-fat diet for 6 additional weeks. Exercising mice followed an exercise program on motorizedtreadmill (5 times/week, 60 min/session). Then, blood samples and atherosclerotic plaques in the aortic root were examined. A considerable (P<0.001) regression of the atherosclerotic lesions was observed in the exercise group (180.339±75.613×103µm2) compared to the control (325.485±72.302×103 µm2) and sedentary (340.188±159.108×103µm2) groups. We found decreased macrophages, matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-8 and interleukin-6 (IL-6) concentrations (P<0.05) in the atherosclerotic plaques of the exercise group. Compared to both control and sedentary groups, exercise training significantly increased collagen (P<0.05), elastin (P<0.001), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) (P<0.001) content in the atherosclerotic plaques. Those effects paralleled with increased fibrous cap thickness and less internal elastic lamina ruptures after exercise training (P<0.05), while body-weight and lipid parameters did not significantly change. Plasma MMP-2 and MMP-3 concentrations in atherosclerotic tissues followed a similar trend. From our study we can conclude that exercise training reduces and stabilizes atherosclerotic lesions in apoE−/− mice with diabetic atherosclerosis. A favorable modification of the inflammatory regulators seems to explain those beneficial effects.
Collapse
Affiliation(s)
- N P E Kadoglou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kadoglou NPE, Moustardas P, Katsimpoulas M, Kapelouzou A, Kostomitsopoulos N, Schafer K, Kostakis A, Liapis CD. The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice : dabigatran etexilate and atherosclerosis. Cardiovasc Drugs Ther 2013; 26:367-74. [PMID: 22940777 DOI: 10.1007/s10557-012-6411-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Dabigatran etexilate (DE) constitutes a novel, direct thrombin inhibitor. Regarding the association of thrombin with atherogenesis, we assessed the effects of DE on the development and stability of atherosclerotic lesions in apolipoprotein-E deficient (ApoE-/-) mice. MATERIALS-METHODS Fifty male ApoE-/- mice were randomized to receive western-type diet either supplemented with DE 7.5 mg DE/g chow) (DE-group, n = 25) or matching placebo as control (CO-group, n = 25) for 12 weeks. After this period, all mice underwent carotid artery injury with ferric chloride and the time to thrombotic total occlusion (TTO) was measured. Then, mice were euthanatized and each aortic arch was analyzed for the mean plaque area, the content of macrophages, elastin, collagen, nuclear factor kappaB (NFκB), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-9 (MMP-9) and its inhibitor (TIMP-1). RESULTS DE-group showed significantly longer TTO compared to CO-group (8.9 ± 2.3 min vs 3.5 ± 1.1 min, p < 0.001) and the mean plaque area was smaller in DE-group than CO-group (441.00 ± 160.01 × 10(3) μm(2) vs 132.12 ± 32.17 × 10(3) μm(2), p < 0.001). Atherosclerotic lesions derived from DE-treated mice showed increased collagen (p = 0.043) and elastin (p = 0.031) content, thicker fibrous caps (p < 0.001) and reduced number of internal elastic lamina ruptures per mm of arterial girth (p < 0.001) when compared to CO-group. Notably, DE treatment seemed to promote plaque stability possibly by reducing concentrations of NFκB, VCAM-1, macrophages and MMP-9 and increasing TIMP-1 within atherosclerotic lesions (p < 0.05). CONCLUSIONS DE attenuates arterial thrombosis, reduces lesion size and may promote plaque stability in ApoE-/- mice. The plaque-stabilizing effects of chronic thrombin inhibition might be the result of the favorable modification of inflammatory mechanisms.
Collapse
Affiliation(s)
- Nikolaos P E Kadoglou
- Center of Experimental Surgery, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessioustr, 11527, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Leckie RL, Weinstein AM, Hodzic JC, Erickson KI. Potential moderators of physical activity on brain health. J Aging Res 2012; 2012:948981. [PMID: 23304508 PMCID: PMC3523571 DOI: 10.1155/2012/948981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/25/2012] [Accepted: 11/08/2012] [Indexed: 12/14/2022] Open
Abstract
Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE), brain derived neurotrophic factor (BDNF), and catechol-O-methyltransferase (COMT) along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA), as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.
Collapse
Affiliation(s)
- Regina L. Leckie
- Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15260, USA
| | - Andrea M. Weinstein
- Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15213, USA
| | - Jennifer C. Hodzic
- Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15260, USA
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 2012; 302:H10-23. [PMID: 21984538 PMCID: PMC3334245 DOI: 10.1152/ajpheart.00574.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/29/2011] [Indexed: 12/26/2022]
Abstract
Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | |
Collapse
|
28
|
Kumar A, Kar S, Fay WP. Thrombosis, physical activity, and acute coronary syndromes. J Appl Physiol (1985) 2011; 111:599-605. [PMID: 21596926 DOI: 10.1152/japplphysiol.00017.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute coronary syndromes (ACS) are common, life-threatening cardiac disorders that typically are triggered by rupture or erosion of an atherosclerotic plaque. Platelet deposition and activation of the blood coagulation cascade in response to plaque disruption lead to the formation of a platelet-fibrin thrombus, which can grow rapidly, obstruct coronary blood flow, and cause myocardial ischemia and/or infarction. Several clinical studies have examined the relationship between physical activity and ACS, and numerous preclinical and clinical studies have examined specific effects of sustained physical training and acute physical activity on atherosclerotic plaque rupture, platelet function, and formation and clearance of intravascular fibrin. This article reviews the available literature regarding the role of physical activity in determining the incidence of atherosclerotic plaque rupture and the pace and extent of thrombus formation after plaque rupture.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, 5 Hospital Dr., Columbia, MO 65212, USA.
| | | | | |
Collapse
|